JP2005098693A - Method for melting waste - Google Patents

Method for melting waste Download PDF

Info

Publication number
JP2005098693A
JP2005098693A JP2004306420A JP2004306420A JP2005098693A JP 2005098693 A JP2005098693 A JP 2005098693A JP 2004306420 A JP2004306420 A JP 2004306420A JP 2004306420 A JP2004306420 A JP 2004306420A JP 2005098693 A JP2005098693 A JP 2005098693A
Authority
JP
Japan
Prior art keywords
dust
furnace
coke
layer
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004306420A
Other languages
Japanese (ja)
Other versions
JP3734177B2 (en
Inventor
Tatsuo Kato
龍夫 加藤
Shinichiro Yagi
紳一郎 八木
Katsunori Hirose
克則 広瀬
Toshiro Tagami
敏郎 田上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2004306420A priority Critical patent/JP3734177B2/en
Publication of JP2005098693A publication Critical patent/JP2005098693A/en
Application granted granted Critical
Publication of JP3734177B2 publication Critical patent/JP3734177B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for melting wastes by gasification capable of reducing furnace inner pressure and preventing discharge of molten slag. <P>SOLUTION: According to the method for melting wastes, a waste layer is formed by loading wastes in a furnace body. The wastes are gasified by a high-temperature gas from a furnace bottom. The residue is melted and discharged as slag. When a height from the furnace bottom to the upper surface of the accumulated waste layer is H and a diameter of the furnace body facing the upper surface of the waste layer is D, H/D is set to two or less, and the pressure at the furnace bottom facing a molten slag discharge opening is set to a positive pressure equal to or less than 5 kPa. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は塵芥をガス化溶融する塵芥のガス化溶融方法に関する。   The present invention relates to a method for gasifying and melting dust which gasifies and melts the dust.

塵芥を焼却する分野において、近年ダイオキシンの発生抑制や灰処理の簡易性の面から塵芥をガス化し、その残渣を溶融スラグ化して排出するガス化溶融炉が使用されてきている。
このガス化溶融炉の一つにシャフト炉型ガス化溶融炉があり特公昭53−16633号公報および特公昭60−22244号公報等に記載されている。炉体の下部にコークスベッドを設けて、その上部に塵芥を堆積させてコークスベッドの熱で塵芥を酸素欠乏状態でガス化および一部燃焼し、残渣はコークスベッドで溶融されてスラグ化させる。そのスラグ化した残渣を炉外へ排出して急冷し、セラミック状態となったものを適宜埋め立て処分するものである。
In the field of incineration of dust, in recent years, gasification melting furnaces that gasify dust from the viewpoint of dioxin generation suppression and ease of ash treatment, and discharge the residue as molten slag have been used.
One of these gasification melting furnaces is a shaft furnace type gasification melting furnace, which is described in JP-B-53-16633 and JP-B-60-22244. A coke bed is provided at the lower part of the furnace body, dust is deposited on the upper part, and the dust is gasified and partially burned in an oxygen-deficient state by the heat of the coke bed, and the residue is melted in the coke bed and slag is formed. The slag residue is discharged out of the furnace and rapidly cooled, and the ceramic state is disposed of in a landfill as appropriate.

上記したガス化溶融炉は、塵芥の堆積高さを大きくすることにより、熱ガスと塵芥との接触時間が長くできて、熱ガスと塵芥との熱交換が充分に行なえるようにしている。その結果炉頂から排出される熱ガスの温度は200〜300℃であるとされている。
特公昭53−16633号公報 特公昭60−22244号公報
In the gasification melting furnace described above, the contact height between the hot gas and the dust can be increased by increasing the height of the dust deposit, so that the heat exchange between the hot gas and the dust can be sufficiently performed. As a result, the temperature of the hot gas discharged from the furnace top is assumed to be 200 to 300 ° C.
Japanese Patent Publication No.53-16633 Japanese Patent Publication No. 60-22244

しかし上記したガス化溶融炉は、炉体の内径に比して塵芥の堆積高さが大きいために、そこの通風抵抗が大きくなって、炉底部における炉内圧が正圧で1500mmAq程度に大きくなる。その結果溶融スラグを排出するときに溶融スラグの吹き出しが生じて危険であるという課題がある。
本発明は上記した課題を解決して、炉底部の炉内圧を小さくできて、溶融スラグの吹き出しを防止できる塵芥のガス化溶融方法を提供することを目的とする。
However, since the gasification and melting furnace described above has a higher deposition height of the dust than the inner diameter of the furnace body, the ventilation resistance is increased, and the furnace pressure at the furnace bottom is increased to about 1500 mmAq at a positive pressure. . As a result, there is a problem that when the molten slag is discharged, the molten slag is blown out, which is dangerous.
An object of the present invention is to solve the above-described problems and to provide a method for gasifying and melting refuse that can reduce the pressure in the furnace at the bottom of the furnace and prevent blowout of molten slag.

