JP2005099044A - Movement for measuring instrument - Google Patents

Movement for measuring instrument Download PDF

Info

Publication number
JP2005099044A
JP2005099044A JP2004346156A JP2004346156A JP2005099044A JP 2005099044 A JP2005099044 A JP 2005099044A JP 2004346156 A JP2004346156 A JP 2004346156A JP 2004346156 A JP2004346156 A JP 2004346156A JP 2005099044 A JP2005099044 A JP 2005099044A
Authority
JP
Japan
Prior art keywords
support
support hole
portions
casing
base end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004346156A
Other languages
Japanese (ja)
Other versions
JP2005099044A5 (en
Inventor
Hideyuki Nakane
秀行 中根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004346156A priority Critical patent/JP2005099044A/en
Publication of JP2005099044A publication Critical patent/JP2005099044A/en
Publication of JP2005099044A5 publication Critical patent/JP2005099044A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Motor Or Generator Frames (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To securely hold, in cylindrical support hole portions, a support shaft for turnably supporting the rotor of an electric motor built in a resin casing of the movement for a measuring instrument, and a support shaft for turnably supporting an intermediate gear of a reduction gear train, for transmitting the rotation of the electric motor to a pointer shaft after reduction. <P>SOLUTION: On a casing member 10a, the support hole portions 12b and 12c are formed through an upper wall 12 so as to support base portions 41 and 72 of the support shafts 40a and 70c respectively, and the support hole portions 12b and 12c are each provided with an inside diameter of a drawn end side axial hollow portion J2 larger than that of the other axial hollow portion J2, J4, excluding the portion. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、計器用回動内機に関する。   The present invention relates to a turning inner unit for an instrument.

従来、例えば、乗用車用計器の回動内機において、その内機本体は、ステップモータと、このステップモータにより駆動される減速歯車列とを、樹脂製ケーシング内に組み付けて構成したものがある。当該減速歯車列は、ケーシングの上壁を通り延出する指針軸の中間部位にケーシング内にて支持される出力段歯車と、ステップモータにより駆動される入力段歯車と、出力段歯車及び入力段歯車との間に噛合する中間歯車とを備えている。ここで、ステップモータのロータ及び中間歯車は、それぞれ、ケーシングの上下両壁間に支持した各断面円形のピン状金属製支持軸に回動可能に支持されている。   2. Description of the Related Art Conventionally, for example, in a rotating internal unit of a passenger car instrument, the internal unit body is configured by assembling a step motor and a reduction gear train driven by the step motor in a resin casing. The reduction gear train includes an output stage gear supported in the casing at an intermediate portion of the pointer shaft extending through the upper wall of the casing, an input stage gear driven by a step motor, an output stage gear, and an input stage. And an intermediate gear meshing with the gear. Here, the rotor and the intermediate gear of the step motor are rotatably supported by pin-shaped metal support shafts each having a circular cross section supported between the upper and lower walls of the casing.

ところで、上記回動内機において、各金属製支持軸の上下両壁への支持は、各支持軸を、その基端部にて、それぞれ、ケーシングの下壁に形成した各筒状支持穴部内に圧入により回動不能に支持することでなされる。   By the way, in the above rotating inner machine, each metal support shaft is supported on the upper and lower walls by the support shafts in the respective cylindrical support hole portions formed on the lower wall of the casing at the base end portions thereof. It is made by supporting it so that it cannot be rotated by press fitting.

上述の各支持穴部の底部は閉じているため、当該各支持穴部に各支持軸を圧入しても、各支持穴部内の空気の抜け穴がないため、各支持軸の基端部を各支持穴部内にその底部まで完全に圧入できなかったり、各支持穴部内で各支持軸の基端部により圧縮されている空気が温度により膨張して各基端部を各支持穴部内から押し出す方向に移動させたりして、各支持軸を各支持穴部内にしっかりと保持できないという不具合も生ずる。   Since the bottom of each support hole is closed, even if each support shaft is press-fitted into each support hole, there is no air hole in each support hole. Direction in which the bottom of the support hole cannot be completely press-fitted, or the air compressed by the base end of each support shaft in each support hole expands due to temperature and pushes each base end out of each support hole Or the like, causing a problem that each support shaft cannot be securely held in each support hole.

そこで、本発明は、以上のようなことに対処するため、計器用回動内機において、その樹脂製ケーシング内に組み付けられる電動機のロータを回動可能に支持する支持軸やこの電動機の回転を減速して指針軸に伝達する減速歯車列の中間歯車を回転可能に支持する支持軸を各支持穴部内にしっかりと保持することを目的とする。   Therefore, in order to deal with the above-described problems, the present invention provides a support shaft that rotatably supports the rotor of the electric motor assembled in the resin casing in the rotating inner unit for the instrument and the rotation of the electric motor. It is an object of the present invention to firmly hold a support shaft that rotatably supports an intermediate gear of a reduction gear train that decelerates and transmits it to a pointer shaft in each support hole.

上記課題の解決にあたり、請求項1に記載の発明に係る計器用回動内機は、両ケーシング部材(10a、10b)を互いに組み付けて構成するケーシング(10)と、両ケーシング部材の各対向壁(11、12)により回動可能に支持される指針軸(20)と、両ケーシング部材の各対向壁間に支持される金属製の少なくとも第1及び第2の支持軸(40a、70c)と、ケーシング内に取り付けられて、第1支持軸に回動可能に支持されるロータ(70)を有する電動機(M)と、電動機により駆動される入力段歯車(60)、指針軸に相対回動不能に支持される出力段歯車(30)及び入力段歯車と出力段歯車との間に噛合するように第2支持軸に回動可能に支持される中間歯車(40、50)を有し、ケーシング内に収容される減速歯車列(G)とを備える。   In solving the above-described problem, the turning internal unit for an instrument according to the invention described in claim 1 includes a casing (10) configured by assembling both casing members (10a, 10b) with each other, and each facing wall of both casing members. A pointer shaft (20) rotatably supported by (11, 12), and at least first and second support shafts (40a, 70c) made of metal supported between the opposing walls of both casing members. An electric motor (M) having a rotor (70) mounted in a casing and rotatably supported by a first support shaft, an input stage gear (60) driven by the electric motor, and a relative rotation with respect to a pointer shaft An output stage gear (30) that is impossiblely supported and an intermediate gear (40, 50) that is rotatably supported by the second support shaft so as to mesh between the input stage gear and the output stage gear; Deceleration teeth housed in the casing And a column (G).

