JP2005101300A - Ceramic package and its manufacturing process - Google Patents

Ceramic package and its manufacturing process Download PDF

Info

Publication number
JP2005101300A
JP2005101300A JP2003333467A JP2003333467A JP2005101300A JP 2005101300 A JP2005101300 A JP 2005101300A JP 2003333467 A JP2003333467 A JP 2003333467A JP 2003333467 A JP2003333467 A JP 2003333467A JP 2005101300 A JP2005101300 A JP 2005101300A
Authority
JP
Japan
Prior art keywords
substrate
powder
mass
ceramic package
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003333467A
Other languages
Japanese (ja)
Other versions
JP4220869B2 (en
Inventor
Tomohide Hasegawa
智英 長谷川
Minako Izumi
美奈子 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003333467A priority Critical patent/JP4220869B2/en
Publication of JP2005101300A publication Critical patent/JP2005101300A/en
Application granted granted Critical
Publication of JP4220869B2 publication Critical patent/JP4220869B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a small and thin ceramic package which is fired simultaneously with metallization and is unbroken easily even if it is sealed hermetically. <P>SOLUTION: The ceramic package comprises: an insulating substrate 1 having a substrate bottom part 1a for mounting an electric element 4 on the surface and a substrate bank part 1b provided integrally with the substrate bottom part 1a on the outer circumference thereof; a conductor layer 2 provided in the insulating substrate 1 and/or on the surface thereof; and a metallization layer 3a provided at a part of the substrate bank part 1b in order to bond a cover 8. The insulating substrate 1 is composed of an alumina sintered body containing 6 mass% or more of sintering acid and having a finish porcelain strength of 650 MPa or above. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、内部に振動子や半導体素子等の電気素子が搭載され、蓋体等の蓋によって機密に封止するセラミックパッケージ、特に、高さが0.6mm以下の超小型・超薄型のセラミックパッケージ及びその製造方法に関する。   The present invention is a ceramic package in which electrical elements such as vibrators and semiconductor elements are mounted and sealed secretly by a lid such as a lid, in particular, an ultra-small and ultra-thin with a height of 0.6 mm or less. The present invention relates to a ceramic package and a manufacturing method thereof.

近年、半導体素子の高集積化、電子部品の小型化に伴い、各種電子機器の小型化、高機能化が図られている。これに伴い、電気素子を搭載するセラミックパッケージの小型化が要求され、例えば、外形サイズ縦3mm、横2mm、高さ0.8mm程度まで小型化したセラミックパッケージが開示されている(例えば、特許文献1参照)。   In recent years, along with the high integration of semiconductor elements and the miniaturization of electronic components, various electronic devices have been miniaturized and enhanced in function. Along with this, miniaturization of the ceramic package on which the electric element is mounted is required, and for example, a ceramic package miniaturized to about 3 mm in outside size, 2 mm in width, and about 0.8 mm in height is disclosed (for example, Patent Documents). 1).

ところが最近、例えば高さ0.6mm以下のICカードに体表される超小型・超薄型製品に適応できるように、パッケージもさらに一層の小型化が求められている。このような超小型・超薄型セラミックパッケージでは絶縁基板の基板堤部の幅や基板底部の厚みが小さくなるため、蓋体の接合によってこれらの部位が破損しないようにセラミックパッケージには高い強度が必要になってきている。   Recently, however, the package is required to be further reduced in size so that it can be applied to an ultra-small and ultra-thin product represented by an IC card having a height of 0.6 mm or less. In such an ultra-small and ultra-thin ceramic package, the width of the substrate bank portion and the thickness of the substrate bottom portion of the insulating substrate are reduced. Therefore, the ceramic package has high strength so that these parts are not damaged by the joining of the lid. It is becoming necessary.

この問題を解決するため、純度99%以上の高純度アルミナを用いることによって、厚さ0.25〜0.35mmの形状で55kgf/mm以上の高強度のアルミナ基板を実現することが提案されている(例えば、特許文献2参照)。 In order to solve this problem, it is proposed to realize a high-strength alumina substrate having a thickness of 0.25 to 0.35 mm and a strength of 55 kgf / mm 2 or more by using high-purity alumina having a purity of 99% or more. (For example, refer to Patent Document 2).

しかし、この高純度・高強度アルミナ基板は、アルミナ純度が99質量%以上と高く、同時焼成でメタライズを形成した場合、メタライズの接合強度が低い。そのため、接合強度の高いメタライズを得るには、Moを主成分とし、Mn、Ti等の活性金属で構成される導体成分を焼結後に焼き付ける必要があり、工程が増え、コストが高くなるという問題があった。また、焼結助剤として用いる酸化マグネシウムは微粉末であるため、スラリー作製時に2次凝集し易く、焼結欠陥を生じ易く、強度が低下するという問題があった。   However, this high-purity and high-strength alumina substrate has a high alumina purity of 99% by mass or more, and when metallization is formed by simultaneous firing, the bonding strength of metallization is low. Therefore, in order to obtain metallization with high bonding strength, it is necessary to bake after sintering a conductive component composed mainly of Mo and an active metal such as Mn, Ti, etc., which increases the process and increases the cost. was there. In addition, since magnesium oxide used as a sintering aid is a fine powder, there is a problem in that secondary agglomeration tends to occur during slurry preparation, a sintering defect tends to occur, and the strength decreases.

そこで、焼結助剤を4質量%以上加えたアルミナ質成形体に導体層を形成し、これを焼成する事により、焼成とメタライズとを同時に行い、低コストでアルミナ基板を実現することが提案されている(例えば、特許文献3参照)。
特開2001−196485号広報 特開2000−7425号公報 特開2000−277662号公報
Therefore, it is proposed that a conductor layer is formed on an alumina compact with 4% by mass or more of a sintering aid and fired to perform firing and metallization at the same time to realize an alumina substrate at low cost. (For example, see Patent Document 3).
JP 2001-196485 A JP 2000-7425 A Japanese Patent Laid-Open No. 2000-277762

しかしながら、特許文献3に記載のアルミナ焼結体は、同時焼成によってメタライズが可能となったが、焼結助剤が4質量%以上含まれるため、強度が400MPa以下と低く、気密封止のために蓋体とセラミックパッケージとを接合すると、絶縁基板、メタライズ層、ロウ材、蓋体の熱膨張率の差により発生する熱応力によって絶縁基板が破壊するという問題があった。特に、導体と同時焼成するセラミックパッケージは研磨等の加工をせず、焼上げのまま用いるために製品表面に破壊源が多く存在し、封止の際に破壊し易いという問題があった。   However, the alumina sintered body described in Patent Document 3 can be metallized by simultaneous firing. However, since the sintering aid is contained in an amount of 4% by mass or more, the strength is low at 400 MPa or less, and the hermetic sealing is performed. When the lid and the ceramic package are bonded to each other, there is a problem that the insulating substrate is broken by the thermal stress generated by the difference in thermal expansion coefficient among the insulating substrate, the metallized layer, the brazing material, and the lid. In particular, a ceramic package that is fired simultaneously with a conductor is not subjected to processing such as polishing, and is used as it is baked, so that there are many sources of destruction on the product surface, and there is a problem that it is easily broken during sealing.

従って、本発明は、メタライズとの同時焼成が可能で、気密封止しても破壊しにくい小型・薄型用のセラミックパッケージ及びその製造方法を提供することである。   Accordingly, the present invention is to provide a small and thin ceramic package that can be fired simultaneously with metallization and is not easily broken even if hermetically sealed, and a method for manufacturing the same.

本発明のセラミックパッケージは、電気素子を表面に実装するための基板底部及び該基板底部の外周に一体的に設けられた基板堤部を具備する絶縁基板と、該絶縁基板の内部及び/又は表面に設けられた導体層と、蓋体を接合するために前記基板堤部の一部に設けられたメタライズ層とを具備するセラミックパッケージにおいて、前記絶縁基板が6質量%以上の焼結助剤を含み、焼上げ磁器強度が650MPa以上のアルミナ焼結体からなることを特徴とする。   The ceramic package of the present invention includes a substrate bottom portion for mounting an electric element on the surface, a substrate bank portion integrally provided on the outer periphery of the substrate bottom portion, and an interior and / or surface of the insulation substrate. In a ceramic package comprising a conductor layer provided on a metal layer and a metallized layer provided on a part of the substrate bank portion for bonding a lid, the insulating substrate contains a sintering aid of 6% by mass or more. And an alumina sintered body having a baked porcelain strength of 650 MPa or more.