本発明の塵芥の溶融方法は、炉体内に塵芥を投入して塵芥層を形成し、炉底からの高温ガスにより塵芥をガス化し残渣を溶融スラグ化して、炉底に設けた溶融スラグ排出口から排出する塵芥の溶融方法において、炉底から堆積した塵芥層の上面までの高さをHとし塵芥層の上面が臨む炉体の内径をDとしたときH/Dを2以下とし、溶融スラグ排出口を大気に開放し該溶融スラグ排出口に臨む炉底部の圧力を5kPa以下の正圧とすることを特徴とするものである。本発明においてH/Dは1.5以下であることが好ましい。また、塵芥の堆積高さHを比較的低く抑えることでコークス層から塵芥層上面までの距離を小さくして、塵芥層を通過するガスの温度を500〜1000℃にすることが好ましい。   In the method for melting dust according to the present invention, the dust is thrown into the furnace body to form a dust layer, the dust is gasified by the high temperature gas from the furnace bottom, the residue is melted into slag, and the molten slag discharge port provided at the furnace bottom In the melting method of dust discharged from the furnace, H / D is 2 or less, where H is the height from the bottom of the furnace to the upper surface of the deposited dust layer, and D is the inner diameter of the furnace body facing the upper surface of the dust layer. The discharge port is opened to the atmosphere, and the pressure at the bottom of the furnace facing the molten slag discharge port is set to a positive pressure of 5 kPa or less. In the present invention, H / D is preferably 1.5 or less. In addition, it is preferable that the distance from the coke layer to the upper surface of the dust layer is reduced by keeping the deposition height H of the dust relatively low so that the temperature of the gas passing through the dust layer is 500 to 1000 ° C.

本発明は上記の構成としたから、棚吊り現象の発生を抑制し、かつ炉底部の炉内圧が小さくできて熱風や溶融スラグの激しい噴き出しを防止できる塵芥のガス化溶融炉を提供することができる。
発明の実施の形態においては加熱源としてコークスとプラズマトーチとを併用したシャフト炉型の塵芥のガス化溶融炉について説明したが、コークスとプラズマトーチの何れか一方を用いた炉でも本発明の効果に変わりはない。
Since the present invention has the above-described configuration, it is possible to provide a refuse gasification melting furnace capable of suppressing the occurrence of a shelf hanging phenomenon and reducing the pressure in the furnace at the bottom of the furnace and preventing the hot air and molten slag from being blown out violently. it can.
In the embodiment of the invention, a shaft furnace type garbage gasification melting furnace in which coke and a plasma torch are used together as a heating source has been described, but the effect of the present invention can be achieved even in a furnace using either a coke or a plasma torch. There is no change.

本発明に係わる塵芥の溶融炉はシャフト炉の炉底部にコークス層を形成し、このコークス層をプラズマトーチから吹き込む熱風で加熱し、且つコークス層の一部を燃焼させて、この熱でコークス層の上に積層している塵芥を化学量論的空気量以下の雰囲気下で燃焼及びガス化して、それによって生じる残さである灰をコークス層で溶融スラグ化して炉外に排出するものである。
灰及びチャーは溶融スラグ化するから、それを冷却したときは溶融スラグはガラス状物質になって灰及びチャーの体積が約1/5に減ずると共に、重金属等がガラス状物質の中に閉じ込められて溶出することがない。
本発明に係わる溶融炉はコークス層に向けてプラズマトーチの熱空気を吹き込むのであるが、プラズマトーチからの熱空気の温度は1000〜2500℃の温度となり、それでコークス層を加熱すると共に熱空気中の酸素でコークス層の一部が燃焼するからコークス層中の温度を約1500℃に安定的に保つことができる。
The dust melting furnace according to the present invention forms a coke layer at the bottom of the shaft furnace, heats the coke layer with hot air blown from a plasma torch, and burns a part of the coke layer, and this heat causes the coke layer to burn. The dust layered on the top is burned and gasified in an atmosphere below the stoichiometric air amount, and the resulting ash is melted into slag in the coke layer and discharged out of the furnace.
Since ash and char are melted into slag, when it is cooled, the molten slag becomes a glassy material, the volume of ash and char is reduced to about 1/5, and heavy metals are confined in the glassy material. Does not elute.
In the melting furnace according to the present invention, hot air of the plasma torch is blown toward the coke layer, and the temperature of the hot air from the plasma torch becomes 1000 to 2500 ° C., thereby heating the coke layer and in the hot air. Since part of the coke layer burns with this oxygen, the temperature in the coke layer can be stably maintained at about 1500 ° C.

