JP2005101473A - Thermoelectric module and its manufacturing method - Google Patents

Thermoelectric module and its manufacturing method Download PDF

Info

Publication number
JP2005101473A
JP2005101473A JP2003335808A JP2003335808A JP2005101473A JP 2005101473 A JP2005101473 A JP 2005101473A JP 2003335808 A JP2003335808 A JP 2003335808A JP 2003335808 A JP2003335808 A JP 2003335808A JP 2005101473 A JP2005101473 A JP 2005101473A
Authority
JP
Japan
Prior art keywords
solder
lead wire
thermoelectric element
thermoelectric
gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003335808A
Other languages
Japanese (ja)
Inventor
Koichi Nagasaki
浩一 長崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003335808A priority Critical patent/JP2005101473A/en
Publication of JP2005101473A publication Critical patent/JP2005101473A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly reliable thermoelectric module in which the joining strength of a lead wire is high. <P>SOLUTION: In joining of the lead wire 3 and the end part 4a of a wiring conductor 4, by providing a gap 6a between the lead wire 3 and solder 6 and a thermoelectric element 5, degradation by the reaction of the lead wire 3 and the solder 6 and the thermoelectric element 5 is prevented. Especially, by joining the solder 6 by a laser and controlling the cooling time, the above effect is improved further. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体等の発熱体の冷却等に好適に用いることのできる熱電モジュールにおいて、リード線および半田と熱電素子の反応による劣化を未然に防止可能な熱電モジュールおよびその製造方法に関する。   The present invention relates to a thermoelectric module that can be suitably used for cooling a heating element such as a semiconductor and the like and capable of preventing deterioration due to a reaction between a lead wire and solder and a thermoelectric element, and a method for manufacturing the same.

従来より、ペルチェ効果を利用した熱電素子は、電流を流すことにより一端が発熱するとともに他端が吸熱するため、冷却用の熱電素子として用いられている。特に、熱電モジュールとしてレーザーダイオードの温度制御、小型で構造が簡単でありフロンレスの冷却装置、冷蔵庫、恒温槽、光検出素子、半導体製造装置等の電子冷却素子、レーザーダイオードの温度調節等への幅広い利用が期待されている。   Conventionally, a thermoelectric element using the Peltier effect has been used as a thermoelectric element for cooling because one end generates heat and the other end absorbs heat when an electric current is passed. In particular, temperature control of laser diodes as thermoelectric modules, small size and simple structure, cooling devices without refrigerators, refrigerators, thermostats, photodetectors, electronic cooling elements such as semiconductor manufacturing equipment, temperature control of laser diodes, etc. Use is expected.

この室温付近で使用される熱電モジュールに使用される熱電素子用材料は、冷却特性が優れるという観点からA2B3型結晶(AはBi及び/又はSb、BはTe及び/又はSe)からなる熱電素子が一般的に用いられる。   The thermoelectric element material used for the thermoelectric module used near room temperature is a thermoelectric element made of an A2B3 type crystal (A is Bi and / or Sb, and B is Te and / or Se) from the viewpoint of excellent cooling characteristics. Is generally used.

例えば、P型の熱電素子にはBiTe(テルル化ビスマス)とSbTe(テルル化アンチモン)との固溶体が、N型の熱電素子にはBiTeとBiSe(セレン化ビスマス)との固溶体が特に優れた性能を示す。 For example, a solid solution of Bi 2 Te 3 (bismuth telluride) and Sb 2 Te 3 (antimony telluride) is used for a P-type thermoelectric element, and Bi 2 Te 3 and Bi 2 Se 3 (for a N-type thermoelectric element). Solid solutions with bismuth selenide) exhibit particularly good performance.

熱電モジュールは、図2に示したように、支持基板1及び2の表面に、それぞれ配線導体4が形成され、熱電素子5を挟持するように半田で接合されている。熱電素子5は、N型熱電素子5aとP型熱電素子5bを対にしたものを複数直列に電気的接続を行い、冷却モジュールとして使用されている。   As shown in FIG. 2, the thermoelectric module has wiring conductors 4 formed on the surfaces of the support substrates 1 and 2, respectively, and is joined with solder so as to sandwich the thermoelectric element 5. The thermoelectric element 5 is used as a cooling module by electrically connecting a plurality of N-type thermoelectric elements 5a and P-type thermoelectric elements 5b in series.

配線導体4の端部4aはリード線3と接合され、図3に示したように、リード線3およびリード3線接合用の半田6は間隙無く熱電素子5に接合されていた。   The end 4a of the wiring conductor 4 was joined to the lead wire 3, and as shown in FIG. 3, the lead wire 3 and the solder 6 for joining the lead 3 wire were joined to the thermoelectric element 5 without a gap.

このリード線3を配線導体4に半田接合する手法としては、手作業で半田接合する手動方法、リード線3の先端部3aにクリーム半田を付着させた後、リフロー炉を使って加熱溶融接合する加熱接合方法があった。また、リード線3の先端部3aにクリーム半田を付着した後、レーザー光を所定の時間照射加熱し、リード線3のクリーム半田付着部を半田接合するレーザー接合方法が開示されていた(特許文献1参照)。
特開平4−49678号公報
As a method for soldering the lead wire 3 to the wiring conductor 4, a manual method for soldering manually, or after soldering cream solder on the tip 3 a of the lead wire 3, heat melting and joining using a reflow furnace is performed. There was a heat bonding method. Further, there has been disclosed a laser joining method in which cream solder is attached to the distal end portion 3a of the lead wire 3 and then laser light is irradiated and heated for a predetermined time to solder the cream solder attaching portion of the lead wire 3 (Patent Document). 1).
JP-A-4-49678

しかしながら、従来の手法に基づくリード線3の接合方法においては、前述のいかなる手法であっても、リード線3およびリード3線接合用の半田6が、間隙無く熱電素子5に接合されてしまい、リード線3のSnメッキ成分や半田6中のSn成分等と熱電素子のTe等とが反応し、熱電素子5の性能が劣化したり、耐久性が劣るなどの問題があった。   However, in the joining method of the lead wire 3 based on the conventional method, the lead wire 3 and the solder 6 for joining the lead 3 wire are joined to the thermoelectric element 5 without any gap by any of the methods described above. The Sn plating component of the lead wire 3, the Sn component in the solder 6, and the like react with Te of the thermoelectric element, causing problems such as deterioration in performance of the thermoelectric element 5 and inferior durability.