特に、前記絶縁基板がMnをMn換算で2〜8質量%、SiをSiO換算で1〜6質量%、MgをMgO換算で0.1〜1質量%の割合で含み、SiO/MgOの含有比率が5〜15であるアルミナ焼結体からなることが好ましい。 In particular, the insulating substrate contains Mn at a ratio of 2 to 8% by mass in terms of Mn 2 O 3 , Si at 1 to 6% by mass in terms of SiO 2 , and Mg at a rate of 0.1 to 1% by mass in terms of MgO. 2 / MgO is preferably composed of an alumina sintered body having a content ratio of 5 to 15.

また、前記基板堤部の幅が0.1〜0.3mm、前記基板底部の厚みが0.1〜0.3mm、パッケージ全体の高さが0.3〜0.6mmであることが好ましい。   Moreover, it is preferable that the width | variety of the said board | substrate bank part is 0.1-0.3 mm, the thickness of the said board | substrate bottom part is 0.1-0.3 mm, and the height of the whole package is 0.3-0.6 mm.

本発明のセラミックパッケージの製造方法は、アルミナ粉末と焼結助剤として平均粒子径が1.3μm以下のMn粉末、SiO粉末及び平均粒子径が3〜5μmの炭酸マグネシウム粉末を合計で6%以上含有し、SiO/MgCOの含有比率がSiO/MgO換算で5〜15の組成からなるグリーンシートに、導体ペーストを用いて導体層及びメタライズ層を被着形成した後、前記グリーンシートを適宜積層し、しかる後に焼上げ磁器強度が650MPa以上となるように焼成することを特徴とする。 The method for producing a ceramic package of the present invention is the sum of alumina powder and Mn 2 O 3 powder having an average particle diameter of 1.3 μm or less, SiO 2 powder and magnesium carbonate powder having an average particle diameter of 3 to 5 μm as a sintering aid. After forming a conductor layer and a metallized layer on a green sheet having a composition of 5 to 15 in terms of SiO 2 / MgCO 3 in terms of SiO 2 / MgO, using a conductor paste, The green sheets are appropriately laminated and then fired so that the baked porcelain strength is 650 MPa or more.

また、前記Mn粉末が2〜8質量%、前記SiO粉末が1〜6質量%、前記炭酸マグネシウムがMgO換算で0.1〜1質量%、SiO/MgOの含有比率が5〜15であることが好ましい。 The Mn 2 O 3 powder is 2 to 8% by mass, the SiO 2 powder is 1 to 6% by mass, the magnesium carbonate is 0.1 to 1% by mass in terms of MgO, and the content ratio of SiO 2 / MgO is 5 It is preferably ~ 15.

本発明は、焼結助剤であるMgCOの粒度を制御し、且つSiO/MgOの比率を制御することにより、緻密且つ、Mn,Mg成分の分散が良好な焼結体を得ることが可能であり、焼上げ磁器強度が650MPa以上のアルミナ質絶縁基板を得ることができ、これをパッケージとして使用することにより、メタライズとの同時焼成が可能で、気密封止のために蓋体を接合しても破壊しにくい小型・薄型用のセラミックパッケージ、特にICカード等に内蔵可能な小型及び/又は薄型のセラミックパッケージを低コストで実現できる。 In the present invention, by controlling the particle size of MgCO 3 as a sintering aid and controlling the ratio of SiO 2 / MgO, it is possible to obtain a dense sintered body with good dispersion of Mn and Mg components. It is possible to obtain an alumina insulating substrate with a baked porcelain strength of 650 MPa or more. By using this as a package, it can be fired simultaneously with metallization, and a lid is bonded for hermetic sealing. Even if it is small and thin ceramic packages that are hard to break, especially small and / or thin ceramic packages that can be built into IC cards or the like can be realized at low cost.

また、絶縁基板がMnをMn換算で2〜8質量%、SiをSiO換算で1〜6質量%、MgをMgO換算で0.1〜1質量%の割合で含み、SiO/MgOの含有比率が5〜15であるアルミナ焼結体からなるため、これにより高強度を安定して得ることができる。 Further, the insulating substrate contains Mn at a ratio of 2 to 8 mass% in terms of Mn 2 O 3 , Si at 1 to 6 mass% in terms of SiO 2 , and Mg at a ratio of 0.1 to 1 mass% in terms of MgO, and SiO 2 Since it comprises an alumina sintered body having a content ratio of / MgO of 5 to 15, high strength can be stably obtained.

さらに、前記基板堤部の幅が0.1〜0.3mm、前記基板底部の厚みが0.1〜0.3mm、パッケージ全体の高さが0.3〜0.6mmであるため、このような寸法に設定することにより、絶縁基板の熱応力破壊をより効果的に防止するとともに、パッケージの容積をより小さくすることができる。   Further, the width of the substrate bank portion is 0.1 to 0.3 mm, the thickness of the substrate bottom portion is 0.1 to 0.3 mm, and the height of the entire package is 0.3 to 0.6 mm. By setting the dimensions to be small, it is possible to more effectively prevent the thermal stress destruction of the insulating substrate and further reduce the volume of the package.

また、本発明のセラミックパッケージの製造方法は、アルミナ粉末と焼結助剤として平均粒子径が1.3μm以下のMn粉末、SiO粉末及び平均粒子径が3〜5μmの炭酸マグネシウム粉末を合計で6%以上含有し、SiO/MgCOの含有比率がSiO/MgO換算で5〜15の組成からなるグリーンシートに、導体ペーストを用いて導体層及びメタライズ層を被着形成した後、前記グリーンシートを適宜積層し、しかる後に焼上げ磁器強度が650MPa以上となるように焼成するが、粒成長を抑制しつつ低温で焼結させ、6質量%以上の焼結所剤を加えても、より高密度かつ高分散の焼結体を実現でき、650MPa以上の強度を有するアルミナ焼結体を得ることができる。 In addition, the ceramic package manufacturing method of the present invention includes alumina powder and a sintering aid, Mn 2 O 3 powder having an average particle diameter of 1.3 μm or less, SiO 2 powder, and magnesium carbonate powder having an average particle diameter of 3 to 5 μm. The conductor layer and the metallized layer were deposited using a conductor paste on a green sheet having a total content of 6% or more and a SiO 2 / MgCO 3 content ratio of 5 to 15 in terms of SiO 2 / MgO. Thereafter, the green sheets are appropriately laminated, and then fired so that the baked porcelain strength becomes 650 MPa or more, but is sintered at a low temperature while suppressing grain growth, and 6% by mass or more of a sintering agent is added. However, a sintered body with higher density and higher dispersion can be realized, and an alumina sintered body having a strength of 650 MPa or more can be obtained.

特に、前記Mn粉末が2〜8質量%、前記SiO粉末が1〜6質量%、前記炭酸マグネシウムがMgO換算で0.1〜1質量%、SiO/MgOの含有比率が5〜15であるがため、高強度をより安定して達成することができる。 In particular, the Mn 2 O 3 powder is 2 to 8% by mass, the SiO 2 powder is 1 to 6% by mass, the magnesium carbonate is 0.1 to 1% by mass in terms of MgO, and the content ratio of SiO 2 / MgO is 5 Since it is -15, high intensity | strength can be achieved more stably.

本発明のセラミックパッケージを、図を用いて説明する。図1は、本発明のセラミックパッケージの一例を示すもので、図1(a)はセラミックパッケージの概略断面図であり、図1(b)は内部に振動子等の電子部品や半導体素子等の電気素子を搭載し、蓋体によって蓋をしたセラミックパッケージの断面図である。   The ceramic package of this invention is demonstrated using figures. FIG. 1 shows an example of a ceramic package according to the present invention. FIG. 1 (a) is a schematic cross-sectional view of the ceramic package, and FIG. 1 (b) shows an electronic component such as a vibrator or a semiconductor element inside. It is sectional drawing of the ceramic package which mounts an electrical element and was covered with the cover body.

セラミックパッケージは、アルミナ焼結体からなり、基板底部1aと基板堤部1bとからなる絶縁基板1と、基板底部1aに設けられた導体層2と、基板堤部1bの上に形成されたリング上のメタライズ層3aを具備する。   The ceramic package is made of an alumina sintered body, and includes an insulating substrate 1 including a substrate bottom 1a and a substrate bank 1b, a conductor layer 2 provided on the substrate bottom 1a, and a ring formed on the substrate bank 1b. The upper metallized layer 3a is provided.

絶縁基板1は、基板底部1aと基板堤部1bとからなり、基板堤部1aの外周に基板堤部1bが一体的に設けられてなるものである。また、導体層2は、基板底部1aの表面に設けられた表面導体層2aと、外部との電気接続のために裏面に設けられた裏面導体層2cと、表面導体層2a及び裏面導体層2cを接続するために基板底部1aの内部に形成された内部導体層2bとからなっている。   The insulating substrate 1 includes a substrate bottom portion 1a and a substrate bank portion 1b, and the substrate bank portion 1b is integrally provided on the outer periphery of the substrate bank portion 1a. The conductor layer 2 includes a surface conductor layer 2a provided on the surface of the substrate bottom 1a, a back conductor layer 2c provided on the back for electrical connection with the outside, a surface conductor layer 2a and a back conductor layer 2c. In order to connect the two, an internal conductor layer 2b formed inside the substrate bottom 1a.