本発明の溶融炉は炉体内径Dに対する塵芥の堆積高さHの比(H/D)が2以下と小さくしてある。したがって本発明の塵芥の溶融方法は、空気の流通抵抗が小さくなって、炉底部における炉内圧は従来のものに比して小さくなる。即ちプラズマトーチのプラズマエアー及びシュラウドエアーの吹き出し圧は14.7kPaの正圧であるが、コークス層のある炉底部は5kPaを越えない正圧になる。
この炉底部の炉内圧が5kPaを越えると、溶融スラグ排出口が炉内と連通したとき炉内の約1500℃の熱風が強く噴出するようになり、これによって炉内の熱量を多量に炉外に持ち出すという不利益が生ずると共に、炉まわりで作業する人に火傷を与える危険がある。
In the melting furnace of the present invention, the ratio (H / D) of the deposition height H of the dust to the furnace body inner diameter D is set to 2 or less. Therefore, in the dust melting method of the present invention, the air flow resistance is reduced, and the pressure in the furnace at the bottom of the furnace is reduced as compared with the conventional one. That is, the blowout pressure of plasma air and shroud air of the plasma torch is 14.7 kPa, but the furnace bottom with the coke layer has a positive pressure not exceeding 5 kPa.
When the furnace pressure at the bottom of the furnace exceeds 5 kPa, when the molten slag discharge port communicates with the inside of the furnace, hot air of about 1500 ° C. in the furnace is strongly blown out. There is a disadvantage of taking it out and there is a risk of burns to people working around the furnace.

塵芥の堆積高さHを比較的低く抑えることでコークス層から塵芥層上面までの距離を小さくして、塵芥層を通過するガスの温度を500〜1000℃にすることができるので樹脂は溶融しブリッジを形成することはない。また、樹脂が融着して大きな塊を形成した場合でも炉体内径Dを大きくとることでブリッジを形成しにくいのである。   The distance from the coke layer to the upper surface of the dust layer can be reduced by keeping the dust accumulation height H relatively low, and the temperature of the gas passing through the dust layer can be set to 500 to 1000 ° C., so that the resin melts. It does not form a bridge. Further, even when the resin is fused to form a large lump, it is difficult to form a bridge by increasing the furnace body inner diameter D.

しかしH/Dの値が小さ過ぎるとき、すなわち塵芥の堆積高さHが小さ過ぎる場合は塵芥層を通過するガスの温度が高くなり過ぎるため塵芥のガス化反応が不安定になったり、塵芥の堆積高さHの変動幅が大きくなる等の不都合が生じる。また炉体内径Dが大きすぎる場合は半径方向のごみ質や塵芥の安息角による塵芥の堆積高さにばらつきが生じ易くなるため、半径方向におけるガス化溶融反応を均一に維持することが困難になる。したがってH/Dの値は0.8以上が好ましく、1.0以上が更に好ましい。   However, when the value of H / D is too small, that is, when the height H of the dust is too small, the temperature of the gas passing through the dust layer becomes too high and the gasification reaction of the dust becomes unstable, Inconveniences such as an increase in the fluctuation range of the deposition height H occur. In addition, when the furnace body inner diameter D is too large, it is easy to cause variation in dust accumulation height due to the dust quality in the radial direction and the angle of repose of the dust, so it is difficult to maintain the gasification and melting reaction in the radial direction uniformly. Become. Therefore, the value of H / D is preferably 0.8 or more, and more preferably 1.0 or more.