当該回動内機において、前記両ケーシング部材の各対向壁の一方(12)には、前記第1及び第2の支持軸の各基端部(41、72)に対する各対応部にて、前記一方の対向壁の内面から前記第1及び第2の支持軸の軸方向に沿い前記他方の対向壁に向け筒状に延出された各支持穴部(12b、12c、12d、12e、12f、12g)が互いに平行に形成されており、該第1及び第2の支持穴部の各々毎に、当該支持穴部のその延出端側軸方向中空部位(J2)の内径は、当該支持穴部のうちその延出端側軸方向中空部位を除く残りの軸方向中空部位(J3、J4)の内径よりも大きくなっており、前記第1及び第2の支持軸の各基端部は、対応の各支持穴部内にその延出端側軸方向中空部位を通り挿通されて前記残りの軸方向中空部位内に同軸的に圧入されて、他方の対向壁(11)に向けて延出することを特徴とする。   In the rotating inner unit, one of the opposing walls of the two casing members (12) has a corresponding portion with respect to the base end portions (41, 72) of the first and second support shafts. Support hole portions (12b, 12c, 12d, 12e, 12f, 12f, 12f, 12f, 12f, 12b, 12e, 12f) that extend in a cylindrical shape from the inner surface of one of the opposing walls along the axial direction of the first and second support shafts. 12g) are formed in parallel with each other, and for each of the first and second support hole portions, the inner diameter of the extension end side axial hollow portion (J2) of the support hole portion is the support hole Each of the first and second support shafts has a base end portion that is larger than the inner diameter of the remaining axial hollow portion (J3, J4) excluding the extended-end-side axial hollow portion. The remaining axial hollow portions are inserted into the corresponding support hole portions through the extending end side axial hollow portions. Is coaxially pressed into, and wherein the extending toward the other of the opposed walls (11).

このように、第1及び第2の支持軸の圧入にあたり、その各基端部は、対応の上記各延出端側軸方向中空部位を通して対応の上記各残りの軸方向中空部位に圧入されるが、上記各延出端側軸方向中空部位は、対応の上記各残りの軸方向中空部位の内径、ひいては、各支持軸の基端部の外径よりも大きな内径を有する。これにより、各支持穴部の割れが対応の上記各残りの軸方向中空部位により未然に防止され得る。このことは、各支持穴部においてその延出端側軸方向中空部位は支持軸の圧入の際の割れを防止する役割をもつことを意味する。   In this way, when the first and second support shafts are press-fitted, the base end portions thereof are press-fitted into the corresponding remaining axial hollow portions through the corresponding extended end-side axial hollow portions. However, each extension end side axial hollow portion has an inner diameter larger than the corresponding inner diameter of each remaining axial hollow portion, and thus the outer diameter of the base end portion of each support shaft. Thereby, the crack of each support hole part can be prevented beforehand by each said remaining axial direction hollow part. This means that the extended end side axial hollow portion of each support hole has a role of preventing cracking when the support shaft is press-fitted.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.

以下、本発明の各実施形態を図面により説明する。   Hereinafter, each embodiment of the present invention will be described with reference to the drawings.

(第1実施形態)
図1は、本発明が乗用車用計器に適用された例を示しており、この計器は当該乗用車の車室内に設けたインストルメントパネル(図示しない)に配設される。当該計器は、図1にて示すごとく、配線板Pと、回動内機Dとを備えている。回動内機Dは、配線板Pの裏面に取り付けられる樹脂製ケーシング10と、金属製指針軸20と、ケーシング10内に組み付けたステップモータM及び減速歯車列Gとを備えている。ここで、ケーシング10は、断面コ字状の両ケーシング部材10a、10bをその各開口部にて互いに嵌着して構成されている。
(First embodiment)
FIG. 1 shows an example in which the present invention is applied to a passenger car instrument, and this instrument is disposed on an instrument panel (not shown) provided in the passenger compartment of the passenger car. As shown in FIG. 1, the instrument includes a wiring board P and a rotating inner unit D. The rotating inner unit D includes a resin casing 10 attached to the back surface of the wiring board P, a metal pointer shaft 20, and a step motor M and a reduction gear train G assembled in the casing 10. Here, the casing 10 is configured by fitting both casing members 10a and 10b having a U-shaped cross section into each other at their openings.

指針軸20は、その基端部21にて、ケーシング10内にてその下側壁11に形成した筒状支持穴部11a内に回動可能に支持されており、この指針軸20は、ケーシング10の上壁12に形成した筒部12aを通り同軸的にかつ回動可能に基端部21から延出している。これにより、指針軸20は、ケーシング10により、その支持穴部11a及び筒部12aでもって、同軸的にかつ回動可能に支持されている。   The pointer shaft 20 is supported at the base end portion 21 in a cylindrical support hole portion 11a formed in the lower side wall 11 in the casing 10 so as to be rotatable. A cylindrical portion 12a formed on the upper wall 12 passes through the base end portion 21 coaxially and rotatably. As a result, the pointer shaft 20 is supported coaxially and rotatably by the casing 10 with the support hole portion 11a and the cylindrical portion 12a.

減速歯車列Gは、出力段歯車30と、両中間歯車40、50と、入力段歯車60とを備えている。出力段歯車30は、大径の平歯車部30aに筒状支持穴部30bを一体に形成して構成されており、この出力段歯車30は、支持穴部30bにて、指針軸20の嵌合軸部20aに同軸的に支持されている。なお、図1にて符号13は、出力段歯車30を付勢する彎曲状ばねを示す。   The reduction gear train G includes an output stage gear 30, both intermediate gears 40 and 50, and an input stage gear 60. The output stage gear 30 is configured by integrally forming a cylindrical support hole 30b on a large-diameter spur gear part 30a. The output stage gear 30 is fitted with the pointer shaft 20 in the support hole 30b. It is coaxially supported by the coaxial part 20a. In FIG. 1, reference numeral 13 denotes a curved spring that biases the output stage gear 30.

中間歯車50は、その筒状ボスにて、断面円形の金属ピン状支持軸40aに同軸的に回動可能に支持されており、中間歯車40は、中間歯車50のボスに同軸的に相対回動不能に支持されている。ここで、中間歯車40は、ピニオン歯車であり、中間歯車50は、平歯車である。中間歯車40は、平歯車部30a及び中間歯車50よりも小径の歯車であって、平歯車部30aと噛合している。また、支持軸40aは、図1にて指針軸20の右側において、上下両壁12、11間に回動不能に支持されている。   The intermediate gear 50 is rotatably supported by a cylindrical boss on a metal pin-shaped support shaft 40 a having a circular cross section, and the intermediate gear 40 is coaxially rotated relative to the boss of the intermediate gear 50. It is supported immovably. Here, the intermediate gear 40 is a pinion gear, and the intermediate gear 50 is a spur gear. The intermediate gear 40 is a gear having a smaller diameter than the spur gear portion 30a and the intermediate gear 50, and meshes with the spur gear portion 30a. The support shaft 40a is supported between the upper and lower walls 12 and 11 so as not to rotate on the right side of the pointer shaft 20 in FIG.

入力段歯車60は、ステップモータMの後述するマグネットロータ70の筒状支持穴部71に同軸的に支持されている。この入力段歯車60は、平歯車部30a及び中間歯車50よりも小径のピニオン歯車からなり、中間歯車50と噛合している。本実施形態では、出力段歯車30、両中間歯車40、50及び入力段歯車60は、噛合音を発生しないか或いは少なくとも発生しにくい合成樹脂(例えば、柔らかい合成樹脂)でもって形成されている。   The input stage gear 60 is coaxially supported by a cylindrical support hole 71 of a magnet rotor 70 (described later) of the step motor M. The input stage gear 60 includes a pinion gear having a smaller diameter than the spur gear portion 30 a and the intermediate gear 50, and meshes with the intermediate gear 50. In the present embodiment, the output stage gear 30, the both intermediate gears 40 and 50, and the input stage gear 60 are formed of a synthetic resin (for example, a soft synthetic resin) that does not generate or at least hardly generates a meshing sound.