本発明のセラミックパッケージは、電子部品や半導体素子を内部に戴置し、蓋をして密封して用いるものであり、例えば図1(b)に示すように、絶縁基板1の基板底部1aに設けられた導体層2と接続された電子部品4a及び半導体素子4bとが設けられている。   The ceramic package of the present invention is used by placing electronic components and semiconductor elements inside and sealing them with a lid. For example, as shown in FIG. An electronic component 4a and a semiconductor element 4b connected to the provided conductor layer 2 are provided.

電子部品4aは、導電性接着剤5aを用いて導体層2と電気的接続を行っている。電子部品4aとしては、水晶発振子、誘電体、抵抗体、フィルタ及びコンデンサのうち少なくとも1種を用いることができる。また、半導体素子4bはワイヤボンディングにより導体層2と接続されている。   The electronic component 4a is electrically connected to the conductor layer 2 using a conductive adhesive 5a. As the electronic component 4a, at least one of a crystal oscillator, a dielectric, a resistor, a filter, and a capacitor can be used. The semiconductor element 4b is connected to the conductor layer 2 by wire bonding.

金属製蓋体8は、電子部品4a及び半導体素子4bを保護するため、セラミックパッケージに接合し、気密に封止される。さらに、金属製蓋体8は、基板堤部1bの上面に被着形成されたメタライズ層3aの表面に、所望によりメッキ層3bを形成し、共晶Ag−Cu等のロウ材6を用いて、シーム溶接等の方法により接合される。   The metal lid 8 is joined to a ceramic package and hermetically sealed in order to protect the electronic component 4a and the semiconductor element 4b. Further, the metal lid 8 is formed by optionally forming a plating layer 3b on the surface of the metallized layer 3a deposited on the upper surface of the substrate bank portion 1b, and using a brazing material 6 such as eutectic Ag-Cu. And joined by a method such as seam welding.

本発明のセラミックパッケージは、絶縁基板1を構成するアルミナ焼結体の焼上げ磁器強度が650MPa以上であることが重要であり、金属製等の蓋体8の封止時や二次実装の時に熱応力が加わっても破壊しにくく、または、ハンドリング時や使用時の衝撃等により破壊することを効果的に防止することができる。特に、このような効果をさらに高めるため、焼上げ磁器強度は670MPa以上、更には680MPa以上、より好適には700MPa以上であることが好ましい。   In the ceramic package of the present invention, it is important that the sintered porcelain strength of the alumina sintered body constituting the insulating substrate 1 is 650 MPa or more, and when the lid 8 made of metal or the like is sealed or during secondary mounting. It is difficult to break even when thermal stress is applied, or it is possible to effectively prevent breakage due to an impact during handling or use. In particular, in order to further enhance such effects, the baked porcelain strength is preferably 670 MPa or more, more preferably 680 MPa or more, and more preferably 700 MPa or more.

なお、本発明における強度は、3点曲げ強度試験による測定値を示すもので、厚み3mm、幅4mm、長さ40mmの試料を用いて評価することができる。ただし、テンション面は未加工のまま、JIS R1601に基づいて室温にて測定した値である。また、焼上げ強度とは、試験片の最大応力が加わる面を未加工のまま測定した強度で、研磨後強度とは、試験片の最大応力が加わる面の研磨を行った後に測定した強度である。   In addition, the intensity | strength in this invention shows the measured value by a 3 point | piece bending strength test, and can be evaluated using the sample of thickness 3mm, width 4mm, and length 40mm. However, the tension surface is a value measured at room temperature in accordance with JIS R1601, with no processing. The baking strength is the strength measured on the surface of the test piece where the maximum stress is applied unprocessed, and the strength after polishing is the strength measured after polishing the surface where the maximum stress of the test piece is applied. is there.

また、絶縁基板1の結晶粒径は、0.8〜1.8μmであることが重要である。結晶粒径を制御することによって応力が集中し、破壊源となることを防止し、強度を高く維持する効果がある。本発明によれば、結晶粒径を上記のように小さい範囲に設定することで650MPa以上の強度を得ることができる。特に、上記効果を高めるため、1〜1.5μmが好ましい。   In addition, it is important that the crystal grain size of the insulating substrate 1 is 0.8 to 1.8 μm. By controlling the crystal grain size, there is an effect of preventing the stress from being concentrated and becoming a fracture source and maintaining a high strength. According to the present invention, a strength of 650 MPa or more can be obtained by setting the crystal grain size in a small range as described above. In particular, in order to enhance the above effect, 1 to 1.5 μm is preferable.

さらに、絶縁基板1は、アルミナを主成分とし、焼結助剤が6質量%以上含まれることも重要である。6質量%以上の焼結助剤を含有することにより、メタライズと同時焼成を可能とすることができる。   Furthermore, it is important that the insulating substrate 1 contains alumina as a main component and contains 6% by mass or more of a sintering aid. By containing 6% by mass or more of sintering aid, metallization and simultaneous firing can be performed.

主成分のアルミナは、90質量%以上、特に90〜94質量%、更には91〜94質量%の割合で含有することが好ましい。これにより、絶縁基板1の絶縁性と、絶縁基板1と導体層2との密着性とを維持しつつ、強度を650MPaとすることが容易となる。   The main component alumina is preferably 90% by mass or more, particularly 90 to 94% by mass, and more preferably 91 to 94% by mass. Thereby, it becomes easy to set the strength to 650 MPa while maintaining the insulating property of the insulating substrate 1 and the adhesion between the insulating substrate 1 and the conductor layer 2.

第2の成分として、Mnを酸化物(Mn)換算で2〜8質量%、特に3〜8質量%、更には3〜6質量%、より好適には2〜4質量%の割合で含むことが好ましい。これは、Mn成分は焼結助剤として作用するものであり、1350〜1500℃の低温焼成を容易にし、且つMnAlを過度に析出しないため、緻密化を容易にすることができる。 As the second component, Mn oxide (Mn 2 O 3) 2~8% by weight in terms of, in particular 3 to 8% by weight, even 3-6% by weight, the proportion of 2-4 wt%, more preferably It is preferable to contain. This is because the Mn component acts as a sintering aid, facilitates low-temperature firing at 1350 to 1500 ° C., and does not excessively precipitate MnAl 2 O 4 , so that densification can be facilitated.

さらに、Mnは平均粒子径が0.3〜1.3μm、特に0.4〜1.0μm、更には0.4〜0.8μmであることが好ましい。このような粉末を用いると、グリーンシートの成形性が良好で、Mnの凝集を防止して助剤成分の分散を向上することができる。 Further, Mn 2 O 3 preferably has an average particle diameter of 0.3 to 1.3 μm, particularly 0.4 to 1.0 μm, and more preferably 0.4 to 0.8 μm. When such a powder is used, the green sheet has good moldability, can prevent Mn aggregation, and improve the dispersion of the auxiliary component.

第3の成分として、SiをSiO換算で1〜6質量%、特に2〜5質量%、更には3〜5質量%の割合で含有することが好ましい。SiOがこのような割合で存在すると、焼結性に寄与する液相を生成して緻密化を促進し、MnAlが結晶化され易く、高強度を得やすくなる。 As a third component, 1-6 wt% of Si in terms of SiO 2, in particular 2 to 5 wt%, more preferably in a proportion of 3-5 wt%. When SiO 2 is present in such a ratio, a liquid phase contributing to sinterability is generated and densification is promoted, and MnAl 2 O 4 is easily crystallized, so that high strength is easily obtained.

第4の成分として、MgをMgO換算で0.1〜1質量%、特に0.15〜1.0質量%、更には0.2〜0.5質量%の割合で含有することが好ましい。MgOはアルミナ結晶粒子の粒成長を抑制する効果があり、均一に分散させることによってアルミナの粒径が小さく均一な焼結体が得られ、上記の割合でMgが存在することで、外観不良が生じ難く、MnAlの結晶相が生じ易く、高い強度を実現できる。 As a 4th component, it is preferable to contain Mg in the ratio of 0.1-1 mass% in conversion of MgO, especially 0.15-1.0 mass%, Furthermore, 0.2-0.5 mass%. MgO has the effect of suppressing the grain growth of alumina crystal particles, and by uniformly dispersing, a uniform sintered body having a small alumina particle diameter can be obtained. It is difficult to occur, and a crystal phase of MnAl 2 O 4 is easily generated, and high strength can be realized.