次に本発明の塵芥の溶融炉の一実施の形態を図面を参照して説明する。
図1は本発明のガス化溶融炉を示す断面図であり、塵芥の溶融炉のシステムを示す概略図であり、図2は本発明に係わるガス化溶融炉のシステムを示す概略図である。
図1および図2において2は炉体で、その炉底部近傍にプラズマトーチ1とプラズマトーチ1の上方に第一の羽口3と第二の羽口4が設けてある。本実施例ではプラズマトーチ1は炉体の同一高さの円周上に2ヶ所に設け、プラズマトーチから吹き出す熱風の方向は平面的には炉体の直径方向、立面的には炉底部の底と垂直部の交点方向とした。第一の羽口3及び第二の羽口4は同じく円周上6ヶ所とした。第一の羽口3及び第二の羽口から吹き込む空気は後述する二次燃焼炉空の高温ガスと熱交換器で熱交換して高温になったものを使用する。
炉体2は外殻201の内側に耐火材202を内貼りしたものである。
Next, an embodiment of the refuse melting furnace of the present invention will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing a gasification melting furnace of the present invention, a schematic view showing a dust melting furnace system, and FIG. 2 is a schematic view showing a gasification melting furnace system according to the present invention.
1 and 2, reference numeral 2 denotes a furnace body, and a plasma torch 1 and a first tuyere 3 and a second tuyere 4 are provided above the plasma torch 1 near the bottom of the furnace. In this embodiment, the plasma torch 1 is provided at two places on the circumference of the same height of the furnace body, and the direction of the hot air blown out from the plasma torch is flat in the diameter direction of the furnace body and in the elevational direction at the bottom of the furnace body. The direction of the intersection of the bottom and the vertical part. Similarly, the first tuyere 3 and the second tuyere 4 were 6 places on the circumference. The air blown from the first tuyere 3 and the second tuyere is heated to a high temperature by exchanging heat with a high-temperature gas in the secondary combustion furnace, which will be described later, with a heat exchanger.
The furnace body 2 is formed by attaching a refractory material 202 inside the outer shell 201.

炉体2の立面的な略中間部には供給口5が設けてあり、供給口5に連接してプッシャー6が設けてあり、プッシャー6には塵芥供給装置7とコークス供給装置8が連設してある。そして塵芥供給装置7とコークス供給装置8には図示はしないが二重のバタフライ弁を設けて外気の侵入を極力遮断するようにした。
炉体2の上部近傍に排ガス口9が設けてあり、排ガス口9に連設して二次燃焼炉10、一次冷却塔11、熱交換器12、二次冷却塔13、集塵機14が連設してあり、集塵器14の後は図示しない誘引ファン及び排気塔が連設してある。
炉体2の炉底部21には炉体2内と連通した溶融スラグ排出口22が設けてあり、それに連ねてスラグ樋15とスラグ冷却水槽16とが設けてある。
A supply port 5 is provided in a substantially intermediate portion of the furnace body 2, and a pusher 6 is provided in connection with the supply port 5, and a dust supply device 7 and a coke supply device 8 are connected to the pusher 6. It is set up. Although not shown, the dust supply device 7 and the coke supply device 8 are provided with a double butterfly valve so as to block the intrusion of outside air as much as possible.
An exhaust gas port 9 is provided near the upper portion of the furnace body 2, and a secondary combustion furnace 10, a primary cooling tower 11, a heat exchanger 12, a secondary cooling tower 13, and a dust collector 14 are connected to the exhaust gas port 9. An attracting fan and an exhaust tower (not shown) are connected after the dust collector 14.
A molten slag discharge port 22 communicating with the inside of the furnace body 2 is provided at the furnace bottom portion 21 of the furnace body 2, and a slag tank 15 and a slag cooling water tank 16 are provided in connection therewith.

次に本発明の溶融炉の操炉及び運転状況について説明する。
まず常温状態の炉体2の昇温を始める際は、炉底部21にコークスを充填してコークス層25を形成し、そのうえでプラズマトーチ1を点火して約1800℃の熱空気をコークス層25に向けて吹き込む。炉底部21及びコークス層25はプラズマトーチ1の熱空気とコークスが燃焼する燃焼熱で約3時間後に1500℃程度に昇温する。そこに塵芥供給装置7からプッシヤー6で塵芥を炉体2内に供給すると共にコークス供給装置8からコークスと石灰石の混合物をプッシャー6で供給する。本実施例では塵芥に対するコークスの重量割合は2%とした。
塵芥とコークスを供給すると、コークス層25の上に塵芥とコークスが交互に略層状になった塵芥層26が形成される。
Next, the operation and operating conditions of the melting furnace of the present invention will be described.
First, when starting to raise the temperature of the furnace body 2 in the normal temperature state, the coke is filled in the furnace bottom portion 21 to form the coke layer 25, and then the plasma torch 1 is ignited and hot air of about 1800 ° C. is applied to the coke layer 25. Blow toward. The furnace bottom portion 21 and the coke layer 25 are heated to about 1500 ° C. after about 3 hours by the hot air of the plasma torch 1 and the combustion heat that the coke burns. The dust is supplied from the dust supply device 7 to the furnace body 2 by the pusher 6 and the mixture of coke and limestone is supplied from the coke supply device 8 by the pusher 6. In this example, the weight ratio of coke to dust was 2%.
When dust and coke are supplied, a dust layer 26 in which dust and coke are alternately formed into a substantially layer shape is formed on the coke layer 25.