従って、本発明は、リード線3のSnメッキ成分や半田6中のSn成分等と熱電素子5との反応を防止し、熱電素子5の性能や耐久性の向上が可能な熱電モジュールおよびその製造方法を提供することを目的とする。   Therefore, the present invention prevents the reaction between the Sn plating component of the lead wire 3 or the Sn component in the solder 6 and the thermoelectric element 5 and can improve the performance and durability of the thermoelectric element 5 and its manufacture. It aims to provide a method.

上記に鑑みて、本発明は対向する支持基板と、該支持基板に挟持されて配列された複数の熱電素子と、該複数の熱電素子相互を電気的に接続する配線導体と、該配線導体に半田接合した1対のリード線を具備する熱電モジュールにおいて、前記リード線を接合した半田と熱電素子の間に間隙を設けたことを特徴とするものである。   In view of the above, the present invention provides an opposing support substrate, a plurality of thermoelectric elements that are sandwiched and arranged between the support substrates, a wiring conductor that electrically connects the plurality of thermoelectric elements, and the wiring conductor. In the thermoelectric module including a pair of solder-bonded lead wires, a gap is provided between the solder to which the lead wires are joined and the thermoelectric element.

また、前記リード線を接合した半田と熱電素子の間隙は、最短距離が0.0005〜1.5mmであることを特徴とするものである。   The gap between the solder and the thermoelectric element to which the lead wire is bonded has a shortest distance of 0.0005 to 1.5 mm.

また、前記リード線と熱電素子の間隙は、最短距離が0.0005〜1.5mmであることを特徴とするものである。   The gap between the lead wire and the thermoelectric element has a shortest distance of 0.0005 to 1.5 mm.

また、前記リード線を接合した半田と熱電素子の間隙、および/または前記リード線と熱電素子の間隙に、反応防止層を充填したことを特徴とするものである。   In addition, a reaction preventing layer is filled in a gap between the solder and the thermoelectric element joined to the lead wire and / or a gap between the lead wire and the thermoelectric element.

また、対向する支持基板と、該支持基板に挟持されて配列された複数の熱電素子と、該複数の熱電素子を電気的に接続する配線導体と、該配線導体に半田接合した1対のリード線を具備する熱電モジュールにおいて、前記リード線の半田溶融後の半田の冷却速度を5〜50℃/秒としたことを特徴とするものである。   Also, an opposing support substrate, a plurality of thermoelectric elements arranged sandwiched between the support substrates, a wiring conductor that electrically connects the plurality of thermoelectric elements, and a pair of leads soldered to the wiring conductor In the thermoelectric module having a wire, the solder cooling rate after the solder melting of the lead wire is 5 to 50 ° C./second.

また、前記リード線を接合するための半田は、レーザ光を用いて溶融させることを特徴とするものである。   In addition, the solder for joining the lead wires is melted using a laser beam.

本発明の熱電モジュールは、リード線と配線導体との接合において、リード線および半田と熱電素子に間隙を設けることによって、リード線および半田と熱電素子の反応による劣化を未然に防ぐことができる。   The thermoelectric module of the present invention can prevent deterioration due to the reaction between the lead wire, the solder, and the thermoelectric element by providing a gap in the lead wire, the solder, and the thermoelectric element at the joint between the lead wire and the wiring conductor.

特に、半田接合をレーザーにより半田接合を行い、その冷却時間を制御することによって、上記の効果をさらに高めることができる。   In particular, the above effects can be further enhanced by performing solder bonding with a laser and controlling the cooling time.

本発明は、熱電モジュールにおけるリード線の接合に関するものである。   The present invention relates to joining of lead wires in a thermoelectric module.

半田接合に用いる熱電モジュールは、図1に示したように、支持基板1及び2の表面に、それぞれ配線導体4が形成され、複数の熱電素子5を挟持するように半田7で接合したものである。   As shown in FIG. 1, the thermoelectric module used for solder bonding is one in which wiring conductors 4 are formed on the surfaces of support substrates 1 and 2, respectively, and are joined with solder 7 so as to sandwich a plurality of thermoelectric elements 5. is there.

熱電素子5は、複数のN型熱電素子5a及びP型熱電素子5bで構成され、これらが電気的に直列になるように配線導体4で接続され、さらに配線導体4はリード線3と半田6で電気的に接続している。   The thermoelectric element 5 is composed of a plurality of N-type thermoelectric elements 5a and P-type thermoelectric elements 5b, which are connected by a wiring conductor 4 so that they are electrically in series, and the wiring conductor 4 is connected to the lead wire 3 and the solder 6 Is electrically connected.

また、熱電素子5は、Bi、Sb、Te、Seを含む化合物を主体とする焼結体が良く、特にBiTe、BiSe及びSbTeのうち少なくとも1種を含むものが好ましい。例えば、N型熱電素子5aとしてBiTe2.85Se0.15やBiTe2.9Se0.などが良く、P型熱電素子5bとしてはBi0.4Sb1.6TeやBi0.5Sb1.5Teなどが好適に使用できる。このような材料を選択することによって、組成ずれの危険が低くなり、より均一な組成及び組織を有する焼結体を得るために有利である。 In addition, the thermoelectric element 5 is preferably a sintered body mainly composed of a compound containing Bi, Sb, Te, Se, and particularly includes at least one of Bi 2 Te 3 , Bi 2 Se 3 and Sb 2 Te 3. Is preferred. For example, Bi 2 Te 2.85 Se 0.15 or Bi 2 Te 2.9 Se 0. For example, Bi 0.4 Sb 1.6 Te 3 or Bi 0.5 Sb 1.5 Te 3 can be preferably used as the P-type thermoelectric element 5b. By selecting such a material, the risk of composition deviation is reduced, which is advantageous for obtaining a sintered body having a more uniform composition and structure.

配線導体4にはCu電極が好適に用いられ、熱電素子5と半田接合を強固なものとし、酸化による濡れ性の低下を防止するため、熱電素子5と支持基板1及び2の接続面にはNiやAu等のメッキが形成されているのが良い。   A Cu electrode is preferably used for the wiring conductor 4, and the solder connection with the thermoelectric element 5 is strengthened, and in order to prevent a decrease in wettability due to oxidation, the connection surface between the thermoelectric element 5 and the supporting substrates 1 and 2 is not provided. It is preferable that plating of Ni, Au or the like is formed.