本発明よれば、SiO/MgOの含有比率が5〜15であることが重要である。Mg−Si化合物が析出することにより、磁器染みと強度低下の原因となるMn−Si化合物の凝集を抑制し、高強度化を容易にすることが可能となる。特に、5〜10が好ましい。 According to the invention, it is important that the content ratio of SiO 2 / MgO is 5-15. By precipitating the Mg—Si compound, it is possible to suppress the aggregation of the Mn—Si compound that causes the porcelain stain and the strength reduction, and to easily increase the strength. In particular, 5-10 are preferable.

また、絶縁基板1と導体層2との同時焼結性を高めるために、所望により、第5の成分として、Ca,Sr,Baのうち少なくとも1種を、酸化物換算で3質量%以下の割合で含んでもよい。更に、所望により、第6の成分として、W、Mo等の金属を焼結体を黒色化するための成分として2質量%以下の割合で含んでもよい。なお、本発明において焼結助剤とは上記第2〜6成分を意味する。   Moreover, in order to improve the simultaneous sintering property of the insulating substrate 1 and the conductor layer 2, if desired, at least one of Ca, Sr, and Ba is used as the fifth component in an amount of 3% by mass or less in terms of oxide. May be included in proportions. Furthermore, if desired, a metal such as W or Mo may be included as a sixth component in a proportion of 2% by mass or less as a component for blackening the sintered body. In the present invention, the sintering aid means the second to sixth components.

上記アルミナ結晶粒子の粒界には少なくとも前記第2、第3成分が存在するが、これらの成分の内第2成分であるMnの全てあるいは一部が、MnAlとして存在することが好ましい。焼結助剤として添加したMnがMnAlとして析出することによって、焼結体の曲げ強度を高めることができる。 At least the second and third components are present at the grain boundaries of the alumina crystal particles, and it is preferable that all or a part of Mn as the second component among these components is present as MnAl 2 O 4. . When Mn 2 O 3 added as a sintering aid is precipitated as MnAl 2 O 4 , the bending strength of the sintered body can be increased.

本発明によれば、図1(a)に示した基板堤部1bの幅dを0.1〜0.3mmに、基板底部1aの厚みDを0.1〜0.3mmに、またパッケージの高さTを0.3〜0.6mmにすることが好ましい。このような寸法に設定することにより、絶縁基板1であるアルミナ焼結体の強度を考慮し、金属製該体10の封止時の熱応力に対する破壊をより効果的に防止でき、また、パッケージの容積をより小さくすることができる。特に、パッケージの高さを0.6mm以下とすることにより、電子部品4a及び/又は半導体素子4bを実装した超小型・超薄型セラミックパッケージとしてICカード等に応用することが容易になる。   According to the present invention, the width d of the substrate bank portion 1b shown in FIG. 1A is 0.1 to 0.3 mm, the thickness D of the substrate bottom portion 1a is 0.1 to 0.3 mm, and the package The height T is preferably 0.3 to 0.6 mm. By setting the dimensions as described above, the strength of the alumina sintered body that is the insulating substrate 1 can be taken into consideration, so that the metal body 10 can be more effectively prevented from being damaged by thermal stress at the time of sealing. The volume of can be made smaller. In particular, when the height of the package is 0.6 mm or less, it can be easily applied to an IC card or the like as an ultra-small and ultra-thin ceramic package on which the electronic component 4a and / or the semiconductor element 4b are mounted.

絶縁基板1を構成するアルミナ焼結体に対するメタライズ層3aの接着強度が49N以上、特に68N以上、更には98N以上であることが好ましい。このように接着強度を49N以上にすることにより、金属端子との接続信頼性、封止後の熱サイクルによる熱応力に対する信頼性を高め、絶縁基板1とリング状に形成されたメタライズ層3aとの間で剥離することを防止し、セラミックパッケージの気密性を十分に保つことができる。   The adhesive strength of the metallized layer 3a to the alumina sintered body constituting the insulating substrate 1 is preferably 49N or more, particularly 68N or more, and more preferably 98N or more. Thus, by setting the adhesive strength to 49 N or more, the reliability of the connection with the metal terminal and the reliability against the thermal stress due to the thermal cycle after sealing are improved, and the metallized layer 3a formed in a ring shape with the insulating substrate 1 Can be prevented, and the airtightness of the ceramic package can be sufficiently maintained.

絶縁基板1を構成するアルミナ焼結体の結晶粒径を一定の範囲で均一に分布させることが焼上げ強度を改善する点で重要である。即ち、平均結晶粒径を1.8μm以下、特に1.5μm以下にすることによって、特に焼上げ強度及び研磨後強度を改善することができる。また、平均結晶粒径を0.8μm以上、特に1μm以上とすることによって、凝集を防止し、均一分散による強度向上に寄与できる。そのためには、焼結助剤のMgCO原料粉末の平均粒子径を特定の値とする手法を採用することができる。 In order to improve the baking strength, it is important to uniformly distribute the crystal grain size of the alumina sintered body constituting the insulating substrate 1 within a certain range. That is, by setting the average crystal grain size to 1.8 μm or less, particularly 1.5 μm or less, it is possible to improve the baking strength and the strength after polishing. In addition, by setting the average crystal grain size to 0.8 μm or more, particularly 1 μm or more, aggregation can be prevented and strength can be improved by uniform dispersion. For this purpose, a method can be employed in which the average particle diameter of the MgCO 3 raw material powder for the sintering aid is set to a specific value.

さらに、絶縁基板1の気孔率は、4%以下、特に3.5%以下、更には3%以下が好ましい。気孔率を高めることによって、強度低下を抑制することが可能となる。   Furthermore, the porosity of the insulating substrate 1 is preferably 4% or less, particularly 3.5% or less, and more preferably 3% or less. By increasing the porosity, it is possible to suppress a decrease in strength.

なお、気孔率はアルキメデス法によって測定することができ、平均結晶粒径はインターセプト法によって測定することができる。   The porosity can be measured by the Archimedes method, and the average crystal grain size can be measured by the intercept method.

接着強度の測定は、アルミナ焼結体の表面に2mm×25mmの導体層を形成し、無電解Niメッキを施した後、銀ロウを用いて金具を接合し、金具を引き剥がす際の引き剥がし荷重を測定した。得られた荷重の値を接着強度と定義した。   The adhesive strength is measured by forming a 2 mm x 25 mm conductor layer on the surface of the alumina sintered body, applying electroless Ni plating, joining the metal fittings using silver brazing, and peeling off the metal fittings. The load was measured. The obtained load value was defined as the adhesive strength.

絶縁基板1の熱伝導率は、封止時の熱を系外に放出するとともに、絶縁基板内での温度差を小さくすることができるため、封止時の破壊をより効果的に防止する点で15W/mK以上、特に20W/mK以上、さらには25W/mK以上であることが好ましい。   The thermal conductivity of the insulating substrate 1 releases heat at the time of sealing out of the system and can also reduce the temperature difference in the insulating substrate, thereby preventing destruction at the time of sealing more effectively. It is preferably 15 W / mK or more, particularly 20 W / mK or more, and more preferably 25 W / mK or more.

絶縁基板のヤング率は、熱応力を変形によって吸収し、破壊をより効果的に防止する傾向がある点で、325GPa以下であることが好ましい。   The Young's modulus of the insulating substrate is preferably 325 GPa or less because it tends to absorb thermal stress by deformation and prevent destruction more effectively.

導体層2は、蓋体を封止あるいは各種金属端子との接続を可能とし、絶縁基板との強固な接着力を有するメタライズを形成するため、W及び/又はMoを主成分とし、アルミナを10質量%以下、特に8質量%以下含むことが好ましい。   The conductor layer 2 seals the lid or can be connected to various metal terminals, and forms a metallization having a strong adhesive force with the insulating substrate, so that W and / or Mo are the main components and alumina is 10 It is preferable to contain not more than 8% by mass, particularly not more than 8% by mass.

蓋体8は、熱膨張がアルミナに近く、封止時に発生する熱応力が小さくなり、封止時に絶縁基板1がより破壊しにくくなるため、Fe−Ni−Co合金であることが好ましい。   The lid 8 is preferably made of an Fe—Ni—Co alloy because thermal expansion is close to that of alumina, thermal stress generated during sealing is reduced, and the insulating substrate 1 is less likely to break during sealing.

このようなアルミナパッケージは、高強度であるという特徴を有し、小型又は薄型であっても破壊し難いため、ICカードはもとより、携帯情報端末等の電子機器にも好適に用いることができる。   Such an alumina package has a feature of high strength and is difficult to be destroyed even if it is small or thin. Therefore, it can be suitably used not only for an IC card but also for an electronic device such as a portable information terminal.