ステップモータMは、マグネットロータ70と、環状ヨーク80とを備えている。マグネットロータ70は、非磁性材料からなる筒状ロータ部70aと、このロータ部70aの外周面にその周方向に沿い多数のマグネット部70bを嵌着して形成されており、ロータ部70aは、その筒状支持穴部71にて、断面円形の金属ピン状支持軸70cに同軸的に回動可能に支持されている。なお、多数のマグネット部70bは、N磁極部とS磁極部とを交互にロータ部70aの外周面に嵌着してなるものである。また、支持軸70cは、図1にて支持軸40aの右側において、上下両壁12、11間に回動不能に支持されている。   The step motor M includes a magnet rotor 70 and an annular yoke 80. The magnet rotor 70 is formed by fitting a cylindrical rotor portion 70a made of a non-magnetic material and a large number of magnet portions 70b along the circumferential direction on the outer peripheral surface of the rotor portion 70a. The cylindrical support hole 71 is rotatably supported coaxially on a metal pin-shaped support shaft 70c having a circular cross section. The large number of magnet parts 70b are formed by alternately fitting N magnetic pole parts and S magnetic pole parts to the outer peripheral surface of the rotor part 70a. Further, the support shaft 70c is supported between the upper and lower walls 12 and 11 in a non-rotatable manner on the right side of the support shaft 40a in FIG.

ヨーク80は、ケーシング10の両ケーシング部材10a、10bの各開口部間に介装されており、このヨーク80は、図示しない各界磁巻線とともにステップモータMのステータを構成する。   The yoke 80 is interposed between the openings of the casing members 10a and 10b of the casing 10, and the yoke 80 constitutes a stator of the step motor M together with each field winding (not shown).

次に、両支持軸40a、70cのケーシング10に対する支持構成について詳細に説明する。ケーシング部材10aは、両筒状支持穴部12b、12cを備えている。支持穴部12bは、上壁12のうち支持軸40aの基端部41を支持すべき部分に貫通状に形成されるとともに、当該部分から下壁11に向けて筒状に突出して形成されている。   Next, the support structure with respect to the casing 10 of both the support shafts 40a and 70c is demonstrated in detail. The casing member 10a includes both cylindrical support holes 12b and 12c. The support hole portion 12b is formed in a portion that should support the base end portion 41 of the support shaft 40a in the upper wall 12 and is formed so as to protrude from the portion toward the lower wall 11 in a cylindrical shape. Yes.

これに伴い、支持軸40aは、その基端部41にて、上壁12の支持穴部12b内に同軸的にかつ回動不能に圧入されており、この支持軸40aの先端部42は、下壁11の支持穴部11b内に同軸的に支持されている。ここで、筒部12bの内径は支持軸40aの基端部41の外径よりも幾分小さい。なお、支持穴部11bは筒部12bと同軸的に位置している。   Accordingly, the support shaft 40a is press-fitted coaxially and non-rotatably into the support hole portion 12b of the upper wall 12 at the base end portion 41, and the tip end portion 42 of the support shaft 40a is The lower wall 11 is supported coaxially in the support hole 11b. Here, the inner diameter of the cylindrical portion 12b is somewhat smaller than the outer diameter of the base end portion 41 of the support shaft 40a. The support hole portion 11b is positioned coaxially with the cylindrical portion 12b.

一方、支持穴部12cは、上壁12のうち支持軸70cの基端部72を支持すべき部分に貫通状に形成されており、この支持穴部12cは、上壁12の内面のうち支持軸70cの基端部72を支持すべき部分から下壁11に向けて筒状に突出している。   On the other hand, the support hole 12c is formed in a penetrating manner in a portion of the upper wall 12 that should support the base end portion 72 of the support shaft 70c, and the support hole 12c is supported on the inner surface of the upper wall 12. The shaft 70 c protrudes in a cylindrical shape from the portion that should support the base end portion 72 toward the lower wall 11.

これに伴い、支持軸70cは、その基端部72にて、上壁12の支持穴部12c内に同軸的にかつ回動不能に圧入されており、この支持軸70cの先端部73は、下壁11の支持穴部11c内に同軸的に支持されている。ここで、筒部12cの内径は支持軸70cの基端部72の外径よりも幾分小さい。なお、支持穴部11cは筒部12cと同軸的に位置しており、両筒部12b、12cの各軸は互いに平行となっている。   Accordingly, the support shaft 70c is press-fitted coaxially and non-rotatably into the support hole portion 12c of the upper wall 12 at the base end portion 72, and the distal end portion 73 of the support shaft 70c is The lower wall 11 is supported coaxially in the support hole 11c. Here, the inner diameter of the cylindrical portion 12c is somewhat smaller than the outer diameter of the base end portion 72 of the support shaft 70c. In addition, the support hole part 11c is coaxially located with the cylinder part 12c, and each axis | shaft of both cylinder parts 12b and 12c is mutually parallel.

本第1実施形態において、両ケーシング部材10a、10bは樹脂でもって射出成形用金型により射出成形される。ここで、上述したように、ケーシング部材10aの各筒状支持穴部12b、12cは、上壁12において、共に貫通状に形成されているから、各支持穴部12b、12cは、上壁12の外面から外方に向け開口している。これにあわせて、上記射出成形用金型は、各支持穴部12b、12cの貫通状中空部にそれぞれ対応する各ピン状部分を互いに平行に有している。   In the first embodiment, both casing members 10a and 10b are injection-molded with resin by an injection mold. Here, as described above, since each cylindrical support hole 12b, 12c of the casing member 10a is formed in a penetrating manner in the upper wall 12, each support hole 12b, 12c is formed in the upper wall 12. It opens from the outer surface to the outside. Correspondingly, the injection mold has pin-like portions corresponding to the through-holes of the support hole portions 12b and 12c in parallel with each other.

従って、ケーシング部材10aの射出成形の際、各支持穴部12b、12cの貫通状中空部内の空気は樹脂内に残らず上記各ピン状部分により完全に押し出される。よって、各支持穴部12b、12cは、上壁12の内面から互いに平行に突出するように成形され得る。   Therefore, during the injection molding of the casing member 10a, the air in the through-holes of the support hole portions 12b and 12c is not completely left in the resin but is completely pushed out by the pin-shaped portions. Therefore, each support hole part 12b, 12c can be shape | molded so that it may mutually protrude from the inner surface of the upper wall 12. As shown in FIG.

以上のように構成した本第1実施形態においては、上述のように、各支持穴部12b、12cは、上壁12の内面から共に平行に延出している。従って、両支持軸40a、70cの各基端部41、72を、図2にて図示各矢印にて示すごとく、対応の各支持穴部12b、12cに圧入したとき、両支持軸40a、70cは、上壁12により互いに平行に維持され得る。   In the first embodiment configured as described above, the support hole portions 12b and 12c both extend in parallel from the inner surface of the upper wall 12 as described above. Accordingly, when the base end portions 41 and 72 of the both support shafts 40a and 70c are press-fitted into the corresponding support hole portions 12b and 12c as shown by the respective arrows shown in FIG. Can be maintained parallel to each other by the top wall 12.

