JP2005102499A - Cylindrical field magnet and motor using same - Google Patents

Cylindrical field magnet and motor using same Download PDF

Info

Publication number
JP2005102499A
JP2005102499A JP2004344837A JP2004344837A JP2005102499A JP 2005102499 A JP2005102499 A JP 2005102499A JP 2004344837 A JP2004344837 A JP 2004344837A JP 2004344837 A JP2004344837 A JP 2004344837A JP 2005102499 A JP2005102499 A JP 2005102499A
Authority
JP
Japan
Prior art keywords
magnet
field magnet
magnetic
motor
armature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004344837A
Other languages
Japanese (ja)
Inventor
Aki Watarai
亜起 度會
Yoshinobu Motokura
義信 本蔵
Hiroshi Matsuoka
浩 松岡
Youji Hayashi
擁二 林
Daisuke Nagaya
大輔 長屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP2004344837A priority Critical patent/JP2005102499A/en
Publication of JP2005102499A publication Critical patent/JP2005102499A/en
Pending legal-status Critical Current

Links

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radially anisotropic cylindrical field magnet which realizes a remarkable reduction in a cogging torque and to provide a motor using the same. <P>SOLUTION: The cylinder field magnet 1 includes a peripheral surface 12 of an anti-armature side having a circular shape, by forming a mixture of an anisotropic magnetic powder and a binder in a ring shape and magnetic field orienting radially the mixture, having a plurality of pole surfaces 13 alternately formed with peripheral polarities at a predetermined pitch by radially magnetizing a peripheral surface 11 of an armature side in such a manner that the peripheral center of the pole surfaces 13 is most protruded to the armature side, an adjacent boundary of the pole surfaces 13 are most recessed to the anti-armature side, the pole surfaces 13 each has a waveform curved shape gradually separated from the armature toward the boundary from the peripheral center and has the maximum magnetic energy (BH)max of 13 MGOe or more in a radial direction. A field element of the radially anisotropic magnet field type motor includes the cylinder field magnet 1 and a soft magnetic field yoke 2 brought into contact with the peripheral surface 12 of the anti-armature side of the cylinder field magnet 1. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ラジアル異方性を有した筒状界磁磁石及びその磁石を用いたモータに関する。   The present invention relates to a cylindrical field magnet having radial anisotropy and a motor using the magnet.

従来、ハードディスク駆動モータやCD−ROM駆動モータなどのスピンドルモータについては、永久磁石を界磁極とする界磁子と、それと対面して相対回転する電機子とをもつ構造簡単な永久磁石型モータが用いられている。
この種のモータでは、通常、コギングトルクを低減することが最優先課題であり、そのため、従来より以下の提案がなされていた。
特開平6−217478号公報によれば、セグメント磁石をヨ−クの外周面に極性交互に周方向所定ピッチで貼り付けて磁石界磁型モータの界磁子を製造することを開示している。また、各セグメント磁石は、内周面を円弧状に形成し、セグメント磁石間の磁極境界部の径方向厚さを磁極中央部の径方向厚さの0.3〜0.7倍の範囲内に設定し、かつ、この永久磁石の外周面の形状を所定の数式で表わされる曲面形状に形成することも提案している。
Conventionally, for spindle motors such as hard disk drive motors and CD-ROM drive motors, there are simple permanent magnet type motors having a field element having a permanent magnet as a field pole and an armature that rotates relative to the field element. It is used.
In this type of motor, it is usually the highest priority to reduce the cogging torque. For this reason, the following proposals have conventionally been made.
Japanese Patent Laid-Open No. 6-217478 discloses that a field magnet of a magnet field type motor is manufactured by attaching segment magnets to the outer peripheral surface of a yoke alternately with a predetermined polarity in the circumferential direction. . Each segment magnet has an inner peripheral surface formed in an arc shape, and the radial thickness of the magnetic pole boundary between the segment magnets is within the range of 0.3 to 0.7 times the radial thickness of the magnetic pole central portion. And the shape of the outer peripheral surface of the permanent magnet is proposed to be a curved surface represented by a predetermined mathematical expression.

特開平8−336249号公報の界磁子は、リング形状の磁石の磁極端部に溝を付与して、磁極端部の磁束密度の変化を滑らかにすることを提案している。
特開平9−213521号公報によれば、ラジアル方向に磁化をかけて着磁したリング磁石において、電機子側の周面が円であって、反電機子側の周面を各辺が複雑な曲面形状を有する略多角形の筒状ラジアル異方性界磁磁石により界磁子を製造することを提案している。
特開平6−217478号 特開平8−336249号 特開平9−213521号
The field element disclosed in Japanese Patent Laid-Open No. 8-336249 proposes to provide a groove at the magnetic pole end of a ring-shaped magnet to smooth the change in magnetic flux density at the magnetic pole end.
According to Japanese Patent Laid-Open No. 9-213521, in a ring magnet that is magnetized in the radial direction, the armature side circumferential surface is a circle, and the counter armature side circumferential surface is complicated on each side. It has been proposed to produce a field element by a substantially polygonal cylindrical radial anisotropic field magnet having a curved surface shape.
JP-A-6-217478 JP-A-8-336249 JP-A-9-213521

近年、モ−タ体格の小型計量化を図るため及び永久磁石作製技術の進展により、(BH)maxが13MGOe以上というような強力なラジアル異方性セグメント磁石が界磁子に採用されてきたが、このような高い(BH)maxを有する界磁子では、上述の各種従来技術によってコギングトルクの低減を十分に実現できないという問題が生じることがわかった。   In recent years, strong radial anisotropic segment magnets with (BH) max of 13 MGOe or more have been adopted for field elements in order to reduce the size of motors and to advance permanent magnet fabrication technology. It has been found that a field element having such a high (BH) max has a problem that cogging torque cannot be sufficiently reduced by the various conventional techniques described above.