次に、本発明のセラミックパッケージを製造する方法について具体的に説明する。   Next, a method for producing the ceramic package of the present invention will be specifically described.

まず、原料粉末として平均粒子径が0.5〜2.5μm、特に1.0〜2.0μmのアルミナ粉末を準備する。これは、平均粒子径は0.5μm以上とすることにより、シート成形性を確保でき、粉末のコスト上昇を防ぐことができる。また、2.5μm以下とすることで、1500℃以下の焼成での緻密化を促進し、焼結を容易にすることができる。また、不純物による強度低下を防止するため、アルミナ粉末の純度は99%以上であることが好ましい。   First, an alumina powder having an average particle size of 0.5 to 2.5 μm, particularly 1.0 to 2.0 μm is prepared as a raw material powder. By setting the average particle size to 0.5 μm or more, the sheet formability can be secured and the cost of the powder can be prevented from increasing. Moreover, by setting it as 2.5 micrometers or less, the densification by baking at 1500 degrees C or less can be accelerated | stimulated, and sintering can be made easy. Moreover, in order to prevent strength reduction due to impurities, the purity of the alumina powder is preferably 99% or more.

また、焼結助剤として、まず、平均粒子径が1.3μm以下のMn粉末を添加することが重要である。1.3μm以下とすることで、Mn成分の分散を向上させ、また、緻密化を促進することができる。特に、平均粒子径の下限値を0.4μm以上とすることにより、シート成形性を容易に確保できる。さらに、不純物を避けるため、純度は99%以上が好ましい。 Further, it is important to first add Mn 2 O 3 powder having an average particle size of 1.3 μm or less as a sintering aid. By setting the thickness to 1.3 μm or less, dispersion of the Mn component can be improved and densification can be promoted. In particular, sheet formability can be easily ensured by setting the lower limit of the average particle diameter to 0.4 μm or more. Furthermore, in order to avoid impurities, the purity is preferably 99% or more.

また、第2の焼結助剤として、SiO粉末を添加することが重要である。純度は99%以上、平均粒子径は0.5〜3μmであことが好ましい。特に、溶融SiOを用いることが好ましい。溶融により生成されたSiOを用いると、密度が高く、より緻密な焼結を得ることが容易になり、高強度を達成しやすくなる。 It is also important to add SiO 2 powder as the second sintering aid. The purity is preferably 99% or more, and the average particle size is preferably 0.5 to 3 μm. In particular, it is preferable to use molten SiO 2 . When SiO 2 produced by melting is used, the density is high, and it becomes easy to obtain denser sintering, and high strength is easily achieved.

さらに、第3の焼結助剤として、平均粒子径D50が3〜5μmのMgCO粉末を用いることが重要である。このような範囲の平均粒子径を有するMgCO粉末は、均一に分散しやすく、焼結時にアルミナ結晶粒子が粒成長をするのを抑制し、細かく、且つ均一に分布したアルミナ結晶を有する焼結体を得ることができる。 Furthermore, it is important to use MgCO 3 powder having an average particle diameter D 50 of 3 to 5 μm as the third sintering aid. MgCO 3 powder having an average particle diameter in such a range is easy to disperse uniformly, suppresses the crystal growth of alumina crystal particles during sintering, and has fine and evenly distributed alumina crystals. You can get a body.

平均粒子径D50が3μm未満では、微粉末が多くなるため粉末が凝集し易く、スラリー中で分散不良となり、グリーンシート作製時にクラック等の外観不良が発生する。また、5μmを越えると、MgO粒子が破壊源となり、強度が低下する。シート成形性と安定した高強度化のため、特に3.5〜4.5μmが好ましい。なお、MgCO粉末の純度は、不純物を避けると共に、Mgの分散性を高めるため、99%以上が好ましい。 Is less than the average particle diameter D 50 3 [mu] m, tend to powder aggregation because fine powder is increased, becomes poor dispersion in the slurry, the appearance of cracks defect occurs during the green sheet produced. On the other hand, if it exceeds 5 μm, MgO particles become a source of destruction and the strength decreases. In particular, from 3.5 to 4.5 μm is preferable for sheet formability and stable high strength. The purity of the MgCO 3 powder is preferably 99% or more in order to avoid impurities and increase the dispersibility of Mg.

そして、SiO/MgCOの含有比率がSiO/MgO換算で5〜15となるように配合することが重要である。このような比でSiOとMgCOを加えることによって、Mg−Si化合物の析出を抑制し、磁器染みと強度低下の原因となるMn−Si化合物の凝集を抑制して650MPa以上の高強度化を実現することができる。 Then, it is important that the content ratio of SiO 2 / MgCO 3 is formulated to be 5 to 15 at SiO 2 / MgO terms. By adding SiO 2 and MgCO 3 at such a ratio, the precipitation of the Mg—Si compound is suppressed, and the aggregation of the Mn—Si compound, which causes the porcelain stain and the strength reduction, is suppressed, and the strength is increased to 650 MPa or more. Can be realized.

なお、Mn、Si及びMgは、上記の粉末以外に、焼成によって酸化物を形成し得る炭酸塩、硝酸塩、酢酸塩等として添加してもよい。   Mn, Si, and Mg may be added as carbonates, nitrates, acetates, and the like that can form oxides by firing in addition to the above powder.

これらの成分は、アルミナ粉末に対して、Mn粉末を2〜8質量%、SiO粉末を1〜6質量%、MgCO粉末をMgO換算で0.1〜1質量%の割合で添加することが、焼結性を高め、緻密化を促進するために好ましい。さらに、アルミナ粉末に対して、Mn粉末を2〜4質量%、SiO粉末を2〜4質量%、MgCO粉末を0.1〜0.6質量%の割合で添加することが好ましい。 These components are 2 to 8% by mass of Mn 2 O 3 powder, 1 to 6% by mass of SiO 2 powder, and 0.1 to 1% by mass of MgCO 3 powder in terms of MgO with respect to the alumina powder. Addition is preferable in order to enhance sinterability and promote densification. Furthermore, 2-4 mass% of Mn 2 O 3 powder, 2-4 mass% of SiO 2 powder, and MgCO 3 powder may be added at a ratio of 0.1-0.6 mass% to the alumina powder. preferable.

なお、所望により、第5の成分として、Ca,Sr,Baのうち少なくとも1種を酸化物換算で3質量%以下、第6の成分として、W、Mo等の遷移金属の金属粉末や酸化物粉末を着色成分として金属換算で2質量%以下の割合で添加してもよい。   If desired, as a fifth component, at least one of Ca, Sr, and Ba is 3% by mass or less in terms of oxide, and as a sixth component, a metal powder or oxide of a transition metal such as W or Mo You may add powder as a coloring component in the ratio of 2 mass% or less in metal conversion.

さらに、強度、破壊靭性を向上させる周知の方法であるZr,Hf等を適宜添加してもよい。   Furthermore, Zr, Hf, etc., which are well-known methods for improving strength and fracture toughness, may be added as appropriate.

上記の混合粉末に対して適宜有機バインダを添加した後、これをプレス法、ドクターブレード法、圧延法、射出法等の周知の成形方法によって、絶縁基板を生成するためのグリーンシートを作製する。例えば、上記混合粉末に有機バインダや溶媒を添加してスラリーを調整した後、ドクターブレード法によってグリーンシートを形成する。或いはまた、混合粉末に有機バインダを加え、プレス成形、圧延成形等により所定の厚みのグリーンシートを作製できる。   An organic binder is appropriately added to the mixed powder, and then a green sheet for producing an insulating substrate is produced by a known forming method such as a press method, a doctor blade method, a rolling method, and an injection method. For example, an organic binder or a solvent is added to the mixed powder to prepare a slurry, and then a green sheet is formed by a doctor blade method. Alternatively, an organic binder is added to the mixed powder, and a green sheet having a predetermined thickness can be produced by press molding, rolling molding, or the like.

そして、所望により、グリーンシートに対して、マイクロドリル、レーザー等により直径50〜250μmのビアホールを形成することができる。   If desired, a via hole having a diameter of 50 to 250 μm can be formed on the green sheet by a micro drill, a laser, or the like.

このようにして作製したグリーンシートに対して、導体ペーストをスクリーン印刷、グラビア印刷等の方法により各グリーンシート上に配線パターンを形成し、所望により、上記の導体ペーストをビアホール内に充填するとともに、メタライズ層を形成するためにリング状に印刷塗布する。   For the green sheet thus produced, a conductor paste is formed on each green sheet by a method such as screen printing and gravure printing, and if desired, the conductor paste is filled in the via hole, Printing is applied in a ring shape to form a metallized layer.