ここで、各支持穴部12b、12cは、上壁12の外面から外方に開口しているので、各基端部41、72を、対応の各支持穴部12b、12cに圧入したとき、当該各支持穴部12b、12cの中空部内の空気は各基端部41、72により外方へ押し出される。従って、各基端部41、72を対応の各支持穴部12b、12cに十分に圧入し得るのは勿論のこと、各支持穴部12b、12c内の空気は膨張しても各支持穴部12b、12cから上壁12の外面側外方へ流出する。よって、各支持穴部12b、12c内への各基端部41、72の圧入状態は、各基端部41、72の各支持穴部12b、12cからの抜け出しを招くことなく、良好に維持され得る。   Here, since each support hole 12b, 12c is opened outward from the outer surface of the upper wall 12, when each base end 41, 72 is press-fitted into the corresponding support hole 12b, 12c, The air in the hollow portions of the support hole portions 12 b and 12 c is pushed outward by the base end portions 41 and 72. Accordingly, the base end portions 41 and 72 can be sufficiently press-fitted into the corresponding support hole portions 12b and 12c, as well as the support hole portions even if the air in the support hole portions 12b and 12c expands. It flows out of the outer surface side of the upper wall 12 from 12b, 12c. Therefore, the press-fitted state of the base end portions 41 and 72 into the support hole portions 12b and 12c is maintained well without causing the base end portions 41 and 72 to slip out of the support hole portions 12b and 12c. Can be done.

その結果、マグネットロータ70aを支持軸70cに回動可能に支持するとともに、中間歯車50を支持軸40aに同軸的に回動可能に支持したとき、マグネットロータ70aの支持穴部71に同軸的に回動不能に支持した入力段歯車60は中間歯車50と良好に噛合し得る。   As a result, when the magnet rotor 70a is rotatably supported by the support shaft 70c, and the intermediate gear 50 is rotatably supported by the support shaft 40a, the magnet rotor 70a is coaxially formed by the support hole 71 of the magnet rotor 70a. The input stage gear 60 supported so as not to rotate can mesh well with the intermediate gear 50.

(第2実施形態)
図3は本発明の第2実施形態を示している。この第2実施形態では、上記第1実施形態にて述べたケーシング部材10aの上壁12は、両筒状支持穴部12b、12cに代えて、両筒状支持穴部12d、12eを有する。これら両支持穴部12d、12eは、それぞれ、上壁12に両支持穴部12b、12cと同様に貫通状に形成されているが、当該各支持穴部12d、12eは、各支持穴部12b、12cとは異なり、それぞれ、段付き筒状中空部Hを有する。
(Second Embodiment)
FIG. 3 shows a second embodiment of the present invention. In the second embodiment, the upper wall 12 of the casing member 10a described in the first embodiment has both cylindrical support holes 12d and 12e instead of the both cylindrical support holes 12b and 12c. Both the support hole portions 12d and 12e are formed in the upper wall 12 so as to penetrate in the same manner as the both support hole portions 12b and 12c. However, the support hole portions 12d and 12e are respectively formed in the support hole portions 12b. , 12c, each has a stepped cylindrical hollow portion H.

当該段付き筒状中空部Hは、大径部H1と、この大径部H1に上壁12の外面側にて同軸的に連通する小径部H2とにより構成されている。大径部H1の上壁12の内面側開口部hは、支持軸40a、70cの一方を大径部H1内に挿入し易いように断面テーパ形状に形成されている。また、小径部H2の内径は、段付き筒状中空部H内の空気を上壁12の外面側へ押し出し易い程度の値となっている。ここで、大径部H1の軸方向長さは、支持軸40aの基端部41及び支持軸70cの基端部72の各軸方向長さ(各支持軸40a、70cの圧入長さに相当する)にほぼ等しい。   The stepped cylindrical hollow portion H includes a large diameter portion H1 and a small diameter portion H2 that is coaxially connected to the large diameter portion H1 on the outer surface side of the upper wall 12. The opening h on the inner surface side of the upper wall 12 of the large-diameter portion H1 is formed in a tapered cross section so that one of the support shafts 40a and 70c can be easily inserted into the large-diameter portion H1. Further, the inner diameter of the small-diameter portion H2 is a value that can easily push the air in the stepped cylindrical hollow portion H to the outer surface side of the upper wall 12. Here, the axial length of the large diameter portion H1 corresponds to the axial length of the base end portion 41 of the support shaft 40a and the base end portion 72 of the support shaft 70c (corresponding to the press-fit length of the support shafts 40a and 70c). Is almost equal to

ここで、ケーシング部材10aは上記第1実施形態と同様に樹脂でもって射出成形用金型により射出成形されるが、上述したように、各支持穴部12d、12eは貫通状段付き筒状中空部Hを有することから、これにあわせて、当該射出成形用金型は、各支持穴部12d、12eの貫通状段付き筒状中空部Hにそれぞれ対応する各段付きピン状部分を互いに平行に有している。   Here, the casing member 10a is injection-molded with an injection mold with resin as in the first embodiment, but as described above, each support hole 12d, 12e is a hollow hollow with a stepped step. Since it has the portion H, in accordance with this, the injection mold is parallel to the stepped pin-shaped portions corresponding to the through-shaped stepped cylindrical hollow portions H of the support hole portions 12d and 12e, respectively. Have.

従って、ケーシング部材10aの射出成形の際、各支持穴部12d、12eの貫通状段付き筒状中空部H内の空気は樹脂内に残らず上記各段付きピン状部分により各小径部H2から完全に押し出される。よって、各支持穴部12d、12eは、上壁12の内面から互いに平行に突出するように成形され得る。その他の構成は上記第1実施形態と同様である。   Therefore, during the injection molding of the casing member 10a, the air in the through-hole stepped cylindrical hollow portion H of each of the support hole portions 12d and 12e does not remain in the resin, and the stepped pin-shaped portion causes the air from the small diameter portion H2. Extruded completely. Accordingly, the support hole portions 12d and 12e can be formed so as to protrude from the inner surface of the upper wall 12 in parallel with each other. Other configurations are the same as those in the first embodiment.

このように構成した本第2実施形態において、上述のように、各支持穴部12d、12eは、上壁12の内面から共に平行に延出している。従って、両支持軸40a、70cをその各基端部41、72にて対応の各支持穴部12d、12eに圧入したとき、両支持軸40a、70cは、上壁12により互いに平行に維持され得る。   In the second embodiment configured as described above, the support hole portions 12d and 12e extend in parallel from the inner surface of the upper wall 12 as described above. Therefore, when both the support shafts 40a and 70c are press-fitted into the corresponding support hole portions 12d and 12e at the respective base end portions 41 and 72, the both support shafts 40a and 70c are maintained parallel to each other by the upper wall 12. obtain.