この塵芥層26の高さHを概略2000mmとなるように初期の投入量を調節し、以後は定量的に投入することで供給量と消耗量がバランスして、前記したHのレベルを保つことができる。これにより塵芥の堆積高さHと炉体内径Dとの比H/Dを2以下に保持する。こうすることで前記したように塵芥の棚吊り現象を抑制できると共に、炉底部における炉内圧を5KPa以下にすることができる。
本実施の形態では炉体2内に供給する空気はプラズマトーチ1及び第一、第二の羽口3、4から供給し、その総空気量は炉体2内にあるコークスや塵芥の可燃物質に対する化学量論的空気量以下にし、実際的には化学量論的空気量:総空気量の比は1:0.2〜0.5とした。
The initial charging amount is adjusted so that the height H of the dust layer 26 is approximately 2000 mm, and thereafter, the supplying amount and the consumption amount are balanced by quantitatively charging to maintain the above-described H level. Can do. As a result, the ratio H / D between the dust deposition height H and the furnace body inner diameter D is kept at 2 or less. By doing so, the dust shelving phenomenon can be suppressed as described above, and the furnace pressure at the furnace bottom can be reduced to 5 KPa or less.
In the present embodiment, the air supplied into the furnace body 2 is supplied from the plasma torch 1 and the first and second tuyere 3 and 4, and the total amount of air is combustible materials such as coke and dust in the furnace body 2. The stoichiometric air amount is less than the stoichiometric air amount, and the ratio of the stoichiometric air amount to the total air amount is set to 1: 0.2 to 0.5 in practice.

加熱したコークス層25の上に堆積した塵芥層26は乾燥されてその一部は上記燃焼空気により燃焼し、他の一部は前記燃焼によって燃焼空気が消費されるためガス化する。そして塵芥の燃焼によって発生した灰とガス化によって発生したチャーは約1500℃に加熱したコークス層25からの熱風で溶融して溶融スラグとなりコークス層26中を流下して炉底部21に溜る。炉底部21に溜まった溶融スラグは炉底に設けた溶融スラグ排出口22から炉外に排出される。
前記したように塵芥の供給とコークスの供給を3:1の回数割合で行なうから塵芥とコークスは概略交互に層状をなすと考えられ、しかも量的な比率は2%程度であるが、塵芥の燃焼はコークスに比してはるかに速やかであるから、上記した燃焼空気の大半は塵芥の燃焼に消費されてしまい、コークスは燃焼し難く、よってコークスの消耗は少ない。その結果塵芥層26の上部は塵芥がリッチなゾーン261となり、塵芥の燃焼およびガス化が進行する塵芥層26の中部では塵芥とコークスが混在したゾーン262となり、塵芥層26の下部では殆どがコークスとなるゾーン263となる。その結果炉底部21内の所定の高さまではコークス層25が継続的に形成されており、コークスの消耗量と供給量とがバランスしている状態ではコークス層25のレベルは維持されるものである。
The dust layer 26 deposited on the heated coke layer 25 is dried and partly combusted by the combustion air, and the other part is gasified because the combustion air is consumed by the combustion. The ash generated by the combustion of the dust and the char generated by the gasification are melted by hot air from the coke layer 25 heated to about 1500 ° C. to form molten slag and flow down through the coke layer 26 and accumulate in the furnace bottom 21. The molten slag accumulated in the furnace bottom 21 is discharged out of the furnace through a molten slag discharge port 22 provided in the furnace bottom.
As described above, the supply of dust and coke is performed at a ratio of 3: 1, so it is considered that dust and coke are almost alternately layered, and the quantitative ratio is about 2%. Since combustion is much quicker than coke, most of the combustion air described above is consumed in the combustion of dust, making it difficult for the coke to burn, and therefore, the consumption of coke is low. As a result, the upper part of the dust layer 26 becomes a zone 261 rich in dust, the middle part of the dust layer 26 where the combustion and gasification of dust progresses, and the zone 262 in which dust and coke are mixed, and most of the lower part of the dust layer 26 is coke. Becomes a zone 263. As a result, the coke layer 25 is continuously formed at a predetermined height in the furnace bottom 21, and the level of the coke layer 25 is maintained in a state where the consumption amount of coke and the supply amount are balanced. is there.