そして、図1(b)に示したように、リード線3および半田6と熱電素子5に間隙W1、W2を設けることが必要である。   As shown in FIG. 1B, it is necessary to provide gaps W1 and W2 in the lead wire 3, the solder 6, and the thermoelectric element 5.

特に、リード線3を接合した半田6と熱電素子5の間隙の最短距離W1は0.0005〜1.5mmとした方が良い。   In particular, the shortest distance W1 between the solder 6 to which the lead wire 3 is bonded and the thermoelectric element 5 is preferably 0.0005 to 1.5 mm.

これによって、リード線3を接合した半田6に含まれるSn成分等と熱電素子5が反応することがなくなり、熱電素子5の性能が劣化したり、耐久性が劣るなどの心配もない。   As a result, the thermoelectric element 5 does not react with the Sn component or the like contained in the solder 6 to which the lead wire 3 is bonded, and there is no concern that the performance of the thermoelectric element 5 is deteriorated or the durability is inferior.

なお、最短距離W1が0.0005mmより狭くなると、リード線3を接合した半田6と熱電素子5が反応し、熱電素子5の性能が低下したり、信頼性が低下しやすくなるという問題がある。   When the shortest distance W1 is narrower than 0.0005 mm, there is a problem in that the solder 6 joined to the lead wire 3 reacts with the thermoelectric element 5 so that the performance of the thermoelectric element 5 is lowered or the reliability is easily lowered. .

一方、最短距離W1が1.5mmより大きくなると、リード線3を固定する半田量が少なくなり、リード線3の接合強度が低下しやすくなるといった問題が生じるので好ましくない。したがって、リード線3を接合した半田6と熱電素子5の間隙の最短距離W1は、0.0005〜1.5mmとするのが良く、好ましくは0.001〜1mm、さらに好ましくは0.005〜0.05mmとするのが良い。   On the other hand, if the shortest distance W1 is larger than 1.5 mm, the amount of solder for fixing the lead wire 3 is reduced, and the problem that the bonding strength of the lead wire 3 is likely to decrease is not preferable. Accordingly, the shortest distance W1 between the solder 6 to which the lead wire 3 is bonded and the thermoelectric element 5 is preferably 0.0005 to 1.5 mm, preferably 0.001 to 1 mm, and more preferably 0.005 to 0.005. It is good to set it as 0.05 mm.

また、リード線3と熱電素子5の間隙の最短距離W2は、0.0005〜1.5mmとした方が良い。   The shortest distance W2 between the lead wire 3 and the thermoelectric element 5 is preferably 0.0005 to 1.5 mm.

これによって、リード線3のSnメッキ成分と熱電素子とが反応することがなくなり、熱電素子5の性能が劣化したり、耐久性が劣るなどの心配もない。なお、最短距離W2が0.0005mmより狭くなると、リード線3と熱電素子5が反応し、熱電素子5の性能が低下したり、信頼性が低下しやすくなるという問題がある。   As a result, the Sn plating component of the lead wire 3 does not react with the thermoelectric element, and there is no concern that the performance of the thermoelectric element 5 is deteriorated or the durability is inferior. In addition, when the shortest distance W2 becomes narrower than 0.0005 mm, there is a problem that the lead wire 3 and the thermoelectric element 5 react to deteriorate the performance of the thermoelectric element 5 or to reduce the reliability.

一方、最短距離W2が1.5mmより大きくなると、リード線3を固定可能な長さが短くなり、リード線3の接合強度が低下しやすくなるので好ましくない。したがって、リード線3と熱電素子5の間隙の最短距離W2は、0.0005〜1.5mmとするのが良く、好ましくは0.001〜1mm、さらに好ましくは0.005〜0.05mmとするのが良い。   On the other hand, when the shortest distance W2 is larger than 1.5 mm, the length that can fix the lead wire 3 is shortened, and the bonding strength of the lead wire 3 is likely to be lowered, which is not preferable. Therefore, the shortest distance W2 between the lead wire 3 and the thermoelectric element 5 is preferably 0.0005 to 1.5 mm, preferably 0.001 to 1 mm, and more preferably 0.005 to 0.05 mm. Is good.

なお、リード線3を接合した半田6と熱電素子5の間隙の最短距離W1や、リード線3と熱電素子5の間隙の最短距離W2は、熱電素子5側面から拡大観察することによって確認すれば良い。100倍程度のCCDカメラが簡便であるが、SEMやその他の拡大観察を行って判断しても良い。   Note that the shortest distance W1 of the gap between the solder 6 to which the lead wire 3 is bonded and the thermoelectric element 5 and the shortest distance W2 of the gap between the lead wire 3 and the thermoelectric element 5 can be confirmed by magnifying from the side surface of the thermoelectric element 5. good. A CCD camera of about 100 times is simple, but it may be judged by performing SEM or other magnified observation.

また、図1(c)に示したように、リード線3を接合した半田6と熱電素子5の間隙6a、および/または前記リード線3と熱電素子5の間隙6aに、反応防止層8を充填しても良い。これによって、間隙6aを確実なものにすることができ、熱電素子5の性能低下や信頼性低下問題を未然に防止することができる。   Further, as shown in FIG. 1C, a reaction preventing layer 8 is provided in the gap 6a between the solder 6 and the thermoelectric element 5 joined to the lead wire 3 and / or the gap 6a between the lead wire 3 and the thermoelectric element 5. It may be filled. As a result, the gap 6a can be ensured, and the performance degradation and reliability degradation problems of the thermoelectric element 5 can be prevented in advance.

前記間隙6aに充填する反応防止層8は熱電モジュールの使用温度(一般には80℃程度)に耐え、かつ浸透性の高い樹脂であれば良く、例えばポリエステル樹脂やシリコーン樹脂またはポリイミド樹脂が好適に使用できる。   The reaction prevention layer 8 filled in the gap 6a may be a resin that can withstand the use temperature of the thermoelectric module (generally about 80 ° C.) and has high permeability. For example, a polyester resin, a silicone resin, or a polyimide resin is preferably used. it can.