本発明は上記問題点に鑑みなされたものであり、(BH)maxが13MGOe以上というようなラジアル異方性磁石を用いることにより優れたトルク重量比を有するとともに従来よりコギングトルクの格段の低減を実現したラジアル異方性磁石界磁型モータの界磁子を提供することを、その解決すべき課題としている。   The present invention has been made in view of the above problems. By using a radial anisotropic magnet having a (BH) max of 13 MGOe or more, the present invention has an excellent torque to weight ratio and a marked reduction in cogging torque compared to the prior art. It is an object to be solved to provide a field element of a realized radial anisotropic magnet field type motor.

請求項1記載の発明は、モータに使用されるラジアル異方性の筒状界磁磁石において、磁気異方性を有する異方性磁粉およびバインダの混合物をリング形状に形成するとともに径方向へ磁場配向してなり、反電機子側の周面は円形形状を有し、電機子側の周面は径方向への着磁により極性が周方向に所定ピッチで交互に形成された複数の磁極面を有し、磁極面の周方向の中央は電機子側へ最も突出し、磁極面の隣接する磁極面との境界部は反電機子側へ最も凹み、ラジアル異方性磁石の磁束横流れ不足による電磁空隙の周方向磁界強度の急激な変化を防ぐ波形曲面形状を有し、13MGOe以上の最大磁気エネルギー(BH)maxを有することを特徴とする筒状界磁磁石である。
この筒状界磁磁石と、筒状界磁磁石の反電機子側の周面に接する軟磁性の界磁ヨ−クとによりラジアル異方性磁石界磁型モータの界磁子を構成することにより、有効トルクに対するコギングトルクの割合を従来より格段に低減することができることを初めて見出した。
請求項2の発明のように、波形曲面形状は、磁極面において、周方向中央から境界部へ向かうにつれて次第に電機子から離れかつ曲率半径が減少する波形曲面形状であっても良。この場合に、局部的に曲率半径が一定である場合を含むものとする。
According to the first aspect of the present invention, in the radially anisotropic cylindrical field magnet used for the motor, a mixture of anisotropic magnetic powder having magnetic anisotropy and a binder is formed in a ring shape and a magnetic field is radially applied. A plurality of magnetic pole surfaces that are oriented and have a circumferential surface on the side opposite to the armature, and the circumferential surface on the armature side are alternately formed with a predetermined pitch in the circumferential direction by radial magnetization. The center of the magnetic pole surface in the circumferential direction protrudes most toward the armature side, the boundary between the magnetic pole surface and the adjacent magnetic pole surface is recessed most toward the anti-armature side, and the electromagnetic due to insufficient lateral flow of the radial anisotropic magnet A cylindrical field magnet having a corrugated curved surface that prevents a sudden change in the circumferential magnetic field strength of the air gap and having a maximum magnetic energy (BH) max of 13 MGOe or more.
The cylindrical field magnet and a soft magnetic field yoke in contact with the peripheral surface of the cylindrical field magnet on the counter armature side constitute a field element of a radial anisotropic magnet field type motor. Thus, it has been found for the first time that the ratio of the cogging torque to the effective torque can be remarkably reduced as compared with the prior art.
As in the invention of claim 2, the corrugated curved surface shape may be a corrugated curved surface shape in which the radius of curvature gradually decreases from the armature as it goes from the center in the circumferential direction to the boundary portion. In this case, the case where the radius of curvature is locally constant is included.

以下、本構成の筒状界磁磁石の構成による作用効果を説明する。
まず、本発明者らは上記各種従来技術に最大磁気エネルギー(BH)maxが13MGOe以上といったラジアル異方性磁石を用いた場合のコギングトルク増大の原因を調べた。
Hereinafter, the effect by the structure of the cylindrical field magnet of this structure is demonstrated.
First, the present inventors investigated the cause of the cogging torque increase when a radial anisotropic magnet having a maximum magnetic energy (BH) max of 13 MGOe or more is used in the various conventional techniques.

その結果、以下のことがわかった。
まず、ヨークの周面にセグメント形状のラジアル異方性磁石を貼付けた場合、以下の理由によりコギングトルクが顕著に増大することがわかった。
すなわち、このようなセグメント磁石の貼付けにより製造された界磁子(以下、セグメント磁石貼付け型界磁子ともいう)では、周方向に隣接するセグメント磁石間の隙間のばらつき、及び、セグメント磁石とヨークとの間の接着材層の厚さのばらつきにより、界磁子と電機子との間の電磁空隙の磁界強度がばらつき、これがコギングトルクを増大させる。
As a result, the following was found.
First, it was found that when a segment-shaped radial anisotropic magnet was affixed to the circumferential surface of the yoke, the cogging torque increased significantly for the following reasons.
That is, in a field element manufactured by pasting such a segment magnet (hereinafter also referred to as a segment magnet pasting type field element), variation in gaps between segment magnets adjacent in the circumferential direction, and segment magnet and yoke Variation in the thickness of the adhesive layer between the two and the magnetic field strength of the electromagnetic gap between the field element and the armature varies, which increases the cogging torque.