次に図1の本発明の溶融炉を用いて塵芥をガス化溶融処理した実施例について説明する。
本実施例に使用した塵芥の性状を以下に示す。
塵芥種類 :一般廃棄物(家庭ごみが主)
水分率 :55w%
樹脂含有率 :12w%
低位発熱量 :358kJ/kg
上記した性状の塵芥を以下に示す条件でガス化溶融処理した。
塵芥供給量 :1000kg/h
コークス供給量 : 20kg/h
総合空気量 :700Nm/h
プラズマトーチからの空気量 :150Nm/h
プラズマトーチからの空気圧 :14.7MPa
H/D :2.0
上記した条件で実施したが、投入された塵芥の棚吊り現象は発生しなかった。また炉底部21の圧力は平均的に正圧で5kPaであった。
Next, an embodiment in which dust is gasified and melted using the melting furnace of the present invention shown in FIG. 1 will be described.
The properties of the dust used in this example are shown below.
Waste type: General waste (mainly household waste)
Moisture content: 55w%
Resin content: 12w%
Lower heating value: 358 kJ / kg
The dust having the above properties was gasified and melted under the following conditions.
Waste supply rate: 1000 kg / h
Coke supply amount: 20kg / h
Total air volume: 700 Nm 3 / h
Air volume from plasma torch: 150 Nm 3 / h
Air pressure from plasma torch: 14.7 MPa
H / D: 2.0
Although it was carried out under the above-mentioned conditions, there was no shelf hanging phenomenon of the thrown dust. The pressure at the furnace bottom 21 was 5 kPa as a positive pressure on average.

実施例1と同じ性状の塵芥で、以下に示す条件でガス化溶融処理した。
塵芥供給量 :1000kg/h
コークス供給量 : 20kg/h
総合空気量 :700Nm/h
プラズマトーチからの空気量 :150Nm/h
プラズマトーチからの空気圧 :14.7MPa
H/D :1.5
上記した条件で実施したが、投入された塵芥の棚吊り現象は発生しなかった。また炉底部21の圧力は平均的に正圧で1.5kPaであった。
A gasification and melting treatment was carried out under the conditions shown below with the dust having the same properties as in Example 1.
Waste supply rate: 1000 kg / h
Coke supply amount: 20kg / h
Total air volume: 700 Nm 3 / h
Air volume from plasma torch: 150 Nm 3 / h
Air pressure from plasma torch: 14.7 MPa
H / D: 1.5
Although it was carried out under the above-mentioned conditions, there was no shelf hanging phenomenon of the thrown dust. The pressure at the furnace bottom 21 was 1.5 kPa as a positive pressure on average.

実施例1、2において炉体2内における各部の温度は、コクース層中で約1500℃で大略一定しており、塵芥層26の上部の空間では500〜900℃であった。
塵芥を供給し始めてから約60分経過後に溶融スラグ排出口から溶融スラグが出始めた。溶融スラグの排出量は平均的に1時間当たり約80kgであった。
In Examples 1 and 2, the temperature of each part in the furnace body 2 was substantially constant at about 1500 ° C. in the coccus layer, and was 500 to 900 ° C. in the space above the dust layer 26.
About 60 minutes after starting to supply the dust, molten slag began to come out from the molten slag discharge port. The average amount of molten slag discharged was about 80 kg per hour.

本実施例ではプラズマトーチから吹き込むシュラウドエアーの吹き込み圧を14.7kPaとしたが、上記したコークス層25及び塵芥層26の通風抵抗で炉底部21近傍における圧力は5kPaから1.5kPa程度となっており、溶融スラグ排出口22から溶融スラグを押し出すには充分な差圧として作用する。しかし溶融スラグの液面が下がって炉内の熱風が噴き出してもその勢いは弱く、溶融スラグを激しく噴出させるものではない。   In this embodiment, the blowing pressure of shroud air blown from the plasma torch is 14.7 kPa, but the pressure in the vicinity of the furnace bottom 21 is about 5 kPa to 1.5 kPa due to the ventilation resistance of the coke layer 25 and the dust layer 26 described above. And acts as a differential pressure sufficient to extrude the molten slag from the molten slag discharge port 22. However, even if the liquid level of the molten slag falls and the hot air in the furnace blows out, the momentum is weak and does not cause the molten slag to be blown out vigorously.