次に、本発明は対向する支持基板1と、支持基板2に挟持されて配列された複数の熱電素子5と、該複数の熱電素子5を電気的に接続する配線導体4と、該配線導体4に半田7で接合した1対のリード線3を具備する熱電モジュールにおいて、前記リード線3の半田溶融後の半田の冷却速度を5〜50℃/秒とすることが重要であり、特に好ましくは半田の冷却速度を20〜40℃/秒とするのが良い。   Next, the present invention relates to a support substrate 1 that is opposed, a plurality of thermoelectric elements 5 that are sandwiched and arranged between the support substrates 2, a wiring conductor 4 that electrically connects the plurality of thermoelectric elements 5, and the wiring conductor. In the thermoelectric module including the pair of lead wires 3 joined to the solder 4 to the solder 4, it is important that the cooling rate of the solder after the soldering of the lead wire 3 is 5 to 50 ° C./second, particularly preferably. The solder cooling rate is preferably 20 to 40 ° C./second.

これによって、リード線3と配線導体4との接合において、リード線3および半田6と熱電素子5に間隙6aが生じ、リード線3および半田6と熱電素子5の反応による劣化を未然に防ぐことができる。   As a result, a gap 6 a is generated in the lead wire 3, the solder 6, and the thermoelectric element 5 in the joining of the lead wire 3 and the wiring conductor 4, thereby preventing deterioration due to the reaction of the lead wire 3, the solder 6, and the thermoelectric element 5. Can do.

なお、半田6の冷却速度は、半田溶融から固相点付近の半田固着までが重要であり、ここでは100℃〜半田液相温度の範囲における冷却速度を規定した。なお、半田の液相点は、Sn=95体積%、Sb=5体積%のSnSb半田の場合約240℃となり、Au=80体積%、Sb=20体積%のAuSn半田の場合約280℃となる。
ところで、リード線3の接合用の半田6の冷却速度が50℃/秒を越えると、半田6の偏析が大きくなり、半田6の接合信頼性が劣化してしまうという問題がある。また、リード線3の接合用の半田6の冷却速度が5℃/秒より小さくなると、リード線3および半田6と熱電素子5に間隙6aを設けることができなくなる。なお、半田6の冷却方法は、接合部分に直接常温の窒素を注入する窒素ブローによる冷却が好ましいが、熱容量の小さなレーザ光による半田接合であれば、自然放冷であっても5〜50℃/秒の冷却速度を達成することが可能となる。
Note that the cooling rate of the solder 6 is important from the melting of the solder to the fixation of the solder near the solid phase point, and here, the cooling rate in the range of 100 ° C. to the solder liquid phase temperature is defined. Note that the liquid phase point of the solder is about 240 ° C. in the case of SnSb solder with Sn = 95% by volume and Sb = 5% by volume, and about 280 ° C. in the case of AuSn solder with Au = 80% by volume and Sb = 20% by volume. Become.
By the way, when the cooling rate of the solder 6 for joining the lead wires 3 exceeds 50 ° C./second, there is a problem that the segregation of the solder 6 increases and the joining reliability of the solder 6 deteriorates. If the cooling rate of the solder 6 for joining the lead wire 3 is less than 5 ° C./second, the gap 6 a cannot be provided in the lead wire 3 and the solder 6 and the thermoelectric element 5. The method for cooling the solder 6 is preferably cooling by nitrogen blow in which nitrogen at room temperature is directly injected into the joint portion. However, if the solder is joined by laser light having a small heat capacity, it is 5 to 50 ° C. even if it is naturally cooled. It is possible to achieve a cooling rate of / sec.

さらに、リード線3を接合するための半田は、ビームスポット径が0.05〜1mmのレーザ光を用いて溶融させることが好ましい。これにより、半田接合部6のみを加熱可能となり、熱電素子5の特性劣化を防止でき、且つ均質な半田接合が可能となる。   Furthermore, the solder for joining the lead wires 3 is preferably melted using a laser beam having a beam spot diameter of 0.05 to 1 mm. Thereby, only the solder joint part 6 can be heated, the characteristic deterioration of the thermoelectric element 5 can be prevented, and homogeneous solder joint can be achieved.

一方、ビームスポット径が1mmを越えると、過熱による熱電素子5の特性劣化等の悪影響が生じてしまう。ビームスポット径が0.05mmより小さくなると、半田6を全体的に加熱できなくなり、均質な半田接合が困難になる。   On the other hand, if the beam spot diameter exceeds 1 mm, adverse effects such as deterioration of the characteristics of the thermoelectric element 5 due to overheating will occur. If the beam spot diameter is smaller than 0.05 mm, the solder 6 cannot be heated as a whole, and uniform solder joining becomes difficult.

なお、このときの半田6は、半田6の液相温度に対して50℃程高い温度となるよう加熱するのが良い。液相温度に近すぎると、半田6の溶融が不完全となり、高すぎると半田6の飛散や酸化による接合強度の劣化等が生じるためである。このためのレーザ出力は、20〜50Watt程が好ましい。   Note that the solder 6 at this time is preferably heated to a temperature about 50 ° C. higher than the liquid phase temperature of the solder 6. This is because if the temperature is too close to the liquidus temperature, the melting of the solder 6 becomes incomplete, and if it is too high, the solder 6 is scattered or the bonding strength is deteriorated due to oxidation. The laser output for this purpose is preferably about 20 to 50 Watt.

また、リード線3を接合するための半田6は、レーザー光の照射を開始するタイミングに合わせて、糸半田を所定の速度でリード線3の接合部3aに対して前進させ、レーザー光の照射が完了するタイミングに合わせて糸半田の供給を停止するといった半田送給ロボットによる定量供給が好ましい。一方、所定の大きさに成形されたプリフォーム半田も定量供給が可能であり、好適に用いることができる。   Also, the solder 6 for joining the lead wire 3 advances the thread solder with respect to the joint portion 3a of the lead wire 3 at a predetermined speed in accordance with the timing of starting the laser light irradiation, and the laser light irradiation. However, it is preferable to perform a quantitative supply by a solder feeding robot in which the supply of thread solder is stopped in accordance with the completion timing of the soldering. On the other hand, a preform solder molded in a predetermined size can also be supplied in a fixed amount and can be suitably used.

なお、プリフォーム半田の形状については、リード線3を包み込むような形状であっても良いが、配線導体4の端部4aに合わせた1×1×0.05mm程の箔形状であっても、好適に用いることができる。   The shape of the preform solder may be a shape that wraps the lead wire 3, or may be a foil shape of about 1 × 1 × 0.05 mm that matches the end 4 a of the wiring conductor 4. Can be preferably used.