従来のような等方性磁石では、上述したばらつきによる磁束分布のばらつきは、磁束がセグメント磁石中を周方向へ横流れすることにより、ヨークを一部又は全面的にバイパスして、周方向に隣接する等方性セグメント磁石間で直接流れることにより著しく緩和される。
ところが、高トルクを得るためにラジアル異方性磁石からなるセグメント磁石を用いる場合には、このような磁束の横流れ作用はほとんど期待できず、磁束はあくまでもヨークを通じて流れる。このため、上述した周方向に隣接するセグメント磁石間の隙間のばらつき、及び、セグメント磁石とヨークとの間の接着材層の厚さのばらつきがそのまま電磁空隙の磁界強度に反映され、以下の理由により、コギングトルクが増大することがわかった。
In the conventional isotropic magnet, the variation in the magnetic flux distribution due to the above-described variation is caused by the magnetic flux flowing in the circumferential direction in the segment magnet, thereby partially or entirely bypassing the yoke and adjacent in the circumferential direction. This is significantly mitigated by direct flow between isotropic segment magnets.
However, when a segment magnet made of a radial anisotropic magnet is used to obtain a high torque, such a lateral flow effect of the magnetic flux can hardly be expected, and the magnetic flux flows only through the yoke. For this reason, the variation in the gap between the segment magnets adjacent to each other in the circumferential direction and the variation in the thickness of the adhesive layer between the segment magnet and the yoke are directly reflected in the magnetic field strength of the electromagnetic gap. It was found that the cogging torque increased.

すなわち、このようなセグメント磁石の貼付けにより製造された界磁子(以下、セグメント磁石貼付け型界磁子ともいう)では、周方向に隣接するセグメント磁石間の隙間のばらつき、及び、セグメント磁石とヨークとの間の接着材層の厚さのばらつきにより、界磁子と電機子との間の電磁空隙の磁界強度がばらつき、これがコギングトルクを増大させる。   That is, in a field element manufactured by pasting such a segment magnet (hereinafter also referred to as a segment magnet pasting type field element), variation in gaps between segment magnets adjacent in the circumferential direction, and segment magnet and yoke Variation in the thickness of the adhesive layer between the two and the magnetic field strength of the electromagnetic gap between the field element and the armature varies, which increases the cogging torque.

次に、単にリング形状の磁石の磁極端部に溝を形成する場合、等方性磁石ではコギングトルクは低減するが、ラジアル異方性磁石を用いる場合には以下の理由によりコギングトルクが顕著に増大することがわかった。すなわち、このような磁極端部に角溝を形成した場合、従来の等方性磁石の場合には、この磁極の表面形状の不連続な変化及びそれによる周方向各部における局部的磁気抵抗の急変に対して、着磁時に磁束がこの等方性磁石中を周方向に横流れし、それにより電磁空隙の磁束密度の周方向における急変を緩和する。   Next, when a groove is simply formed at the magnetic pole end of a ring-shaped magnet, the cogging torque is reduced with an isotropic magnet, but when a radial anisotropic magnet is used, the cogging torque is noticeable for the following reasons. It was found to increase. That is, when a square groove is formed at the end of such a magnetic pole, in the case of a conventional isotropic magnet, the surface shape of the magnetic pole is discontinuously changed, and the local magnetic resistance at each part in the circumferential direction is suddenly changed. On the other hand, when magnetized, magnetic flux flows laterally in the isotropic magnet in the circumferential direction, thereby mitigating sudden changes in the magnetic flux density of the electromagnetic gap in the circumferential direction.

しかし、ラジアル異方性磁石では、磁石中を磁束が周方向へ横流れすることはほとんど期待できないため、このような磁極面の急激な段差は電磁空隙の磁界強度の周方向分布を急変させてしまい、以下の理由により、コギングトルクが増大することがわかった。
以上の点から、単に筒状界磁磁石形状の磁極面に溝を設けたり、セグメント磁石を貼付けたりした界磁子は、ラジアル異方性磁石に対しては上述の理由によるコギングトルクの急増によりコギングトルクに敏感な用途において実用に耐え得ないということがわかった。
However, in radial anisotropic magnets, it is almost impossible to expect the magnetic flux to flow in the circumferential direction in the magnet, and such a steep step on the magnetic pole surface suddenly changes the circumferential distribution of the magnetic field strength of the electromagnetic gap. It has been found that the cogging torque increases for the following reasons.
In view of the above, field elements simply provided with a groove on the magnetic pole surface of a cylindrical field magnet or a segment magnet are applied to a radial anisotropic magnet due to a sudden increase in cogging torque due to the above-described reason. It has been found that it cannot withstand practical use in applications sensitive to cogging torque.

次に、ラジアル異方性磁石により筒状界磁磁石を形成し、反電機子側の周面を各辺が複雑な曲面形状を有する略多角形とする場合、当然、筒状界磁磁石のこの多角形状の反電機子側の周面には同一形状のヨークが嵌合されることになるが、このような嵌合面を寸法公差±0.05mm以下に精度よく作ることは極めて困難であるので、この嵌合面における隙間のばらつきが上述したようにラジアル異方性磁石ではコギングトルク大幅な増大を招いてしまう。   Next, when a cylindrical field magnet is formed by a radial anisotropic magnet and the peripheral surface on the counter armature side is a substantially polygonal shape having complicated curved surfaces on each side, naturally, the cylindrical field magnet A yoke of the same shape is fitted to the peripheral surface of the polygonal anti-armature side, but it is extremely difficult to accurately make such a fitting surface with a dimensional tolerance of ± 0.05 mm or less. Therefore, the variation in the gap on the fitting surface causes a significant increase in the cogging torque in the radial anisotropic magnet as described above.