(比較例)
実施例1と同じ性状の塵芥で、以下に示す条件でガス化溶融処理した。
塵芥供給量 :1000kg/時間
コークス供給量 : 20kg/時間
総合空気量 :700Nm/時間
プラズマトーチからの空気量 :150Nm/時間
プラズマトーチからの空気圧 :14.7MPa
H/D :2.5
上記した条件で実施したが、炉底部21の炉内圧は平均的に正圧で8kPaであった。また炉内の塵芥層部で棚吊り現象が発生した。塵芥の堆積層の高さが高いために炉底部からの高温ガスが炉内上昇時に温度低下をきたし、塵芥層上部では200〜350℃程度の温度になる。この温度では塵芥中に含まれている樹脂類が半溶融状態となるため互いに融着し合って大きな塊となり、ブリッジを形成し易くなるものと考えられる。
(Comparative example)
A gasification and melting treatment was carried out under the conditions shown below with the dust having the same properties as in Example 1.
Dust supply amount: 1000 kg / hour Coke supply amount: 20 kg / hour Total air amount: 700 Nm 3 / hour Air amount from plasma torch: 150 Nm 3 / hour Air pressure from plasma torch: 14.7 MPa
H / D: 2.5
Although it implemented on above-mentioned conditions, the furnace pressure of the furnace bottom part 21 was 8 kPa by positive pressure on the average. In addition, a shelf hanging phenomenon occurred in the dust layer in the furnace. Since the height of the dust deposition layer is high, the temperature of the high temperature gas from the bottom of the furnace decreases when it rises in the furnace, and the temperature is about 200 to 350 ° C. above the dust layer. At this temperature, since the resins contained in the dust are in a semi-molten state, they are fused together to form a large lump, which is considered to facilitate the formation of a bridge.

本発明は、塵芥をガス化溶融する塵芥のガス化溶融方法に関し、炉底部の炉内圧を小さくできて、溶融スラグの吹き出しを防止できる塵芥のガス化溶融方法に利用できる。   The present invention relates to a method for gasifying and melting dust that gasifies and melts dust, and can be used for a method for gasifying and melting dust that can reduce the pressure in the furnace at the bottom of the furnace and prevent blowing out molten slag.

本発明のガス化溶融炉を示す断面図である。It is sectional drawing which shows the gasification melting furnace of this invention. 本発明に係わるガス化溶融炉のシステムを示す概略図である。It is the schematic which shows the system of the gasification melting furnace concerning this invention.

符号の説明Explanation of symbols

1 プラズマトーチ、2 炉本体、3、4 羽口、5 供給口、
7 、塵芥供給装置、8 コークス供給装置、9 排ガス口、
21 炉底部、 22 溶融スラグ排出口、25 コークス層、
26 塵芥層




























1 plasma torch, 2 furnace body, 3, 4 tuyere, 5 supply port,
7, dust supply device, 8 coke supply device, 9 exhaust port,
21 furnace bottom, 22 molten slag outlet, 25 coke layer,
26 Dust layer




























Claims (3)

炉体内に塵芥を投入して塵芥層を形成し、炉底からの高温ガスにより塵芥をガス化し残渣を溶融スラグ化して、炉底に設けた溶融スラグ排出口から排出する塵芥の溶融方法において、
炉底から堆積した塵芥層の上面までの高さをHとし塵芥層の上面が臨む炉体の内径をDとしたときH/Dを2以下とし、溶融スラグ排出口を大気に開放し該溶融スラグ排出口に臨む炉底部の圧力を5kPa以下の正圧とすることを特徴とする塵芥の溶融方法。
In the melting method of dust that is thrown into the furnace body to form a dust layer, the dust is gasified with high-temperature gas from the furnace bottom, the residue is made into molten slag, and discharged from the molten slag discharge port provided in the furnace bottom.
When the height from the bottom of the furnace to the upper surface of the deposited dust layer is H and the inner diameter of the furnace body facing the upper surface of the dust layer is D, H / D is set to 2 or less, the molten slag discharge port is opened to the atmosphere and the molten A method for melting dust, wherein the pressure at the bottom of the furnace facing the slag discharge port is a positive pressure of 5 kPa or less.
塵芥層を通過するガスの温度を500〜1000℃とする請求項1に記載の塵芥の溶融方法。 The method for melting dust according to claim 1, wherein the temperature of the gas passing through the dust layer is 500 to 1000 ° C. 溶融スラグを溶融スラグ排出口から連続的に排出する請求項1又は2に記載の塵芥の溶融方法。




































The method for melting dust according to claim 1 or 2, wherein the molten slag is continuously discharged from the molten slag discharge port.




