ここで、各支持穴部12d、12eの段付き筒状中空部Hの開口部hは断面テーパ状に形成されているから、両支持軸40a、70cの各基端部41、72の各支持穴部12d、12e内への圧入は容易にかつ確実になされ得る。また、各支持穴部12d、12eは、その各小径部H2にて、上壁12の外面から外方に開口しているので、各基端部41、72を、対応の各支持穴部12d、12eに圧入したとき、当該各支持穴部12d、12eの段付き筒状中空部H内の空気は各基端部41、72により各小径部H2から外方へ押し出される。   Here, since the opening h of the stepped cylindrical hollow portion H of each of the support holes 12d and 12e is formed in a tapered shape in cross section, each support of the base end portions 41 and 72 of the both support shafts 40a and 70c is supported. The press-fitting into the holes 12d and 12e can be easily and reliably performed. Further, since the support hole portions 12d and 12e are opened outward from the outer surface of the upper wall 12 at the small diameter portions H2, the base end portions 41 and 72 are connected to the corresponding support hole portions 12d. , 12e, the air in the stepped cylindrical hollow portion H of the support hole portions 12d, 12e is pushed outward from the small diameter portions H2 by the base end portions 41, 72.

従って、各基端部41、72を対応の各支持穴部12d、12eの大径部H1内に十分に圧入し得るのは勿論のこと、各支持穴部12d、12e内の空気は膨張してもその各小径部H2から上壁12の外面側外方へ流出する。よって、各支持穴部12d、12e内への各基端部41、72の圧入状態は、各基端部41、72の大径部H1からの抜け出しを招くことなく、良好に維持され得る。その結果、上記第1実施形態と同様に作用効果を達成できる。   Accordingly, the base end portions 41 and 72 can be sufficiently press-fitted into the large-diameter portions H1 of the corresponding support hole portions 12d and 12e, and air in the support hole portions 12d and 12e expands. However, it flows out of the outer surface side outward of the upper wall 12 from each small diameter part H2. Therefore, the press-fitted state of the base end portions 41 and 72 into the support hole portions 12d and 12e can be satisfactorily maintained without causing the base end portions 41 and 72 to slip out from the large-diameter portion H1. As a result, the effect can be achieved as in the first embodiment.

(第3実施形態)
図4は本発明の第3実施形態を示している。この第3実施形態では、上記第1実施形態にて述べたケーシング部材10aの上壁12は、両筒状支持穴部12b、12cに代えて、両筒状支持穴部12f、12gを有する。これら両支持穴部12f、12gは、それぞれ、上壁12に両支持穴部12b、12cと同様に貫通状に形成されているが、当該各支持穴部12f、12gは、各支持穴部12b、12cとは異なり、それぞれ、段付き筒状中空部Jを有する。
(Third embodiment)
FIG. 4 shows a third embodiment of the present invention. In the third embodiment, the upper wall 12 of the casing member 10a described in the first embodiment has both cylindrical support holes 12f and 12g instead of the both cylindrical support holes 12b and 12c. Both the support hole portions 12f and 12g are formed in the upper wall 12 so as to penetrate in the same manner as the support hole portions 12b and 12c. The support hole portions 12f and 12g are formed in the support hole portions 12b. , 12c, each has a stepped cylindrical hollow portion J.

段付き筒状中空部Jは、断面テーパ状開口部J1と、大径部J2と、開口部J1に大径部J2を介し同軸的に連通する小径部J3とにより構成されており、当該段付き筒状中空部Jは、開口部J1にて上壁12の内面側に開口し、小径部J3にて上壁12の外面側に開口している。また、小径部J3の内径は、上記第1実施形態にて述べた支持穴部12cの内径に等しい。   The stepped cylindrical hollow portion J includes a tapered opening J1, a large diameter portion J2, and a small diameter portion J3 coaxially communicating with the opening portion J1 via the large diameter portion J2. The attached cylindrical hollow portion J opens to the inner surface side of the upper wall 12 at the opening portion J1, and opens to the outer surface side of the upper wall 12 at the small diameter portion J3. Further, the inner diameter of the small diameter portion J3 is equal to the inner diameter of the support hole portion 12c described in the first embodiment.

また、開口部J1と小径部J3との間に、この小径部J3よりも大きな内径を有する大径部J2を設けたのは、各支持軸40a、70cの対応の各支持穴部12g、12fへの圧入位置及び圧入長さを適正に確保した上で、各支持穴部12g、12fへの対応の各支持軸40a、70cの圧入時における各支持穴部12g、12fの割れの発生を未然に防止するためである。このため、段付き筒状中空部Jの小径部J3のうち支持軸40a、70cの基端部の一方の圧入長さをBとし、開口部J1及び大径部J2の軸長の和をAとしたとき、ほぼ、(A/B)=(1/2)となるように設定されている。   In addition, the large-diameter portion J2 having an inner diameter larger than the small-diameter portion J3 is provided between the opening J1 and the small-diameter portion J3 because the corresponding support hole portions 12g and 12f of the respective support shafts 40a and 70c are provided. With the press-fitting position and press-fitting length properly secured, the cracks in the support hole portions 12g and 12f are not generated when the support shafts 40a and 70c corresponding to the support hole portions 12g and 12f are press-fitted. This is to prevent it. For this reason, the press-fit length of one of the proximal end portions of the support shafts 40a and 70c in the small diameter portion J3 of the stepped cylindrical hollow portion J is B, and the sum of the axial lengths of the opening J1 and the large diameter portion J2 is A. Is set so that (A / B) = (1/2).

ここで、ケーシング部材10aは上記第1実施形態と同様に樹脂でもって射出成形用金型により射出成形されるが、上述したように、各支持穴部12f、12gは貫通状段付き筒状中空部Jを有することから、これにあわせて、当該射出成形用金型は、各支持穴部12f、12gの貫通状段付き筒状中空部Jにそれぞれ対応する各段付きピン状部分を互いに平行に有している。従って、ケーシング部材10aの射出成形の際、各支持穴部12f、12gの貫通状段付き筒状中空部J内の空気は樹脂内に残らず上記各段付きピン状部分により各小径部J3から完全に押し出される。よって、各支持穴部12f、12gは、上壁12の内面から互いに平行に突出するように成形され得る。その他の構成は上記第1実施形態と同様である。   Here, the casing member 10a is injection-molded with an injection mold with resin as in the first embodiment. However, as described above, each of the support holes 12f and 12g has a cylindrical hollow with a stepped shape. Since it has the portion J, the injection molding die is parallel to the stepped pin-shaped portions corresponding to the through-shaped stepped cylindrical hollow portions J of the support hole portions 12f and 12g. Have. Therefore, during the injection molding of the casing member 10a, the air in the through-hole stepped cylindrical hollow portion J of each of the support hole portions 12f and 12g does not remain in the resin, and the stepped pin-shaped portion causes the air from the small diameter portion J3. Extruded completely. Therefore, each support hole part 12f, 12g can be shape | molded so that it may mutually protrude from the inner surface of the upper wall 12. FIG. Other configurations are the same as those in the first embodiment.