上述した従来の問題に鑑み、本構成の界磁子では、まず界磁磁石に、13MGOe以上の最大磁気エネルギー(BH)maxをもつラジアル異方性磁石を採用することにより体格増大を抑止しつつ有効トルクを増大させ、筒状に形成することによりセグメント磁石における接着剤層のばらつきやセグメント磁石間の間隙のばらつきをなくし、電機子側の周面を波形曲面とすることにより、ラジアル異方性磁石の磁束横流れ不足による電磁空隙の周方向磁界強度の急激な変化を防ぎ、ヨーク側(反電機子側)の周面を円形とすることによりヨークの磁石側周面の加工を省くと共に、両者間の隙間ばらつきを大幅に減らしてそれによるコギングトルクの低減を図ったものである。   In view of the above-described conventional problems, in the field element of this configuration, first, a radial anisotropic magnet having a maximum magnetic energy (BH) max of 13 MGOe or more is adopted as the field magnet while suppressing an increase in physique. Radial anisotropy is achieved by increasing the effective torque and eliminating the variation of the adhesive layer and the gap between the segment magnets by forming it into a cylindrical shape, and making the armature side circumferential surface a corrugated surface. Preventing sudden changes in the magnetic field strength in the circumferential direction of the electromagnetic gap due to insufficient magnetic flux lateral flow of the magnet, and making the yoke side (counter armature side) circular in shape eliminates machining of the magnet side peripheral surface of the yoke, It is intended to reduce the cogging torque by greatly reducing the gap variation between them.

結局、本構成によれば、ラジアル異方性磁石による大きな有効トルクと小さいコギングトルクとにより、優れた有効トルク/コギングトルク比をもつ界磁子を実現することができる。   Eventually, according to this configuration, a field element having an excellent effective torque / cogging torque ratio can be realized by a large effective torque and a small cogging torque by the radial anisotropic magnet.

請求項3の発明は、筒状界磁磁石はスピンドルモータに用いられる界磁磁石であることを特徴とする請求項1又は請求項2に記載の筒状界磁磁石である。
請求項4の発明は、ラジアル異方性の筒状界磁磁石を有したモータにおいて、ヨークと、ヨークの内周面に固定された前記筒状界磁磁石と、筒状界磁磁石の内部に配設された電機子とを有し、筒状界磁磁石は、磁気異方性を有する異方性磁粉およびバインダの混合物をリング形状に形成するとともに径方向へ磁場配向してなり、反電機子側の周面は円形形状を有し、電機子側の周面は径方向への着磁により極性が周方向に所定ピッチで交互に形成された複数の磁極面を有し、磁極面の周方向の中央は電機子側へ最も突出し、磁極面の隣接する磁極面との境界部は反電機子側へ最も凹み、ラジアル異方性磁石の磁束横流れ不足による電磁空隙の周方向磁界強度の急激な変化を防ぐ波形曲面形状を有し、13MGOe以上の最大磁気エネルギー(BH)maxを有することを特徴とするモータである。
The invention according to claim 3 is the cylindrical field magnet according to claim 1 or 2, wherein the cylindrical field magnet is a field magnet used in a spindle motor.
According to a fourth aspect of the present invention, in a motor having a radially anisotropic cylindrical field magnet, the yoke, the cylindrical field magnet fixed to the inner peripheral surface of the yoke, and the interior of the cylindrical field magnet The cylindrical field magnet is formed by forming a mixture of anisotropic magnetic powder having magnetic anisotropy and a binder in a ring shape and orienting the magnetic field in the radial direction. The armature-side peripheral surface has a circular shape, and the armature-side peripheral surface has a plurality of magnetic pole surfaces in which polarities are alternately formed at predetermined pitches in the circumferential direction by magnetization in the radial direction. The center in the circumferential direction of the magnetic pole protrudes most toward the armature side, the boundary between the magnetic pole face and the adjacent magnetic pole face is recessed most toward the anti-armature side, and the magnetic field strength in the circumferential direction of the electromagnetic gap due to insufficient magnetic flux lateral flow of the radial anisotropic magnet It has a corrugated surface shape that prevents sudden changes in the maximum magnetic energy of 13 MGOe or more ( A motor, characterized in that it comprises a H) max.

また、請求項5の発明は、筒状界磁磁石の波形曲面形状は、磁極面において、周方向中央から境界部へ向かうにつれて次第に電機子から離れかつ曲率半径が減少する波形曲面形状であることを特徴とする請求項4に記載のモータである。
また、請求項6の発明は、モータは、スピンドルモータであることを特徴とする請求項4又は請求項5に記載のモータである。
また、請求項7の発明は、モータは、コギングトルクが4gfcm以下であることを特徴とする請求項4乃至請求項6の何れか1項に記載のモータである。
In the invention of claim 5, the corrugated curved surface shape of the cylindrical field magnet is a corrugated curved surface shape in which the radius of curvature gradually decreases from the armature toward the boundary portion from the center in the circumferential direction on the magnetic pole surface. The motor according to claim 4.
The invention according to claim 6 is the motor according to claim 4 or 5, wherein the motor is a spindle motor.
The invention according to claim 7 is the motor according to any one of claims 4 to 6, wherein the motor has a cogging torque of 4 gfcm or less.