なお、リード線3の少なくとも半田接合部3aには、あらかじめ液状フラックスを塗布し、これを乾燥させてから上記レーザー光を照射することが好ましい。フラックスの成分については、特に限定されるものではないが、ロジン25%、イソプロピルアルコール74.8%、ステアリン酸等からなる有機化合物0.2%からなる非腐食性のフラックスが好適に使用できる。   In addition, it is preferable to irradiate the said laser beam, after apply | coating a liquid flux beforehand to the solder joint part 3a of the lead wire 3, and drying this. The component of the flux is not particularly limited, but a non-corrosive flux composed of organic compound composed of 25% rosin, 74.8% isopropyl alcohol, stearic acid and the like can be suitably used.

また、糸半田についてはフラックスを含有させた所謂ヤニ入り半田を使用してもかまわない。   As the thread solder, so-called solder containing solder containing flux may be used.

図1の熱電モジュールを準備した。熱電素子5には、N型熱電素子5aとしてBiTe2.85Se0.15、P型熱電素子5bとしてBi0.4Sb1.6Teを用いた。なおN型熱電素子5aにはドーパントとしてSbIを0.09重量%添加した。 The thermoelectric module of FIG. 1 was prepared. For the thermoelectric element 5, Bi 2 Te 2.85 Se 0.15 was used as the N-type thermoelectric element 5a, and Bi 0.4 Sb 1.6 Te 3 was used as the P-type thermoelectric element 5b. Note that 0.09 wt% of SbI 3 was added as a dopant to the N-type thermoelectric element 5a.

支持基板1及び2は、長さ12mm、幅8mm、厚み0.3mmのアルミナセラミックを用いた。配線導体4としてCuを支持基板1及び2の端面に形成し、N型熱電素子5aと、P型熱電素子5bとを配線導体4上に、電気的に直列になるように配置し、熱電素子5を支持基板1及び2で挟持するように半田7を用いて接合した。   The support substrates 1 and 2 were made of alumina ceramic having a length of 12 mm, a width of 8 mm, and a thickness of 0.3 mm. Cu is formed on the end surfaces of the supporting substrates 1 and 2 as the wiring conductor 4, and the N-type thermoelectric element 5a and the P-type thermoelectric element 5b are arranged on the wiring conductor 4 so as to be electrically in series, and the thermoelectric element Bonding was performed using solder 7 so that 5 was sandwiched between support substrates 1 and 2.

なお、N型熱電素子5aと、P型熱電素子5bの配列数は37対とした。   The number of N-type thermoelectric elements 5a and P-type thermoelectric elements 5b arranged was 37 pairs.

リード線3を配線導体4の端部4aに接合するための半田6としては、Sb−Sn又はSn−Auの糸半田を用いた。リード線3としてはCuを主成分とし、表面にSnメッキしたものを用いた。   As solder 6 for joining the lead wire 3 to the end 4a of the wiring conductor 4, Sb—Sn or Sn—Au thread solder was used. The lead wire 3 was made of Cu as a main component and Sn plated on the surface.

このようなリード線3を接合するための熱電モジュールを準備し、リード線3の少なくとも半田6を接合する先端部3aに、レーザー光照射前にあらかじめ液状フラックスを塗布した。   A thermoelectric module for joining such lead wires 3 was prepared, and a liquid flux was applied in advance to the tip portion 3a of the lead wires 3 to which at least the solder 6 was joined before laser light irradiation.

なお、フラックスとして、ロジン25%、イソプロピルアルコール74.8%、ステアリン酸等からなる有機化合物0.2%からなる非腐食性のフラックス(RMA)を用いた。   As the flux, non-corrosive flux (RMA) composed of 25% rosin, 74.8% isopropyl alcohol, 0.2% organic compound composed of stearic acid or the like was used.

そして、リード線3を配線導体4の端部4aに半田6接合した。レーザー光として、YAGレーザーから発振される30Wattのレーザー光を、φ0.3mmのビームスポット径に調整して用いた。   The lead wire 3 was joined to the end 4 a of the wiring conductor 4 by solder 6. As a laser beam, a 30 Watt laser beam oscillated from a YAG laser was used by adjusting the beam spot diameter to φ0.3 mm.

このようにして得た熱電モジュールに対し、リード線3および半田6と熱電素子5の間隙6aを測定した。測定は、リード線3の取り付け部位を100倍に拡大したCCDカメラ像によって行った。さらに、リード線3および半田6と熱電素子5の間隙6aに、ポリエステル樹脂やシリコーン樹脂を充填し、反応防止層8としての効果を調査するための熱電モジュールも試作した。   For the thermoelectric module thus obtained, the lead wire 3 and the gap 6a between the solder 6 and the thermoelectric element 5 were measured. The measurement was performed using a CCD camera image in which the attachment site of the lead wire 3 was magnified 100 times. Further, a thermoelectric module for investigating the effect as the reaction preventing layer 8 by filling the lead wire 3 and the gap 6a between the solder 6 and the thermoelectric element 5 with a polyester resin or a silicone resin was also manufactured.

次に、リード線3の接合強度を測定した。リード線3の接合強度は、支持基板1上の配線導体4の端部4aに半田6で接合したリード線3を引き剥がすのに必要な力を、インストロン製万能試験機1125型で測定することによって行い、10N以上のものを合格とした。   Next, the bonding strength of the lead wire 3 was measured. The bonding strength of the lead wire 3 is measured by an Instron universal testing machine 1125 type to determine the force required to peel off the lead wire 3 bonded to the end 4a of the wiring conductor 4 on the support substrate 1 with the solder 6. 10N or more was accepted.

また、熱電モジュール性能とその信頼性を測定した。熱電モジュール性能は初期値としての最大吸熱量Qcmaxを測定し、―40℃〜85℃の雰囲気に30分毎に5000サイクル暴露した後の最大吸熱量Qcmaxを再び測定し、その変化率を評価した。なお、熱電モジュール性能の測定は、1Pa真空中において、熱電モジュールの放熱面を27℃に保った状態で、冷却面を別途用意したヒータで加熱しつつ、熱電モジュールの放熱面と冷却面温度が同一となったときのヒータ電力を計測することによって行った。この結果を表1に示した。

Figure 2005101473
The thermoelectric module performance and its reliability were also measured. The thermoelectric module performance was measured by measuring the maximum endothermic amount Qcmax as an initial value, and again measuring the maximum endothermic amount Qcmax after exposure to an atmosphere of −40 ° C. to 85 ° C. for 5000 cycles every 30 minutes, and evaluating the rate of change. . The thermoelectric module performance was measured in a 1 Pa vacuum with the heat dissipation surface of the thermoelectric module and the temperature of the cooling surface of the thermoelectric module being heated with a separately prepared heater while keeping the heat dissipation surface of the thermoelectric module at 27 ° C. This was done by measuring the heater power when they were the same. The results are shown in Table 1.
Figure 2005101473

本発明の試料No.1〜16は、外観も良好で、接合強度が10N以上、最大吸熱量Qcmaxは8Watt以上と高く、しかもその変化率が5%以下と優れた特性を示した。   Sample No. of the present invention. Nos. 1 to 16 had good appearance, a bonding strength of 10 N or higher, a maximum heat absorption Qcmax of 8 Watt or higher, and an excellent change rate of 5% or less.

特に、リード線3を接合した半田6と熱電素子5の間隙の最短距離W1、および/または前記リード線3と熱電素子5の間隙の最短距離W2を変えた試験を行った試料No.1〜12のうち、間隙の最短距離W1およびW2を0.0005〜1.5mmとした試料No.6〜11は、リード線3の接合強度が10N以上と大きく、しかも最大吸熱量の変化率が5%以下と小さいことから、信頼性の高い熱電モジュールを得ることができることがわかった。   In particular, sample No. 1 was tested in which the shortest distance W1 between the solder 6 and the thermoelectric element 5 to which the lead wire 3 was joined and / or the shortest distance W2 between the lead wire 3 and the thermoelectric element 5 was changed. 1-12, sample No. 1 having the shortest gap distances W1 and W2 of 0.0005 to 1.5 mm. In Nos. 6 to 11, since the bonding strength of the lead wire 3 is as large as 10 N or more and the change rate of the maximum heat absorption amount is as small as 5% or less, it was found that a highly reliable thermoelectric module can be obtained.

なお、リード線3を接合した半田6と熱電素子5の間隙6a、および/または前記リード線3と熱電素子5の間隙6aに反応防止層8を充填した試験を行った試料No.14〜16は、間隙6aに充填のない試料No.13と同様に高いリード線3の接合強度を得た。また、間隙6aに1×1012Ωcm以上の比抵抗を有するポリエステル樹脂やシリコーン樹脂等の絶縁体を充填した試料No.15〜16は、半田6との反応による熱電素子5の劣化もなく、試料No.13と同様に高い信頼性が得られた。 It should be noted that sample No. 1 was tested in which a reaction preventing layer 8 was filled in the gap 6a between the solder 6 and the thermoelectric element 5 joined to the lead wire 3 and / or the gap 6a between the lead wire 3 and the thermoelectric element 5. Nos. 14 to 16 are sample Nos. With no gap 6a. Similar to 13, high bonding strength of the lead wire 3 was obtained. Sample No. 1 in which the gap 6a is filled with an insulator such as polyester resin or silicone resin having a specific resistance of 1 × 10 12 Ωcm or more is used. Samples Nos. 15 to 16 have no deterioration of the thermoelectric element 5 due to the reaction with the solder 6, Similar to 13, high reliability was obtained.

ただし、間隙6aに1×10Ωcm以下の比抵抗を有する導電性の樹脂を充填した試料No.14は、信頼性がやや劣った。 However, sample No. 1 in which the gap 6a was filled with a conductive resin having a specific resistance of 1 × 10 3 Ωcm or less. No. 14 was slightly inferior in reliability.

一方、従来の知見に基づく比較例1〜2は、リード線3の接合強度が低く、また信頼性も悪いものとなった。   On the other hand, Comparative Examples 1 and 2 based on conventional knowledge have low bonding strength of the lead wire 3 and poor reliability.

図1の熱電モジュールを準備した。熱電素子5には、N型熱電素子5aとしてBiTe2.85Se0.15、P型熱電素子5bとしてBi0.4Sb1.6Teを用いた。なおN型熱電素子5aにはドーパントとしてSbIを0.09重量%添加した。 The thermoelectric module of FIG. 1 was prepared. For the thermoelectric element 5, Bi 2 Te 2.85 Se 0.15 was used as the N-type thermoelectric element 5a, and Bi 0.4 Sb 1.6 Te 3 was used as the P-type thermoelectric element 5b. Note that 0.09 wt% of SbI 3 was added as a dopant to the N-type thermoelectric element 5a.

支持基板1及び2は、長さ12mm、幅8mm、厚み0.3mmのアルミナセラミックを用いた。配線導体4としてCuを支持基板1及び2の端面に形成し、N型熱電素子5aと、P型熱電素子5bとを配線導体4上に、電気的に直列になるように配置し、熱電素子5を支持基板1及び2で挟持するように半田7を用いて接合した。なお、N型熱電素子5aと、P型熱電素子5bの配列数は37対とした。   The support substrates 1 and 2 were made of alumina ceramic having a length of 12 mm, a width of 8 mm, and a thickness of 0.3 mm. Cu is formed on the end surfaces of the supporting substrates 1 and 2 as the wiring conductor 4, and the N-type thermoelectric element 5a and the P-type thermoelectric element 5b are arranged on the wiring conductor 4 so as to be electrically in series, and the thermoelectric element Bonding was performed using solder 7 so that 5 was sandwiched between support substrates 1 and 2. The number of N-type thermoelectric elements 5a and P-type thermoelectric elements 5b arranged was 37 pairs.

リード線3を配線導体4の端部4aに接合するための半田6としては、Sb−Sn又はSn−Auの糸半田を用いた。リード線3としてはCuを主成分とし、表面にSnメッキしたものを用いた。   As solder 6 for joining the lead wire 3 to the end 4a of the wiring conductor 4, Sb—Sn or Sn—Au thread solder was used. The lead wire 3 was made of Cu as a main component and Sn plated on the surface.

このようなリード線3を接合するための熱電モジュールを準備し、リード線3の少なくとも半田6を接合する部位3aに、レーザー光照射前にあらかじめ液状フラックスを塗布した。なお、フラックスとして、ロジン25%、イソプロピルアルコール74.8%、ステアリン酸等からなる有機化合物0.2%からなる非腐食性のフラックス(RMA)を用いた。   A thermoelectric module for joining such lead wires 3 was prepared, and at least a portion 3a of the lead wires 3 to which the solder 6 was joined was previously applied with a liquid flux before laser light irradiation. As the flux, non-corrosive flux (RMA) composed of 25% rosin, 74.8% isopropyl alcohol, 0.2% organic compound composed of stearic acid or the like was used.

そして、リード線3を配線導体4に半田6接合した。半田接合の手段としては、レーザー光による手段の他に、リフロー炉やホットプレートを用いた。   The lead wire 3 was joined to the wiring conductor 4 by solder 6. As a means for solder joining, a reflow furnace or a hot plate was used in addition to the means using laser light.

ここで、リード線3を接合した半田6と熱電素子5の間隙の最短距離W1、および/または前記リード線3と熱電素子5の間隙の最短距離W2と半田6の冷却速度に関する実験を行った。   Here, an experiment was conducted on the shortest distance W1 of the gap between the solder 6 and the thermoelectric element 5 to which the lead wire 3 was joined and / or the shortest distance W2 of the gap between the lead wire 3 and the thermoelectric element 5 and the cooling rate of the solder 6. .

なお、この時の半田接合にけるレーザー光の照射時間τは、0.5〜10秒とした。

Figure 2005101473
At this time, the irradiation time τ of the laser beam in the solder joint was set to 0.5 to 10 seconds.
Figure 2005101473

本発明の試料No.1〜7は、リード線3を接合した半田6と熱電素子5の間隙の最短距離W1、および/または前記リード線3と熱電素子5の間隙の最短距離W2を、0.0005〜1.5mmに確保することができ、良好な製造方法であることがわかった。特に、半田6の冷却速度を20〜40℃/秒とした試料No.2〜3のものは、リード線3を接合した半田6と熱電素子5の間隙の最短距離W1、および/または前記リード線3と熱電素子5の間隙の最短距離W2を0.005mmに保つことができ、最も優れていた。   Sample No. of the present invention. 1-7 represent the shortest distance W1 between the solder 6 and the thermoelectric element 5 to which the lead wire 3 is joined and / or the shortest distance W2 between the lead wire 3 and the thermoelectric element 5 between 0.0005 and 1.5 mm. It was found that this was a good manufacturing method. In particular, the sample No. 1 with the cooling rate of the solder 6 set to 20 to 40 ° C./second. In the case of 2-3, the shortest distance W1 of the gap between the solder 6 and the thermoelectric element 5 to which the lead wire 3 is joined and / or the shortest distance W2 of the gap between the lead wire 3 and the thermoelectric element 5 is kept at 0.005 mm. Was the best.

なお、この試料No.1〜7の場合、配線導体4にリード線3を半田接合する方法は、リード線3と配線導体4と半田6を加熱する第一工程、半田溶融して熱電素子5に付着させる第二工程、半田6を冷却し熱電素子5から剥離して間隙6aを形成する第三工程から成っていた。   In this sample No. In the case of 1 to 7, the method of soldering the lead wire 3 to the wiring conductor 4 is a first step of heating the lead wire 3, the wiring conductor 4 and the solder 6, and a second step of melting and adhering to the thermoelectric element 5 The solder 6 was cooled and peeled off from the thermoelectric element 5 to form a gap 6a.

次に、レーザ光のビームスポット径を変更してリード線3を接合する試験を行った試料No.4〜7においては、ビームスポット径を0.03mmとした試料No.5が信頼性がやや低く、またビームスポット径を1.2mmとした試料No.7も信頼性がやや低い結果となった。しかし、ビームスポット径が0.05〜1mmのレーザ光を用いて溶融させた試料No.4および試料No.6は半田接合部6のみを加熱可能となり、良好な信頼性を得られた。   Next, the sample No. 1 in which the test of joining the lead wire 3 by changing the beam spot diameter of the laser beam was performed. In Nos. 4 to 7, sample Nos. With a beam spot diameter of 0.03 mm were used. No. 5 is slightly low in reliability, and sample No. 5 with a beam spot diameter of 1.2 mm. 7 also had slightly lower reliability. However, the sample No. 5 was melted using a laser beam having a beam spot diameter of 0.05 to 1 mm. 4 and sample no. No. 6 was able to heat only the solder joint 6 and good reliability was obtained.

一方、従来の知見に基づく比較例1〜4は、リード線3を接合した半田6と熱電素子5の間隙の最短距離W1、および/または前記リード線3と熱電素子5の間隙の最短距離W2が不適切であり、信頼性も悪いものとなった。また、この比較例1〜3の場合、配線導体4にリード線3を半田接合する方法は、リード線3と配線導体4と半田を加熱する第一工程、半田溶融して熱電素子5に付着させる第二工程までであって、半田を冷却し熱電素子5から剥離して間隙6aを形成する第三工程は行われず、したがってリード線3を接合した半田6と熱電素子5の間隙6a、および/または前記リード線3と熱電素子5の間隙6aは皆無であった。   On the other hand, in Comparative Examples 1 to 4 based on conventional knowledge, the shortest distance W1 between the solder 6 and the thermoelectric element 5 to which the lead wire 3 is joined and / or the shortest distance W2 between the lead wire 3 and the thermoelectric element 5 are used. Was inappropriate and unreliable. In the case of Comparative Examples 1 to 3, the method of soldering the lead wire 3 to the wiring conductor 4 is the first step of heating the lead wire 3, the wiring conductor 4 and the solder, and the solder melts and adheres to the thermoelectric element 5. Up to the second step, and the third step of cooling the solder and peeling from the thermoelectric element 5 to form the gap 6a is not performed, and therefore the gap 6a between the solder 6 and the thermoelectric element 5 to which the lead wire 3 is joined, and / Or there was no gap 6a between the lead wire 3 and the thermoelectric element 5.

さらに、リード線3接合用の半田6の冷却速度を50℃/秒以上とした比較例4は、半田6の偏析が大きくなり、熱電モジュールの信頼性が劣化してしまうという問題が生じた。   Furthermore, in Comparative Example 4 in which the cooling rate of the solder 6 for joining the lead wires 3 was 50 ° C./second or more, the segregation of the solder 6 was increased, and the reliability of the thermoelectric module was deteriorated.

本発明の熱電モジュールの半田接合部分を示すもので、(a)拡大断面図、(b)間隙拡大断面図、(c)反応防止層の拡大断面図である。FIG. 2 shows a solder joint portion of the thermoelectric module of the present invention, (a) an enlarged sectional view, (b) an enlarged sectional view of a gap, and (c) an enlarged sectional view of a reaction preventing layer. 熱電モジュールを示す斜視図である。It is a perspective view which shows a thermoelectric module. 従来の熱電モジュールの半田接合部分を示す断面図である。It is sectional drawing which shows the solder joint part of the conventional thermoelectric module.

符号の説明Explanation of symbols

1、2・・・支持基板
3a・・・リード線の先端部(半田接合部)
4・・・配線導体
4a・・・配線導体の端部(リード線の取付部)
5・・・熱電素子
5a・・・N型熱電素子
5b・・・P型熱電素子
6・・・熱電素子とリード線の接合部の半田
6a・・・熱電素子とリード線及び/またはリード線の接合用半田の間隙
7・・・熱電素子と配線導体の接合部の半田
8・・・反応防止層
1, 2 ... Support substrate 3a ... Lead wire tip (solder joint)
4 ... Wiring conductor 4a ... End of wiring conductor (lead wire attachment)
DESCRIPTION OF SYMBOLS 5 ... Thermoelectric element 5a ... N-type thermoelectric element 5b ... P-type thermoelectric element 6 ... Solder of the junction part of a thermoelectric element and a lead wire 6a ... Thermoelectric element, a lead wire, and / or a lead wire Solder gap 7 of the solder 7 ... Solder 8 of the junction between the thermoelectric element and the wiring conductor 8 ... Reaction prevention layer

Claims (6)

対向する支持基板と、該支持基板に挟持されて配列された複数の熱電素子と、該複数の熱電素子相互を電気的に接続する配線導体と、該配線導体に半田接合した1対のリード線を具備する熱電モジュールにおいて、前記リード線を接合した半田と熱電素子の間に間隙を設けたことを特徴とする熱電モジュール。 Opposing support substrate, a plurality of thermoelectric elements sandwiched and arranged between the support substrates, a wiring conductor that electrically connects the plurality of thermoelectric elements, and a pair of lead wires soldered to the wiring conductor A thermoelectric module comprising: a gap between the solder to which the lead wire is joined and the thermoelectric element. 前記リード線を接合した半田と熱電素子の間隙は、最短距離が0.0005〜1.5mmであることを特徴とする請求項1記載の熱電モジュール。 The thermoelectric module according to claim 1, wherein the gap between the solder to which the lead wire is bonded and the thermoelectric element has a shortest distance of 0.0005 to 1.5 mm. 前記リード線と熱電素子の間隙は、最短距離が0.0005〜1.5mmであることを特徴とする請求項1に記載の熱電モジュール。 The thermoelectric module according to claim 1, wherein the gap between the lead wire and the thermoelectric element has a shortest distance of 0.0005 to 1.5 mm. 前記リード線を接合した半田と熱電素子の間隙、および/または前記リード線と熱電素子の間隙に、反応防止層を充填したことを特徴とする請求項1乃至3のいずれかに記載の熱電モジュール。 4. The thermoelectric module according to claim 1, wherein a reaction preventing layer is filled in a gap between the solder and the thermoelectric element joined to the lead wire and / or a gap between the lead wire and the thermoelectric element. . 対向する支持基板と、該支持基板に挟持されて配列された複数の熱電素子と、該複数の熱電素子を電気的に接続する配線導体と、該配線導体に半田接合した1対のリード線を具備する熱電モジュールにおいて、前記リード線の半田溶融後の半田の冷却速度を5〜50℃/秒としたことを特徴とする熱電モジュールの製造方法。 An opposing support substrate, a plurality of thermoelectric elements sandwiched and arranged between the support substrates, a wiring conductor that electrically connects the plurality of thermoelectric elements, and a pair of lead wires soldered to the wiring conductor The method of manufacturing a thermoelectric module according to claim 1, wherein a cooling rate of the solder after the lead wire solder is melted is 5 to 50 ° C./second. 前記リード線を接合するための半田は、レーザ光を用いて溶融させることを特徴とする請求項5に記載の熱電モジュールの製造方法 The method for manufacturing a thermoelectric module according to claim 5, wherein the solder for joining the lead wires is melted by using laser light.
JP2003335808A 2003-09-26 2003-09-26 Thermoelectric module and its manufacturing method Pending JP2005101473A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003335808A JP2005101473A (en) 2003-09-26 2003-09-26 Thermoelectric module and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003335808A JP2005101473A (en) 2003-09-26 2003-09-26 Thermoelectric module and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005101473A true JP2005101473A (en) 2005-04-14

Family

ID=34463094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003335808A Pending JP2005101473A (en) 2003-09-26 2003-09-26 Thermoelectric module and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005101473A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018125249A (en) * 2017-02-03 2018-08-09 岩崎電気株式会社 lamp

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018125249A (en) * 2017-02-03 2018-08-09 岩崎電気株式会社 lamp

Similar Documents

Publication Publication Date Title
KR100363780B1 (en) Method for joining a metal element and a semiconductor element, an electric smoking apparatus having a semiconductor electric heater and a semiconductor electric heater using the same
KR20000006412A (en) Improved thermoelectric module and method of manufacturing the same
JP2004031696A (en) Thermoelectric module and method for manufacturing the same
JP2010109132A (en) Thermoelectric module package and method of manufacturing the same
US10224472B2 (en) Thermoelectric power module
JP5092168B2 (en) Peltier element thermoelectric conversion module, manufacturing method of Peltier element thermoelectric conversion module, and optical communication module
CN102017107A (en) Joint structure and electronic component
JP4349552B2 (en) Peltier element thermoelectric conversion module, manufacturing method of Peltier element thermoelectric conversion module, and optical communication module
JP2007243118A (en) Semiconductor device
JP2005129886A (en) Semiconductor device and its manufacturing method
JP2007243050A (en) Thermoelectric module, and its manufacturing method
JP2005101473A (en) Thermoelectric module and its manufacturing method
JP2010109054A (en) Thermoelectric conversion module and cooler, generator and temperature controller
JP2020013866A (en) Manufacturing method for power semiconductor device
JP2004119736A (en) Method of manufacturing thermoelectric module
JP3636128B2 (en) Manufacturing method of semiconductor module
JP5289451B2 (en) Thermoelectric element and thermoelectric module
JP3670432B2 (en) Solder for thermoelectric cooling device
JP3586363B2 (en) Manufacturing method of electronic components
JP3935062B2 (en) Thermoelectric module
TWI720664B (en) Solar cell and method for manufacturing solar cell
Liu et al. Study on the SnAgCu solder joint between LED chip and heat sink
JP4391299B2 (en) Solder materials and soldered articles
JP2004193356A (en) Thermoelectric module and method of manufacturing the same
JP2002353522A (en) Thermoelectric element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090630

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090630

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091029