このように構成した本第3実施形態において、上述のように、各支持穴部12f、12gは、上壁12の内面から共に平行に延出している。従って、両支持軸40a、70cをその各基端部41、72にて対応の各支持穴部12f、12gに圧入したとき、両支持軸40a、70cは、上壁12により互いに平行に維持され得る。   In the third embodiment configured as described above, the support hole portions 12f and 12g both extend in parallel from the inner surface of the upper wall 12 as described above. Therefore, when the two support shafts 40a and 70c are press-fitted into the corresponding support hole portions 12f and 12g at the base end portions 41 and 72, the support shafts 40a and 70c are maintained parallel to each other by the upper wall 12. obtain.

ここで、各支持穴部12f、12gの段付き筒状中空部Jの開口部J1は断面テーパ状に形成されているから、両支持軸40a、70cの各基端部41、72の各支持穴部12f、12g内への圧入は容易にかつ確実になされ得る。また、両支持軸40a、70cの圧入にあたり、各基端部41、72は、対応の各大径部J2を通して対応の各小径部J3になされるが、各大径部J2は、対応の各小径部J2の内径、ひいては、各支持軸40a、70cの基端部の外径よりも大きな内径を有し、かつ、開口部J1及び大径部J2の軸長の和Aに対する支持軸40a、70cの基端部の一方の圧入長さBの比(A/B)は、ほぼ(1/2)となっている。これにより、各支持穴部12f、12gの割れが対応の各大径部J2により未然に防止され、かつ、各支持軸40a、70cの対応の各支持穴部12f、12gへの圧入が適正になされ得る。   Here, since the opening J1 of the stepped cylindrical hollow portion J of each support hole 12f, 12g is formed in a tapered shape in cross section, each support of each base end portion 41, 72 of both support shafts 40a, 70c. The press-fitting into the holes 12f and 12g can be easily and reliably performed. Further, when the support shafts 40a and 70c are press-fitted, the base end portions 41 and 72 are made to correspond to the small diameter portions J3 through the corresponding large diameter portions J2, but the large diameter portions J2 The supporting shaft 40a has an inner diameter larger than the outer diameter of the base end portion of each of the support shafts 40a and 70c, and the sum A of the axial lengths of the opening J1 and the large diameter portion J2, respectively. The ratio (A / B) of one press-fit length B at the base end portion of 70c is substantially (1/2). Thereby, the cracks of the support hole portions 12f and 12g are prevented in advance by the corresponding large diameter portions J2, and the press fitting of the support shafts 40a and 70c into the corresponding support hole portions 12f and 12g is properly performed. Can be made.

また、各支持穴部12f、12gは、その各小径部J3にて、上壁12の外面から外方に開口しているので、各基端部41、72を、対応の各支持穴部12f、12gに上述のように圧入したとき、当該各支持穴部12f、12gの段付き筒状中空部J内の空気は各基端部41、72により各小径部J3から外方へ押し出される。従って、各基端部41、72を対応の各支持穴部12f、12gの小径部J3内に十分に圧入し得るのは勿論のこと、各支持穴部12f、12g内の空気は膨張してもその各小径部J3から上壁12の外面側外方へ流出する。よって、各支持穴部12f、12g内への各基端部41、72の圧入状態は、各基端部41、72の小径部J2からの抜け出しを招くことなく、良好に維持され得る。その他の作用効果は、上記第1実施形態と同様である。   Further, since the support hole portions 12f and 12g are opened outward from the outer surface of the upper wall 12 at the respective small diameter portions J3, the base end portions 41 and 72 are respectively connected to the corresponding support hole portions 12f. , 12g, the air in the stepped cylindrical hollow portion J of each of the support hole portions 12f, 12g is pushed outward from the respective small diameter portions J3 by the respective base end portions 41, 72. Accordingly, the base end portions 41 and 72 can be sufficiently press-fitted into the corresponding small diameter portions J3 of the support hole portions 12f and 12g, and the air in the support hole portions 12f and 12g expands. Also flows out of the outer surface side of the upper wall 12 from each of the small diameter portions J3. Therefore, the press-fitted state of the base end portions 41 and 72 into the support hole portions 12f and 12g can be satisfactorily maintained without causing the base end portions 41 and 72 to slip out from the small diameter portion J2. Other functions and effects are the same as those of the first embodiment.

(第4実施形態)
図5及び図6は本発明の第4実施形態を示している。この第4実施形態では、上記第3実施形態にて述べたケーシング部材10aの上壁12の各筒状支持穴部12f、12gにおいて、断面筒状段付き中空部Jは、その小径部J3に代えて、筒状リブ部J4を有する。このリブ部J4は、複数条のリブaを有しており、これら各リブaは、大径部J2の径と同様の径を有する中空部内周面からリブ部J4の軸に向けて断面二等片三角形状に隆起して形成されている。ここで、各リブaは、リブ部J4の周方向に沿い所定間隔をおいて位置しており、これら各リブaは、リブ部J4の軸方向に沿い位置している。なお、リブ部J4の各リブaの頂部は、小径部J3の内周面上に位置する。その他の構成は上記第3実施形態と同様である。
(Fourth embodiment)
5 and 6 show a fourth embodiment of the present invention. In the fourth embodiment, in each cylindrical support hole 12f, 12g of the upper wall 12 of the casing member 10a described in the third embodiment, the cross-section cylindrical stepped hollow portion J is formed on the small diameter portion J3. Instead, it has a cylindrical rib portion J4. The rib portion J4 has a plurality of ribs a, and each of the ribs a has a cross section extending from the inner peripheral surface of the hollow portion having the same diameter as that of the large diameter portion J2 toward the axis of the rib portion J4. It is formed so as to protrude in an equal triangular shape. Here, each rib a is located along the circumferential direction of the rib part J4 at predetermined intervals, and each of these ribs a is located along the axial direction of the rib part J4. In addition, the top part of each rib a of the rib part J4 is located on the inner peripheral surface of the small diameter part J3. Other configurations are the same as those of the third embodiment.

このように構成した本第4実施形態においては、上記第3実施形態と同様に、両支持軸40a、70cをその各基端部41、72にて対応の各支持穴部12f、12gに圧入したとき、両支持軸40a、70cは、上壁12により互いに平行に維持され得る。   In the fourth embodiment configured as described above, both the support shafts 40a and 70c are press-fitted into the corresponding support hole portions 12f and 12g at the base end portions 41 and 72, as in the third embodiment. In this case, the support shafts 40 a and 70 c can be maintained parallel to each other by the upper wall 12.

ここで、両支持軸40a、70cの圧入にあたり、各基端部41、72は、対応の各大径部J2を通して対応の各リブ部J4になされるが、各リブaの頂部は、上述のごとく、上記第3実施形態にて述べた小径部J3の内周面上に位置するから、各基端部41、72は、対応の各リブ部J4内に各リブaを潰すことで圧入される。従って、各支持軸40a、70cの対応の各リブ部J4内にへの圧入が適正になされ得る。その他の作用効果を上記第3実施形態と同様である。   Here, when the both support shafts 40a and 70c are press-fitted, the base end portions 41 and 72 are made to the corresponding rib portions J4 through the corresponding large diameter portions J2, and the top portions of the ribs a are Thus, since it is located on the inner peripheral surface of the small diameter portion J3 described in the third embodiment, the base end portions 41 and 72 are press-fitted by crushing the ribs a in the corresponding rib portions J4. The Therefore, press-fitting into the corresponding rib portions J4 of the support shafts 40a and 70c can be appropriately performed. Other functions and effects are the same as those of the third embodiment.