JP2004306420A 2004-10-21 2004-10-21 Waste melting method Expired - Fee Related JP3734177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004306420A JP3734177B2 (en) 2004-10-21 2004-10-21 Waste melting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004306420A JP3734177B2 (en) 2004-10-21 2004-10-21 Waste melting method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000271635A Division JP2002081625A (en) 2000-09-07 2000-09-07 Gasification melting furnace for refuse

Publications (2)

Publication Number Publication Date
JP2005098693A true JP2005098693A (en) 2005-04-14
JP3734177B2 JP3734177B2 (en) 2006-01-11

Family

ID=34464197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004306420A Expired - Fee Related JP3734177B2 (en) 2004-10-21 2004-10-21 Waste melting method

Country Status (1)

Country Link
JP (1) JP3734177B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104449854A (en) * 2014-12-09 2015-03-25 中国东方电气集团有限公司 Integrated garbage plasma gasifier with water-cooling wall
CN113528188A (en) * 2021-08-27 2021-10-22 上海中川国宇环境有限公司 Novel plasma gasification furnace and operation process thereof
CN113701171A (en) * 2021-08-23 2021-11-26 山东钢铁集团日照有限公司 Control method for preventing furnace bottom from hardening in acid regeneration roasting furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110560449A (en) * 2019-07-09 2019-12-13 毕明亮 Plasma gasification melting device for treating three-way catalyst

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104449854A (en) * 2014-12-09 2015-03-25 中国东方电气集团有限公司 Integrated garbage plasma gasifier with water-cooling wall
CN113701171A (en) * 2021-08-23 2021-11-26 山东钢铁集团日照有限公司 Control method for preventing furnace bottom from hardening in acid regeneration roasting furnace
CN113701171B (en) * 2021-08-23 2024-01-16 山东钢铁集团日照有限公司 Control method for preventing hardening of furnace bottom of acid regeneration roasting furnace
CN113528188A (en) * 2021-08-27 2021-10-22 上海中川国宇环境有限公司 Novel plasma gasification furnace and operation process thereof

Also Published As

Publication number Publication date
JP3734177B2 (en) 2006-01-11

Similar Documents

Publication Publication Date Title
WO2002021047A1 (en) Waste-gasified fusion furnace and method of operating the fusion furnace
SK288020B6 (en) Reactor and method for gasifying and/or melting materials
WO2014103417A1 (en) Waste material melting furnace
JP4685671B2 (en) Waste melting processing equipment
JP2008231294A (en) Two-stage gasification furnace
JP3734177B2 (en) Waste melting method
JP5166213B2 (en) Melting furnace
JP3742441B2 (en) Method for adjusting combustion temperature in shaft furnace type waste melting furnace
JP2006097918A (en) Combustion furnace and waste treatment facility
JP2011089672A (en) Waste melting treatment method
WO1997049954A1 (en) Burning/melting method of waste melting furnace
JP2007231203A (en) Method for gasifying carbonaceous raw material
JPH035611A (en) Waste melting furnace
JP2002081625A (en) Gasification melting furnace for refuse
JP3969016B2 (en) Waste melting furnace
JP2001227713A (en) Melting furnace for refuse
JP4337072B2 (en) Waste melting furnace
JP3096623B2 (en) Melting furnace
JP2004144387A (en) Fluidized bed boiler
JP2005308231A (en) Waste melting furnace and method of blowing gas therein
JP2001234175A (en) Process for operating vertical self-burning carbonization oven
JP2002303412A (en) Method for gasifying and melting waste
JP5538771B2 (en) Waste melting treatment method
JP2000291919A (en) Shaft furnace type thermal decomposition melting furnace and thermal decomposition melting method
JP2007085562A (en) Shaft furnace type gasification melting furnace

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Effective date: 20050114

Free format text: JAPANESE INTERMEDIATE CODE: A971005

A02 Decision of refusal

Effective date: 20050428

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050623

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20050930

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051013

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20091028

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20101028

LAPS Cancellation because of no payment of annual fees