また、界磁ヨークは筒状界磁磁石の反電機子側の周面に嵌め込まれて、筒状界磁磁石の反電機子側の周面と界磁ヨークの磁石側周面との間の空隙の径方向長は、筒状界磁磁石の反電機子側の周面の半径の0.5%未満とする構成によれば、筒状界磁磁石と界磁ヨ−クとの嵌合隙間は筒状界磁磁石の反電機子側の周面の半径の0.5%未満とした結果、コギングトルクを良好に抑止できることがわかった。   The field yoke is fitted into the peripheral surface of the cylindrical field magnet on the side opposite to the armature, and between the peripheral surface on the side opposite to the armature of the cylindrical field magnet and the magnet side peripheral surface of the field yoke. According to the configuration in which the radial length of the air gap is less than 0.5% of the radius of the peripheral surface on the counter armature side of the cylindrical field magnet, the cylindrical field magnet and the field yoke are fitted. As a result of setting the gap to be less than 0.5% of the radius of the peripheral surface on the counter armature side of the cylindrical field magnet, it was found that the cogging torque can be satisfactorily suppressed.

すなわち、本発明者らは、最大磁気エネルギー(BH)maxに優れたラジアル異方性磁石では、微小に見える筒状界磁磁石とそれに嵌合するヨークとの間の隙間のばらつきが、等方性磁石のように磁束の横流れがないために大きなコギングトルク増大を生じさせることを見出した。したがって、この嵌合隙間を上述の値未満に低減することにより、ラジアル異方性磁石とヨークとを嵌合させる場合であっても、コギングトルク/有効トルクの比率を実用上十分な範囲にまで低減できることがわかった。   That is, the present inventors have found that the radial anisotropic magnet having an excellent maximum magnetic energy (BH) max has an isotropic variation in the gap between the minute cylindrical field magnet and the yoke fitted thereto. It has been found that a large cogging torque increase is caused due to the absence of the lateral flow of magnetic flux as in the case of a magnet. Therefore, the ratio of the cogging torque / effective torque is reduced to a practically sufficient range even when the radial anisotropic magnet and the yoke are fitted by reducing the fitting gap to less than the above value. It was found that it can be reduced.

ラジアル異方性磁石を製造するに際し、筒状界磁磁石と界磁ヨ−クとをインサ−ト成形により成形する。このようなインサ−ト一体成形は、プレス成形による筒状界磁磁石の単独成形及びその嵌合、接着に比較して格段にコスト上昇を招き、通常は用いられないが、本発明者らは、この製造方法によれば筒状界磁磁石と界磁ヨ−クとの間の隙間をほぼ0とすることができるので、上述の理由によりコギングトルクを大幅に低減できることがわかった。更に、有効トルクも増大することができる。   When manufacturing a radial anisotropic magnet, a cylindrical field magnet and a field yoke are formed by insert molding. Such insert integral molding causes a significant increase in cost compared to single molding of a cylindrical field magnet by press molding and its fitting and adhesion, and is not usually used. According to this manufacturing method, the gap between the cylindrical field magnet and the field yoke can be made substantially zero, and it has been found that the cogging torque can be greatly reduced for the above-described reason. Further, the effective torque can be increased.

ラジアル異方性磁粉としては、NdFeB系、SmFeN系、SmCo系などを採用することができ、バインダとしては樹脂あるいは無機質材料あるいは低融点金属等を採用することができる。
本発明の好適な態様を以下の実施例を参照して説明する。
NdFeB-based, SmFeN-based, SmCo-based, etc. can be adopted as the radial anisotropic magnetic powder, and a resin, an inorganic material, a low melting point metal, or the like can be adopted as the binder.
Preferred aspects of the invention are described with reference to the following examples.

NdFeB系異方性磁粉を150℃の温度でラジアル方向に磁場配向しながら金型内で約10ton/cm2 の圧力をかけ、図1(実施例)、図2(比較例1)、図3(比較例2、3)、図4(比較例4)に示す磁石を製作した。 ここで、磁石の最大磁気エネルギー積(BH)maxは17MGOeである。 A pressure of about 10 ton / cm 2 was applied in the mold while magnetically orienting the NdFeB-based anisotropic magnetic powder at a temperature of 150 ° C. in the radial direction, and FIG. 1 (Example), FIG. 2 (Comparative Example 1), FIG. The magnets shown in (Comparative Examples 2 and 3) and FIG. 4 (Comparative Example 4) were manufactured. Here, the maximum magnetic energy product (BH) max of the magnet is 17 MGOe.

ここに、実施例の磁石形状は外径φ21.6mmで、内径φ19.4mmで、奥行きt4.5mm、波形部の弧半径Rは8mmである。ヨーク材料はSUM22鋼で、その形状は、外径φ22.6mmで、内径φ21.6mmで、奥行きはt4.5mmである。着磁は1800Vの電圧を印加し、12極のラジアル着磁を施した。   Here, the magnet shape of the embodiment has an outer diameter of 21.6 mm, an inner diameter of 19.4 mm, a depth of t4.5 mm, and the arc radius R of the corrugated portion is 8 mm. The yoke material is SUM22 steel, which has an outer diameter of φ22.6 mm, an inner diameter of φ21.6 mm, and a depth of t4.5 mm. For magnetization, a voltage of 1800 V was applied, and 12 poles of radial magnetization were applied.