(第5実施形態)
図7及び図8は本発明の第5実施形態を示している。この第5実施形態では、上記第3実施形態(図4参照)にて述べたケーシング部材10aの上壁12において、支持穴部12bは複数のリブbを有し、支持穴部12cは複数のリブcを有する。図7及び図8にて示すごとく、各リブbは、支持穴部12bの外周面から上壁12の内面にかけて外方へ三角壁形状に延出し、各リブcは、支持穴部12cの外周面から壁12の内面凹所内にかけて外方へ三角壁形状に延出する。なお、各支持穴部12b、12cは、その上壁12の内面側開口部dにて、断面テーパ状に形成されている。その他の構成は上記第1実施形態と同様である。
(Fifth embodiment)
7 and 8 show a fifth embodiment of the present invention. In the fifth embodiment, in the upper wall 12 of the casing member 10a described in the third embodiment (see FIG. 4), the support hole portion 12b has a plurality of ribs b, and the support hole portion 12c has a plurality of support holes 12c. Ribs c are provided. As shown in FIGS. 7 and 8, each rib b extends outward in a triangular wall shape from the outer peripheral surface of the support hole portion 12b to the inner surface of the upper wall 12, and each rib c has an outer periphery of the support hole portion 12c. A triangular wall shape extends outwardly from the surface into the inner recess of the wall 12. Each of the support holes 12b and 12c is formed in a tapered cross section at the inner surface side opening d of the upper wall 12 thereof. Other configurations are the same as those in the first embodiment.

このように構成した本第5実施形態において、上記第1実施形態と同様に、両支持軸40a、70cをその各基端部41、72にて対応の各支持穴部12b、12cに圧入したとき、両支持軸40a、70cは、上壁12により互いに平行に維持され得る。   In the fifth embodiment configured as described above, both the support shafts 40a and 70c are press-fitted into the corresponding support hole portions 12b and 12c at the respective base end portions 41 and 72 as in the first embodiment. Sometimes, both support shafts 40a, 70c can be maintained parallel to each other by the top wall 12.

ここで、上述したように複数のリブbは支持穴部12bの外周面に三角壁形状に形成されるとともに複数のリブcは支持穴部12cの外周面に三角壁形状に形成されている。従って、支持軸40aの支持穴部12bへの圧入の際、支持穴部12bは各リブbにより半径方向へかつ外方への変形を防止される。これにより、支持軸40aの支持穴部12bへの際の当該支持穴部12bの割れを防止できる。   Here, as described above, the plurality of ribs b are formed in a triangular wall shape on the outer peripheral surface of the support hole portion 12b, and the plurality of ribs c are formed in a triangular wall shape on the outer peripheral surface of the support hole portion 12c. Therefore, when the support shaft 40a is press-fitted into the support hole 12b, the support hole 12b is prevented from being deformed in the radial direction and outward by the ribs b. Thereby, the crack of the said support hole 12b at the time of the support shaft 40a to the support hole 12b can be prevented.

また、支持軸70cの支持穴部12cへの圧入の際、支持穴部12cは各リブcにより半径方向へかつ外方への変形を防止される。これにより、支持軸70cの支持穴部12cへの際の当該支持穴部12cの割れを防止しつつ、各支持軸40a、70cの対応の各支持穴部12b、12c内への圧入を適正に維持し得る。なお、各開口部dは、支持穴部12b、12cへの各支持軸40a、70cの圧入を容易にする。その他の構成は上記第1実施形態と同様である。   Further, when the support shaft 70c is press-fitted into the support hole 12c, the support hole 12c is prevented from being deformed in the radial direction and outward by the ribs c. Thereby, while preventing the crack of the support hole portion 12c when the support shaft 70c is inserted into the support hole portion 12c, the support shafts 40a and 70c are properly pressed into the corresponding support hole portions 12b and 12c. Can be maintained. Each opening d facilitates press-fitting of the support shafts 40a and 70c into the support holes 12b and 12c. Other configurations are the same as those in the first embodiment.

なお、本発明の実施にあたり、上記第1実施形態とは異なり、下壁11に上壁12の各支持穴部12b、12cに相当する各支持穴部を貫通状に形成し、これら各支持穴部に各支持軸40a、70cの先端部を圧入するように構成しても、上記実施形態と実質的に同様の作用効果を達成できる。このようなことは、他の実施形態でも実質的に同様である。   In implementing the present invention, unlike the first embodiment, the support holes corresponding to the support holes 12b and 12c of the upper wall 12 are formed in the lower wall 11 in a penetrating manner. Even if it is configured to press-fit the tip portions of the support shafts 40a and 70c into the portions, substantially the same operational effects as in the above embodiment can be achieved. This is substantially the same in other embodiments.

また、本発明の実施あたり、上記第1実施形態にて述べたケーシング10aの上壁12に形成した各筒状支持穴部12b、12cに代えて、当該上壁12に形成した各貫通穴部を採用し、これら各貫通穴部に各支持軸40a、70cの基端部を圧入するようにしてもよい。   Further, in carrying out the present invention, instead of the respective cylindrical support holes 12b, 12c formed in the upper wall 12 of the casing 10a described in the first embodiment, the respective through-hole portions formed in the upper wall 12 The base end portions of the support shafts 40a and 70c may be press-fitted into the through-hole portions.

また、本発明の実施にあたり、ステップモータMに代えて、各種の電動機を用いてもよい。   In implementing the present invention, various electric motors may be used in place of the step motor M.

また、本発明の実施にあたり、乗用車用計器に限ることなく、一般的に自動車その他の車両や船舶用計器その他各種の計器に本発明を適用してもよい。   Moreover, in carrying out the present invention, the present invention may be generally applied to automobiles and other vehicles, marine instruments, and other various instruments without being limited to passenger car instruments.

本発明の第1実施形態を示す要部断面図である。It is principal part sectional drawing which shows 1st Embodiment of this invention. 図1の両支持軸をケーシング部材を上壁の両支持穴部に圧入した状態を示す断面図である。It is sectional drawing which shows the state which press-fitted the casing member to both the support hole parts of the upper wall with both the support shafts of FIG. 本発明の第2実施形態の要部を示す部分断面図である。It is a fragmentary sectional view showing an important section of a 2nd embodiment of the present invention. 本発明の第3実施形態の要部を示す部分断面図である。It is a fragmentary sectional view showing an important section of a 3rd embodiment of the present invention. 図6にて5−5線に沿う断面図である。It is sectional drawing which follows the 5-5 line in FIG. 本発明の第4実施形態の要部を示す部分平面図である。It is a fragmentary top view which shows the principal part of 4th Embodiment of this invention. 図8にて7−7線に沿う断面図である。It is sectional drawing which follows a 7-7 line | wire in FIG. 本発明の第5実施形態の要部を示す部分平面図である。It is a fragmentary top view which shows the principal part of 5th Embodiment of this invention.