導体ペーストは、導体成分としてW及び/又はMoを用い、これにアルミナ粉末を10質量%以下、特に8質量%以下の割合で添加したものが好ましい。これは、導体層2の導通抵抗を低く維持したままアルミナ焼結体と導体層2の密着性を高め、メッキ欠け等の不良の発生を防止することができる。なお、密着性向上のため、アルミナ粉末の代わりに、絶縁基板を形成する酸化物セラミック成分と同一の組成物粉末を加えてもよく、さらにNi等の酸化物を0.05〜2質量%の割合で添加することも可能である。   The conductor paste preferably uses W and / or Mo as a conductor component and alumina powder added thereto at a ratio of 10% by mass or less, particularly 8% by mass or less. This enhances the adhesion between the alumina sintered body and the conductor layer 2 while keeping the conduction resistance of the conductor layer 2 low, and can prevent the occurrence of defects such as lack of plating. In addition, in order to improve adhesion, the same composition powder as the oxide ceramic component forming the insulating substrate may be added instead of the alumina powder, and an oxide such as Ni is added in an amount of 0.05 to 2% by mass. It is also possible to add in proportions.

その後、導体ペーストを印刷塗布したグリーンシートを位置合わせして積層圧着した後、この積層体を、焼上げ磁器強度が650MPa以上となるように焼成することが重要である。例えば、少なくとも1000℃から焼成最高温度まで150℃/h以上の昇温速度で加熱し、1350〜1500℃の非酸化性雰囲気中で焼成し、1000℃までの冷却速度を250℃/h以下とする条件で焼成することができる。   Thereafter, it is important that the green sheet on which the conductive paste is printed is aligned and laminated and pressure-bonded, and then the laminated body is fired so that the firing porcelain strength is 650 MPa or more. For example, it is heated at a temperature rising rate of 150 ° C./h or more from at least 1000 ° C. to the highest firing temperature, fired in a non-oxidizing atmosphere of 1350 to 1500 ° C., and the cooling rate to 1000 ° C. is 250 ° C./h or less. It can bake on the conditions to do.

昇温速度が、1000℃から焼成最高温度までの間において、150℃/hより小さい場合、昇温時の低温液相領域での液相生成が不均一になり、アルミナの粒成長に偏りが生じるため曲げ強度が低下する傾向がある。特に、強度をより高めるため、昇温速度を180℃/h以上、更には200℃/h以上とすることが好ましい。   When the rate of temperature increase is less than 150 ° C./h between 1000 ° C. and the maximum firing temperature, the liquid phase generation in the low temperature liquid phase region at the time of temperature increase becomes uneven and the grain growth of alumina is biased As a result, bending strength tends to decrease. In particular, in order to further increase the strength, it is preferable that the rate of temperature rise is 180 ° C./h or more, and further 200 ° C./h or more.

また、1350〜1500℃で焼成することも重要であり、1350℃よりも低くなると緻密化が不十分で曲げ強度が650MPaに達しないことがあり、また、1500℃よりも高くなると、W及び/又はMo自体の焼結が進み、アルミナとの接着強度が弱くなる傾向がある。焼成温度は、機械的及び電気的信頼性を高めるため、特に1350〜1450℃であることが好ましい。   It is also important to fire at 1350-1500 ° C. When the temperature is lower than 1350 ° C., the densification is insufficient and the bending strength may not reach 650 MPa. When the temperature is higher than 1500 ° C., W and / or Or sintering of Mo itself advances and there exists a tendency for the adhesive strength with an alumina to become weak. The firing temperature is particularly preferably 1350 to 1450 ° C. in order to improve mechanical and electrical reliability.

焼成終了直後の保持温度から1000℃までの冷却速度は、250℃/h以下であることが好ましい。250℃/hを超えると、MnAlが結晶化されにくく、非晶質として残存するため、曲げ強度が低下しやすい傾向がある。冷却速度は、強度をさらに高める点で、特に200℃/h以下が好ましい。 The cooling rate from the holding temperature immediately after the end of firing to 1000 ° C. is preferably 250 ° C./h or less. If it exceeds 250 ° C./h, MnAl 2 O 4 is difficult to be crystallized and remains as an amorphous substance, so that the bending strength tends to decrease. The cooling rate is particularly preferably 200 ° C./h or less from the viewpoint of further increasing the strength.

また、焼成雰囲気は、金属が酸化されないように、非酸化性雰囲気であることが好ましい。具体的には、窒素、又は窒素と水素との混合ガスを用いることが好ましい。有機バインダの脱脂をする上では、水素及び窒素を含み、露点+30℃以下、特に25℃以下の非酸化性雰囲気であることが望ましい。なお、雰囲気中には、所望により、アルゴン等の不活性ガスを混入してもよい。   The firing atmosphere is preferably a non-oxidizing atmosphere so that the metal is not oxidized. Specifically, it is preferable to use nitrogen or a mixed gas of nitrogen and hydrogen. In degreasing the organic binder, a non-oxidizing atmosphere containing hydrogen and nitrogen and having a dew point of + 30 ° C. or lower, particularly 25 ° C. or lower is desirable. Note that an inert gas such as argon may be mixed in the atmosphere as desired.

そして、メタライズ層3a及び導体層2には、所望によりNi、Co、Cr、AuおよびCuのうち少なくとも1種から成るメッキ層を形成することによって、接合時の密着性を向上することができる。   The metallized layer 3a and the conductor layer 2 can be improved in adhesion at the time of bonding by forming a plating layer made of at least one of Ni, Co, Cr, Au and Cu as desired.

このような方法で製造したセラミックパッケージは、メタライズとの同時焼成が可能で、強度が650MPa以上の小型セラミックパッケージとして好適に用いることができる。   The ceramic package manufactured by such a method can be fired simultaneously with metallization, and can be suitably used as a small ceramic package having a strength of 650 MPa or more.

なお、最終的には、絶縁基板1内部に電子部品4a及び/又は半導体素子4bを実装し、導体層2との間を電気的に接続し、且つリング状に形成されたメタライズ層3aの表面に被覆されたメッキ層3bを介して、ロウ材9によって金属製蓋体18をシーム溶接で絶縁基板1に接合することにより、電子部品4a及び/又は半導体素子4bが気密に封止された半導体装置を得ることができる。   Finally, the electronic component 4a and / or the semiconductor element 4b are mounted inside the insulating substrate 1, electrically connected to the conductor layer 2, and the surface of the metallized layer 3a formed in a ring shape. A semiconductor in which the electronic component 4a and / or the semiconductor element 4b are hermetically sealed by joining the metal lid 18 to the insulating substrate 1 by seam welding with the brazing material 9 through the plating layer 3b covered with A device can be obtained.

純度99%以上、平均粒子径1.5μmのアルミナ粉末に対して、純度99%以上、表1に示した平均粒子径のMn粉末、純度99%以上、表1に示した平均粒子径の溶融SiO粉末、純度99%以上、平均粒子径3.6μmのMgCO粉末、純度99%以上、平均粒子径0.7μmのMoO粉末を準備した。 With respect to alumina powder having a purity of 99% or more and an average particle diameter of 1.5 μm, Mn 2 O 3 powder having a purity of 99% or more and the average particle diameter shown in Table 1, purity 99% or more and the average particles shown in Table 1 A molten SiO 2 powder having a diameter of 99% or more and a MgCO 3 powder having an average particle diameter of 3.6 μm and a MoO 3 powder having a purity of 99% or more and an average particle diameter of 0.7 μm were prepared.

これらの原料粉末を表1に示す割合で混合した後、成形用有機樹脂(バインダ)としてアクリル系バインダと、トルエンを溶媒として混合してスラリーを調整し、しかる後に、ドクターブレード法にて厚さ150μmのグリーンシートを作製した。なお、表1には、MgCoの含有量は、MgO換算値ではなく、MgCO含有量の値として示した。 After mixing these raw material powders in the proportions shown in Table 1, an acrylic binder as a molding organic resin (binder) and toluene are mixed as a solvent to prepare a slurry, and then the thickness is determined by a doctor blade method. A 150 μm green sheet was prepared. In Table 1, the MgCo 3 content is shown not as the MgO equivalent value but as the MgCO 3 content value.

得られたグリーンシートを所定厚みに積層し、露天+25℃の窒素水素混合雰囲気にて脱脂を行った後、引き続き、180℃/hで1000℃から焼成最高温度1370℃まで昇温し、それを焼成温度として露点+25℃の窒素水素混合雰囲気にて48分焼成した後、1000℃までを180℃/hで冷却した。   The obtained green sheets were laminated to a predetermined thickness, degreased in an open air + 25 ° C nitrogen-hydrogen mixed atmosphere, and subsequently heated from 1000 ° C to a firing maximum temperature of 1370 ° C at 180 ° C / h. After firing for 48 minutes in a nitrogen-hydrogen mixed atmosphere with a dew point of + 25 ° C. as the firing temperature, the temperature was lowered to 1000 ° C. at 180 ° C./h.