比較例1の磁石形状は、実施例1の1極分の磁石の形状で、外径弧半径10.8mmで、最大肉厚1.1mmで内径側の円弧半径は8mmで、奥行きt4.5mmのセグメント磁石を圧縮成形により製作した。12個のセグメント磁石を接着剤で前述のSUM22からなるヨークに貼り付けた。その後、1800Vの電圧を印加し、ラジアル着磁を施した。   The magnet shape of Comparative Example 1 is the shape of a magnet for one pole of Example 1, the outer diameter arc radius is 10.8 mm, the maximum wall thickness is 1.1 mm, the inner diameter side arc radius is 8 mm, and the depth is t4.5 mm. The segment magnet was manufactured by compression molding. Twelve segment magnets were attached to the yoke made of SUM22 with an adhesive. Thereafter, a voltage of 1800 V was applied to perform radial magnetization.

比較例2の磁石形状は、磁石形状を外径φ21.6mmで、内径φ19.4mmで、奥行きt4.5mm、溝部角度をθとして、もっとも効果が高かったθ=7.5degを比較例2の磁石形状とし、θ=9degの場合を比較例3の磁石形状とした。尚、ヨーク材料はSUM22鋼で、その形状は、外径φ22.6mmで、内径φ21.6mmで、奥行きはt4.5mmである。着磁は1800Vの電圧を印加し、12極のラジアル着磁を施した。   The magnet shape of the comparative example 2 has an outer diameter of 21.6 mm, an inner diameter of 19.4 mm, a depth of t4.5 mm, a groove portion angle of θ, and θ = 7.5 deg, which is the most effective, of the comparative example 2. The magnet shape was used, and the case of θ = 9 deg was the magnet shape of Comparative Example 3. The yoke material is SUM22 steel, the shape is an outer diameter φ22.6 mm, the inner diameter φ21.6 mm, and the depth is t4.5 mm. For magnetization, a voltage of 1800 V was applied, and 12 poles of radial magnetization were applied.

比較例4の磁石形状は、磁石の形状を内径φ19.4mm、外径は正12角形でその外接円の直径を21.6mmとし、奥行きはt4.5mmである。尚、ヨーク材料SUM22鋼で、その形状を、外径φ22.6mmで、内径側は正12角形でその外接円の直径をφ21.6mmとした、奥行きはt4.5mmである。着磁は1800Vの電圧を印加し、12極のラジアル着磁を施した。   The magnet shape of the comparative example 4 has an inner diameter of 19.4 mm, an outer diameter of a regular dodecagon, a circumscribed circle diameter of 21.6 mm, and a depth of t4.5 mm. Incidentally, the yoke material is SUM22 steel, the outer diameter is φ22.6 mm, the inner diameter side is a regular dodecagon, the diameter of the circumscribed circle is φ21.6 mm, and the depth is t4.5 mm. For magnetization, a voltage of 1800 V was applied, and 12 poles of radial magnetization were applied.

各ロータを用いてモータを組立て、モータ特性を調べた。モータの特性としては、コギングトルクと逆起電力定数を測定した。逆起電力定数は、モータをN=1800rpmで強制的に回転させたときに、相関に発生した電圧の波高さ値Eを計測しその値から、ke=E/N(V/krpm)の計算式により求めた。それらの結果を表1に示す。   A motor was assembled using each rotor, and the motor characteristics were examined. As the motor characteristics, cogging torque and back electromotive force constant were measured. The counter electromotive force constant is calculated by calculating ke = E / N (V / krpm) from the measured wave height value E of the voltage generated in correlation when the motor is forcibly rotated at N = 1800 rpm. Obtained by the formula. The results are shown in Table 1.

表1によれば、比較例はすべてコギングトルクが著しく大きくなっているのに対して、本実施例は比較例に比べて著しくコギングトルクが小さな値を示し、スピンドルモータのTc≦4gfcmのレベルを満足していることが明らかとなった。 According to Table 1, in all the comparative examples, the cogging torque is remarkably large, whereas in the present embodiment, the cogging torque is significantly smaller than that of the comparative example, and the level of Tc ≦ 4 gfcm of the spindle motor is shown. It became clear that he was satisfied.

また、モータ性能のトータル評価としては、逆起電力定数を大きくし、コギングトルクを低減することが好ましいため、その視点で、Ke/Tcを一つの指標とした。さらに、ヨークと磁石との嵌合性について、良好な場合をA、あまり良くない場合をB、悪い場合をCとして評価した。コギングトルクに関する評価としては、スピンドルモータの用途に関しては、Tc≦4gfcmであることが必須である。従って、4gfcm以下を良好な場合としてAを、5〜9gfcmはB、10gfcm以上は全く使用においては論外というレベルでCと判定した。   Further, as a total evaluation of the motor performance, it is preferable to increase the counter electromotive force constant and reduce the cogging torque. From this viewpoint, Ke / Tc is used as one index. Furthermore, regarding the fitting property between the yoke and the magnet, A was evaluated when it was good, B was evaluated when it was not very good, and C was evaluated when it was poor. As an evaluation regarding the cogging torque, it is essential that Tc ≦ 4 gfcm for the application of the spindle motor. Accordingly, A was determined to be 4 gfcm or less, B was determined to be 5 to 9 gfcm, and C was determined to be C when the 10 gfcm or more was completely out of use.

以上の結果からも明らかのように、従来技術に対比した比較例1〜4については、すべて、コギングトルクの観点からは全く実用に耐えないということが明らかとなった。それに対して、本発明品である実施例のみがコギングトルクを極めて小さな値とでき、尚且つ、逆起電力についても良好な結果を示しており、モータ性能Ke/Tcとしては比較例に比べて約7倍優れた性能を有することが明らかとなった。   As is clear from the above results, it has been clarified that Comparative Examples 1 to 4 as compared with the prior art are not practically usable from the viewpoint of cogging torque. On the other hand, only the embodiment which is the product of the present invention can reduce the cogging torque to an extremely small value, and also shows a good result for the back electromotive force. The motor performance Ke / Tc is compared with the comparative example. It was revealed that the performance was about 7 times better.

本発明は、コギングトクルが極めて小さいモータに用いることができる。たとえば、ススンドルモータに有効である。   The present invention can be used for a motor having a very small cogging torque. For example, it is effective for a sundle motor.

実施例の界磁ロ−タ−の模式断面図である。It is a schematic cross section of the field rotor of an Example. 比較例1の界磁ロ−タ−の模式断面図である。6 is a schematic cross-sectional view of a field rotor of Comparative Example 1. FIG. 比較例2の界磁ロ−タ−の模式断面図である。6 is a schematic cross-sectional view of a field rotor of Comparative Example 2. FIG. 比較例4の界磁ロ−タ−の模式断面図である。10 is a schematic cross-sectional view of a field rotor of Comparative Example 4. FIG.

符号の説明Explanation of symbols

1…ラジアル異方性磁石からなる筒状界磁磁石
2…界磁ヨ−ク
3…セグメント磁石
11…電機子側の周面
12…反電機子側の周面
13…磁極面
DESCRIPTION OF SYMBOLS 1 ... Cylindrical field magnet which consists of a radial anisotropic magnet 2 ... Field yoke 3 ... Segment magnet 11 ... Armature side peripheral surface 12 ... Anti-armature side peripheral surface 13 ... Magnetic pole surface

Claims (7)

モータに使用されるラジアル異方性の筒状界磁磁石において、
磁気異方性を有する異方性磁粉およびバインダの混合物をリング形状に形成するとともに径方向へ磁場配向してなり、反電機子側の周面は円形形状を有し、
電機子側の周面は径方向への着磁により極性が周方向に所定ピッチで交互に形成された複数の磁極面を有し、
前記磁極面の周方向の中央は電機子側へ最も突出し、前記磁極面の隣接する磁極面との境界部は反電機子側へ最も凹み、ラジアル異方性磁石の磁束横流れ不足による電磁空隙の周方向磁界強度の急激な変化を防ぐ波形曲面形状を有し、
13MGOe以上の最大磁気エネルギー(BH)maxを有する
ことを特徴とする筒状界磁磁石。
In the radial anisotropic cylindrical field magnet used for motors,
A mixture of anisotropic magnetic powder having magnetic anisotropy and a binder is formed in a ring shape and magnetically oriented in the radial direction, and the peripheral surface on the counter armature side has a circular shape,
The peripheral surface on the armature side has a plurality of magnetic pole surfaces in which polarities are alternately formed at a predetermined pitch in the circumferential direction by magnetization in the radial direction,
The center of the magnetic pole surface in the circumferential direction protrudes most toward the armature side, the boundary portion between the magnetic pole surface and the adjacent magnetic pole surface is recessed most toward the anti-armature side, and electromagnetic gaps due to insufficient magnetic flux lateral flow of the radial anisotropic magnet It has a corrugated curved surface that prevents sudden changes in circumferential magnetic field strength,
A cylindrical field magnet having a maximum magnetic energy (BH) max of 13 MGOe or more.
前記波形曲面形状は、前記磁極面において、前記周方向中央から前記境界部へ向かうにつれて次第に電機子から離れかつ曲率半径が減少する波形曲面形状であることを特徴とする請求項1に記載の筒状界磁磁石。   2. The cylinder according to claim 1, wherein the corrugated curved surface shape is a corrugated curved surface shape in which the radius of curvature gradually decreases from the armature toward the boundary portion from the circumferential center in the magnetic pole surface. Field magnet. 前記筒状界磁磁石はスピンドルモータに用いられる界磁磁石であることを特徴とする請求項1又は請求項2に記載の筒状界磁磁石。   The cylindrical field magnet according to claim 1 or 2, wherein the cylindrical field magnet is a field magnet used for a spindle motor. ラジアル異方性の筒状界磁磁石を有したモータにおいて、
ヨークと、
前記ヨークの内周面に固定された前記筒状界磁磁石と、
前記筒状界磁磁石の内部に配設された電機子と
を有し、
前記筒状界磁磁石は、
磁気異方性を有する異方性磁粉およびバインダの混合物をリング形状に形成するとともに径方向へ磁場配向してなり、反電機子側の周面は円形形状を有し、
電機子側の周面は径方向への着磁により極性が周方向に所定ピッチで交互に形成された複数の磁極面を有し、
前記磁極面の周方向の中央は電機子側へ最も突出し、前記磁極面の隣接する磁極面との境界部は反電機子側へ最も凹み、ラジアル異方性磁石の磁束横流れ不足による電磁空隙の周方向磁界強度の急激な変化を防ぐ波形曲面形状を有し、
13MGOe以上の最大磁気エネルギー(BH)maxを有する
ことを特徴とするモータ。
In a motor having a radial anisotropic cylindrical field magnet,
York,
The cylindrical field magnet fixed to the inner peripheral surface of the yoke;
An armature disposed inside the cylindrical field magnet,
The cylindrical field magnet is
A mixture of anisotropic magnetic powder having magnetic anisotropy and a binder is formed in a ring shape and magnetically oriented in the radial direction, and the peripheral surface on the counter armature side has a circular shape,
The peripheral surface on the armature side has a plurality of magnetic pole surfaces in which polarities are alternately formed at a predetermined pitch in the circumferential direction by magnetization in the radial direction,
The center of the magnetic pole surface in the circumferential direction protrudes most toward the armature side, the boundary portion between the magnetic pole surface and the adjacent magnetic pole surface is recessed most toward the anti-armature side, and electromagnetic gaps due to insufficient magnetic flux lateral flow of the radial anisotropic magnet It has a corrugated curved surface that prevents sudden changes in circumferential magnetic field strength,
A motor having a maximum magnetic energy (BH) max of 13 MGOe or more.
前記筒状界磁磁石の前記波形曲面形状は、前記磁極面において、前記周方向中央から前記境界部へ向かうにつれて次第に電機子から離れかつ曲率半径が減少する波形曲面形状であることを特徴とする請求項4に記載のモータ。   The corrugated curved surface shape of the cylindrical field magnet is a corrugated curved surface shape in which the radius of curvature gradually decreases from the armature toward the boundary portion from the circumferential center in the magnetic pole surface. The motor according to claim 4. 前記モータは、スピンドルモータであることを特徴とする請求項4又は請求項5に記載のモータ。   The motor according to claim 4, wherein the motor is a spindle motor. 前記モータは、コギングトルクが4gfcm以下であることを特徴とする請求項4乃至請求項6の何れか1項に記載のモータ。   The motor according to any one of claims 4 to 6, wherein the motor has a cogging torque of 4 gfcm or less.
JP2004344837A 2004-11-29 2004-11-29 Cylindrical field magnet and motor using same Pending JP2005102499A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004344837A JP2005102499A (en) 2004-11-29 2004-11-29 Cylindrical field magnet and motor using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004344837A JP2005102499A (en) 2004-11-29 2004-11-29 Cylindrical field magnet and motor using same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9263365A Division JPH11103564A (en) 1997-09-29 1997-09-29 Field element of radially anisotropic magnetic field type motor, and its manufacture

Publications (1)

Publication Number Publication Date
JP2005102499A true JP2005102499A (en) 2005-04-14

Family

ID=34464410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004344837A Pending JP2005102499A (en) 2004-11-29 2004-11-29 Cylindrical field magnet and motor using same

Country Status (1)

Country Link
JP (1) JP2005102499A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2431524A (en) * 2005-10-21 2007-04-25 Super Electronics Co Ltd External rotor construction for brushless dc motor
GB2431525A (en) * 2005-10-21 2007-04-25 Super Electronics Co Ltd External rotor construction for brushless dc motor in a pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2431524A (en) * 2005-10-21 2007-04-25 Super Electronics Co Ltd External rotor construction for brushless dc motor
GB2431525A (en) * 2005-10-21 2007-04-25 Super Electronics Co Ltd External rotor construction for brushless dc motor in a pump
GB2431524B (en) * 2005-10-21 2007-11-21 Super Electronics Co Ltd Brushless dc motor, rotor thereof and fan
GB2431525B (en) * 2005-10-21 2007-11-21 Super Electronics Co Ltd Motor-driven pump

Similar Documents

Publication Publication Date Title
CN102223040B (en) Permanent magnet rotary electric machine
JP4169055B2 (en) Rotating electric machine
US7902707B2 (en) Anisotropic permanent magnet motor
JPWO2005008862A1 (en) Thin hybrid magnetized ring magnet, thin hybrid magnetized ring magnet with yoke, and brushless motor
WO2014188628A1 (en) Rotor and motor
JP2008245488A (en) Ring-like magnet, manufacturing method therefor, and motor
JP2009268204A (en) Rotor for ipm motor, and ipm motor
CN104518585A (en) Rotor and motor
KR20140091626A (en) The spoke type motor
US10454326B2 (en) Synchronous motor
JP2007214393A (en) Annular polar anisotropic plastic magnet and rotor used for motor
US20020195888A1 (en) Motor
JP5403794B2 (en) Small motor
JP6655290B2 (en) Axial gap type rotary electric machine
JP2005287292A (en) Rotor structure part of electric motor and manufacturing method thereof
WO2015129549A1 (en) Polar-anisotropic ring magnet and rotor using same
US9276444B2 (en) Rotor and motor
JPH11103564A (en) Field element of radially anisotropic magnetic field type motor, and its manufacture
JP2008109784A (en) Stator structure
JP2005102499A (en) Cylindrical field magnet and motor using same
JP2010081776A (en) Rotor of synchronous motor, and method of manufacturing the same rotor
JP2023053154A (en) Rotor and method for manufacturing rotor
JP2008017634A (en) Permanent magnet motor
JP2005295775A (en) Rotor of motor
JP2004242378A (en) Motor, motor rotor, and compound anisotropic magnet

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070109

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070522