符号の説明Explanation of symbols

10…ケーシング、10a、10b…ケーシング部材、11…下壁、
12…上壁、12b、12c、12d、12e、12f、12g…支持穴部、 20…指針軸、30…出力段歯車、40a、70c…支持軸、
41、72…基端部、60…入力段歯車、70…マグネットロータ、
G…減速歯車列、J2…大径部、J3…小径部、J4…リブ部、
M…ステップモータ。
10 ... casing, 10a, 10b ... casing member, 11 ... lower wall,
12 ... Upper wall, 12b, 12c, 12d, 12e, 12f, 12g ... Support hole, 20 ... Pointer shaft, 30 ... Output gear, 40a, 70c ... Support shaft,
41, 72 ... proximal end, 60 ... input gear, 70 ... magnet rotor,
G: Reduction gear train, J2: Large diameter portion, J3: Small diameter portion, J4: Rib portion,
M: Step motor.

Claims (1)

両ケーシング部材(10a、10b)を互いに組み付けて構成するケーシング(10)と、
前記両ケーシング部材の各対向壁(11、12)により回動可能に支持される指針軸(20)と、
前記両ケーシング部材の各対向壁間に支持される金属製の少なくとも第1及び第2の支持軸(40a、70c)と、
前記ケーシング内に取り付けられて、前記第1支持軸に回動可能に支持されるロータ(70)を有する電動機(M)と、
前記電動機により駆動される入力段歯車(60)、前記指針軸に相対回動不能に支持される出力段歯車(30)及び前記入力段歯車と前記出力段歯車との間に噛合するように前記第2支持軸に回動可能に支持される中間歯車(40、50)を有し、前記ケーシング内に収容される減速歯車列(G)とを備える計器用回動内機において、
前記両ケーシング部材の各対向壁の一方(12)には、前記第1及び第2の支持軸の各基端部(41、72)に対する各対応部にて、前記一方の対向壁の内面から前記第1及び第2の支持軸の軸方向に沿い前記他方の対向壁に向け筒状に延出された各支持穴部(12b、12c、12d、12e、12f、12g)が互いに平行に形成されており、
該第1及び第2の支持穴部の各々毎に、当該支持穴部のその延出端側軸方向中空部位(J2)の内径は、当該支持穴部のうちその延出端側軸方向中空部位を除く残りの軸方向中空部位(J3、J4)の内径よりも大きくなっており、
前記第1及び第2の支持軸の各基端部は、対応の各支持穴部内にその延出端側軸方向中空部位を通り挿通されて前記残りの軸方向中空部位内に同軸的に圧入されて、他方の対向壁(11)に向けて延出することを特徴とする計器用回動内機。
A casing (10) configured by assembling both casing members (10a, 10b);
A pointer shaft (20) rotatably supported by the opposing walls (11, 12) of both casing members;
At least first and second support shafts (40a, 70c) made of metal supported between the opposing walls of the two casing members;
An electric motor (M) having a rotor (70) mounted in the casing and rotatably supported by the first support shaft;
The input stage gear (60) driven by the electric motor, the output stage gear (30) supported so as not to rotate relative to the pointer shaft, and the input stage gear and the output stage gear so as to mesh with each other. In the turning internal unit for an instrument having an intermediate gear (40, 50) rotatably supported on the second support shaft, and comprising a reduction gear train (G) accommodated in the casing,
One of the opposing walls of the two casing members (12) is connected to each base end (41, 72) of the first and second support shafts from the inner surface of the one opposing wall. Support holes (12b, 12c, 12d, 12e, 12f, 12g) extending in a cylindrical shape toward the other opposing wall along the axial direction of the first and second support shafts are formed in parallel to each other. Has been
For each of the first and second support holes, the inner diameter of the extension end side axial hollow portion (J2) of the support hole portion is the extension end side axial hollow of the support hole portion. It is larger than the inner diameter of the remaining axial hollow portion (J3, J4) excluding the portion,
The respective base end portions of the first and second support shafts are inserted into the corresponding support hole portions through the extending-end-side axial hollow portions and are coaxially press-fitted into the remaining axial hollow portions. And a rotating inner unit for an instrument characterized by extending toward the other opposing wall (11).
JP2004346156A 2004-11-30 2004-11-30 Movement for measuring instrument Pending JP2005099044A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004346156A JP2005099044A (en) 2004-11-30 2004-11-30 Movement for measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004346156A JP2005099044A (en) 2004-11-30 2004-11-30 Movement for measuring instrument

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001140554A Division JP2002340934A (en) 2001-05-10 2001-05-10 Pointer driving mechanism for meter

Publications (2)

Publication Number Publication Date
JP2005099044A true JP2005099044A (en) 2005-04-14
JP2005099044A5 JP2005099044A5 (en) 2005-08-04

Family

ID=34464416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004346156A Pending JP2005099044A (en) 2004-11-30 2004-11-30 Movement for measuring instrument

Country Status (1)

Country Link
JP (1) JP2005099044A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100060092A1 (en) * 2008-09-08 2010-03-11 Blakesley Patrick B Brushless direct current actuator
JP2019066197A (en) * 2017-09-28 2019-04-25 株式会社デンソー Vehicular pointer instrument

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100060092A1 (en) * 2008-09-08 2010-03-11 Blakesley Patrick B Brushless direct current actuator
JP2019066197A (en) * 2017-09-28 2019-04-25 株式会社デンソー Vehicular pointer instrument

Similar Documents

Publication Publication Date Title
US4712451A (en) Starter with a gear reduction mechanism
JPWO2016010021A1 (en) Brushless wiper motor
JP2002534640A5 (en)
JP2008067552A (en) Motor
JP4906679B2 (en) Vehicle drive device
JP2005099044A (en) Movement for measuring instrument
JP2559891B2 (en) Decelerator
JP2001281013A (en) Indicating instrument
JP2007263255A (en) Inscribed meshing type geared motor
JP2020018035A (en) Motor with speed reduction mechanism
JP3644407B2 (en) Internal turning instrument
JP2007092934A (en) Dynamic damper, its manufacturing method, and propeller shaft
US20080229879A1 (en) Starter
KR20060100896A (en) Sensor for detecting rotational speed
JP2002340934A (en) Pointer driving mechanism for meter
JP4331922B2 (en) Small motor with worm reducer and method for manufacturing the same
JP3736403B2 (en) Step motor and its magnet rotor
JP4937462B2 (en) Instrument metal pointer shaft and rotating inner unit
JPH11346469A (en) Stepping motor with speed-changing mechanism
JPH08186955A (en) Motor with built-in speed reducer
JP5339806B2 (en) Structure for fixing motor shaft and pinion gear, and geared motor having the structure
KR20110039824A (en) Motor for an electric bicycle
JP2021121741A (en) Reduction gear and geared motor
JP4346638B2 (en) Reducer with built-in one-way clutch for automobile brake speed test
JPWO2011135930A1 (en) Cylindrical coreless motor

Legal Events

Date Code Title Description
A521 Written amendment

Effective date: 20050304

Free format text: JAPANESE INTERMEDIATE CODE: A523

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050412

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050610

A02 Decision of refusal

Effective date: 20050802

Free format text: JAPANESE INTERMEDIATE CODE: A02