得られた焼結体の気孔率はアルキメデス法によって測定し、また、強度はJIS R1601に基づいて室温にて測定した。試験片は厚み3mm、幅4mm、長さ40mmの梁状であり、焼上げ強度に用いる試験片は最大応力が加わる面を未加工のままで測定し、研磨後強度に用いる試験片は最大応力が加わる面の研磨を行って試料を作成した。   The porosity of the obtained sintered body was measured by Archimedes method, and the strength was measured at room temperature based on JIS R1601. The test piece is a beam having a thickness of 3 mm, a width of 4 mm, and a length of 40 mm. The test piece used for the baking strength is measured while the surface to which the maximum stress is applied is left unprocessed. A sample was prepared by polishing the surface to which is applied.

さらに、ヤング率はJIS R1602に基づいて室温のヤング率を測定し、熱伝導率はレーザーフラッシュ法により室温で測定した。   Further, the Young's modulus was measured at room temperature based on JIS R1602, and the thermal conductivity was measured at room temperature by a laser flash method.

一方、平均粒子径2.6μmのMo粉末を94質量%、平均粒子径1.5μmのアルミナ粉末を6質量%、アクリル系バインダ及びアセトンを溶媒として混合し、導体ペーストを調整した。   On the other hand, 94% by mass of Mo powder having an average particle size of 2.6 μm, 6% by mass of alumina powder having an average particle size of 1.5 μm, an acrylic binder and acetone as a solvent were mixed to prepare a conductor paste.

そして、上記と同様にして作製したグリーンシートに対して、打ち抜き加工を施し、直径が100μmのビアホールを形成し、このビアホール内に、上記の導体ペーストをスクリーン印刷法によって充填するとともに、配線パターン状及びリング状に印刷塗布した。なお、リング状メタライズを形成したグリーンシートは、電子部品を収納する部位を打ち抜き加工によって除去した。   The green sheet produced in the same manner as above is punched to form a via hole having a diameter of 100 μm, and the via paste is filled in the via hole by a screen printing method. And it was printed and applied in a ring shape. In addition, the green sheet in which the ring-shaped metallization was formed was removed by punching the part that houses the electronic component.

なお、導体ペーストは純度99%以上、平均粒子径0.7μmのMo粉末95質量%、平均粒子径1.5μmのアルミナ粉末を4.6質量%、平均粒子径1.0μmのMn粉末及び平均粒子径1.0μmのSiO粉末がそれぞれ0.2質量%から成る組成であった。 The conductor paste has a purity of 99% or more, 95% by mass of Mo powder having an average particle size of 0.7 μm, 4.6% by mass of alumina powder having an average particle size of 1.5 μm, and Mn 2 O 3 having an average particle size of 1.0 μm. The composition was composed of 0.2% by mass of the powder and SiO 2 powder having an average particle diameter of 1.0 μm.

このようにして作製したグリーンシートを位置合わせし、積層圧着して積層体を作製した。この後、この積層成形体を露点+25℃の窒素水素混合雰囲気にて脱脂を行った後、露天+25℃の窒素水素混合雰囲気にて脱脂を行った後、引き続き、昇温速度180℃/hで1000℃から焼成最高温度1370℃まで昇温し、焼成最高温度1370℃にて露点+25℃の窒素水素混合雰囲気にて48分焼成した後1000℃までを180℃/hで冷却した。   The green sheets thus produced were aligned and laminated and pressed to produce a laminate. Thereafter, this laminated molded body was degreased in a nitrogen-hydrogen mixed atmosphere at a dew point of + 25 ° C., then degreased in a nitrogen-hydrogen mixed atmosphere at an open-air + 25 ° C., and subsequently at a temperature rising rate of 180 ° C./h. The temperature was raised from 1000 ° C. to a firing maximum temperature of 1370 ° C., firing at a firing maximum temperature of 1370 ° C. for 48 minutes in a nitrogen-hydrogen mixed atmosphere with a dew point of 25 ° C., and then cooled to 1000 ° C. at 180 ° C./h.

次に、絶縁基板表面の導体層及びメタライズ層の表面に電解Niメッキを施し、さらにその表面に0.2μmのAuメッキを施した。メタライズ層に対して、共晶Ag−Cuロウ材を用いてFe−Ni−Co合金から成る厚み0.2mmの金属製蓋体をシーム溶接によって接合し、気密に封止した。   Next, electrolytic Ni plating was applied to the surfaces of the conductor layer and metallization layer on the surface of the insulating substrate, and further 0.2 μm Au plating was applied to the surface. A metal lid having a thickness of 0.2 mm made of an Fe—Ni—Co alloy was joined to the metallized layer by seam welding using a eutectic Ag—Cu brazing material, and hermetically sealed.

得られた試料は、40倍の顕微鏡にてメタライズの剥がれ及び絶縁基板のクラックを確認し、それぞれの結果についてメタライズ剥がれもクラックもない場合を○、それ以外を×として外観評価観察の評価を行った。また、気密封止性をHeリーク法によって評価した。Heリーク法は、0.41MPaのHe加圧雰囲気中に2時間保持した後、取り出し、真空雰囲気中で検出されるHeガス量を測定し、1×10−10MPa・cm/sec以下を○、5×10−9MPa・cm/secを超えるものを×として評価し、その結果を表1に示した。 The obtained samples were checked for metallization peeling and cracks on the insulating substrate with a 40 × microscope, and for each result, the case where there was no metallization peeling or cracking was evaluated as ○, and other cases were evaluated as x. It was. Further, the hermetic sealing property was evaluated by the He leak method. In the He leak method, after being held in a 0.41 MPa He pressurized atmosphere for 2 hours, the He leak method is taken out, and the amount of He gas detected in a vacuum atmosphere is measured to obtain 1 × 10 −10 MPa · cm 3 / sec or less. ○ A value exceeding 5 × 10 −9 MPa · cm 3 / sec was evaluated as ×, and the result is shown in Table 1.

また、絶縁基板に対するメタライズ層の接着強度は、2mm×5mmの導体配線を形成し、無電解Niメッキを施した後、銀ロウを用いて金具を接合し、金具を引き剥がす際の引き剥がし荷重を測定した。結果を表1に示した。

Figure 2005101300
本発明の試料No.1〜15は、いずれも焼上げ強度が650MPa以上、研磨後の強度も650MPa以上であった。外観異常は観察されず、Heリーク試験でも見られず、封止状態も良好であった。 In addition, the adhesive strength of the metallized layer to the insulating substrate is a peeling load when a metal wire is formed using 2 mm x 5 mm, electroless Ni plating is applied, and then the metal fitting is joined using silver solder, and the metal fitting is peeled off. Was measured. The results are shown in Table 1.
Figure 2005101300
Sample No. of the present invention. 1 to 15 all had a baking strength of 650 MPa or more, and the strength after polishing was 650 MPa or more. Appearance abnormality was not observed, He leak test was not observed, and the sealing state was good.

一方、MgCOを含まない本発明の範囲外の試料No.16、17は、焼上げ強度が440MPa以下であった。また、試料No.16は、外観異常はなかったが、Heリーク試験で異常が見られ、封止状態が不良であった。さらに、試料No.17はクラックが見られ、外観が異常であった。 On the other hand, Sample No. which does not contain MgCO 3 and is outside the scope of the present invention. 16 and 17 had a baking strength of 440 MPa or less. Sample No. No. 16 had no appearance abnormality, but an abnormality was found in the He leak test, and the sealing state was poor. Furthermore, sample no. No. 17 had cracks and an abnormal appearance.

本発明のセラミックパッケージの一例を示すもので、(a)はセラミックパッケージの概略断面図、(b)は内部に電気素子を実装し、蓋体を接合した状態のセラミックパッケージの概略断面図である。An example of the ceramic package of this invention is shown, (a) is a schematic sectional drawing of a ceramic package, (b) is a schematic sectional drawing of the ceramic package of the state which mounted the electric element inside and joined the cover body. .

符号の説明Explanation of symbols

1・・・絶縁基板
1a・・・基板底部
1b・・・基板堤部
2・・・導体層
2a・・・表面導体層
2b・・・裏面導体層
2c・・・内部導体層
3a・・・メタライズ層
3b・・・メッキ層
4・・・電気素子
4a・・・電子部品
4b・・・半導体素子
5a・・・導電性接着剤
5b・・・ワイヤボンディング
6・・・ロウ材
8・・・金属製蓋体
d・・・基板堤部の幅
D・・・基板底部の厚み
T・・・パッケージの高さ
DESCRIPTION OF SYMBOLS 1 ... Insulating substrate 1a ... Substrate bottom part 1b ... Substrate bank part 2 ... Conductor layer 2a ... Surface conductor layer 2b ... Back conductor layer 2c ... Inner conductor layer 3a ... Metallized layer 3b ... plated layer 4 ... electric element 4a ... electronic component 4b ... semiconductor element 5a ... conductive adhesive 5b ... wire bonding 6 ... brazing material 8 ... Metal lid d ... Substrate bank width D ... Substrate bottom thickness T ... Package height

Claims (5)

電気素子を表面に実装するための基板底部及び該基板底部の外周に一体的に設けられた基板堤部を具備する絶縁基板と、該絶縁基板の内部及び/又は表面に設けられた導体層と、蓋体を接合するために前記基板堤部の一部に設けられたメタライズ層とを具備するセラミックパッケージにおいて、前記絶縁基板が6質量%以上の焼結助剤を含み、平均結晶粒径が0.8〜1.8μmで、焼上げ磁器強度が650MPa以上のアルミナ焼結体からなることを特徴とするセラミックパッケージ。 An insulating substrate comprising a substrate bottom for mounting electrical elements on the surface, and a substrate bank integrally provided on the outer periphery of the substrate bottom; and a conductor layer provided on the inside and / or surface of the insulating substrate; And a ceramic package comprising a metallization layer provided on a part of the substrate bank portion for joining the lid, wherein the insulating substrate contains 6% by mass or more of a sintering aid, and the average crystal grain size is A ceramic package comprising an alumina sintered body having a firing ceramic strength of 650 MPa or more at 0.8 to 1.8 μm. 前記絶縁基板がMnをMn換算で2〜8質量%、SiをSiO換算で1〜6質量%、MgをMgO換算で0.1〜1質量%の割合で含み、SiO/MgOの含有比率が5〜15であるアルミナ焼結体からなることを特徴とする請求項1記載のセラミックパッケージ。 Wherein including a dielectric substrate and Mn 2 to 8% by mass Mn 2 O 3 in terms, 1-6 wt% of Si in terms of SiO 2, the Mg in a proportion of 0.1 to 1 wt% in terms of MgO, SiO 2 / The ceramic package according to claim 1, wherein the ceramic package is made of an alumina sintered body having a MgO content ratio of 5 to 15. 前記基板堤部の幅が0.1〜0.3mm、前記基板底部の厚みが0.1〜0.3mm、パッケージ全体の高さが0.3〜0.6mmであることを特徴とする請求項1又は2記載のセラミックパッケージ。 The width of the substrate bank portion is 0.1 to 0.3 mm, the thickness of the substrate bottom portion is 0.1 to 0.3 mm, and the height of the entire package is 0.3 to 0.6 mm. Item 3. A ceramic package according to item 1 or 2. アルミナ粉末と焼結助剤として平均粒子径が1.3μm以下のMn粉末、SiO粉末及び平均粒子径が3〜5μmの炭酸マグネシウム粉末を合計で6質量%以上含有し、SiO/MgCOの含有比率がSiO/MgO換算で5〜15の組成からなるグリーンシートに、導体ペーストを用いて導体層及びメタライズ層を被着形成した後、前記グリーンシートを適宜積層し、しかる後に焼上げ磁器強度が650MPa以上となるように焼成することを特徴とするセラミックパッケージの製造方法。 Average particle diameter of 1.3μm or less of Mn 2 O 3 powder as the alumina powder and the sintering aid, SiO 2 powder and the average particle diameter is contained more than 6 wt% in total of magnesium carbonate powder 3 to 5 [mu] m, SiO 2 / content ratio of MgCO 3 is the green sheet having the composition of 5-15 at SiO 2 / MgO conversion, after the conductive layer and the metallization layer using a conductive paste deposited formed by stacking the green sheets as appropriate, accordingly A method for producing a ceramic package, characterized in that firing is performed later such that the baked porcelain strength is 650 MPa or more. 前記Mn粉末が2〜8質量%、前記SiO粉末が1〜6質量%、前記炭酸マグネシウムがMgO換算で0.1〜1質量%、SiO/MgOの含有比率が5〜15であることを特徴とする請求項10記載のセラミックパッケージの製造方法。

The Mn 2 O 3 powder is 2 to 8% by mass, the SiO 2 powder is 1 to 6% by mass, the magnesium carbonate is 0.1 to 1% by mass in terms of MgO, and the content ratio of SiO 2 / MgO is 5 to 15 The method of manufacturing a ceramic package according to claim 10, wherein:

JP2003333467A 2003-09-25 2003-09-25 Manufacturing method of ceramic package Expired - Fee Related JP4220869B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003333467A JP4220869B2 (en) 2003-09-25 2003-09-25 Manufacturing method of ceramic package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003333467A JP4220869B2 (en) 2003-09-25 2003-09-25 Manufacturing method of ceramic package

Publications (2)

Publication Number Publication Date
JP2005101300A true JP2005101300A (en) 2005-04-14
JP4220869B2 JP4220869B2 (en) 2009-02-04

Family

ID=34461468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003333467A Expired - Fee Related JP4220869B2 (en) 2003-09-25 2003-09-25 Manufacturing method of ceramic package

Country Status (1)

Country Link
JP (1) JP4220869B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197180A (en) * 2012-03-16 2013-09-30 Kyocera Corp Ceramic substrate for housing electronic component and electronic component mounting package using the same
WO2014002306A1 (en) * 2012-06-25 2014-01-03 京セラ株式会社 Alumina ceramic, and ceramic wiring substrate and ceramic package using same
JP2018162191A (en) * 2017-03-27 2018-10-18 京セラ株式会社 Ceramic sintered body and wiring substrate using the same
JPWO2021079450A1 (en) * 2019-10-24 2021-04-29
JPWO2020036097A1 (en) * 2018-08-13 2021-08-10 京セラ株式会社 Ceramic sintered body

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013197180A (en) * 2012-03-16 2013-09-30 Kyocera Corp Ceramic substrate for housing electronic component and electronic component mounting package using the same
WO2014002306A1 (en) * 2012-06-25 2014-01-03 京セラ株式会社 Alumina ceramic, and ceramic wiring substrate and ceramic package using same
CN103732558A (en) * 2012-06-25 2014-04-16 京瓷株式会社 Alumina ceramic, and ceramic wiring substrate and ceramic package using same
JPWO2014002306A1 (en) * 2012-06-25 2016-05-30 京セラ株式会社 Alumina ceramics and ceramic wiring board and ceramic package using the same
JP2018162191A (en) * 2017-03-27 2018-10-18 京セラ株式会社 Ceramic sintered body and wiring substrate using the same
JPWO2020036097A1 (en) * 2018-08-13 2021-08-10 京セラ株式会社 Ceramic sintered body
JP7170729B2 (en) 2018-08-13 2022-11-14 京セラ株式会社 ceramic sintered body
JPWO2021079450A1 (en) * 2019-10-24 2021-04-29
JP7316370B2 (en) 2019-10-24 2023-07-27 日本碍子株式会社 package

Also Published As

Publication number Publication date
JP4220869B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
US11338397B2 (en) Soldering material for active soldering and method for active soldering
EP1722411A2 (en) Ceramic circuit board
JP3845925B2 (en) Semiconductor device member using aluminum nitride substrate and method for manufacturing the same
JP3629783B2 (en) Circuit board
JP5784153B2 (en) Alumina ceramics and ceramic wiring board and ceramic package using the same
JP4012861B2 (en) Ceramic package
JP4959079B2 (en) Package for storing semiconductor elements
JP3911470B2 (en) Ceramic package and manufacturing method thereof
JP4220869B2 (en) Manufacturing method of ceramic package
JP2004119735A (en) Connected substrate, its manufacturing method and ceramic package
JP2005216932A (en) Wiring board and its manufacturing method and electrical part
JP2003163425A (en) Wiring board
JP4413223B2 (en) Ceramic package
JPH022836B2 (en)
JP4413224B2 (en) Ceramic package
JP2006120973A (en) Circuit board and manufacturing method thereof
JP2005216930A (en) Electrical part
JP2004228533A (en) Ceramic package
JP3411140B2 (en) Metallized composition and method for manufacturing wiring board using the same
JP2007294795A (en) Wiring board
JP2005101467A (en) Ceramic package
JP2003258139A (en) Package for receiving semiconductor element
JP5043260B2 (en) Aluminum nitride sintered body, manufacturing method and use thereof
JP3739582B2 (en) Package for storing semiconductor elements
JP3878898B2 (en) High frequency wiring board and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4220869

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees