JP2005095561A - Mounting type action assisting device, and method and program for controlling the device - Google Patents

Mounting type action assisting device, and method and program for controlling the device Download PDF

Info

Publication number
JP2005095561A
JP2005095561A JP2004045354A JP2004045354A JP2005095561A JP 2005095561 A JP2005095561 A JP 2005095561A JP 2004045354 A JP2004045354 A JP 2004045354A JP 2004045354 A JP2004045354 A JP 2004045354A JP 2005095561 A JP2005095561 A JP 2005095561A
Authority
JP
Japan
Prior art keywords
actuator
wearer
signal
current
command signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004045354A
Other languages
Japanese (ja)
Other versions
JP4178186B2 (en
Inventor
Yoshiyuki Yamaumi
嘉之 山海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2004045354A priority Critical patent/JP4178186B2/en
Application filed by Individual filed Critical Individual
Priority to CA2559856A priority patent/CA2559856C/en
Priority to CN2004800239695A priority patent/CN1838933B/en
Priority to PL04771665T priority patent/PL1661543T3/en
Priority to EP04771665.9A priority patent/EP1661543B1/en
Priority to CA2696131A priority patent/CA2696131C/en
Priority to PCT/JP2004/011698 priority patent/WO2005018525A1/en
Priority to US10/568,756 priority patent/US7785279B2/en
Priority to CN2010102181094A priority patent/CN101926722B/en
Publication of JP2005095561A publication Critical patent/JP2005095561A/en
Priority to HK07100573.8A priority patent/HK1095509A1/en
Application granted granted Critical
Publication of JP4178186B2 publication Critical patent/JP4178186B2/en
Priority to US12/549,902 priority patent/US8622938B2/en
Priority to US12/836,054 priority patent/US8888722B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/68Operating or control means
    • A61F2/70Operating or control means electrical
    • A61F2/72Bioelectric control, e.g. myoelectric
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/01Orthopaedic devices, e.g. splints, casts or braces
    • A61F5/0102Orthopaedic devices, e.g. splints, casts or braces specially adapted for correcting deformities of the limbs or for supporting them; Ortheses, e.g. with articulations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/68Operating or control means
    • A61F2/70Operating or control means electrical
    • A61F2002/704Operating or control means electrical computer-controlled, e.g. robotic control
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/76Means for assembling, fitting or testing prostheses, e.g. for measuring or balancing, e.g. alignment means
    • A61F2002/7615Measuring means
    • A61F2002/7625Measuring means for measuring angular position
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/76Means for assembling, fitting or testing prostheses, e.g. for measuring or balancing, e.g. alignment means
    • A61F2002/7615Measuring means
    • A61F2002/7635Measuring means for measuring force, pressure or mechanical tension
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/76Means for assembling, fitting or testing prostheses, e.g. for measuring or balancing, e.g. alignment means
    • A61F2002/7615Measuring means
    • A61F2002/764Measuring means for measuring acceleration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/50Prostheses not implantable in the body
    • A61F2/76Means for assembling, fitting or testing prostheses, e.g. for measuring or balancing, e.g. alignment means
    • A61F2002/7615Measuring means
    • A61F2002/7665Measuring means for measuring temperatures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2230/00Measuring physical parameters of the user
    • A61H2230/08Other bio-electrical signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H3/00Appliances for aiding patients or disabled persons to walk about
    • A61H3/008Using suspension devices for supporting the body in an upright walking or standing position, e.g. harnesses

Landscapes

  • Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Nursing (AREA)
  • Cardiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Manipulator (AREA)
  • Prostheses (AREA)
  • Rehabilitation Tools (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an mounting type action assisting device for suppressing a strange feeling to be given to an mounting person as much as possible, and to provide a method for controlling the device, and its program. <P>SOLUTION: The mounting type action assisting device for assisting the action of the mounting person or taking care of it comprises: an action assisting harness 2 having an actuator 201 for giving power to the mounting person 1; a biological signal sensor 221 for detecting the biological signal of the person 1; a biological signal processing means 3 for acquiring nerve transmission signal for moving the musculoskeletal system of the person 1 and a muscular potential signal accompanied with muscular activity, from the biological signal which is detected by the biological signal sensor; a voluntary control means 4 for generating a command signal to generate in the actuator 201 power which follows the intention of the person 1, through the use of the nerve transmission signal and the muscular potential signal acquired by the biological signal processing means 3; and a driving current generating means 5 for generating current corresponding to the nerve transmission signal and current corresponding to the muscular potential signal respectively to supply the same to the actuator 201, based on the command signal generated by the voluntary control means 4. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、装着者の動作を補助あるいは代行する装着式動作補助装置、装着式動作補助装置の制御方法および制御用プログラムに関し、特に装着者に対して与える違和感を抑えることのできる装着式動作補助装置、装着式動作補助装置の制御方法および制御用プログラムに関する。   TECHNICAL FIELD The present invention relates to a wearable movement assist device that assists or substitutes for a wearer's movement, a control method for the wearable movement assist device, and a control program. The present invention relates to a control method for a device, a wearable motion assist device, and a control program.

身体障害者や高齢者等にとっては、健常者であれば簡単に行える動作でも非常に困難である場合が多い。このような人達のために今日まで種々の補助装置が開発され、実用化されてきた。このような補助装置には、車椅子や介護ベッドのように装着者が乗ってスイッチによりモータ等のアクチュエータを駆動させ、不足した力を補助する装置と、人間に装着され、装着者の意思に基づいて動作に必要な力を補助する装置とがある。人間に装着されるいわゆる装着式動作補助装置は、装着者の意思に基づき必要な動力を随時発生でき、かつ介護者を必要としないので、身体的障害者や高齢者等の介護、あるいはけが人や病人等のリハビリテーションに非常に便利であり、実用化が期待されている。このような装着式動作補助装置としては、装着者の筋活動に伴う筋電位信号を検出し、この検出結果に基づいてアクチュエータを駆動することにより、アクチュエータを装着者の意思に従って随意的に制御する装置が提案されている(非特許文献1)。   For the physically handicapped and the elderly, even if it is a healthy person, even a simple operation can be very difficult. To date, various auxiliary devices have been developed and put to practical use. In such an auxiliary device, a wearer rides like a wheelchair or a nursing bed, and an actuator such as a motor is driven by a switch to assist a shortage of force. And a device that assists the force required for operation. A so-called wearable motion assist device worn by humans can generate the necessary power at any time based on the wearer's intention and does not require a caregiver. It is very convenient for rehabilitation of sick people and is expected to be put to practical use. As such a wearable movement assist device, the myoelectric potential signal accompanying the wearer's muscle activity is detected, and the actuator is arbitrarily controlled according to the wearer's intention by driving the actuator based on the detection result. An apparatus has been proposed (Non-Patent Document 1).

ところで、装着式動作補助装置では、動作補助のための動力を装着者に付与するタイミングが装着者の動きと調和しなければ、動作がぎこちなくなり、装着者にいわゆる違和感を与えるという問題がある。ここで、動力付与のタイミングを装着者の動きと調和させるには、タイミングを装着者の動きよりも所要の微小時間だけ早くする必要があることが知られている。   By the way, in the wearing type movement assist device, there is a problem that the operation becomes awkward if the timing for applying the power for movement assistance to the wearer is not in harmony with the movement of the wearer, and the so-called discomfort is given to the wearer. Here, it is known that in order to harmonize the timing of power application with the movement of the wearer, it is necessary to make the timing earlier by a required minute time than the movement of the wearer.

しかしながら、非特許文献1の装着式動作補助装置では、装着者からの筋電位信号を検出した後にアクチュエータに動力を発生させるための処理を開始するので、動力付与のタイミングが装着者の動きよりも遅れ、装着者に著しい違和感を与える虞があった。そこで、従来においては、人間の動作を複数のパターン(タスク)に分類するとともに、各タスクを複数の所定の最小動作単位(フェーズ)に分割し、フェーズ毎に予め設定した大きさの電流を供給することにより、アクチュエータを駆動制御する装置が提案されている(例えば、非特許文献2、3)。   However, in the wearable movement assist device of Non-Patent Document 1, since the process for generating power to the actuator is started after detecting the myoelectric potential signal from the wearer, the timing of applying power is higher than the movement of the wearer. There was a risk that the wearer might feel uncomfortable with the delay. Therefore, conventionally, human actions are classified into a plurality of patterns (tasks), and each task is divided into a plurality of predetermined minimum operation units (phases), and a current having a preset magnitude is supplied for each phase. Thus, an apparatus for driving and controlling the actuator has been proposed (for example, Non-Patent Documents 2 and 3).

これらの装着式動作補助装置では、装着者から検出した関節角度等の物理量に基づいて、装着者のタスクのフェーズを推定するとともに、推定したフェーズに応じてアクチュエータを制御(自律制御)することにより、動力付与のタイミングの遅れに伴う違和感を低減するようにしている。   In these wearable movement assist devices, the wearer's task phase is estimated based on physical quantities such as joint angles detected from the wearer, and the actuator is controlled (autonomous control) according to the estimated phase. The uncomfortable feeling caused by the delay in the timing of power application is reduced.

Takao Nakai, Suwoong Lee, Hiroaki Kawamoto and Yoshiyuki Sankai, "Development of Power Assistive Leg for Walking Aid using EMG and Linux," Second Asian Symposium on Industrial Automation and Robotics, BITECH, Bangkok, Thailand, May 17-18, 2001Takao Nakai, Suwoong Lee, Hiroaki Kawamoto and Yoshiyuki Sankai, "Development of Power Assistive Leg for Walking Aid using EMG and Linux," Second Asian Symposium on Industrial Automation and Robotics, BITECH, Bangkok, Thailand, May 17-18, 2001 "Predictive Control Estimating Operator's Intention for Stepping-up Motion by Exo-Skeleton Type Power Assist System HAL," Proceedings of the 2001 IEEE/RSJ, International Conference on Intelligent Robots and Systems, Maui, Hawaii, Oct. 29 - Nov. 03, 2001, pp. 1578-1583"Predictive Control Estimating Operator's Intention for Stepping-up Motion by Exo-Skeleton Type Power Assist System HAL," Proceedings of the 2001 IEEE / RSJ, International Conference on Intelligent Robots and Systems, Maui, Hawaii, Oct. 29-Nov. 03, 2001, pp. 1578-1583 李秀雄、山海嘉之、「Phase SequenceとEMGを用いた立ち座り、歩行動作のパワーアシスト制御」、第19回日本ロボット学会学術講演会予稿集(2001年)Hideo Lee, Yoshiyuki Sankai, “Power Assist Control for Standing and Walking Using Phase Sequence and EMG”, Proceedings of the 19th Annual Conference of the Robotics Society of Japan (2001)

しかしながら、非特許文献2および3の装着式動作補助装置の制御系では、自律的制御によるものであるため、つまずく等の予期せぬ動作変更が生じた場合には、該当するタスクのフェーズへの切り替えを円滑に行うことができず、装着者に著しい違和感を与える虞があった。   However, in the control system of the wearable motion assisting device of Non-Patent Documents 2 and 3, since it is based on autonomous control, when an unexpected motion change such as a stumbling occurs, the phase of the corresponding task is changed. Switching could not be performed smoothly, and there was a risk of giving the wearer a noticeable discomfort.

従って、本発明の目的は、装着者に与える違和感を可及的に抑えることができる装着式動作補助装置、装着式動作補助装置の制御方法および制御用プログラムを提供することである。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a wearable motion assist device, a control method for the wearable motion assist device, and a control program that can suppress discomfort given to the wearer as much as possible.

本発明の第一の実施形態では、装着者の動作を補助あるいは代行する装着式動作補助装置は、
前記装着者に対して動力を付与するアクチュエータを有した動作補助装着具と、
前記装着者の生体信号を検出する生体信号センサと、
前記装着者の筋骨格系を動作させるための神経伝達信号および筋活動に伴う筋電位信号を、前記生体信号センサにより検出された生体信号から取得する生体信号処理手段と、
前記生体信号処理手段により取得された神経伝達信号および筋電位信号を用い、前記装着者の意思に従った動力を前記アクチュエータに発生させるための指令信号を生成する随意的制御手段と、
前記随意的制御手段により生成された指令信号に基づいて、前記神経伝達信号に応じた電流および前記筋電位信号に応じた駆動電流をそれぞれ生成し、前記アクチュエータに供給する駆動電流生成手段とを備えることを特徴とする。
In the first embodiment of the present invention, the wearable motion assisting device that assists or substitutes for the motion of the wearer,
An operation assisting wearing device having an actuator for applying power to the wearer;
A biological signal sensor for detecting a biological signal of the wearer;
A biological signal processing means for acquiring a nerve transmission signal for operating the wearer's musculoskeletal system and a myoelectric potential signal associated with muscle activity from the biological signal detected by the biological signal sensor;
Optional control means for generating a command signal for causing the actuator to generate power according to the intention of the wearer, using a nerve transmission signal and a myoelectric potential signal acquired by the biological signal processing means;
Drive current generation means for generating a current corresponding to the nerve transmission signal and a drive current corresponding to the myoelectric potential signal based on the command signal generated by the optional control means, and supplying the current to the actuator. It is characterized by that.

上記装着式動作補助装置の制御方法は、
前記装着者に対して動力を付与するアクチュエータを有した動作補助装着具が前記装着者に装着された状態において、
前記装着者の生体信号を検出し、
検出した生体信号から、前記装着者の筋骨格系を動作させるための神経伝達信号および筋活動に伴う筋電位信号を取得し、
取得した神経伝達信号および筋電位信号を用い、前記装着者の意思に従った動力を前記アクチュエータに発生させるための随意的指令信号を生成し、
生成した随意的指令信号に基づいて、前記神経伝達信号に応じた電流および前記筋電位信号に応じた電流を前記アクチュエータにそれぞれ供給することを特徴とする。
The control method of the wearable motion assist device is as follows:
In a state where an operation assisting wearing device having an actuator for applying power to the wearer is worn by the wearer,
Detecting a biological signal of the wearer,
From the detected biological signal, obtain a nerve transmission signal for operating the wearer's musculoskeletal system and a myoelectric potential signal accompanying muscle activity,
Using the acquired nerve transmission signal and myoelectric potential signal, generating an optional command signal for causing the actuator to generate power according to the intention of the wearer,
Based on the generated arbitrary command signal, a current corresponding to the nerve transmission signal and a current corresponding to the myoelectric potential signal are respectively supplied to the actuator.

また上記装着式動作補助装置の制御用プログラムは、前記アクチュエータを制御するためのコンピュータに、
前記装着者の生体信号を検出するための処理と、
前記生体信号から、前記装着者の筋骨格系を動作させるための神経伝達信号および筋活動に伴う筋電位信号を取得するための処理と、
取得した神経伝達信号および筋電位信号を用い、前記装着者の意思に従った動力を前記アクチュエータに発生させるための随意的指令信号を生成する処理と、
生成した随意的指令信号に基づいて、前記神経伝達信号に応じた電流および前記筋電位信号に応じた電流をそれぞれ生成し、前記アクチュエータに供給するための処理とを行わせることを特徴とする。
Further, the control program for the wearable motion assisting device is stored in a computer for controlling the actuator.
Processing for detecting the wearer's biological signal;
A process for acquiring a nerve transmission signal for operating the wearer's musculoskeletal system and a myoelectric potential signal associated with muscle activity from the biological signal;
Using the acquired nerve transmission signal and myoelectric potential signal, a process for generating an optional command signal for causing the actuator to generate power according to the intention of the wearer;
Based on the generated optional command signal, a current corresponding to the nerve transmission signal and a current corresponding to the myoelectric potential signal are respectively generated and processed to be supplied to the actuator.

第一の実施形態の装着式動作補助装置では、前記装着者の動作に関する物理量を検出する物理量センサを有することが好ましい。また前記生体信号処理手段は、前記神経伝達信号および記筋電位信号からなる生体信号を増幅する手段と、前記生体信号から前記神経伝達信号を抽出する第一のフィルタと、前記生体信号から前記筋電位信号を抽出する第二のフィルタとを有することが好ましい。   The wearable movement assist device of the first embodiment preferably includes a physical quantity sensor that detects a physical quantity related to the wearer's movement. The biological signal processing means includes means for amplifying a biological signal composed of the nerve transmission signal and a myoelectric potential signal, a first filter for extracting the nerve transmission signal from the biological signal, and the muscle from the biological signal. It is preferable to have a second filter for extracting a potential signal.

第一の実施形態の装着式動作補助装置では、前記駆動電流生成手段は、前記神経伝達信号に応じて生成したパルス電流と前記筋電位信号に実質的に比例するように生成した電流との総電流を前記アクチュエータに供給するとともに、前記パルス電流により前記アクチュエータの動作を開始させることが好ましい。   In the wearable motion assist device according to the first embodiment, the drive current generation means includes a total of a pulse current generated according to the nerve transmission signal and a current generated so as to be substantially proportional to the myoelectric potential signal. It is preferable that an electric current is supplied to the actuator and the operation of the actuator is started by the pulse current.

第一の実施形態の装着式動作補助装置では、前記駆動電流生成手段は、前記アクチュエータへの電流の供給を開始する際に、前記アクチュエータを駆動可能な電流の下限値よりも大きくなるように、前記パルス電流あるいは前記総電流を生成することが好ましい。   In the wearable motion assisting device of the first embodiment, when the drive current generating means starts supplying current to the actuator, the drive current generating means is larger than the lower limit value of the current that can drive the actuator. It is preferable to generate the pulse current or the total current.

第一の実施形態の装着式動作補助装置では、タスクとして分類した装着者の動作パターンを構成する一連の最小動作単位(フェーズ)の各々の基準パラメータと、前記アクチュエータによる動力付与率(パワーアシスト率)とを所要の対応関係となるように格納したデータベースを備え、前記随意的制御手段は、前記物理量センサにより検出された物理量を前記データベースに格納された基準パラメータと比較することにより、前記装着者が行おうとしているタスクのフェーズを推定し、このフェーズに応じたパワーアシスト率を前記対応関係に基づいて規定し、このパワーアシスト率となる動力を前記アクチュエータに発生させるための指令信号を生成することが好ましい。   In the wearable movement assist device of the first embodiment, each reference parameter of a series of minimum movement units (phases) constituting a movement pattern of a wearer classified as a task, and a power application rate (power assist rate) by the actuator ), And the optional control means compares the physical quantity detected by the physical quantity sensor with a reference parameter stored in the database, so that the wearer Estimate the phase of the task that is going to be performed, specify the power assist rate according to this phase based on the correspondence, and generate a command signal for causing the actuator to generate the power that becomes the power assist rate It is preferable.

第一の実施形態の装着式動作補助装置では、前記駆動電流生成手段は、前記装着者が反射神経によって動作する場合に、当該動作の反対方向に前記アクチュエータを駆動するための電流を所定の時間だけ供給した後に、前記動作の方向に前記アクチュエータを駆動するための電流を供給することが好ましい。   In the wearable movement assist device according to the first embodiment, when the wearer operates with reflexes, the drive current generation unit generates a current for driving the actuator in a direction opposite to the operation for a predetermined time. It is preferable to supply a current for driving the actuator in the direction of the operation after supplying only the current.

第一の実施形態の装着式動作補助装置の制御方法では、前記神経伝達信号に応じて生成したパルス電流と前記筋電位信号に実質的に比例するように生成した電流との総電流を前記アクチュエータに供給するとともに、前記パルス電流の供給により前記アクチュエータの動作を開始させることが好ましい。   In the control method for the wearable movement assist device of the first embodiment, the actuator calculates a total current of a pulse current generated according to the nerve transmission signal and a current generated so as to be substantially proportional to the myoelectric potential signal. Preferably, the operation of the actuator is started by supplying the pulse current.

第一の実施形態の装着式動作補助装置の制御方法では、前記アクチュエータへの電流の供給を開始する際に、前記アクチュエータを駆動可能な電流の下限値よりも大きくなるように、前記パルス電流あるいは前記総電流を供給することが好ましい。   In the control method for the wearing-type motion assisting device according to the first embodiment, when the supply of current to the actuator is started, the pulse current or the pulse current or the current is set to be larger than the lower limit value of the current that can drive the actuator. It is preferable to supply the total current.

第一の実施形態の装着式動作補助装置の制御方法では、さらに前記装着者の動作に関する物理量を検出し、検出した物理量信号と、タスクとして分類した装着者の各動作パターンを構成する一連の最小動作単位(フェーズ)の各々の基準パラメータとを比較することにより、前記装着者が行おうとしているタスクのフェーズを推定するとともに、このフェーズに応じた所要の動力付与率(パワーアシスト率)となる動力を前記アクチュエータに発生させるための随意的指令信号を生成し、この随意的指令信号に応じた駆動電流を生成し、前記アクチュエータに供給することが好ましい。   In the control method for the wearable movement assist device of the first embodiment, the physical quantity related to the wearer's movement is further detected, and the detected physical quantity signal and a series of minimums constituting each movement pattern of the wearer classified as a task By comparing each reference parameter of the operation unit (phase), the phase of the task that the wearer is going to perform is estimated, and a required power application rate (power assist rate) corresponding to this phase is obtained. It is preferable that an optional command signal for generating power in the actuator is generated, a drive current corresponding to the optional command signal is generated, and supplied to the actuator.

第一の実施形態の装着式動作補助装置の制御方法では、前記装着者が反射神経によって動作する場合に、当該動作の反対方向に前記アクチュエータを駆動させるための電流を所定の時間だけ供給した後に、前記動作の方向に前記アクチュエータを駆動させるための電流を供給することが好ましい。   In the control method for the wearable movement assist device according to the first embodiment, when the wearer operates by reflexes, after supplying a current for driving the actuator in a direction opposite to the operation for a predetermined time, It is preferable to supply a current for driving the actuator in the direction of the operation.

第一の実施形態の装着式動作補助装置の制御用プログラムでは、前記コンピュータに、前記神経伝達信号に応じて生成したパルス電流と前記筋電位信号に実質的に比例するように生成した電流との総電流を前記アクチュエータに供給するとともに、前記パルス電流の供給により前記アクチュエータの動作を開始させるための処理を行わせることが好ましい。   In the control program for the wearable movement assist device of the first embodiment, the computer generates a pulse current generated according to the nerve transmission signal and a current generated so as to be substantially proportional to the myoelectric potential signal. It is preferable to supply a total current to the actuator and to perform a process for starting the operation of the actuator by supplying the pulse current.

第一の実施形態の装着式動作補助装置の制御用プログラムでは、前記コンピュータに、前記アクチュエータへの電流の供給を開始する際に、前記アクチュエータを駆動可能な電流の下限値よりも大きくなるように、前記パルス電流あるいは前記総電流を設定するための処理を行わせることが好ましい。   In the control program for the wearing-type motion assisting device according to the first embodiment, when the supply of current to the actuator is started, the computer is set to be larger than the lower limit value of the current that can drive the actuator. It is preferable to perform processing for setting the pulse current or the total current.

第一の実施形態の装着式動作補助装置の制御用プログラムでは、前記コンピュータに、タスクとして分類した装着者の動作パターンを構成する一連の最小動作単位(フェーズ)の各々の基準パラメータと、前記アクチュエータによる動力付与率(パワーアシスト率)とを所要の対応関係となるように格納したデータベースにアクセスするための処理と、前記装着者の動作に関する物理量を検出するための処理と、検出した物理量を、前記データベースに格納された基準パラメータと比較することにより、前記装着者が行おうとしているタスクのフェーズを推定し、このフェーズに応じたパワーアシスト率を前記対応関係に基づいて規定し、このパワーアシスト率となる動力を前記アクチュエータに発生するための処理とを行わせることが好ましい。   In the control program for the wearable movement assist device according to the first embodiment, the computer includes, in the computer, a reference parameter for each of a series of minimum movement units (phases) constituting a wearer movement pattern classified as a task, and the actuator. The process for accessing the database storing the power application rate (power assist rate) by the required correspondence relationship, the process for detecting the physical quantity related to the wearer's movement, and the detected physical quantity, By comparing with the reference parameters stored in the database, the phase of the task that the wearer is going to perform is estimated, the power assist rate corresponding to this phase is defined based on the correspondence, and the power assist It is preferable to perform processing for generating the power to be There.

第一の実施形態の装着式動作補助装置の制御用プログラムでは、前記コンピュータに、前記装着者が反射神経によって動作する場合に、当該動作の反対方向に前記アクチュエータを駆動するための駆動電流を所定の時間だけ供給した後に、前記動作の方向に前記アクチュエータを駆動するための駆動電流を供給するための処理を行わせることが好ましい。   In the control program for the wearable movement assist device according to the first embodiment, when the wearer operates by reflexes, the computer is provided with a drive current for driving the actuator in the opposite direction of the operation. It is preferable that processing for supplying a drive current for driving the actuator in the direction of the operation is performed after the supply for the period of time.

本発明の第二の実施形態では、装着者の動作を補助あるいは代行する装着式動作補助装置は、
前記装着者に対して動力を付与するアクチュエータを有した動作補助装着具と、
前記装着者の生体信号を検出する生体信号センサと、
前記装着者の動作に関する物理量を検出する物理量センサと、
前記生体信号センサにより検出された生体信号を用い、前記装着者の意思に従った動力を前記アクチュエータに発生させるための指令信号を生成する随意的制御手段と、
タスクとして分類した装着者の動作パターンを構成する一連の最小動作単位(フェーズ)の各々の基準パラメータを格納したデータベースと、
前記物理量センサにより検出された物理量と前記データベースに格納された基準パラメータとを比較することにより、前記装着者のタスクのフェーズを推定し、このフェーズに応じた動力を前記アクチュエータに発生させるための指令信号を生成する自律的制御手段と、
前記随意的制御手段からの指令信号および前記自律的制御手段からの指令信号を合成する信号合成手段と、
前記信号合成手段により合成された総指令信号に応じた総電流を生成し、前記アクチュエータに供給する駆動電流生成手段とを備えることを特徴とする。
In the second embodiment of the present invention, the wearable movement assist device that assists or substitutes for the movement of the wearer,
An operation assisting wearing device having an actuator for applying power to the wearer;
A biological signal sensor for detecting a biological signal of the wearer;
A physical quantity sensor for detecting a physical quantity related to the movement of the wearer;
Optional control means for generating a command signal for causing the actuator to generate power according to the intention of the wearer, using a biological signal detected by the biological signal sensor;
A database that stores reference parameters for each of a series of minimum motion units (phases) constituting the motion pattern of the wearer classified as a task;
A command for estimating a phase of the wearer's task by comparing a physical quantity detected by the physical quantity sensor with a reference parameter stored in the database, and causing the actuator to generate power corresponding to the phase. An autonomous control means for generating a signal;
A signal synthesis means for synthesizing a command signal from the optional control means and a command signal from the autonomous control means;
Drive current generating means for generating a total current corresponding to the total command signal synthesized by the signal synthesizing means and supplying the total current to the actuator.

上記装着式動作補助装置の制御方法は、
前記装着者に対して動力を付与するアクチュエータを有した動作補助装着具が前記装着者に装着された状態において、
前記装着者の生体信号および前記装着者の動作に関する物理量をそれぞれ検出し、
検出した生体信号を用いて、前記装着者の意思に従った動力を前記アクチュエータに発生させるための随意的指令信号を生成し、
検出した物理量と、タスクとして分類した装着者の動作パターンを構成する一連の最小動作単位(フェーズ)の各々の基準パラメータとを比較することにより、前記装着者が行おうとしているタスクのフェーズを推定し、このフェーズに応じた動力を前記アクチュエータに発生させるための自律的指令信号を生成し、
これら生成した随意的指令信号および自律的信号を合成し、
合成した総指令信号に応じた電流を生成し、前記アクチュエータに供給することを特徴とする。
The control method of the wearable movement assist device is as follows:
In a state where an operation assisting wearing device having an actuator for applying power to the wearer is worn by the wearer,
Detecting physical quantities of the wearer's biological signal and the wearer's movement,
Using the detected biological signal, generate an optional command signal for causing the actuator to generate power according to the wearer's intention,
Estimate the phase of the task that the wearer is trying to perform by comparing the detected physical quantity with the reference parameters of each of the series of minimum motion units (phases) that make up the wearer's movement pattern classified as a task. And generating an autonomous command signal for causing the actuator to generate power according to this phase,
Combining these generated voluntary command signals and autonomous signals,
A current corresponding to the synthesized total command signal is generated and supplied to the actuator.

また上記装着式動作補助装置の制御用プログラムでは、前記アクチュエータを制御するためのコンピュータに、
前記装着者の生体信号および前記装着者の動作に関する物理量をそれぞれ検出するための処理と、
検出した生体信号を用いて、前記装着者の意思に従った動力を前記アクチュエータに発生させるための随意的指令信号を生成するための処理と、
検出した物理量を、タスクとして分類した装着者の動作パターンを構成する一連の最小動作単位(フェーズ)の各々の基準パラメータと比較することにより、前記装着者が行おうとしているフェーズを推定するとともに、このフェーズに応じた動力を前記アクチュエータに発生させるための随意的指令信号を生成するための処理と、
これら生成した随意的指令信号および自律的指令信号を合成した総指令信号に応じた電流を生成し、前記アクチュエータに供給するための処理とを行わせることを特徴とする。
In the control program for the wearable motion assist device, the computer for controlling the actuator includes:
A process for detecting a physical quantity relating to the wearer's biological signal and the operation of the wearer, respectively;
A process for generating an optional command signal for causing the actuator to generate power according to the intention of the wearer using the detected biological signal;
By comparing the detected physical quantity with reference parameters of each of a series of minimum operation units (phases) constituting the operation pattern of the wearer classified as a task, the phase that the wearer is going to perform is estimated, Processing for generating an optional command signal for causing the actuator to generate power according to this phase;
A current corresponding to a total command signal obtained by synthesizing the generated arbitrary command signal and autonomous command signal is generated, and processing for supplying the current to the actuator is performed.

第二の実施形態の装着式動作補助装置では、前記データベースは、前記随意的制御手段からの指令信号と前記自律的制御手段からの指令信号との比(ハイブリッド比)を、前記フェーズの基準パラメータと所要の対応関係となるように格納し、前記信号合成手段は、前記自律的制御手段により推定されたタスクのフェーズに応じ、前記対応関係に基づいて規定されるハイブリッド比となるように、前記随意的制御手段からの指令信号および前記自律的制御手段からの指令信号を合成することが好ましい。   In the wearable motion assisting device of the second embodiment, the database is configured such that a ratio (hybrid ratio) between a command signal from the optional control means and a command signal from the autonomous control means is a reference parameter of the phase. And the signal synthesis means, according to the phase of the task estimated by the autonomous control means, the hybrid ratio specified based on the correspondence relation, Preferably, the command signal from the optional control means and the command signal from the autonomous control means are combined.

第二の実施形態の装着式動作補助装置では、前記装着者の筋骨格系を動作させるための神経伝達信号および筋活動に伴う筋電位信号を、前記生体信号センサにより検出された生体信号から取得する生体信号処理手段を備え、前記駆動電流生成手段は、前記生体信号処理手段により取得された神経伝達信号に応じて生成したパルス電流の供給により前記アクチュエータの動作を開始させることが好ましい。   In the wearable movement assist device according to the second embodiment, a nerve transmission signal for operating the wearer's musculoskeletal system and a myoelectric potential signal associated with muscle activity are acquired from the biological signal detected by the biological signal sensor. It is preferable that the driving current generation unit starts the operation of the actuator by supplying a pulse current generated according to the nerve transmission signal acquired by the biological signal processing unit.

第二の実施形態の装着式動作補助装置では、前記駆動電流生成手段は、前記アクチュエータへの電流の供給を開始する際に、前記アクチュエータを駆動可能な電流の下限値よりも大きくなるように、前記パルス電流あるいは前記総電流を生成することが好ましい。   In the wearable motion assist device of the second embodiment, when the drive current generating means starts to supply current to the actuator, the drive current generating means is larger than the lower limit value of the current that can drive the actuator. It is preferable to generate the pulse current or the total current.

第二の実施形態の装着式動作補助装置では、前記データベースは、前記フェーズの各々の基準パラメータと、前記アクチュエータによる所要の動力付与率(パワーアシスト率)とを所要の対応関係となるように格納し、前記信号合成手段は、前記自律的制御手段により推定されたタスクのフェーズに応じたパワーアシスト率を前記対応関係に基づいて規定し、このパワーアシスト率を満たすように前記随意的制御手段からの指令信号および前記自律的制御手段からの指令信号を合成することが好ましい。   In the wearable motion assist device of the second embodiment, the database stores the reference parameters of the phases and the required power application rate (power assist rate) by the actuator so as to have a required correspondence relationship. The signal synthesizing unit defines a power assist rate according to the phase of the task estimated by the autonomous control unit based on the correspondence relation, and the optional control unit sets the power assist rate to satisfy the power assist rate. It is preferable to synthesize the command signal and the command signal from the autonomous control means.

第二の実施形態の装着式動作補助装置では、前記駆動電流生成手段は、前記装着者が反射神経によって動作する場合に、当該動作の反対方向に前記アクチュエータを駆動するための電流を所定の時間だけ供給した後に、前記動作の方向に前記アクチュエータを駆動するための電流を供給することが好ましい。   In the wearable movement assist device according to the second embodiment, when the wearer is operated by reflexes, the drive current generating means generates a current for driving the actuator in a direction opposite to the movement for a predetermined time. It is preferable to supply a current for driving the actuator in the direction of the operation after supplying only the current.

第二の実施形態の装着式動作補助装置の制御方法では、前記随意的指令信号と前記自律的指令信号との比(ハイブリッド比)を、前記フェーズの各々の基準パラメータと所要の対応関係となるように予め設定し、前記推定したタスクのフェーズに応じたハイブリッド比を前記対応関係に基づいて規定し、このハイブリッド比となるように前記総指令信号を合成することが好ましい。   In the control method for the wearable motion assisting device of the second embodiment, the ratio (hybrid ratio) between the voluntary command signal and the autonomous command signal is a required correspondence with each reference parameter of the phase. Preferably, the hybrid ratio corresponding to the estimated task phase is defined based on the correspondence relationship, and the total command signal is synthesized so as to be the hybrid ratio.

第二の実施形態の装着式動作補助装置の制御方法では、前記アクチュエータへの電流の供給を開始する際に、前記アクチュエータを駆動可能な電流の下限値よりも大きくなるように、前記神経伝達信号に応じた電流、あるいは当該電流と前記筋電位信号に応じた電流との総電流を供給することが好ましい。   In the control method of the wearable motion assist device of the second embodiment, the neurotransmission signal is set to be larger than the lower limit value of the current that can drive the actuator when the supply of the current to the actuator is started. It is preferable to supply a current corresponding to the current or a total current of the current and the current corresponding to the myoelectric potential signal.

第二の実施形態の装着式動作補助装置の制御方法では、前記装着者に付与する動力の比率(パワーアシスト率)を前記フェーズの各々の基準パラメータに予め対応付けておき、前記推定したタスクのフェーズに応じたパワーアシスト率となるように、前記総指令信号を設定することが好ましい。   In the control method for the wearable movement assist device of the second embodiment, the ratio of power to be given to the wearer (power assist rate) is associated in advance with each reference parameter of the phase, and the estimated task The total command signal is preferably set so that the power assist rate according to the phase is obtained.

第二の実施形態の装着式動作補助装置の制御方法では、前記装着者が反射神経によって動作する場合に、当該動作の反対方向に前記アクチュエータを駆動するための駆動電流を所定の時間だけ生成した後に、前記動作の方向に前記アクチュエータを駆動することが好ましい。   In the control method of the wearable movement assist device according to the second embodiment, when the wearer moves by reflexes, a drive current for driving the actuator in the opposite direction of the movement is generated for a predetermined time. It is preferable to drive the actuator in the direction of the operation later.

第二の実施形態の装着式動作補助装置の制御用プログラムでは、前記アクチュエータを制御するためのコンピュータに、
前記随意的指令信号と前記自律的指令信号との比(ハイブリッド比)を、前記フェーズの各々の基準パラメータと所要の対応関係となるように格納したデータベースにアクセスするための処理と、前記検出した物理量を前記データベースに格納された基準パラメータと比較することにより、前記装着者が行おうとしているタスクのフェーズを推定するとともに、このフェーズに応じたハイブリッド比を前記対応関係に基づいて規定し、このハイブリッド比となるように前記総指令信号を合成するための処理とを行わせることが好ましい。
In the control program for the wearable movement assist device of the second embodiment, the computer for controlling the actuator includes:
A process for accessing a database in which a ratio (hybrid ratio) between the voluntary command signal and the autonomous command signal is stored so as to have a required correspondence with each reference parameter of the phase, and the detected By comparing the physical quantity with the reference parameter stored in the database, the phase of the task that the wearer is going to perform is estimated, and the hybrid ratio corresponding to this phase is defined based on the correspondence relationship, It is preferable to perform processing for synthesizing the total command signal so as to obtain a hybrid ratio.

第二の実施形態の装着式動作補助装置の制御用プログラムでは、前記コンピュータに、前記アクチュエータへの電流の供給を開始する際に、前記アクチュエータを駆動可能な電流の下限値よりも大きくなるように、前記パルス電流あるいは前記総電流を設定するための処理を行わせることが好ましい。   In the control program for the wearable motion assist device of the second embodiment, when starting supplying the current to the actuator to the computer, the program is set to be larger than the lower limit value of the current that can drive the actuator. It is preferable to perform processing for setting the pulse current or the total current.

第二の実施形態の装着式動作補助装置の制御用プログラムでは、前記コンピュータに、タスクとして分類した装着者の動作パターンを構成する一連の最小動作単位(フェーズ)の各々の基準パラメータを、装着者に付与する動力の比率(パワーアシスト率)に対応付けて格納したデータベースにアクセスするための処理と、前記推定したタスクのフェーズに応じたパワーアシスト率となるように、前記総指令信号を設定するための処理とを行わせることが好ましい。   In the control program for the wearable movement assist device according to the second embodiment, each of the reference parameters of a series of minimum operation units (phases) constituting the wearer's movement pattern classified as a task is stored in the computer. The total command signal is set so as to obtain a power assist rate corresponding to the estimated task phase and a process for accessing a database stored in association with the ratio of power to be applied to the power (power assist rate) It is preferable to perform the process for this.

第二の実施形態の装着式動作補助装置の制御用プログラムでは、前記コンピュータに、前記装着者が反射神経によって動作する場合に、当該動作の反対方向に前記アクチュエータを駆動するための駆動電流を所定の時間だけ生成した後に、前記動作の方向に前記アクチュエータを駆動するための処理を行わせることが好ましい。   In the control program for the wearable movement assist device according to the second embodiment, when the wearer operates by reflexes, the computer is provided with a drive current for driving the actuator in a direction opposite to the operation. It is preferable that processing for driving the actuator in the direction of the operation is performed after the generation of the time.

第一の実施形態では、生体信号から筋電位信号と、それに先行するか筋電位信号の先頭部に位置する神経伝達信号とを取得するとともに、取得した神経伝達信号をアクチュエータの駆動開始用の信号(トリガー信号)として使用することにより、アクチュエータへの電流供給を開始した際に、速やかに該アクチェエータを動作させることができる。このため、装着式動作補助装置の始動時の遅れを感じることがなく、違和感のないスムーズな動作が得られる。   In the first embodiment, a myoelectric potential signal and a nerve transmission signal preceding or positioned at the head of the myoelectric potential signal are acquired from the biological signal, and the acquired nerve transmission signal is used as a signal for starting driving the actuator. By using it as a (trigger signal), the actuator can be operated quickly when the current supply to the actuator is started. For this reason, a smooth operation with no sense of incongruity can be obtained without feeling a delay at the start of the wearable movement assist device.

第二の実施形態では、装着者の意思に従った動力をアクチュエータに発生させるための随意的指令信号と、検出された物理量とデータベースに格納された基準パラメータとの比較により推定されたタスクのフェーズに応じた動力をアクチュエータに発生させるための自律的指令信号とを合成するので、アクチュエータを素早く動作開始させることができ、随意的動作を違和感なくスムーズに行うことができる。   In the second embodiment, an optional command signal for causing the actuator to generate power according to the wearer's intention, and the phase of the task estimated by comparing the detected physical quantity with the reference parameter stored in the database. Since the autonomous command signal for causing the actuator to generate motive power according to the above is synthesized, the actuator can be started to operate quickly, and an optional operation can be performed smoothly without a sense of incongruity.

また第二の実施形態では、随意的指令信号と自律的指令信号とのハイブリッド比を制御することにより、動力補助の開始の遅れなく、装着者の筋力等に対して最適な動作補助を行うことができる。またデータベースに格納されたハイブリッド比をフェーズごとに引き出せば、自動的にハイブリッド比を変更することができる。これにより、各動作に適したハイブリッド比で、一層スムーズな動きをすることができる。   Further, in the second embodiment, by controlling the hybrid ratio between the voluntary command signal and the autonomous command signal, optimal operation assistance is performed for the wearer's muscle strength and the like without delay in starting power assistance. Can do. If the hybrid ratio stored in the database is extracted for each phase, the hybrid ratio can be automatically changed. Thereby, it is possible to move more smoothly with a hybrid ratio suitable for each operation.

いずれの実施形態でも、神経伝達信号に応じて生成したパルス電流と筋電位信号に実質的に比例するように生成した電流との総電流をアクチュエータに供給するとともに、パルス電流の供給によりアクチュエータの動作を開始させると、アクチュエータの駆動開始の遅れを防止することができる。また前記パルス電流あるいは前記総電流がアクチュエータの駆動開始可能電流未満の場合に、前記パルス電流あるいは前記総電流がアクチュエータの駆動開始可能電流以上になるように、パルス電流を増幅することにより、神経伝達信号に正確に対応させて、アクチュエータの駆動を開始することができる。   In any embodiment, the total current of the pulse current generated according to the nerve transmission signal and the current generated so as to be substantially proportional to the myoelectric potential signal is supplied to the actuator, and the operation of the actuator is performed by supplying the pulse current. By starting the operation, it is possible to prevent a delay in the start of driving of the actuator. Further, when the pulse current or the total current is less than the current at which actuator driving can be started, the nerve current is transmitted by amplifying the pulse current so that the pulse current or the total current becomes equal to or higher than the current at which actuator driving can be started. The actuator can be started in response to the signal accurately.

いずれの実施形態でも、反射神経による動作を行う場合、動作方向に駆動する直前に反対方向に所定の時間だけアクチュエータを駆動させることにより、装着者の反射神経を利用して、かえって動作をスムーズにすることができる。   In any of the embodiments, when performing an operation by reflexes, the actuator is driven for a predetermined time in the opposite direction immediately before driving in the operation direction, so that the operation is smoothly performed by using the reflexes of the wearer. can do.

また前記物理量と前記基準パラメータとを比較することにより推定したタスクのフェーズに応じたパワーアシスト率となる動力をアクチュエータに発生させることにより、異なる体力の装着者に対して最適な動力を付与して、パワーアシストすることができる。   In addition, by generating the power with the power assist rate according to the phase of the task estimated by comparing the physical quantity and the reference parameter, an optimum power is given to the wearer with different physical strength. Can power assist.

以上の特徴を有する本発明の装着式動作補助装置を使用すると、身体障害者や高齢者のように、身体動作を行うのに十分な筋力がない者や身体動作そのものが困難になった者でも、違和感なくスムーズな動作を行うことができる。また例えば爆発物の処理のような危険な作業を行うために重装備をしなければならない者でも、本発明の装着式動作補助装置を装着すれば、あたかも重装備がないかのように軽快に作業することができる。   Using the wearable movement assist device of the present invention having the above features, even those who do not have sufficient muscle strength to perform physical movements or who have difficulty in physical movements, such as persons with physical disabilities and elderly persons Smooth operation can be performed without a sense of incongruity. Also, even those who have heavy equipment to perform dangerous work such as disposal of explosives will be light as if there is no heavy equipment if they are equipped with the wearable movement assist device of the present invention. Can work.

以下、本発明を実施形態毎に説明するが、各実施形態の特徴は特に断りがなければ他の実施形態にも適用可能である。   Hereinafter, although this invention is demonstrated for every embodiment, the characteristic of each embodiment is applicable also to other embodiment unless there is particular notice.

[1] 第一の実施形態
(A) 装着式動作補助装置の構成
第一の実施形態の装着式動作補助装置は、アクチュエータを有した動作補助装着具と、装着者の生体信号を検出する生体信号センサと、神経伝達信号および筋電位信号を生体信号から取得する生体信号処理手段と、神経伝達信号および筋電位信号を用い、装着者の意思に従った動力をアクチュエータに発生させるための指令信号を生成する随意的制御手段と、随意的制御手段からの指令信号に基づいて、神経伝達信号および筋電位信号に応じた電流をそれぞれ生成し、アクチュエータに供給する駆動電流生成手段とを備える。なお装着者が行おうとしているタスクのフェーズに応じたパワーアシスト率となる動力をアクチュエータに発生させる場合には、この装着式動作補助装置に装着者の動作に関する物理量を検出する物理量センサを設ける。
[1] First embodiment
(A) Configuration of Wearable Motion Aid Device The wearable motion assist device of the first embodiment includes an motion assisting wearing device having an actuator, a biological signal sensor for detecting a wearer's biological signal, a nerve transmission signal, and Biological signal processing means for acquiring a myoelectric potential signal from a biological signal, and optional control means for generating a command signal for causing the actuator to generate power according to the wearer's intention using the nerve transmission signal and myoelectric potential signal; Drive current generating means for generating a current corresponding to the nerve transmission signal and the myoelectric potential signal based on the command signal from the optional control means and supplying the current to the actuator. When the actuator generates power having a power assist rate corresponding to the phase of the task that the wearer is going to perform, the wearable movement assisting device is provided with a physical quantity sensor that detects a physical quantity related to the wearer's movement.

(1) 駆動系
図1は、その一例の駆動系(ハード系)を概略的に示す。この装着式動作補助装置は、人間(以下、装着者ともいう)1の下半身に装着する動作補助装着具2(片方の脚部は図示を省略)と、下半身(例えば太腿)から生体信号を検出する生体信号センサ221と、足の裏に貼付されて装着者1の重心を検出する重心センサ222と、生体信号センサ221により検出した生体信号から神経伝達信号および筋電位信号を取得する生体信号処理手段3と、神経伝達信号および筋電位信号に基づいて動作補助装着具2のアクチュエータ201の駆動を制御する制御装置20と、制御装置20やアクチュエータ201等に電力を供給するための電源(バッテリー、外部電源)21とを備える。
(1) Drive System FIG. 1 schematically shows an example drive system (hard system). This wearable movement assist device has a movement assist wearing tool 2 (not shown in the figure of one leg) that is worn on the lower body of a human (hereinafter also referred to as a wearer) 1 and a biological signal from the lower half (eg, thigh). A biological signal sensor 221 to be detected; a centroid sensor 222 that is attached to the sole of the foot to detect the centroid of the wearer 1; and a biological signal that acquires a nerve transmission signal and a myoelectric potential signal from the biological signal detected by the biological signal sensor 221. The processing means 3, a control device 20 for controlling the driving of the actuator 201 of the auxiliary motion wearing tool 2 based on the nerve transmission signal and the myoelectric potential signal, and a power source (battery) for supplying power to the control device 20, the actuator 201, etc. , External power source) 21.

図2に示すように、動作補助装着具2は、上部アーム202aおよび中間アーム202bを回転自在に接合する腰用ジョイント203aと、中間アーム202bおよび下部アーム202cを回転自在に接合する膝用ジョイント203bと、下部アーム202cおよび踵部205を回転自在に接合する踝用ジョイント203cと、腰用ジョイント203aに設けられたアクチュエータ201aと、膝用ジョイント203bに設けられたアクチュエータ201bとを有する。中間アーム202bおよび下部アーム202cには装着者1の太腿およびふくらはぎに固定されるマジックテープ等の固定具205a,205bが取り付けられている。各アクチュエータ201a,201bはモータと減速ギアからなる。   As shown in FIG. 2, the movement assisting wearing device 2 includes a waist joint 203a that rotatably joins the upper arm 202a and the intermediate arm 202b, and a knee joint 203b that rotatably joins the intermediate arm 202b and the lower arm 202c. And a heel joint 203c that rotatably joins the lower arm 202c and the heel part 205, an actuator 201a provided on the waist joint 203a, and an actuator 201b provided on the knee joint 203b. Fixing tools 205a and 205b such as a velcro tape fixed to the thigh and calf of the wearer 1 are attached to the intermediate arm 202b and the lower arm 202c. Each actuator 201a, 201b comprises a motor and a reduction gear.

上部アーム202aは、装着者1の胴体に巻き付けられて固定されるウエスト部204に固定されている。ウエスト部204の背側の上縁部には上下に開口した突起部204aが設けられており、突起部204aの開口部には制御装置20および電源21等を収納したバッグ220の下端突起220aが係合する。このようにして、バッグ220の荷重はウエスト部204で受けられる。また踵部205は装着者1の踵を完全に覆う一体的な形状を有し、その一方の側壁は他方の側壁より高く延びて、その上端部には踝用ジョイント203cが取り付けられている。このため、動作補助装着具2およびバッグ220の荷重は全て踵部205で支えられ、装着者1にかかることはない。   The upper arm 202a is fixed to a waist part 204 that is wound around and fixed to the body of the wearer 1. A projection 204a that opens up and down is provided on the upper edge of the back side of the waist 204, and a bottom projection 220a of a bag 220 that houses the control device 20, the power source 21, and the like is provided in the opening of the projection 204a. Engage. In this way, the load of the bag 220 is received by the waist portion 204. The heel portion 205 has an integral shape that completely covers the heel of the wearer 1, and one side wall thereof extends higher than the other side wall, and a heel joint 203 c is attached to the upper end portion thereof. For this reason, the loads of the motion assisting wearing device 2 and the bag 220 are all supported by the heel portion 205 and are not applied to the wearer 1.

(2) 制御系
図3は、第一の実施形態の装着式動作補助装置の制御系を示す。装着者1と動作補助装着具2は、人間機械系10を構成する。また制御装置20は、随意的制御手段4を有する。随意的制御手段4の入力端子には、装着者1の生体信号を検出する生体信号センサ221が接続され、かつ、随意的制御手段4の出力端子には、駆動電流生成手段5が接続してある。
駆動電流生成手段5は、動作補助装着具2のアクチュエータ201a,201b(以下、アクチュエータ201と総称する)に接続してある。
(2) Control System FIG. 3 shows a control system of the wearable movement assist device of the first embodiment. The wearer 1 and the motion assisting wearing tool 2 constitute a human machine system 10. The control device 20 also has optional control means 4. A biological signal sensor 221 for detecting a biological signal of the wearer 1 is connected to the input terminal of the optional control means 4, and a drive current generating means 5 is connected to the output terminal of the optional control means 4. is there.
The drive current generating means 5 is connected to actuators 201a and 201b (hereinafter collectively referred to as actuator 201) of the motion assisting wearing tool 2.

(a) センサ
第一の実施形態の装着式動作補助装置は、人間1に装着された状態において装着者1からの生体信号を検出する生体信号センサ221を必須とする。生体信号センサ221は、通常装着者1の皮膚に貼付するが、体内に埋め込むものでも良い。その他に、図1に示すように、重心センサ222を有することが好ましい。重心センサ222は例えば足の裏に複数貼付されるもので、どの重心センサ222に最も重量がかかっているかを検出することにより人体の動作方向を予測することができる。さらに、制御精度を向上させるために、例えば、(1)装着者1の動作の状態を示す信号を得るためのセンサ(力センサ、トルクセンサ、電流センサ、角度センサ、角速度センサ、加速度センサ、床反力センサ等)、(2)外界の情報(例えば、障害物の有無)を得るためのセンサ(CCD、レーザセンサ、赤外線センサ、超音波センサ等)、(3)神経伝達信号および筋電位信号以外の生体信号を得るためのセンサ(体温センサ、脈拍センサ、脳波センサ、心電位センサ、発汗センサ等)を設けることができる。これらのセンサ自体は公知であるので、個々の説明は省略する。
(a) Sensor The wearing-type motion assisting device of the first embodiment requires a biological signal sensor 221 that detects a biological signal from the wearer 1 when worn on the human 1. The biological signal sensor 221 is usually attached to the skin of the wearer 1, but may be embedded in the body. In addition, it is preferable to have a center of gravity sensor 222 as shown in FIG. For example, a plurality of center-of-gravity sensors 222 are affixed to the soles of the feet, and the motion direction of the human body can be predicted by detecting which center-of-gravity sensor 222 has the most weight. Further, in order to improve the control accuracy, for example, (1) a sensor (force sensor, torque sensor, current sensor, angle sensor, angular velocity sensor, acceleration sensor, floor for obtaining a signal indicating the operation state of the wearer 1) Reaction force sensors, etc.), (2) sensors (CCD, laser sensors, infrared sensors, ultrasonic sensors, etc.) for obtaining external information (for example, the presence or absence of obstacles), (3) nerve transmission signals and myoelectric potential signals Sensors (body temperature sensor, pulse sensor, electroencephalogram sensor, electrocardiographic sensor, sweat sensor, etc.) for obtaining other biological signals can be provided. Since these sensors are known per se, their respective explanations are omitted.

(b) 生体信号処理手段
生体信号センサ221により検出された生体信号は、神経伝達信号および筋電位信号を有する。神経伝達信号は意思伝達信号とも言えるもので、(i) 筋電位信号に先行しているか[図4(a)参照]、(ii) 筋電位信号の先頭部と重なっている[図4(b)参照]。神経伝達信号の周波数は一般に筋電位信号の周波数より高いので、異なるバンドパスフィルタを用いることにより分離することができる。神経伝達信号は、生体信号を増幅器31により増幅した後、高帯域(例えば33 Hz〜数kHz)のバンドパスフィルタ32により取り出すことができ、また筋電位信号は、生体信号を増幅器31により増幅した後、中帯域(例えば33 Hz〜500 Hz)のバンドパスフィルタ33により取り出すことができる。なお、図4(a)および図4(b)では、各フィルタは並列に接続されているがこれに限定されず、両フィルタが直列に接続されていても良い。また、神経伝達信号は筋電位信号の先頭部のみならず、先頭部以降についても重なる場合が有り得る。この場合には、神経伝達信号の先頭部のみを後述するパルス電流の生成に利用するようにすれば良い。
(b) Biological signal processing means The biological signal detected by the biological signal sensor 221 has a nerve transmission signal and a myoelectric potential signal. The neurotransmission signal can be said to be a communication signal, and (i) precedes the myoelectric potential signal [see FIG. 4 (a)], or (ii) overlaps the leading portion of the myoelectric potential signal [FIG. 4 (b). )reference]. Since the frequency of the nerve transmission signal is generally higher than that of the myoelectric signal, it can be separated by using different bandpass filters. The nerve transmission signal can be taken out by a band pass filter 32 of a high band (for example, 33 Hz to several kHz) after the biological signal is amplified by the amplifier 31, and the myoelectric potential signal is amplified by the amplifier 31. Thereafter, it can be taken out by a band pass filter 33 having a middle band (for example, 33 Hz to 500 Hz). In FIGS. 4A and 4B, the filters are connected in parallel. However, the present invention is not limited to this, and both filters may be connected in series. Further, the nerve transmission signal may overlap not only at the head portion of the myoelectric potential signal but also at the head portion and thereafter. In this case, only the head portion of the nerve transmission signal may be used for generating a pulse current described later.

神経伝達信号および筋電位信号には、スムージング処理を行う。図4(a)および図4(b)中の各電流は、生体信号処理手段3からの信号をスムージングして得た指令信号を入力とし、駆動電流生成手段5によって生成されたものである。図4(a) に示すように神経伝達信号は幅が狭いので、スムージングだけでもパルス状となり、この神経伝達信号に基づいて駆動電流生成手段5によって生成される電流もパルス状となる。なお、神経伝達信号に基づいて得られる電流(パルス電流)は、矩形波状としても良い。一方、、図4(b) に示すように筋電位信号は幅が広いので、スムージングすることにより実質的に筋電位に比例する山状となり、この筋電位信号に基づいて駆動電流生成手段5によって生成される電流も山状となる。   Smoothing processing is performed on the nerve transmission signal and the myoelectric potential signal. Each current in FIG. 4 (a) and FIG. 4 (b) is generated by the drive current generation means 5 with the command signal obtained by smoothing the signal from the biological signal processing means 3 as an input. Since the nerve transmission signal has a narrow width as shown in FIG. 4 (a), the smoothing alone becomes a pulse shape, and the current generated by the drive current generating means 5 based on this nerve transmission signal also becomes a pulse shape. The current (pulse current) obtained based on the nerve transmission signal may be a rectangular wave. On the other hand, as shown in FIG. 4 (b), the myoelectric potential signal has a wide width, so that it becomes a mountain shape that is substantially proportional to the myoelectric potential by smoothing. The generated current also has a mountain shape.

神経伝達信号に基づいて生成されるパルス電流と、前記筋電位信号に基づいて比例的に生成される電流との総電流がアクチュエータ201に供給されると、この総電流に比例する大きさのトルクをアクチュエータ201が発生する。ここで、図4(a)および図4(b)のいずれの場合でも、総電流は十分に大きな電流で立ち上がるように設定してあるので、装着者1の動作意思に遅れなくアクチュエータ201が駆動され、装着者1は自分の意思に従った動作を違和感なく行うことができる。なお、図4(a)および図4(b)中でパルス電流を特に大きく示しているが、これはその役割を強調するためで、実際のパルス電流と筋電位信号から得られた駆動電流との関係を示すものではない。各電流の大きさは、装着者1の動作時の感覚により適宜設定することができる。   When the total current of the pulse current generated based on the nerve transmission signal and the current generated proportionally based on the myoelectric potential signal is supplied to the actuator 201, the torque having a magnitude proportional to the total current is supplied. Is generated by the actuator 201. Here, in either case of FIG. 4 (a) or FIG. 4 (b), the total current is set to rise with a sufficiently large current, so that the actuator 201 is driven without delay to the wearer's intention to operate. Thus, the wearer 1 can perform an operation according to his / her intention without a sense of incongruity. Note that the pulse currents are particularly large in FIGS. 4 (a) and 4 (b), but this is for emphasizing their role, and the drive currents obtained from the actual pulse currents and myoelectric potential signals. It does not indicate the relationship. The magnitude of each current can be appropriately set according to the sense of the wearer 1 during operation.

(c) 随意的制御手段
随意的制御手段4は、神経伝達信号および筋電位信号を用い、装着者1の意思に従った動力をアクチュエータ201に発生させるための指令信号を生成する機能を有する。随意的制御手段4での制御則としては、比例制御を適用することができる。比例制御により指令信号値と駆動電流値とが比例関係になり、さらにアクチュエータ201の特性により駆動電流値とアクチュエータ201の発生トルク値とが比例関係になる。従って、随意的制御手段4によって所要の指令信号を生成することにより、パワーアシスト率を所望の値に制御することができる。なお、随意的制御手段4での制御則としては、比例制御と微分制御および/または積分制御とを組み合わせたものを適用しても良い。
(c) Optional control means The optional control means 4 has a function of generating a command signal for causing the actuator 201 to generate power according to the intention of the wearer 1 using a nerve transmission signal and a myoelectric potential signal. Proportional control can be applied as a control law in the optional control means 4. By the proportional control, the command signal value and the drive current value have a proportional relationship, and further, the drive current value and the generated torque value of the actuator 201 have a proportional relationship due to the characteristics of the actuator 201. Therefore, the power assist rate can be controlled to a desired value by generating a required command signal by the optional control means 4. As a control law in the optional control means 4, a combination of proportional control and differential control and / or integral control may be applied.

ここで、パワーアシスト率とは、装着者1が発生する力と装着具2が発生する力との分配率であり、手動または自動で調整する。このパワーアシスト率は正の値でも負の値でも良い。正のアシスト率の場合、装着者1の発生力に装着具2の発生力が付加されるが、負のアシスト率の場合、装着者1の発生力から装着具2の発生力が差し引かれ(すなわち、装着者1に負荷がかかり)、装着者1は通常以上の力を発生しなければならない。   Here, the power assist rate is a distribution rate between the force generated by the wearer 1 and the force generated by the wearing tool 2, and is adjusted manually or automatically. This power assist rate may be a positive value or a negative value. In the case of a positive assist rate, the generated force of the wearer 2 is added to the generated force of the wearer 1, but in the case of a negative assist rate, the generated force of the wearer 2 is subtracted from the generated force of the wearer 1 ( That is, a load is applied to the wearer 1), and the wearer 1 must generate a force greater than normal.

(d) 駆動電流生成手段
駆動電流生成手段5は、随意的制御手段4からの指令信号が入力されると、この指令信号に基づいて、神経伝達信号に応じた電流および筋電位信号に応じた駆動電流をそれぞれ生成し、アクチュエータ201に供給することにより、アクチュエータ201を駆動する。
(d) Drive current generating means When the command signal from the optional control means 4 is input, the drive current generating means 5 responds to the current corresponding to the nerve transmission signal and the myoelectric potential signal based on the command signal. Each of the drive currents is generated and supplied to the actuator 201, thereby driving the actuator 201.

(B) 制御方法および制御用プログラム
図5に示す第一の実施形態の制御方法の好ましい一例では、装着者1に対して動力を付与するアクチュエータ201を有した動作補助装着具2を人間1に装着し(ST501)、装着者1の生体信号を検出する(ST502)。図4に示すように、生体信号処理手段3により生体信号から神経伝達信号と筋電位信号を取得し(ST503)、取得した神経伝達信号および筋電位信号を用い、装着者1の意思に従った動力をアクチュエータ201に発生させるための随意的指令信号を生成する(ST504)。この随意的指令信号は、神経伝達信号に応じたパルス電流を生成する指令信号と、筋電位信号に比例した駆動電流を生成する指令信号とからなる。各指令信号を駆動電流生成手段5に入力することにより、駆動電流生成手段5によってアクチュエータ201に供給する電流が生成される。随意的指令信号の生成に、他の信号(例えば、第一の実施形態において記載した生体信号用センサ221以外のセンサから得られる信号)を利用することもできる。以下実施形態においても、特に断りがなければ他の信号として上記と同じものを使用することができる。
(B) Control Method and Control Program In a preferred example of the control method of the first embodiment shown in FIG. 5, the motion assisting wearing device 2 having the actuator 201 for applying power to the wearer 1 is provided to the human 1. It wears (ST501) and detects the biological signal of the wearer 1 (ST502). As shown in FIG. 4, a nerve transmission signal and a myoelectric potential signal are acquired from the biological signal by the biological signal processing means 3 (ST503), and according to the intention of the wearer 1 using the acquired nerve transmission signal and myoelectric potential signal. An optional command signal for generating power in the actuator 201 is generated (ST504). This optional command signal includes a command signal for generating a pulse current corresponding to the nerve transmission signal and a command signal for generating a drive current proportional to the myoelectric potential signal. By inputting each command signal to the drive current generation means 5, a current to be supplied to the actuator 201 is generated by the drive current generation means 5. Other signals (for example, signals obtained from sensors other than the biological signal sensor 221 described in the first embodiment) can also be used to generate the optional command signal. In the following embodiments, the same signals as described above can be used as other signals unless otherwise specified.

アクチュエータ201を駆動可能な電流には下限値(閾値)があるので、神経伝達信号に応じたパルス電流(パルス電流と駆動電流が重畳していない場合)、またはパルス電流と駆動電流(パルス電流と駆動電流が重畳している場合)との総電流がその下限値未満の場合には、パルス電流はアクチュエータ201の迅速な駆動開始に役立たず、駆動電流が下限値に達するまでアクチュエータ201は駆動開始しない。これでは、装着者1の大脳が動作開始の信号(神経伝達信号)を発したときと動作補助装置の始動までの間に相当の遅れが生じ、装着者1に与える違和感が大きなものとなる。これを解消するためには、神経伝達信号に応じたパルス電流に応じて直ぐにアクチュエータ201を駆動開始させることが好ましい。   Since the current that can drive the actuator 201 has a lower limit (threshold value), the pulse current corresponding to the nerve transmission signal (when the pulse current and the drive current are not superimposed), or the pulse current and the drive current (pulse current and If the total current is less than the lower limit value, the pulse current does not help start driving the actuator 201 quickly, and the actuator 201 starts driving until the drive current reaches the lower limit value. do not do. In this case, a considerable delay occurs between the time when the cerebrum of the wearer 1 issues an operation start signal (neural transmission signal) and the start of the motion assisting device, and the discomfort given to the wearer 1 becomes large. In order to eliminate this, it is preferable to start driving the actuator 201 immediately according to the pulse current corresponding to the nerve transmission signal.

また、アクチュエータ201および動作補助装着具2の各アーム202や各ジョイント203には慣性モーメントがあるので、装着者1の意思に遅れなく動作補助を行うには、アクチュエータ201に素早い立ち上がりのトルクを発生させることが好ましい。これらを実現するため、本実施の形態では、図6aに示すようにパルス電流82と駆動電流81が重畳していない場合、および図6bに示すようにパルス電流83と駆動電流81が重畳している場合のいずれにおいても、パルス電流82(またはパルス電流83+駆動電流81)がアクチュエータ201の駆動開始可能電流の下限値It以上でない場合(ST505におけるNo)、パルス電流82(またはパルス電流83+駆動電流81)が駆動開始可能電流の下限値It以上になるように、パルス電流82,83を増幅するようにしている(ST505a)。しかも、アクチュエータ201を確実に始動できるように、必要に応じてパルス電流82,83の幅を大きくする(神経伝達信号に対応する時間より長くする)ようにしている。これらの結果、神経伝達信号に応じたパルス電流82,83の供給により、確実にアクチュエータ201を駆動開始することができる(ST506)。   In addition, since each arm 202 and each joint 203 of the actuator 201 and the motion assisting wearing tool 2 has a moment of inertia, in order to assist the motion without delay of the intention of the wearer 1, a quick rising torque is generated in the actuator 201. It is preferable to make it. In order to realize these, in the present embodiment, when the pulse current 82 and the drive current 81 do not overlap as shown in FIG. 6a, and when the pulse current 83 and the drive current 81 overlap as shown in FIG. In any case, if the pulse current 82 (or pulse current 83 + drive current 81) is not equal to or greater than the lower limit value It of the actuator 201 drive start possible current (No in ST505), the pulse current 82 (or pulse current 83 + drive current) The pulse currents 82 and 83 are amplified so that 81) becomes equal to or greater than the lower limit value It of the drive start possible current (ST505a). Moreover, the widths of the pulse currents 82 and 83 are increased as necessary (longer than the time corresponding to the nerve transmission signal) so that the actuator 201 can be reliably started. As a result, it is possible to reliably start the actuator 201 by supplying the pulse currents 82 and 83 according to the nerve transmission signal (ST506).

こうしてアクチュエータ201を駆動開始した後、筋電位信号に応じた駆動電流81に比例するように、アクチュエータ201に駆動トルクを発生させると(ST507)、装着者1の意思に応じた動作をパワーアシストすることができる。   After driving the actuator 201 in this way, when the driving torque is generated in the actuator 201 so as to be proportional to the driving current 81 corresponding to the myoelectric potential signal (ST507), the operation according to the intention of the wearer 1 is power-assisted. be able to.

上記制御を実行するには、生体信号を検出する処理(ST502)と、生体信号から神経伝達信号および筋電位信号を取得する処理(ST503)と、取得した神経伝達信号および筋電位信号を用い、装着者1の意思に従った動力をアクチュエータ201に発生させるための随意的指令信号を生成する処理(ST504)と、生成した随意的指令信号に基づいて、神経伝達信号に応じたパルス電流および筋電位信号に応じた駆動電流をそれぞれ生成し、アクチュエータ201に供給する処理(ST506,ST507)とを行わせるための制御用プログラムを、装着式動作補助装置の制御装置20(例えば、CPU、ハードディスクおよびRAM等の記憶装置、および入出力装置を有するパソコン等のコンピュータからなる)の記憶装置に格納する。なお制御装置20は、バッグ220に収納することができるが、必要に応じて装着式動作補助装置の外部に配置し、装着式動作補助装置との間での信号の送受信を無線で行うようにしても良い。   In order to execute the control, a process for detecting a biological signal (ST502), a process for acquiring a nerve transmission signal and a myoelectric potential signal from the biological signal (ST503), and using the acquired nerve transmission signal and myoelectric potential signal, Processing for generating an optional command signal for generating power according to the intention of the wearer 1 in the actuator 201 (ST504), and based on the generated optional command signal, a pulse current and muscle corresponding to the nerve transmission signal A control program for generating a drive current corresponding to the potential signal and supplying the drive current to the actuator 201 (ST506, ST507) is transmitted to the control device 20 (for example, CPU, hard disk and A storage device such as a RAM and a computer such as a personal computer having an input / output device. The control device 20 can be stored in the bag 220, but if necessary, it is arranged outside the wearable motion assist device so that signals can be transmitted to and received from the wearable motion assist device wirelessly. May be.

図7は、第一の実施形態の装着式動作補助装置において、アクチュエータ201の随意的制御を行う際に、装着者1の動作に関する物理量からタスクのフェーズを推定し、推定したフェーズに対応するパワーアシスト率となる動力をアクチュエータに発生させる例を示す。図7の装着式動作補助装置において、図3の装着式動作補助装置と同じ部分には同じ参照番号を付与し、類似の部分には類似の参照番号を付与してある。   FIG. 7 shows a task phase estimated from a physical quantity related to the motion of the wearer 1 when performing optional control of the actuator 201 in the wearing-type motion assisting device of the first embodiment, and the power corresponding to the estimated phase. An example will be shown in which an actuator generates power to become an assist rate. In the wearable motion assisting device of FIG. 7, the same reference numerals are given to the same parts as the wearable motion assisting device of FIG. 3, and similar reference numerals are given to similar parts.

図7の装着式動作補助装置の詳細を説明する前に、まずタスク(Task)およびそのフェーズ(Phase)について説明する。タスクとは装着者の各動作パターンを分類したもので、フェーズは各タスクを構成する一連の最小動作単位である。図8は、人間1の基本動作として、歩行(タスクA)、立ち上がり(タスクB)、座り(タスクC)、および階段の昇りまたは降り(タスクD)を例示しているが、勿論タスクがこれらに限定される訳ではない。各タスクは上記フェーズからなり、例えば歩行タスクAは、両足が揃ったフェーズ1と、右足が前に出たフェーズ2と、左足が前にでて両足が揃った状態になったフェーズ3と、左足が前に出たフェーズ4からなる。このような一連のフェーズをフェーズ・シークエンス(Phase Sequence)という。装着者1の動作を補助するのに適切な動力はフェーズ毎に異なる。そのため、各フェーズ1〜4に異なるパワーアシスト率PAR1,PAR2,PAR3,PAR4を付与することにより、フェーズ毎に最適な動作補助を行うことができる。   Before describing the details of the wearing-type motion assisting device in FIG. 7, a task and its phase will be described first. A task is a classification of each operation pattern of the wearer, and a phase is a series of minimum operation units constituting each task. FIG. 8 exemplifies walking (task A), rising (task B), sitting (task C), and ascending or descending stairs (task D) as basic actions of the human 1. It is not necessarily limited to. Each task consists of the above phases. For example, walking task A includes phase 1 in which both feet are aligned, phase 2 in which the right foot is in front, phase 3 in which the left foot is in front and both feet are aligned, and It consists of Phase 4 with the left foot in front. Such a series of phases is called a phase sequence. The power appropriate for assisting the wearer 1 is different for each phase. Therefore, by providing different power assist rates PAR1, PAR2, PAR3, and PAR4 to the phases 1 to 4, optimal operation assistance can be performed for each phase.

各人の動きを分析すると、各フェーズにおける各関節の回転角及び角速度、歩行速度及び加速度、姿勢、重心の移動等が決まっていることが分かる。例えば、各人の典型的な歩行パターンは決まっており、そのパターンで歩行するときに最も自然に感じる。従って、各人の各関節の回転角及び角速度等を、全タスクの全フェーズについて経験的に求め、それらを基準パラメータ(基準の回転角及び角速度等)としてデータべースに格納しておけば良い。   Analyzing each person's movement shows that the rotation angle and angular velocity, walking speed and acceleration, posture, and movement of the center of gravity of each joint in each phase are determined. For example, the typical walking pattern of each person is determined, and it feels most natural when walking in that pattern. Therefore, if the rotation angle and angular velocity of each joint of each person are obtained empirically for all phases of all tasks and stored in the database as reference parameters (reference rotation angle and angular velocity, etc.). good.

図8の装着式動作補助装置は、装着者1と動作補助装着具2とからなる人間機械系10と、装着者1の生体信号から神経伝達信号および筋電位信号を取得する生体信号処理手段3と、各フェーズの基準パラメータとともに、各フェーズに割り当てられたパワーアシスト率等が格納されたデータベース6と、生体信号(神経伝達信号および筋電位信号を含む)とともに、物理量センサ13により検出された物理量(各関節の回転角及び角速度、歩行速度及び加速度、姿勢、重心の移動等、および必要に応じて、他のセンサからの信号)を取得し、取得した物理量をデータベース6の基準パラメータと比較することにより得られる随意的指令信号(パワーアシスト率等を含む)を発生する随意的制御手段14と、随意的制御手段14の指令信号に応じて動作補助装着具2のアクチュエータ201の駆動電流を生成する駆動電流生成手段5とを有する。   The wearable movement assist device of FIG. 8 includes a human machine system 10 including a wearer 1 and a movement assist wearing device 2, and a biosignal processing means 3 that acquires a nerve transmission signal and a myoelectric potential signal from the wearer 1 's biosignal. The physical quantity detected by the physical quantity sensor 13 together with the database 6 in which the power assist rate assigned to each phase and the like are stored together with the reference parameters of each phase, and biological signals (including nerve transmission signals and myoelectric potential signals) (Rotational angles and angular velocities of each joint, walking speed and acceleration, posture, movement of the center of gravity, etc., and signals from other sensors as necessary) are acquired, and the acquired physical quantities are compared with the reference parameters in the database 6 The optional control means 14 for generating the optional command signal (including power assist rate, etc.) obtained by the operation, and the operation according to the command signal of the optional control means 14 And a driving current generating unit 5 which generates a drive current of the actuator 201 of the auxiliary attachment 2.

図9は、物理量を基準パラメータと比較することにより装着者1が行おうとしているタスク、およびその中のフェーズを推定するプロセスを示す。図9に示すタスクおよびフェーズは図8に示すものである。例示したタスクA(歩行)、タスクB(立上り)、タスクC(座り)・・・はそれぞれ、一連のフェーズ(フェーズA1、フェーズA2、フェーズA3・・・、フェーズB1、フェーズB2、フェーズB3・・・等)により構成されている。   FIG. 9 shows the task that the wearer 1 is going to perform by comparing the physical quantity with the reference parameter, and the process of estimating the phases therein. The tasks and phases shown in FIG. 9 are those shown in FIG. Task A (walking), task B (rise), task C (sitting), etc., are illustrated as a series of phases (phase A1, phase A2, phase A3 ..., phase B1, phase B2, phase B3・ ・ Etc).

装着者1が動作を開始すると、物理量センサ13により得られた各種の物理量の実測値をデータベース6に格納された基準パラメータと比較する。この比較は図9中のグラフで概略的に示す。このグラフでは、膝の回転角θおよび角速度θ'、腰の回転角θおよび角速度θ'、および重心位置COGおよび重心位置の移動速度COG'を示しているが、勿論比較する物理量はこれらに限定されない。   When the wearer 1 starts the operation, the actual measurement values of various physical quantities obtained by the physical quantity sensor 13 are compared with the reference parameters stored in the database 6. This comparison is shown schematically in the graph in FIG. In this graph, knee rotation angle θ and angular velocity θ ′, waist rotation angle θ and angular velocity θ ′, and center of gravity position COG and center of gravity position moving speed COG ′ are shown. Of course, the physical quantities to be compared are limited to these. Not.

一定の短い時間間隔で実測の物理量と基準パラメータとを比較する。比較は、全てのタスク(A,B,C・・・)における一連のフェーズについて行う。つまり、図9の上部表に示す全てのフェーズ(A1,A2,A3・・・,B1,B2,B3・・・,C1,C2,C3・・・)をマトリックス状に取り出し、実測の物理量と比較することになる。   The measured physical quantity is compared with the reference parameter at a fixed short time interval. The comparison is performed for a series of phases in all tasks (A, B, C...). That is, all the phases (A1, A2, A3..., B1, B2, B3..., C1, C2, C3...) Shown in the upper table of FIG. Will be compared.

図9のグラフに示すように、例えば時間t1,t2,t3・・・ごとに比較していくと、実測の物理量が全て一致する基準パラメータを有するフェーズを同定することができる。一致の誤差を排除するために、複数の時間で一致することを確認した後で、フェーズの同定を行えば良い。例えば図示の例で、実測値が複数の時間でフェーズA1の基準パラメータと一致したとすると、現在の動作はフェーズA1の動作であることが分かる。勿論、実測値と一致する基準パラメータを有するフェーズはタスクの最初のフェーズ(A1,B1,C1等)とは限らない。 As shown in the graph of FIG. 9, for example, when comparison is made for each time t 1 , t 2 , t 3 ..., A phase having a reference parameter in which all physical quantities actually measured can be identified. In order to eliminate coincidence errors, phase identification may be performed after confirming coincidence in a plurality of times. For example, in the example shown in the figure, if the measured value matches the reference parameter of phase A1 at a plurality of times, it can be seen that the current operation is the operation of phase A1. Of course, the phase having the reference parameter that matches the actually measured value is not necessarily the first phase (A1, B1, C1, etc.) of the task.

図10は、第一の実施形態の別の例として、パワーアシスト率を制御する場合の制御方法を示す。図10のST601,ST602,およびST604〜606は、実質的に図5のST501〜505aと同じであるので、それらの説明は省略し、ここではST607〜612の工程について主に説明する。   FIG. 10 shows a control method for controlling the power assist rate as another example of the first embodiment. Since ST601, ST602, and ST604 to 606 in FIG. 10 are substantially the same as ST501 to 505a in FIG. 5, description thereof is omitted, and here, the steps of ST607 to 612 are mainly described.

物理量センサ13により人間機械系10の物理量を検出する(ST603)。各関節の回転角及び角速度、歩行速度及び加速度、姿勢等の物理量の物理量センサ13は動作補助装着具2に取り付けるが、重心の移動等の物理量の物理量センサ13は装着者1に直接貼付することが好ましい。   The physical quantity of the human machine system 10 is detected by the physical quantity sensor 13 (ST603). The physical quantity sensor 13 for physical quantities such as rotation angle and angular velocity, walking speed and acceleration, and posture of each joint is attached to the motion assisting wearing device 2, but the physical quantity sensor 13 for physical quantities such as movement of the center of gravity is directly attached to the wearer 1. Is preferred.

物理量をデータベース6に格納した各タスクの各フェーズの基準パラメータと順次比較する(ST607)。図9を参照して説明したように、全てのタスクおよびそられのフェーズはマトリックス状に存在するので、物理量の実測値と各フェーズの基準パラメータとを、例えばA1,A2,A3・・・,B1,B2,B3・・・,C1,C2,C3・・・との順番で順次比較する。基準パラメータは全てのタスクのフェーズ(単に「タスク/フェーズ」という)の間で重複しないように設定されているので、全てのタスクのフェーズの基準パラメータとの比較を行うと、物理量の実測値と一致する基準パラメータを有するタスクのフェーズが分かる(ST608)。物理量の実測値の測定誤差を考慮に入れて、判定に必要な一致回数を予め設定しておき、その回数に到達したときに(ST609)、物理量の実測値に対応するタスクのフェーズを推定する(ST610)。データベース6を参照することにより、補助すべき動作に対応するフェーズに割り付けたパワーアシスト率を規定し、このパワーアシスト率となる動力をアクチュエータ201に発生させるように上記随意的指令信号を調整する(ST611)。駆動電流生成手段5は調整後の随意的指令信号に応じた電流(総電流)を生成し、この総電流の供給によりアクチュエータ201を駆動する(ST612)。   The physical quantity is sequentially compared with the reference parameter of each phase of each task stored in the database 6 (ST607). As described with reference to FIG. 9, since all tasks and their phases exist in a matrix form, measured values of physical quantities and reference parameters of each phase are set as, for example, A1, A2, A3,. Compare sequentially with B1, B2, B3..., C1, C2, C3. Since the reference parameters are set so that they do not overlap between all task phases (simply called “task / phase”), when comparing with the reference parameters of all task phases, The phase of the task having the matching reference parameter is known (ST608). Taking into account the measurement error of the actual measured value of the physical quantity, preset the number of matches required for the determination, and when that number is reached (ST609), estimate the task phase corresponding to the actual measured value of the physical quantity (ST610). By referring to the database 6, the power assist rate assigned to the phase corresponding to the operation to be assisted is defined, and the optional command signal is adjusted so that the actuator 201 generates the power that becomes the power assist rate ( ST611). The drive current generating means 5 generates a current (total current) according to the adjusted optional command signal, and drives the actuator 201 by supplying this total current (ST612).

上記制御を実行するには、装着者1の生体信号を検出する処理(ST602)と、人間機械系10の物理量を検出する処理(ST603)と、検出した物理量と各タスク各フェーズ基準パラメータとを比較することにより(ST607〜609)、装着者が行おうとしているフェーズを推定し(ST610)、推定したフェーズに応じたパワーアシスト率となる動力をアクチュエータに発生させるように、随意的指令信号を生成する処理(ST611)と、随意的指令信号に応じた電流を生成し、前記アクチュエータに供給する処理(ST612)とを行わせる制御用プログラムを、装着式動作補助装置の制御装置20Aの記憶装置に格納する。   In order to execute the above control, a process of detecting a biological signal of the wearer 1 (ST602), a process of detecting a physical quantity of the human machine system 10 (ST603), the detected physical quantity, and each phase reference parameter for each task By comparing (ST607 to 609), the phase that the wearer is going to perform is estimated (ST610), and an optional command signal is generated so that the actuator generates power with a power assist rate corresponding to the estimated phase. A control program for performing a process (ST611) to be generated and a process (ST612) for generating a current corresponding to an optional command signal and supplying the current to the actuator is stored in the storage device of the control device 20A of the wearable movement assist device. To store.

以上の通り、フェーズ毎に最適化されたパワーアシスト率となるように随意的指令信号を生成し、この随意的指令信号に応じた動力付与を行うことにより、スムーズな動作補助を行うことができ、また神経伝達信号に応じたパルス電流によりアクチュエータの駆動を開始させることにより、駆動開始の遅れがない(違和感のない)動作補助を行うことができる。   As described above, it is possible to perform smooth operation assistance by generating an optional command signal so that the power assist rate is optimized for each phase, and applying power according to this optional command signal. In addition, by starting the driving of the actuator with a pulse current corresponding to the nerve transmission signal, it is possible to assist the operation without causing a delay in starting the driving (no sense of incongruity).

[2] 第二の実施形態
(A) 装着式動作補助装置の構成
図11に例示するように、第二の実施形態の装着式動作補助装置は、アクチュエータ201を有した動作補助装着具2と、装着者1の生体信号を検出する生体信号センサ221と、人間機械系10の物理量を検出する物理量センサ13と、物理量センサ13により検出された生体信号を用い、装着者1の意思に従った動力をアクチュエータ201に発生させるための指令信号(随意的指令信号)を生成する随意的制御手段14と、タスクとして分類した装着者1の各動作パターンを構成する一連の最小動作単位(フェーズ)の各々の基準パラメータを格納したデータベース6と、物理量センサ13により検出された物理量とデータベース6に格納された基準パラメータとを比較することにより、装着者1のタスクのフェーズを推定し、推定したフェーズに応じた動力をアクチュエータ201に発生させるための指令信号(自律的指令信号)を生成する自律的制御手段7と、随意的制御手段4からの指令信号および自律的制御手段7からの指令信号を合成する信号合成手段8と、信号合成手段8により合成された総指令信号に応じた電流を生成し、アクチュエータ201に供給する駆動電流生成手段5とを備える。
[2] Second embodiment
(A) Configuration of Wearable Movement Auxiliary Device As illustrated in FIG. 11, the wearable movement assist device of the second embodiment includes a movement assist wearing device 2 having an actuator 201 and a biological signal of the wearer 1. In order to cause the actuator 201 to generate power according to the intention of the wearer 1 using the biological signal sensor 221 to be detected, the physical quantity sensor 13 for detecting the physical quantity of the human machine system 10, and the biological signal detected by the physical quantity sensor 13. A database that stores the reference parameters of each of a series of minimum operation units (phases) constituting each operation pattern of the wearer 1 classified as a task, and optional control means 14 for generating a command signal (optional command signal) 6 and the physical quantity detected by the physical quantity sensor 13 and the reference parameter stored in the database 6, the phase of the task of the wearer 1 is estimated and estimated. Autonomous control means 7 for generating a command signal (autonomous command signal) for causing the actuator 201 to generate power according to the phase, a command signal from the optional control means 4 and a command signal from the autonomous control means 7 And a drive current generating unit 5 that generates a current corresponding to the total command signal combined by the signal combining unit 8 and supplies the current to the actuator 201.

随意的制御手段14自体は、図3に示す第一の実施形態の随意的制御手段4と同じでよい。具体的には、図4(a) および図4(b) に示すように、神経伝達信号および筋電位信号に応じた随意的指令信号を生成し、神経伝達信号に応じたパルス電流をアクチュエータ201の駆動開始用のトリガー信号として使用することが好ましい。   The optional control means 14 itself may be the same as the optional control means 4 of the first embodiment shown in FIG. Specifically, as shown in FIGS. 4 (a) and 4 (b), an optional command signal corresponding to the nerve transmission signal and the myoelectric potential signal is generated, and a pulse current corresponding to the nerve transmission signal is generated by the actuator 201. It is preferably used as a trigger signal for starting driving.

自律的制御手段7は、図8および図9に示すように、物理量センサ13により検出された物理量とデータベース6に格納された各タスクの各フェーズの基準パラメータとを比較することにより、装着者1のタスクのフェーズを推定し、このフェーズに応じた動力をアクチュエータ201に発生させるための自律的指令信号を生成する機能を有する。従って、図8および図9に関する説明はそのまま自律的制御手段7に当てはまる。   As shown in FIGS. 8 and 9, the autonomous control means 7 compares the physical quantity detected by the physical quantity sensor 13 with the reference parameters of each phase of each task stored in the database 6, so that the wearer 1 And a function of generating an autonomous command signal for causing the actuator 201 to generate power corresponding to this phase. Therefore, the description regarding FIG. 8 and FIG. 9 applies to the autonomous control means 7 as it is.

信号合成手段8は随意的制御手段14からの随意的指令信号と自律的制御手段7からの自律的指令信号とを合成する。自律的制御では、例えばフェーズ毎に一定の動力を付与する。従って、合成された指令信号は、動作の開始から終了まで変化する随意的制御による動力と、フェーズ毎に一定の自律的制御による動力とを加算した動力とをアクチュエータ201に発生させる波形を有する。この指令信号合成の効果は後で詳述する実施例から明らかである。   The signal synthesizing means 8 synthesizes the optional command signal from the optional control means 14 and the autonomous command signal from the autonomous control means 7. In autonomous control, for example, constant power is applied for each phase. Therefore, the synthesized command signal has a waveform that causes the actuator 201 to generate power by voluntary control that changes from the start to the end of the operation and power obtained by adding power by a certain autonomous control for each phase. The effect of the command signal synthesis is apparent from the embodiments described in detail later.

(B) 制御方法および制御用プログラム
図12は第二の実施形態の制御方法を示す。この制御方法は、装着者1に対して動力を付与するアクチュエータ201を有した動作補助装着具2を人間1に装着し(ST701)、装着者1の生体信号を検出し(ST702)、装着者1および動作補助装着具2からなる人間機械系10の物理量を検出し(ST703)、検出した生体信号を用い、装着者1の意思に従った動力をアクチュエータ201に発生させるための随意的指令信号を生成し(ST704)、検出した物理量とデータベース6に格納された各タスクの各フェーズの基準パラメータとを比較することにより(ST705〜707)、装着者1のタスクおよびそのフェーズを推定するとともに、このタスクのフェーズに対応するハイブリッド比(随意的指令信号/自律的指令信号)を規定し(ST708)、このフェーズに応じた動力をアクチュエータ201に発生させるための自律的指令信号を生成し(ST709)、規定したハイブリッド比となるように随意的指令信号および自律的指令信号を合成して総指令信号を生成し(ST710)、この総指令信号に応じて生成した電流をの供給によりアクチュエータ201を駆動する(ST711)。
(B) Control Method and Control Program FIG. 12 shows a control method according to the second embodiment. In this control method, the human body 1 wears the motion assisting wearing tool 2 having the actuator 201 for applying power to the wearing person 1 (ST701), detects the biological signal of the wearing person 1 (ST702), and wears the wearing person. An optional command signal for detecting the physical quantity of the human machine system 10 comprising 1 and the motion assisting wearing device 2 (ST703), and generating the power according to the intention of the wearer 1 to the actuator 201 using the detected biological signal. (ST704), and by comparing the detected physical quantity with the reference parameter of each phase of each task stored in the database 6 (ST705 to 707), the task of the wearer 1 and its phase are estimated, The hybrid ratio (optional command signal / autonomous command signal) corresponding to the phase of this task is defined (ST708), and the actuator 201 generates autonomous power for this phase. A command signal is generated (ST709), and an arbitrary command signal and an autonomous command signal are combined so as to have a specified hybrid ratio to generate a total command signal (ST710), and a current generated according to this total command signal Is supplied to drive the actuator 201 (ST711).

ST701〜703は図10に示す第一の実施形態の例のST601〜603と同じであり、ST705〜708は図10に示す第一の実施形態の例のST607〜610と同じである。また生体信号に応じた随意的指令信号を生成する工程(ST704)は、具体的には、図10に示すST604〜606aからなるものが好ましい。   ST701 to 703 are the same as ST601 to 603 in the example of the first embodiment shown in FIG. 10, and ST705 to 708 are the same as ST607 to 610 in the example of the first embodiment shown in FIG. In addition, the step (ST704) of generating an optional command signal corresponding to the biological signal is preferably composed of ST604 to 606a shown in FIG.

なお、随意的指令信号は、第一の実施形態と同様に、神経伝達信号に応じたパルス電流および筋電位信号に応じた駆動電流を生成するためのものとするのが好ましい。また、ハイブリッド比は各タスクのフェーズ毎に、装着者1の動作を違和感なくアシストできるように予め設定され、データベース6に格納しておく。このハイブリッド比は、実測の物理量と基準パラメータとの比較によりフェーズが推定されると、上述したように制御装置20Aによって自動的に規定される。。この結果、所要のハイブリッド比となるように総指令信号が生成され、この総指令信号に応じた動力の付与により、種々の動作に応じた動作補助をスムーズに行うことができる。   The optional command signal is preferably used to generate a pulse current corresponding to the nerve transmission signal and a driving current corresponding to the myoelectric potential signal, as in the first embodiment. The hybrid ratio is set in advance so as to assist the operation of the wearer 1 without a sense of incongruity for each phase of each task, and is stored in the database 6. The hybrid ratio is automatically defined by the control device 20A as described above when the phase is estimated by comparing the actually measured physical quantity with the reference parameter. . As a result, a total command signal is generated so as to have a required hybrid ratio, and by applying power according to the total command signal, operation assistance corresponding to various operations can be smoothly performed.

上記制御を実行するには、装着者1の生体信号を検出する処理(ST702)と、装着者1および動作補助装着具2からなる人間機械系10の物理量を検出する処理(ST703)と、検出した生体信号を用いて装着者1の意思に従った動力をアクチュエータ201に発生させるための随意的指令信号を生成する処理(ST704)と、検出した物理量と各タスクの各フェーズの基準パラメータとを比較することにより(ST705〜707)、装着者1のタスクのフェーズを推測するとともに、このフェーズに対応するハイブリッド比を規定する処理(ST708)と、このフェーズに応じた動力をアクチュエータ201に発生させるための自律的指令信号を生成する処理(ST709)と、規定したハイブリッド比となるように随意的指令信号および前記自律的指令信号を合成して総指令信号を生成する処理(ST710)と、生成した総指令信号に応じて生成した電流の供給によりアクチュエータ201を駆動する処理(ST711)とを行わせる制御用プログラムを、装着式動作補助装置の制御装置20Bの記憶装置に格納する。   In order to execute the above-described control, a process of detecting a biological signal of the wearer 1 (ST702), a process of detecting a physical quantity of the human machine system 10 including the wearer 1 and the motion assisting wearing tool 2 (ST703), and detection A process (ST704) for generating an optional command signal for causing the actuator 201 to generate motive power according to the intention of the wearer 1 using the biological signal, and the detected physical quantity and the reference parameter of each phase of each task. By comparing (ST705 to 707), the phase of the task of the wearer 1 is inferred, the process of defining the hybrid ratio corresponding to this phase (ST708), and the actuator 201 generates power corresponding to this phase. For generating an autonomous command signal (ST709) for generating a total command signal by synthesizing the optional command signal and the autonomous command signal so that the specified hybrid ratio is obtained. Control program for performing the process (ST710) to perform the process (ST711) for driving the actuator 201 by supplying the current generated according to the generated total command signal, and storing the control program in the control device 20B of the wearable movement assist device Store in the device.

図13は第二の実施形態の装着式動作補助装置の別の例を示す。この装着式動作補助装置は、装着者1に対して動力を付与するアクチュエータ201を有した動作補助装着具2と、装着者1の生体信号を検出する生体信号センサ221と、装着者1の動作に関する物理量を検出する物理量センサ13と、生体信号センサ221により検出された生体信号を用い、装着1の意思に従った動力をアクチュエータ201に発生させるための指令信号(随意的指令信号)を生成する随意的制御手段24と、タスクとして分類した装着者1の各動作パターンを構成する一連の最小動作単位(フェーズ)の各々の基準パラメータを格納したデータベース6と、物理量センサ13により検出された物理量と基準パラメータとを比較することにより装着者1の動作パターンを推測し、それに応じた動力をアクチュエータ201に発生させるための指令信号(自律的指令信号)を生成する自律的制御手段7と、随意的指令信号および自律的指令信号を合成する指令信号合成手段8と、指令信号合成手段8により合成された総指令信号に応じた電流を生成し、アクチュエータ201に供給する駆動電流生成手段5とを備える。   FIG. 13 shows another example of the wearable movement assist device of the second embodiment. The wearable movement assisting device includes a movement assisting wearing tool 2 having an actuator 201 for applying power to the wearer 1, a biological signal sensor 221 that detects a biological signal of the wearer 1, and an operation of the wearer 1. Using the physical quantity sensor 13 for detecting the physical quantity related to the sensor and the biological signal detected by the biological signal sensor 221, a command signal (optional command signal) for causing the actuator 201 to generate power according to the intention of the wearing 1 is generated. Optional control means 24, database 6 storing each reference parameter of a series of minimum operation units (phases) constituting each operation pattern of wearer 1 classified as a task, and physical quantity detected by physical quantity sensor 13 A command signal for estimating the movement pattern of the wearer 1 by comparing with the reference parameter and generating the actuator 201 in accordance with the movement pattern An autonomous control means 7 for generating an autonomous command signal), a command signal synthesis means 8 for synthesizing an optional command signal and an autonomous command signal, and a current corresponding to the total command signal synthesized by the command signal synthesis means 8 Drive current generation means 5 that supplies the current to the actuator 201.

生体信号から装着者1の筋骨格系を動作させるための神経伝達信号および筋活動に伴う筋電位信号を取得することが好ましいが、これには第一の実施形態と同じ生体信号処理手段3(図13には2つ示されているが、1つを兼用するようにしても良い)を用いれば良いので、説明を省略する。またデータベース6、自律的制御手段17、信号合成手段8および駆動電流生成手段5は図11と同様のものを適用できる。また随意的制御手段24および自律的制御手段17は、物理量センサ13により検出された物理量とデータベース6に格納された基準パラメータとを比較することにより、装着者1が行おうとしているタスクのフェーズを推定し、このフェーズに応じたハイブリッド比およびパワーアシスト率となるように、随意的指令信号および自律的指令信号を生成する機能を有する。   It is preferable to acquire a nerve transmission signal for operating the musculoskeletal system of the wearer 1 and a myoelectric potential signal accompanying the muscle activity from the biological signal. For this, the same biological signal processing means 3 ( Although two are shown in FIG. 13, one may be used in combination, and the description thereof will be omitted. The database 6, the autonomous control means 17, the signal synthesis means 8, and the drive current generation means 5 can be the same as those shown in FIG. Further, the optional control means 24 and the autonomous control means 17 compare the physical quantity detected by the physical quantity sensor 13 with the reference parameter stored in the database 6, thereby determining the phase of the task that the wearer 1 is going to perform. It has a function to estimate and generate an optional command signal and an autonomous command signal so as to obtain a hybrid ratio and a power assist rate according to this phase.

図14および図15はこの装着式動作補助装置の制御方法の好ましい一例を示す。この制御方法では、装着者1に対して動力を付与するアクチュエータ201を有した動作補助装着具2を人間1に装着し(ST801)、装着者1の生体信号を検出し(ST802)、装着者1および動作補助装着具2からなる人間機械系10の物理量を検出し(ST803)、検出した物理量に応じた随意的指令信号を生成し(ST804)、検出した物理量と、データベース6に格納された各フェーズの基準パラメータとを比較することにより(ST805〜807)、装着者1が行おうとしているタスクのフェーズを推定するとともに、このフェーズに対応するハイブリッド比およびパワーアシスト率を規定し(ST808)、このフェーズに応じた動力でアクチュエータ201を駆動するための自律的指令信号を生成し(ST809)、規定したハイブリッド比およびパワーアシスト率となるように随意的指令信号および自律的指令信号を合成して総指令信号を生成し(ST810)、この総指令信号に応じて生成した電流の供給によりアクチュエータ201を駆動する(ST811)。   FIG. 14 and FIG. 15 show a preferred example of the control method of the wearable movement assist device. In this control method, a motion assisting wearing tool 2 having an actuator 201 for applying power to the wearer 1 is worn on a person 1 (ST801), a biological signal of the wearer 1 is detected (ST802), and the wearer is worn. 1 detects the physical quantity of the human machine system 10 composed of 1 and the motion assisting equipment 2 (ST803), generates an optional command signal corresponding to the detected physical quantity (ST804), and stores the detected physical quantity and the database 6 By comparing the reference parameters of each phase (ST805 to 807), the phase of the task that the wearer 1 is going to perform is estimated, and the hybrid ratio and the power assist rate corresponding to this phase are specified (ST808). Then, an autonomous command signal is generated to drive the actuator 201 with the power corresponding to this phase (ST809), and the hybrid ratio and the power assist rate are set as required. An intentional command signal and an autonomous command signal are combined to generate a total command signal (ST810), and the actuator 201 is driven by supplying a current generated according to the total command signal (ST811).

上記制御を実行するには、装着者1の生体信号を検出する処理(ST802)と、装着者1および動作補助装着具2からなる人間機械系10の物理量を検出する処理(ST803)と、検出した生体信号を用い、装着者1の意思に従った動力をアクチュエータ201に発生させるための随意的指令信号を生成する処理(ST804)と、検出した物理量と各フェーズの基準パラメータとを比較することにより(ST805〜807)、装着者1が行おうとしているフェーズを推定するとともに、このタスクのフェーズに対応するハイブリッド比およびパワーアシスト率を規定する処理(ST808)と、このタスクのフェーズに応じた動力をアクチュエータ201に発生させるための自律的指令信号を生成する処理(ST809)と、規定したハイブリッド比およびパワーアシスト率となるように、随意的指令信号と前記自律的指令信号を合成して総指令信号を生成する処理(ST810)と、生成した総指令信号に応じて生成した電流の供給によりアクチュエータ201を駆動する処理(ST811)とを行わせる制御用プログラムを、装着式動作補助装置の制御装置20Cの記憶装置に格納する。   In order to execute the above control, a process of detecting a biological signal of the wearer 1 (ST802), a process of detecting a physical quantity of the human machine system 10 including the wearer 1 and the motion assisting wearing tool 2 (ST803), and detection The process (ST804) for generating an arbitrary command signal for generating the power according to the intention of the wearer 1 using the biosignal thus generated is compared with the detected physical quantity and the reference parameter of each phase. (ST805 to 807) to estimate the phase that the wearer 1 is going to perform, and to define the hybrid ratio and power assist rate corresponding to the phase of this task (ST808), and according to the phase of this task Processing to generate an autonomous command signal for generating power to the actuator 201 (ST809), and to ensure that the specified hybrid ratio and power assist rate are achieved. A process of generating a total command signal by combining a static command signal and the autonomous command signal (ST810), and a process of driving the actuator 201 by supplying a current generated according to the generated total command signal (ST811) The control program to be executed is stored in the storage device of the control device 20C of the wearable movement assist device.

[3] その他の機能
始動時の駆動制御
(1) 反射動作の場合
例えば背後から急に押された場合、そのままでは倒れてしまうので、反射的に片足を前に出して体を支えなければならない。しかし単に片足を前に出すという制御を行うと、片足を急に前に押したことになるので、装着者は本能的に片足を突っ張り、片足を前に出す動作がぎこちなくなる。このような場合、図16に示すように、動作方向にアクチュエータ201を駆動させる電流91を供給する直前に、ごく短時間(0.01秒から0.3秒程度)反対方向の電流92を供給してアクチュエータ201を反対方向に駆動させると、装着者1は反射的に片足を前に出そうとし、動作はかえってスムーズになる。このような反射神経を利用する制御は通常のロボットではあり得ず、本発明の装着式動作補助装置のように装着者1が装着するものの場合に初めて効果を発揮するものである。
[3] Drive control when starting other functions
(1) In the case of reflexive action For example, if it is pushed suddenly from behind, it will fall down as it is, so you must support your body with one foot in a reflective manner. However, if the control is performed such that one leg is simply moved forward, one foot is suddenly pushed forward, so that the wearer instinctively pushes one leg and makes the movement of pushing one leg forward awkward. In such a case, as shown in FIG. 16, immediately before supplying the current 91 for driving the actuator 201 in the operation direction, the current 92 in the opposite direction is supplied for a very short time (about 0.01 to 0.3 seconds). When the is driven in the opposite direction, the wearer 1 tries to put one leg forward in a reflective manner, and the operation becomes rather smooth. Such control using reflexes cannot be performed by a normal robot, and is effective for the first time when the wearer 1 wears the wearable movement assist device of the present invention.

(2) 通常の動作の場合
歩行のような通常の動作の場合でも、足を上昇させる自律的制御を行うと、突然足を押されたような感じになることがある。このような違和感を取り除くためには、やはり始動時に反対方向の電流92を供給してアクチュエータ201を反対方向に駆動させる、その後で動作方向にアクチュエータ201を駆動させる電流91を供給すると、違和感なくスムーズな動きをすることができる。
(2) In the case of normal movement Even in the case of normal movement such as walking, if you perform autonomous control that raises your foot, you may feel as if your foot has been suddenly pushed. In order to eliminate such a sense of incongruity, it is possible to smoothly drive the actuator 201 in the opposite direction by supplying the current 92 in the opposite direction at the start, and then supply the current 91 to drive the actuator 201 in the operation direction. Can move smoothly.

本発明を以下の実施例により更に詳細に説明するが、本発明はこれらの例に限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

実施例1
この実施例は第一の実施形態の効果を示すためのものである。装着者がリラックスして椅子に座っている状態から膝関節の伸展動作を行った場合に、神経伝達信号をトリガー信号として用いる条件(図17)、および神経伝達信号をトリガー信号として用いない条件、つまり筋電位信号に応じた駆動電流のみをアクチュエータ201bに供給する条件で(図18)、それぞれ膝のアクチュエータ201bのトルクを測定した。
Example 1
This example is for showing the effect of the first embodiment. When the wearer is relaxed and sitting on a chair and the knee joint is extended, a condition for using the nerve transmission signal as a trigger signal (FIG. 17), and a condition for not using the nerve transmission signal as a trigger signal, That is, the torque of the knee actuator 201b was measured under the condition that only the drive current corresponding to the myoelectric potential signal was supplied to the actuator 201b (FIG. 18).

前者の条件の場合、実測した生体信号から得られたトルクの先端部に、神経伝達信号に対応する所定の倍率のパルス電流を重畳したトルクが得られた。膝の回転角θの変化開始は、生体信号の検出から0.2秒後であった。これに対して、後者の条件の場合、生体信号の波形のままのトルクが得られた。このトルクの立ち上がりは緩やかであるので、膝の回転角θの変化開始まで生体信号の検出から0.3秒かかった。これらの結果から、神経伝達信号をトリガー信号として用いて、所定の幅のパルス電流(矩形波)を生体信号の先端部に生成することにより、アクチュエータ201bの駆動開始を素早くできることが分かる。   In the case of the former condition, a torque was obtained by superimposing a pulse current of a predetermined magnification corresponding to the nerve transmission signal on the tip of the torque obtained from the measured biological signal. The start of the change in the knee rotation angle θ was 0.2 seconds after the detection of the biological signal. On the other hand, in the case of the latter condition, the torque with the waveform of the biological signal was obtained. Since the rise of this torque is slow, it took 0.3 seconds from the detection of the biological signal until the change of the knee rotation angle θ started. From these results, it can be seen that the drive of the actuator 201b can be started quickly by generating a pulse current (rectangular wave) having a predetermined width at the tip of the biological signal using the nerve transmission signal as a trigger signal.

実施例2
この実施例は第二の実施形態の効果を示すためのものである。装着者が椅子に座った状態から立ち上がる動作を、自律的制御および随意的制御の組合せにより動力付与する場合を示した。図19の(c) は自律的制御による指令信号に応じた膝アクチュエータのトルクを示し、(d)は随意的制御による指令信号に応じた膝アクチュエータのトルクを示し、(e)は自律的制御による指令信号と随意的制御による指令信号とを合成した総指令信号に応じた膝アクチュエータのトルクを示す。なお、図19の(a)はフェーズ番号を示し、(b) は膝の回転角θを示す。
Example 2
This example is for showing the effect of the second embodiment. The case where a wearer is powered by a combination of autonomous control and voluntary control is shown in which the wearer stands up from a sitting state. 19 (c) shows the torque of the knee actuator according to the command signal by autonomous control, (d) shows the torque of the knee actuator according to the command signal by voluntary control, and (e) shows the autonomous control. The torque of the knee actuator in accordance with the total command signal obtained by synthesizing the command signal by and the command signal by optional control is shown. 19A shows the phase number, and FIG. 19B shows the knee rotation angle θ.

また図20は、装着者が椅子に座った状態から立ち上がり動作を途中まで行った後に、座り込んだ際に、自律的制御および随意的制御の組合せにより動力付与する場合を示したものである。図20の場合も、(a)はフェーズ番号を示し、(b) は膝の回転角θを示す。   FIG. 20 shows a case where power is applied by a combination of autonomous control and voluntary control when the wearer sits down after sitting up in a chair and then standing up. Also in FIG. 20, (a) shows the phase number, and (b) shows the knee rotation angle θ.

図19の(e)のグラフから明らかなように、実際の膝アクチュエータのトルクはフェーズ2の立ち上がりで急激に増大し、フェーズ3の立ち下がりで急激に低下した。椅子からの立ち上がりに対応するフェーズ2の先端で、トルクが急激に増大したため、膝アクチュエータは装着者の意思に遅れなく回動を開始し、装着者は十分にパワーアシスト感を持つとともに、違和感なく立ち上がり動作をすることができた。またフェーズ3の立ち下がりでは、自律的制御によるトルクが速やかに0になることにより、装着者を不用意に押し出そうとするトルクを装着者に付与する事態を防止し、装着者に与える違和感を抑えることができる。その結果、フェーズ1〜4の全工程において、装着者は十分なパワーアシスト感を持って、違和感なくスムーズに動作を行うことができた。   As is clear from the graph of FIG. 19 (e), the actual knee actuator torque increased rapidly at the rise of phase 2 and rapidly decreased at the fall of phase 3. At the tip of Phase 2 corresponding to the rise from the chair, the torque suddenly increased, so the knee actuator started to rotate without delay to the wearer's intention, and the wearer had a sufficient power assist feeling and no discomfort. I was able to start up. Also, at the fall of Phase 3, the torque by autonomous control quickly becomes 0, thereby preventing the situation where the wearer is inadvertently forced to push out the wearer and preventing the wearer from feeling uncomfortable. Can be suppressed. As a result, in all the processes of Phases 1 to 4, the wearer had a sufficient power assist feeling and was able to operate smoothly without a sense of incongruity.

これに対して、図19の(d) に示す随意的制御による指令信号に応じたトルクでは、立ち上がりが不十分であるので、膝アクチュエータの始動を違和感のない程度に素早くすることができない。また図19の(c) に示す自律的制御による指令信号に応じたトルク、つまり一定量のトルクでは、動作の過程で変化するトルクと異なるので、やはり、違和感のないスムーズな一連の動作を行うことができない。すなわち、上述した随意的制御および自律的制御の組合せによってのみ、素早い始動と装着者の動作にマッチしたトルクの両方が得られることが分かる。   On the other hand, with the torque according to the command signal by the optional control shown in (d) of FIG. 19, the start-up is insufficient, so that the start of the knee actuator cannot be made as quickly as possible. In addition, the torque according to the command signal by autonomous control shown in (c) of FIG. 19, that is, a constant amount of torque is different from the torque that changes in the process of operation, so a smooth series of operations without any discomfort is also performed. I can't. That is, it can be seen that only a combination of the above-described voluntary control and autonomous control can provide both a quick start and a torque that matches the wearer's movement.

一方、立ち上がりかけた後直ぐに座り込んだ場合には、図20の(e)のグラフから明らかなように、椅子からの立ち上がりに対応するフェーズ2の先端で、トルクが急激に増大したため、膝アクチュエータは装着者の意思に遅れなく回動を開始し、装着者は十分にパワーアシスト感を持つとともに、違和感なく立ち上がり動作をすることができた。またフェーズ3の途中においては、生体信号の生成が抑制されるため、随意的制御によるトルクが減少し、自律的制御による立ち上がる方向のトルクが付加されても、その影響は相殺され、全体のトルクは椅子に座る動作の際に違和感となるほどには大きくなかった。この結果、動作(タスク)を急に変更しても、装着者は十分なパワーアシスト感を持って、違和感なくスムーズに動作を行うことができた。   On the other hand, when sitting down immediately after getting up, the torque suddenly increased at the tip of Phase 2 corresponding to the rising from the chair, as is apparent from the graph of FIG. 20 (e). The wearer started to turn without delay, and the wearer had a sufficient power assist feeling and was able to stand up without feeling uncomfortable. In the middle of Phase 3, the generation of biological signals is suppressed, so the torque due to voluntary control is reduced, and even if the torque in the rising direction due to autonomous control is added, the effect is offset and the overall torque is reduced. Was not big enough to make you feel uncomfortable when sitting in a chair. As a result, even if the operation (task) is suddenly changed, the wearer has a sufficient power assist feeling and can operate smoothly without a sense of incongruity.

これに対して、図20の(d) に示す随意的制御による指令信号に応じたトルクでは、立ち上がりが不十分であるので、膝アクチュエータの始動を違和感のない程度に素早くすることができない。また図20の(c) に示す自律的制御による指令信号に応じたトルクでは、フェーズ3からフェーズ1に急に変化する際に、一定のトルクが動作を妨げる方向に作用し、違和感がある。このように、急に一連の動作でない動作をする場合でも、上述した随意的制御および自律的制御の組合せにより、違和感を抑えられることが分かる。   On the other hand, since the start-up is insufficient with the torque according to the command signal by the optional control shown in FIG. 20 (d), it is not possible to start the knee actuator as quickly as possible. Further, when the torque according to the command signal by the autonomous control shown in (c) of FIG. 20 is suddenly changed from phase 3 to phase 1, a constant torque acts in the direction of hindering the operation, and there is a sense of incongruity. Thus, it can be seen that even when the operation is not performed in a series of operations suddenly, a sense of incongruity can be suppressed by the combination of the above-described optional control and autonomous control.

本発明を上記実施形態および実施例により詳細に説明したが、本発明はそれらに限定されるものではなく、本発明の技術的思想の範囲内で種々の変更を施すことができる。   Although the present invention has been described in detail with reference to the above embodiments and examples, the present invention is not limited thereto, and various modifications can be made within the scope of the technical idea of the present invention.

装着式動作補助装置の全体構成を示す概略図である。It is the schematic which shows the whole structure of a mounting | wearing type movement assistance apparatus. 動作補助装着具を示す斜視図である。It is a perspective view which shows a movement assistance mounting tool. 第一の実施形態の装着式動作補助装置を示すブロック図である。It is a block diagram which shows the mounting | wearing type movement assistance apparatus of 1st embodiment. 生体信号処理手段の構成およびそれによる生体信号(神経伝達信号と筋電位信号が分離している)の処理の一例を示す概略図である。It is the schematic which shows an example of a structure of a biological signal processing means, and a process of the biological signal (the nerve transmission signal and myoelectric potential signal have isolate | separated) by it. 生体信号処理手段の構成およびそれによる生体信号(神経伝達信号と筋電位信号が重畳している)の処理の他の例を示す概略図である。It is the schematic which shows the other example of a process of the structure of a biological signal processing means, and the biological signal (a nerve transmission signal and a myoelectric potential signal are superimposed) by it. 第一の実施形態の制御方法を示すフローチャートである。It is a flowchart which shows the control method of 1st embodiment. 神経伝達信号および筋電位信号が分離している生体信号から得られる駆動電流の一例を示す概略図である。It is the schematic which shows an example of the drive current obtained from the biosignal which the nerve transmission signal and the myoelectric potential signal have isolate | separated. 神経伝達信号および筋電位信号が重畳している生体信号から得られる駆動電流の他の例を示す概略図である。It is the schematic which shows the other example of the drive current obtained from the biological signal on which the nerve transmission signal and the myoelectric potential signal are superimposed. 第一の実施形態の装着式動作補助装置においてパワーアシスト率を制御する例を示すブロック図である。It is a block diagram which shows the example which controls a power assist rate in the mounting | wearing type movement assistance apparatus of 1st embodiment. タスクおよびフェーズの例を示す概略図である。It is the schematic which shows the example of a task and a phase. データベースに格納されたタスクおよびフェーズの推定方法を示す概略図である。It is the schematic which shows the estimation method of the task and phase which were stored in the database. 第一の実施形態の制御方法においてパワーアシスト率の制御を説明するためのフローチャートである。It is a flowchart for demonstrating control of a power assist rate in the control method of 1st embodiment. 第二の実施形態の装着式動作補助装置を示すブロック図である。It is a block diagram which shows the mounting | wearing type movement assistance apparatus of 2nd embodiment. 第二の実施形態の制御方法を示すフローチャートである。It is a flowchart which shows the control method of 2nd embodiment. 第二の実施形態の装着式動作補助装置においてパワーアシスト率を制御する例を示すブロック図である。It is a block diagram which shows the example which controls a power assist rate in the mounting | wearing type movement assistance apparatus of 2nd embodiment. 第二の実施形態の制御方法においてパワーアシスト率の制御を説明するためのフローチャートである。It is a flowchart for demonstrating control of a power assist rate in the control method of 2nd embodiment. 制御装置の構成を示すブロック図である。It is a block diagram which shows the structure of a control apparatus. 駆動電流生成の別の改良例を示す概略図である。It is the schematic which shows another example of improvement of drive current generation. 実施例1で神経伝達信号に応じたパルス電流を付加した場合における膝アクチュエータのトルクを示すグラフである。It is a graph which shows the torque of a knee actuator at the time of adding the pulse current according to the nerve transmission signal in Example 1. 実施例1で神経伝達信号に応じたパルス電流を付加しない場合における膝アクチュエータのトルクを示すグラフである。It is a graph which shows the torque of a knee actuator in the case where the pulse current according to a nerve transmission signal is not added in Example 1. 実施例2において随意的指令信号および自律的指令信号を合成する制御により得られた膝アクチュエータのトルクの一例を示すグラフである。It is a graph which shows an example of the torque of the knee actuator obtained by control which synthesizes an arbitrary command signal and an autonomous command signal in Example 2. 実施例2において随意的指令信号および自律的指令信号を合成する制御により得られた膝アクチュエータのトルクの別の例を示すグラフである。It is a graph which shows another example of the torque of the knee actuator obtained by control which synthesize | combines an arbitrary command signal and an autonomous command signal in Example 2. FIG.

符号の説明Explanation of symbols

1・・・人間(装着者)
2・・・動作補助装着具
3・・・生体信号処理手段
4,14,24・・・随意的制御手段
5・・・駆動電流生成手段
6・・・データベース
7,17・・・自律的制御手段
8・・・信号合成手段
10・・・人間機械系
13・・・物理量センサ
20,20A,20B,20C・・・制御装置
21・・・電源
201・・・アクチュエータ
202・・・アーム
203・・・ジョイント
221・・・生体信号センサ
222・・・重心センサ
1 ... Human (wearer)
2 ... Motion assisting device 3 ... Biological signal processing means 4, 14, 24 ... Optional control means 5 ... Drive current generating means 6 ... Databases 7, 17 ... Autonomous control Means 8 ... Signal synthesis means
10 ... Human machine system
13 ... Physical quantity sensor
20, 20A, 20B, 20C ... Control device
21 ... Power supply
201 ... Actuator
202 ... arm
203 ... Joint
221 ・ ・ ・ Biosignal sensor
222 ・ ・ ・ Center of gravity sensor

Claims (24)

装着者の動作を補助あるいは代行する装着式動作補助装置であって、
前記装着者に対して動力を付与するアクチュエータを有した動作補助装着具と、
前記装着者の生体信号を検出する生体信号センサと、
前記装着者の筋骨格系を動作させるための神経伝達信号および筋活動に伴う筋電位信号を、前記生体信号センサにより検出された生体信号から取得する生体信号処理手段と、
前記生体信号処理手段により取得された神経伝達信号および筋電位信号を用い、前記装着者の意思に従った動力を前記アクチュエータに発生させるための指令信号を生成する随意的制御手段と、
前記随意的制御手段により生成された指令信号に基づいて、前記神経伝達信号に応じた電流および前記筋電位信号に応じた電流をそれぞれ生成し、前記アクチュエータに供給する駆動電流生成手段とを備えることを特徴とする装着式動作補助装置。
A wearable movement assist device that assists or acts on behalf of the wearer,
An operation assisting wearing device having an actuator for applying power to the wearer;
A biological signal sensor for detecting a biological signal of the wearer;
A biological signal processing means for acquiring a nerve transmission signal for operating the wearer's musculoskeletal system and a myoelectric potential signal associated with muscle activity from the biological signal detected by the biological signal sensor;
Optional control means for generating a command signal for causing the actuator to generate power according to the intention of the wearer, using a nerve transmission signal and a myoelectric potential signal acquired by the biological signal processing means;
Drive current generation means for generating a current corresponding to the nerve transmission signal and a current corresponding to the myoelectric potential signal based on the command signal generated by the optional control means, and supplying the current to the actuator. Wearable motion assist device characterized by
請求項1に記載の装着式動作補助装置において、
前記装着者の動作に関する物理量を検出する物理量センサを備えることを特徴とする装着式動作補助装置。
The wearable motion assist device according to claim 1,
A wearable motion assisting device comprising a physical quantity sensor that detects a physical quantity related to the movement of the wearer.
請求項1又は2に記載の装着式動作補助装置において、
前記生体信号処理手段は、前記生体信号を増幅する手段と、前記生体信号から前記神経伝達信号を抽出する第一のフィルタと、前記生体信号から前記筋電位信号を抽出する第二のフィルタとを有することを特徴とする装着式動作補助装置。
In the wearing type movement auxiliary device according to claim 1 or 2,
The biological signal processing means includes means for amplifying the biological signal, a first filter for extracting the nerve transmission signal from the biological signal, and a second filter for extracting the myoelectric potential signal from the biological signal. A wearable motion assisting device comprising:
請求項1〜3のいずれかに記載の装着式動作補助装置において、
前記駆動電流生成手段は、前記神経伝達信号に応じて生成したパルス電流と前記筋電位信号に実質的に比例するように生成した電流との総電流を前記アクチュエータに供給するとともに、前記パルス電流の供給により前記アクチュエータの動作を開始させることを特徴とする装着式動作補助装置。
In the wearing type movement auxiliary device according to any one of claims 1 to 3,
The drive current generation means supplies a total current of a pulse current generated according to the nerve transmission signal and a current generated so as to be substantially proportional to the myoelectric potential signal to the actuator, A wearable motion assisting device that starts operation of the actuator upon supply.
請求項4に記載の装着式動作補助装置において、
前記駆動電流生成手段は、前記アクチュエータへの電流の供給を開始する際に、前記アクチュエータを駆動可能な電流の下限値よりも大きくなるように、前記パルス電流あるいは前記総電流を生成することを特徴とする装着式動作補助装置。
The wearable motion assist device according to claim 4,
The drive current generating means generates the pulse current or the total current so as to be larger than a lower limit value of a current capable of driving the actuator when supply of current to the actuator is started. Wearable motion assist device.
請求項2〜5のいずれかに記載の装着式動作補助装置において、
タスクとして分類した装着者の動作パターンを構成する一連の最小動作単位(フェーズ)の各々の基準パラメータと、前記アクチュエータによる動力付与率(パワーアシスト率)とを所要の対応関係となるように格納したデータベースを備え、
前記随意的制御手段は、前記物理量センサにより検出された物理量と前記データベースに格納された基準パラメータとを比較することにより、前記装着者が行おうとしているタスクのフェーズを推定し、このフェーズに応じたパワーアシスト率を前記対応関係に基づいて規定し、このパワーアシスト率となる動力を前記アクチュエータに発生させるための指令信号を生成することを特徴とする装着式動作補助装置。
In the wearing type movement auxiliary device according to any one of claims 2 to 5,
The reference parameters of each of a series of minimum operation units (phases) constituting the operation pattern of the wearer classified as a task and the power application rate (power assist rate) by the actuator are stored in a required correspondence relationship. With a database,
The optional control means estimates the phase of the task that the wearer is going to perform by comparing the physical quantity detected by the physical quantity sensor with a reference parameter stored in the database, and according to this phase A power assist rate is defined based on the correspondence relationship, and a command signal is generated to cause the actuator to generate motive power at the power assist rate.
請求項1〜6のいずれかに記載の装着式動作補助装置において、
前記駆動電流生成手段は、前記装着者が反射神経によって動作する場合に、当該動作の反対方向に前記アクチュエータを駆動するための電流を所定の時間だけ供給した後に、前記動作の方向に前記アクチュエータを駆動するための電流を供給することを特徴とする装着式動作補助装置。
In the wearing type movement auxiliary device according to any one of claims 1 to 6,
The drive current generating means supplies a current for driving the actuator in a direction opposite to the operation for a predetermined time when the wearer operates by reflexes, and then moves the actuator in the operation direction. A wearable motion assisting device that supplies a current for driving.
装着者の動作を補助あるいは代行する装着式動作補助装置であって、
前記装着者に対して動力を付与するアクチュエータを有した動作補助装着具と、
前記装着者の生体信号を検出する生体信号センサと、
前記装着者の動作に関する物理量を検出する物理量センサと、
前記生体信号センサにより検出された生体信号を用い、前記装着者の意思に従った動力を前記アクチュエータに発生させるための指令信号を生成する随意的制御手段と、
タスクとして分類した装着者の動作パターンを構成する一連の最小動作単位(フェーズ)の各々の基準パラメータを格納したデータベースと、
前記物理量センサにより検出された物理量と前記データベースに格納された基準パラメータとを比較することにより、前記装着者のタスクのフェーズを推定し、このフェーズに応じた動力を前記アクチュエータに発生させるための指令信号を生成する自律的制御手段と、
前記随意的制御手段からの指令信号および前記自律的制御手段からの指令信号を合成する信号合成手段と、
前記信号合成手段により合成された総指令信号に応じた総電流を生成し、前記アクチュエータに供給する駆動電流生成手段とを備えることを特徴とする装着式動作補助装置。
A wearable movement assist device that assists or acts on behalf of the wearer,
An operation assisting wearing device having an actuator for applying power to the wearer;
A biological signal sensor for detecting a biological signal of the wearer;
A physical quantity sensor for detecting a physical quantity related to the movement of the wearer;
Optional control means for generating a command signal for causing the actuator to generate power according to the intention of the wearer, using a biological signal detected by the biological signal sensor;
A database that stores reference parameters for each of a series of minimum motion units (phases) constituting the motion pattern of the wearer classified as a task;
A command for estimating a phase of the wearer's task by comparing a physical quantity detected by the physical quantity sensor with a reference parameter stored in the database, and causing the actuator to generate power corresponding to the phase. An autonomous control means for generating a signal;
A signal synthesis means for synthesizing a command signal from the optional control means and a command signal from the autonomous control means;
A mounting-type motion assisting device, comprising: drive current generating means for generating a total current corresponding to the total command signal synthesized by the signal synthesizing means and supplying the total current to the actuator.
請求項8に記載の装着式動作補助装置において、
前記データベースは、前記随意的制御手段からの指令信号と前記自律的制御手段からの指令信号との比(ハイブリッド比)を、前記フェーズの基準パラメータと所要の対応関係となるように格納し、
前記信号合成手段は、前記自律的制御手段により推定されたタスクのフェーズに応じ、前記対応関係に基づいて規定されるハイブリッド比となるように、前記随意的制御手段からの指令信号および前記自律的制御手段からの指令信号を合成することを特徴とする装着式動作補助装置。
The wearable motion assist device according to claim 8,
The database stores the ratio (hybrid ratio) between the command signal from the optional control means and the command signal from the autonomous control means so as to have a required correspondence with the reference parameter of the phase,
The signal synthesizing unit is configured to output a command signal from the voluntary control unit and the autonomous unit so that a hybrid ratio defined based on the correspondence relationship is obtained according to a task phase estimated by the autonomous control unit. A wearable motion assisting device that synthesizes a command signal from a control means.
請求項8又は9に記載の装着式動作補助装置において、
前記装着者の筋骨格系を動作させるための神経伝達信号および筋活動に伴う筋電位信号を、前記生体信号センサにより検出された生体信号から取得する生体信号処理手段を備え、
前記駆動電流生成手段は、前記生体信号処理手段により取得された神経伝達信号に応じて生成したパルス電流の供給により、前記アクチュエータの動作を開始させることを特徴とする装着式動作補助装置。
In the wearing type movement auxiliary device according to claim 8 or 9,
A biological signal processing means for acquiring a nerve transmission signal for operating the wearer's musculoskeletal system and a myoelectric potential signal accompanying muscle activity from a biological signal detected by the biological signal sensor;
The drive-type motion assisting device, wherein the drive current generating unit starts the operation of the actuator by supplying a pulse current generated according to a nerve transmission signal acquired by the biological signal processing unit.
請求項10に記載の装着式動作補助装置において、
前記駆動電流生成手段は、前記アクチュエータへの電流の供給を開始する際に、前記アクチュエータを駆動可能な電流の下限値よりも大きくなるように、前記パルス電流あるいは前記総電流を生成することを特徴とする装着式動作補助装置。
In the wearable movement assist device according to claim 10,
The drive current generating means generates the pulse current or the total current so as to be larger than a lower limit value of a current capable of driving the actuator when supply of current to the actuator is started. Wearable motion assist device.
請求項8〜11のいずれかに記載の装着式動作補助装置において、
前記データベースは、前記フェーズの各々の基準パラメータと前記アクチュエータによる動力付与率(パワーアシスト率)とを所要の対応関係となるように格納し、
前記信号合成手段は、前記自律的制御手段により推定されたタスクのフェーズに応じたパワーアシスト率を前記対応関係に基づいて規定し、このパワーアシスト率となるように前記随意的制御手段からの指令信号および前記自律的制御手段からの指令信号を合成することを特徴とする装着式動作補助装置。
The wearing type movement auxiliary device according to any one of claims 8 to 11,
The database stores the reference parameters of each phase and the power application rate (power assist rate) by the actuator so as to have a required correspondence relationship,
The signal synthesizing means defines a power assist rate according to the phase of the task estimated by the autonomous control means based on the correspondence relationship, and commands from the optional control means so as to be the power assist rate. A wearable motion assisting device that synthesizes a signal and a command signal from the autonomous control means.
請求項8〜12のいずれかに記載の装着式動作補助装置において、
前記駆動電流生成手段は、前記装着者が反射神経によって動作する場合に、当該動作の反対方向に前記アクチュエータを駆動するための電流を所定の時間だけ供給した後に、前記動作の方向に前記アクチュエータを駆動するための電流を供給することを特徴とする装着式動作補助装置。
The wearing type movement auxiliary device according to any one of claims 8 to 12,
The drive current generating means supplies a current for driving the actuator in a direction opposite to the operation for a predetermined time when the wearer operates by reflexes, and then moves the actuator in the operation direction. A wearable motion assisting device that supplies a current for driving.
装着者の動作を補助あるいは代行する装着式動作補助装置を制御する方法であって、
前記装着者に対して動力を付与するアクチュエータを有した動作補助装着具が前記装着者に装着された状態において、
前記装着者の生体信号を検出し、
検出した生体信号から、前記装着者の筋骨格系を動作させるための神経伝達信号および筋活動に伴う筋電位信号を取得し、
取得した神経伝達信号および筋電位信号を用い、前記装着者の意思に従った動力を前記アクチュエータに発生させるための随意的指令信号を生成し、
生成した随意的指令信号に基づいて、前記神経伝達信号に応じた電流および前記筋電位信号に応じた電流を前記アクチュエータにそれぞれ供給することを特徴とする装着式動作補助装置の制御方法。
A method of controlling a wearable motion assist device that assists or substitutes for a wearer's motion,
In a state where an operation assisting wearing device having an actuator for applying power to the wearer is worn by the wearer,
Detecting a biological signal of the wearer,
From the detected biological signal, obtain a nerve transmission signal for operating the wearer's musculoskeletal system and a myoelectric potential signal accompanying muscle activity,
Using the acquired nerve transmission signal and myoelectric potential signal, generating an optional command signal for causing the actuator to generate power according to the intention of the wearer,
A control method for a wearable motion assisting device, wherein a current corresponding to the nerve transmission signal and a current corresponding to the myoelectric potential signal are respectively supplied to the actuator based on the generated optional command signal.
請求項14に記載の装着式動作補助装置の制御方法において、
前記神経伝達信号に応じて生成したパルス電流と前記筋電位信号に実質的に比例するように生成した電流との総電流を前記アクチュエータに供給するとともに、前記パルス電流の供給により前記アクチュエータの動作を開始させることを特徴とする装着式動作補助装置の制御方法。
In the control method of the wearable movement assist device according to claim 14,
A total current of a pulse current generated according to the nerve transmission signal and a current generated so as to be substantially proportional to the myoelectric potential signal is supplied to the actuator, and the operation of the actuator is performed by supplying the pulse current. A control method for a wearable motion assisting device, characterized by starting.
請求項15に記載の装着式動作補助装置の制御方法において、
前記アクチュエータへの電流の供給を開始する際に、前記アクチュエータを駆動可能な電流の下限値よりも大きくなるように、前記パルス電流に応じた電流あるいは総電流を供給することを特徴とする装着式動作補助装置の制御方法。
In the control method of the wearable movement assist device according to claim 15,
When the supply of current to the actuator is started, a current corresponding to the pulse current or a total current is supplied so as to be larger than a lower limit value of a current capable of driving the actuator. A method for controlling the movement assist device.
請求項14〜16のいずれかに記載の装着式動作補助装置の制御方法において、
さらに前記装着者の動作に関する物理量を検出し、検出した物理量とタスクとして分類した装着者の各動作パターンを構成する一連の最小動作単位(フェーズ)の各々の基準パラメータとを比較することにより、前記装着者が行おうとしているタスクのフェーズを推定するとともに、このフェーズに応じた所要の動力付与率(パワーアシスト率)となる動力を前記アクチュエータに発生させるための随意的指令信号を生成し、この随意的指令信号に応じた電流を生成し、前記アクチュエータに供給することを特徴とする装着式動作補助装置の制御方法。
In the control method of the wearing type movement auxiliary device according to any one of claims 14 to 16,
Furthermore, by detecting a physical quantity related to the wearer's movement, and comparing the detected physical quantity with each reference parameter of a series of minimum movement units (phases) constituting each movement pattern of the wearer classified as a task, Estimate the phase of the task that the wearer is going to perform, and generate an optional command signal to cause the actuator to generate the power that provides the required power application rate (power assist rate) according to this phase. A method for controlling a wearable motion assisting device, wherein a current corresponding to an optional command signal is generated and supplied to the actuator.
請求項14〜17のいずれかに記載の装着式動作補助装置の制御方法において、
前記装着者が反射神経によって動作する場合に、当該動作の反対方向に前記アクチュエータを駆動させるための電流を所定の時間だけ供給した後に、前記動作の方向に前記アクチュエータを駆動させるための電流を供給することを特徴とする装着式動作補助装置の制御方法。
In the control method of the wearable movement assist device according to any one of claims 14 to 17,
When the wearer operates by reflexes, after supplying a current for driving the actuator in a direction opposite to the operation for a predetermined time, a current for driving the actuator in the direction of operation is supplied. A control method for a wearable motion assisting device.
装着者の動作を補助あるいは代行する装着式動作補助装置を制御する方法であって、
前記装着者に対して動力を付与するアクチュエータを有した動作補助装着具が前記装着者に装着された状態において、
前記装着者の生体信号および前記装着者の動作に関する物理量をそれぞれ検出し、
検出した生体信号を用いて、前記装着者の意思に従った動力を前記アクチュエータに発生させるための随意的指令信号を生成し、
検出した物理量とタスクとして分類した装着者の動作パターンを構成する一連の最小動作単位(フェーズ)の各々の基準パラメータとを比較することにより、前記装着者が行おうとしているタスクのフェーズを推定し、このフェーズに応じた動力を前記アクチュエータに発生させるための自律的指令信号を生成し、
これら生成した随意的指令信号および自律的指令信号を合成し、
合成した総指令信号に応じた電流を生成し、前記アクチュエータに供給することを特徴とする装着式動作補助装置の制御方法。
A method of controlling a wearable motion assist device that assists or substitutes for a wearer's motion,
In a state where an operation assisting wearing device having an actuator for applying power to the wearer is worn by the wearer,
Detecting physical quantities of the wearer's biological signal and the wearer's motion,
Using the detected biological signal, generate an optional command signal for causing the actuator to generate power according to the wearer's intention,
The phase of the task that the wearer is going to perform is estimated by comparing the detected physical quantity with the reference parameters of each of a series of minimum movement units (phases) that constitute the movement pattern of the wearer classified as a task. , Generating an autonomous command signal for causing the actuator to generate power according to this phase,
Combining these generated voluntary command signals and autonomous command signals,
A method for controlling a wearable motion assisting device, wherein a current corresponding to the synthesized total command signal is generated and supplied to the actuator.
請求項19に記載の装着式動作補助装置の制御方法において、
前記随意的指令信号と前記自律的指令信号との比(ハイブリッド比)を、前記フェーズの各々の基準パラメータと所要の対応関係となるように予め設定しておき、前記推定したタスクのフェーズに応じたハイブリッド比を前記対応関係に基づいて規定し、このハイブリッド比となるように前記総指令信号を合成することを特徴とする装着式動作補助装置の制御方法。
In the control method of the wearable movement assist device according to claim 19,
A ratio (hybrid ratio) between the voluntary command signal and the autonomous command signal is set in advance so as to have a required correspondence with each reference parameter of the phase, and according to the estimated task phase A control method for the wearable motion assisting device, wherein the hybrid ratio is defined based on the correspondence relationship, and the total command signal is synthesized so as to be the hybrid ratio.
請求項20に記載の装着式動作補助装置の制御方法において、
前記アクチュエータへの電流の供給を開始する際に、前記アクチュエータを駆動可能な電流の下限値よりも大きくなるように、前記パルス電流あるいは前記総電流を供給することを特徴とする装着式動作補助装置の制御方法。
In the control method of the wearable movement assist device according to claim 20,
When the supply of the current to the actuator is started, the pulse current or the total current is supplied so that the pulse current or the total current is larger than a lower limit value of a current capable of driving the actuator. Control method.
請求項19〜21のいずれかに記載の装着式動作補助装置の制御方法において、
前記装着者に付与する動力の比率(パワーアシスト率)を前記フェーズの各々の基準パラメータと所要の対応関係となるように予め設定しておき、前記推定したタスクのフェーズに応じたパワーアシスト率を前記対応関係に基づいて規定し、このパワーアシスト率となるように前記総指令信号を合成することを特徴とする装着式動作補助装置の制御方法。
In the control method of the wearable movement assist device according to any one of claims 19 to 21,
A power ratio (power assist rate) to be given to the wearer is set in advance so as to have a required correspondence relationship with each reference parameter of the phase, and a power assist rate corresponding to the estimated task phase is set. A control method for a wearable motion assisting device, which is defined based on the correspondence relationship and synthesizes the total command signal so as to achieve this power assist rate.
請求項19〜22のいずれかに記載の装着式動作補助装置の制御方法において、
前記装着者が反射神経によって動作する場合に、当該動作の反対方向に前記アクチュエータを駆動するための駆動電流を所定の時間だけ生成した後に、前記動作の方向に前記アクチュエータを駆動することを特徴とする装着式動作補助装置の制御方法。
In the control method of the wearable movement assist device according to any one of claims 19 to 22,
When the wearer operates by reflexes, the actuator is driven in the direction of the operation after generating a drive current for driving the actuator in a direction opposite to the operation for a predetermined time. Control method for a wearable motion assist device.
前記請求項14〜23のいずれかに記載された制御方法を、装着式動作補助装置を制御するためのコンピュータに実行させることを特徴とするプログラム。


24. A program for causing a computer for controlling the wearable movement assisting device to execute the control method according to any one of claims 14 to 23.


JP2004045354A 2003-08-21 2004-02-20 Wearable motion assist device, control method for wearable motion assist device, and control program Expired - Lifetime JP4178186B2 (en)

Priority Applications (12)

Application Number Priority Date Filing Date Title
JP2004045354A JP4178186B2 (en) 2003-08-21 2004-02-20 Wearable motion assist device, control method for wearable motion assist device, and control program
CN2010102181094A CN101926722B (en) 2003-08-21 2004-08-13 Wearable action-assist device, and method and program for controlling wearable action-assist device
PL04771665T PL1661543T3 (en) 2003-08-21 2004-08-13 Wearable action-assist device, and method and program for controlling wearable action-assist device
EP04771665.9A EP1661543B1 (en) 2003-08-21 2004-08-13 Wearable action-assist device, and method and program for controlling wearable action-assist device
CA2696131A CA2696131C (en) 2003-08-21 2004-08-13 Wearable action-assist device, and method and program for controlling wearable action-assist device
PCT/JP2004/011698 WO2005018525A1 (en) 2003-08-21 2004-08-13 Wearable action-assist device, and method and program for controlling wearable action-assist device
CA2559856A CA2559856C (en) 2003-08-21 2004-08-13 Wearable action-assist device, and method and program for controlling wearable action-assist device
CN2004800239695A CN1838933B (en) 2003-08-21 2004-08-13 Wearable action-assist device, and method and program for controlling wearable action-assist device
US10/568,756 US7785279B2 (en) 2003-08-21 2004-08-13 Wearable action-assist device, and method and program for controlling wearable action-assist device
HK07100573.8A HK1095509A1 (en) 2003-08-21 2007-01-17 Wearable action-assist device, and method and program for controlling wearable action-assist device
US12/549,902 US8622938B2 (en) 2003-08-21 2009-08-28 Wearable action-assist device, and method and program for controlling wearable action-assist device
US12/836,054 US8888722B2 (en) 2003-08-21 2010-07-14 Wearable action-assist device, and method and program for controlling wearable action-assist device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003298038 2003-08-21
JP2004045354A JP4178186B2 (en) 2003-08-21 2004-02-20 Wearable motion assist device, control method for wearable motion assist device, and control program

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008087681A Division JP4487060B2 (en) 2003-08-21 2008-03-28 Wearable motion assist device, control method for wearable motion assist device, and control program

Publications (2)

Publication Number Publication Date
JP2005095561A true JP2005095561A (en) 2005-04-14
JP4178186B2 JP4178186B2 (en) 2008-11-12

Family

ID=34220708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004045354A Expired - Lifetime JP4178186B2 (en) 2003-08-21 2004-02-20 Wearable motion assist device, control method for wearable motion assist device, and control program

Country Status (8)

Country Link
US (3) US7785279B2 (en)
EP (1) EP1661543B1 (en)
JP (1) JP4178186B2 (en)
CN (1) CN101926722B (en)
CA (2) CA2559856C (en)
HK (1) HK1095509A1 (en)
PL (1) PL1661543T3 (en)
WO (1) WO2005018525A1 (en)

Cited By (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167223A (en) * 2004-12-16 2006-06-29 Honda Motor Co Ltd Method, system, and program for controlling external force
JP2007097636A (en) * 2005-09-30 2007-04-19 Matsushita Electric Ind Co Ltd Muscular strength assisting apparatus
JP2007130234A (en) * 2005-11-10 2007-05-31 Matsushita Electric Ind Co Ltd Human body motion aid
WO2008041614A1 (en) 2006-10-03 2008-04-10 University Of Tsukuba Motion assisting device and motion assisting device maintenance/management system
WO2009025256A1 (en) 2007-08-20 2009-02-26 University Of Tsukuba Action-aiding system for wearable type action-aiding device, wearable type action-aiding device, and action-aiding method for the wearable type action-aiding device
JP2009060946A (en) * 2007-09-04 2009-03-26 Univ Of Tsukuba Wearable action aid, its control method and program
JP2009095382A (en) * 2007-10-12 2009-05-07 Univ Of Tsukuba Embedded type action assisting apparatus, its control method and program
WO2009084387A1 (en) 2007-12-27 2009-07-09 University Of Tsukuba Detector for position of gravitational center and wearing-type motion assisting device equipped with detector for position of gravitational center
JP2010022439A (en) * 2008-07-15 2010-02-04 Kyokko Denki Kk Motion detecting multi-joint structure
JP2010057611A (en) * 2008-09-02 2010-03-18 Nec System Technologies Ltd Body training apparatus and program
JP2010142558A (en) * 2008-12-22 2010-07-01 Toyota Motor Corp Walking aid
WO2010117065A1 (en) * 2009-04-09 2010-10-14 国立大学法人筑波大学 Wearable motion assist device
JP2010253048A (en) * 2009-04-24 2010-11-11 Toyota Motor Corp Leg assisting orthosis
JP2011120786A (en) * 2009-12-11 2011-06-23 Toyota Motor Corp Action estimating unit and action assisting device
JP2011193941A (en) * 2010-03-18 2011-10-06 Waseda Univ System for suppressing involuntary movement, movement recognition device, and program for the movement recognition device
JP2011239887A (en) * 2010-05-17 2011-12-01 Toyota Motor Corp Threshold adjustment method for idling leg or standing leg determination algorithm used for walking assistant device
KR20120089439A (en) * 2009-07-01 2012-08-10 렉스 바이오닉스 리미티드 Control system for a mobility aid
WO2013035814A1 (en) * 2011-09-06 2013-03-14 国立大学法人 和歌山大学 Power-assisting robotic device and control method thereof
JP2013052192A (en) * 2011-09-06 2013-03-21 Wakayama Univ Power assist robotic device and control method of the same
KR101280364B1 (en) * 2011-09-23 2013-07-01 한국과학기술연구원 Apparatus for supporting a muscular strength of arm
JP2013138848A (en) * 2011-12-05 2013-07-18 Wakayama Univ Power-assisting robotic device and control method thereof
JP2013173190A (en) * 2012-02-23 2013-09-05 Univ Of Tsukuba Mounting type action assisting device
JP2014155998A (en) * 2013-02-18 2014-08-28 Advanced Telecommunication Research Institute International Power assist robot
WO2015115490A1 (en) 2014-01-30 2015-08-06 国立大学法人筑波大学 Wearable action assistance device
WO2015115491A1 (en) 2014-01-30 2015-08-06 国立大学法人筑波大学 Wearable action assistance device and wearable action assistance device manipulation unit
JP2015221140A (en) * 2014-05-23 2015-12-10 日本電信電話株式会社 Device, method and program of body condition presentation
JP2016525394A (en) * 2013-07-19 2016-08-25 バイオニック ラボラトリーズ インコーポレイテッドBionik Laboratories, Inc. Control system for exoskeleton device
US9554960B2 (en) 2010-11-24 2017-01-31 Kawasaki Jukogyo Kabushiki Kaisha Wearable motion supporting device
JP2018029773A (en) * 2016-08-24 2018-03-01 Cyberdyne株式会社 Biological activity detection device and biological activity detection system
JP2018038785A (en) * 2016-09-02 2018-03-15 パナソニックIpマネジメント株式会社 Standing action support device, and standing action support method and program
JP2019126668A (en) * 2018-01-26 2019-08-01 学校法人 中央大学 Control method of assist device, and assist device
WO2019148002A1 (en) * 2018-01-25 2019-08-01 Ctrl-Labs Corporation Techniques for anonymizing neuromuscular signal data
US10460455B2 (en) 2018-01-25 2019-10-29 Ctrl-Labs Corporation Real-time processing of handstate representation model estimates
US10489986B2 (en) 2018-01-25 2019-11-26 Ctrl-Labs Corporation User-controlled tuning of handstate representation model parameters
US10496168B2 (en) 2018-01-25 2019-12-03 Ctrl-Labs Corporation Calibration techniques for handstate representation modeling using neuromuscular signals
US10592001B2 (en) 2018-05-08 2020-03-17 Facebook Technologies, Llc Systems and methods for improved speech recognition using neuromuscular information
US10656711B2 (en) 2016-07-25 2020-05-19 Facebook Technologies, Llc Methods and apparatus for inferring user intent based on neuromuscular signals
US10684692B2 (en) 2014-06-19 2020-06-16 Facebook Technologies, Llc Systems, devices, and methods for gesture identification
US10687759B2 (en) 2018-05-29 2020-06-23 Facebook Technologies, Llc Shielding techniques for noise reduction in surface electromyography signal measurement and related systems and methods
US10772519B2 (en) 2018-05-25 2020-09-15 Facebook Technologies, Llc Methods and apparatus for providing sub-muscular control
US10817795B2 (en) 2018-01-25 2020-10-27 Facebook Technologies, Llc Handstate reconstruction based on multiple inputs
US10842407B2 (en) 2018-08-31 2020-11-24 Facebook Technologies, Llc Camera-guided interpretation of neuromuscular signals
US10905383B2 (en) 2019-02-28 2021-02-02 Facebook Technologies, Llc Methods and apparatus for unsupervised one-shot machine learning for classification of human gestures and estimation of applied forces
US10921764B2 (en) 2018-09-26 2021-02-16 Facebook Technologies, Llc Neuromuscular control of physical objects in an environment
US10937414B2 (en) 2018-05-08 2021-03-02 Facebook Technologies, Llc Systems and methods for text input using neuromuscular information
US10970936B2 (en) 2018-10-05 2021-04-06 Facebook Technologies, Llc Use of neuromuscular signals to provide enhanced interactions with physical objects in an augmented reality environment
US10970374B2 (en) 2018-06-14 2021-04-06 Facebook Technologies, Llc User identification and authentication with neuromuscular signatures
US10990174B2 (en) 2016-07-25 2021-04-27 Facebook Technologies, Llc Methods and apparatus for predicting musculo-skeletal position information using wearable autonomous sensors
US11000211B2 (en) 2016-07-25 2021-05-11 Facebook Technologies, Llc Adaptive system for deriving control signals from measurements of neuromuscular activity
US11045137B2 (en) 2018-07-19 2021-06-29 Facebook Technologies, Llc Methods and apparatus for improved signal robustness for a wearable neuromuscular recording device
US11069148B2 (en) 2018-01-25 2021-07-20 Facebook Technologies, Llc Visualization of reconstructed handstate information
US11079846B2 (en) 2013-11-12 2021-08-03 Facebook Technologies, Llc Systems, articles, and methods for capacitive electromyography sensors
US11179066B2 (en) 2018-08-13 2021-11-23 Facebook Technologies, Llc Real-time spike detection and identification
US11216069B2 (en) 2018-05-08 2022-01-04 Facebook Technologies, Llc Systems and methods for improved speech recognition using neuromuscular information
US11331045B1 (en) 2018-01-25 2022-05-17 Facebook Technologies, Llc Systems and methods for mitigating neuromuscular signal artifacts
US11337652B2 (en) 2016-07-25 2022-05-24 Facebook Technologies, Llc System and method for measuring the movements of articulated rigid bodies
US11481030B2 (en) 2019-03-29 2022-10-25 Meta Platforms Technologies, Llc Methods and apparatus for gesture detection and classification
US11481031B1 (en) 2019-04-30 2022-10-25 Meta Platforms Technologies, Llc Devices, systems, and methods for controlling computing devices via neuromuscular signals of users
US11493993B2 (en) 2019-09-04 2022-11-08 Meta Platforms Technologies, Llc Systems, methods, and interfaces for performing inputs based on neuromuscular control
US11567573B2 (en) 2018-09-20 2023-01-31 Meta Platforms Technologies, Llc Neuromuscular text entry, writing and drawing in augmented reality systems
US11635736B2 (en) 2017-10-19 2023-04-25 Meta Platforms Technologies, Llc Systems and methods for identifying biological structures associated with neuromuscular source signals
US11666264B1 (en) 2013-11-27 2023-06-06 Meta Platforms Technologies, Llc Systems, articles, and methods for electromyography sensors
US11797087B2 (en) 2018-11-27 2023-10-24 Meta Platforms Technologies, Llc Methods and apparatus for autocalibration of a wearable electrode sensor system
US11868531B1 (en) 2021-04-08 2024-01-09 Meta Platforms Technologies, Llc Wearable device providing for thumb-to-finger-based input gestures detected based on neuromuscular signals, and systems and methods of use thereof
US11907423B2 (en) 2019-11-25 2024-02-20 Meta Platforms Technologies, Llc Systems and methods for contextualized interactions with an environment
US11921471B2 (en) 2013-08-16 2024-03-05 Meta Platforms Technologies, Llc Systems, articles, and methods for wearable devices having secondary power sources in links of a band for providing secondary power in addition to a primary power source
US11961494B1 (en) 2019-03-29 2024-04-16 Meta Platforms Technologies, Llc Electromagnetic interference reduction in extended reality environments

Families Citing this family (149)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040064195A1 (en) 2002-07-15 2004-04-01 Hugh Herr Variable-mechanical-impedance artificial legs
US6966882B2 (en) 2002-11-25 2005-11-22 Tibion Corporation Active muscle assistance device and method
JP4178186B2 (en) * 2003-08-21 2008-11-12 国立大学法人 筑波大学 Wearable motion assist device, control method for wearable motion assist device, and control program
JP4587738B2 (en) 2003-08-25 2010-11-24 ソニー株式会社 Robot apparatus and robot posture control method
US8075633B2 (en) * 2003-09-25 2011-12-13 Massachusetts Institute Of Technology Active ankle foot orthosis
JP4200492B2 (en) 2004-03-11 2008-12-24 国立大学法人 筑波大学 Wearable motion assist device
JP4499508B2 (en) * 2004-08-27 2010-07-07 本田技研工業株式会社 Control device for walking assist device
WO2006037101A2 (en) * 2004-09-27 2006-04-06 Massachusetts Institute Of Technology Ankle interface
JP4344314B2 (en) * 2004-12-28 2009-10-14 本田技研工業株式会社 Weight relief assist device and weight relief assist program
EP1843823B1 (en) * 2005-02-02 2016-10-26 Össur hf Prosthetic and orthotic systems usable for rehabilitation
US10307272B2 (en) 2005-03-31 2019-06-04 Massachusetts Institute Of Technology Method for using a model-based controller for a robotic leg
US8512415B2 (en) * 2005-03-31 2013-08-20 Massachusetts Institute Of Technology Powered ankle-foot prothesis
US20070123997A1 (en) 2005-03-31 2007-05-31 Massachusetts Institute Of Technology Exoskeletons for running and walking
US11278433B2 (en) 2005-03-31 2022-03-22 Massachusetts Institute Of Technology Powered ankle-foot prosthesis
US8864846B2 (en) 2005-03-31 2014-10-21 Massachusetts Institute Of Technology Model-based neuromechanical controller for a robotic leg
JP3985001B2 (en) * 2005-05-17 2007-10-03 本田技研工業株式会社 Thigh orthosis for walking assist device
JP4874241B2 (en) * 2005-05-31 2012-02-15 本田技研工業株式会社 Control device and control program for walking assist device
JP4417300B2 (en) * 2005-07-13 2010-02-17 本田技研工業株式会社 Walking assist device
US7632239B2 (en) * 2005-11-16 2009-12-15 Bioness Neuromodulation Ltd. Sensor device for gait enhancement
US8972017B2 (en) 2005-11-16 2015-03-03 Bioness Neuromodulation Ltd. Gait modulation system and method
US7899556B2 (en) 2005-11-16 2011-03-01 Bioness Neuromodulation Ltd. Orthosis for a gait modulation system
EP2012669B1 (en) 2006-05-01 2013-03-13 Bioness Neuromodulation Ltd Improved functional electrical stimulation systems
US8353854B2 (en) 2007-02-14 2013-01-15 Tibion Corporation Method and devices for moving a body joint
JP5283401B2 (en) * 2007-03-22 2013-09-04 国立大学法人 筑波大学 Rehabilitation support device
US7998096B1 (en) * 2007-06-25 2011-08-16 Skoog Eric J Paraplegic controlled, concealed mechanized walking device
JP4789117B2 (en) * 2007-08-03 2011-10-12 本田技研工業株式会社 Walking assist device
JP4271713B2 (en) 2007-10-19 2009-06-03 本田技研工業株式会社 Exercise assistance device
KR101718345B1 (en) * 2007-12-26 2017-03-21 렉스 바이오닉스 리미티드 Mobility aid
GB2456558A (en) * 2008-01-21 2009-07-22 Salisbury Nhs Foundation Trust Controlling equipment with electromyogram (EMG) signals
WO2009099671A2 (en) 2008-02-08 2009-08-13 Tibion Corporation Multi-fit orthotic and mobility assistance apparatus
DE102008023573A1 (en) * 2008-05-05 2009-11-12 Medireha GmbH Produkte für die medizinische Rehabilitation Leg movement splint for repetitive movement of the knee and hip joint with assistance function during active use
ES2549004T3 (en) * 2008-05-20 2015-10-22 The Regents Of The University Of California Device and method for reducing a person's oxygen consumption during a regular walk by using a load-bearing exoskeleton
PL2326288T3 (en) 2008-05-20 2016-09-30 Device and method for decreasing energy consumption of a person by use of a lower extremity exoskeleton
US20090306548A1 (en) 2008-06-05 2009-12-10 Bhugra Kern S Therapeutic method and device for rehabilitation
US9351855B2 (en) 2008-06-16 2016-05-31 Ekso Bionics, Inc. Powered lower extremity orthotic and method of operation
CA2731612C (en) * 2008-07-23 2018-03-20 Berkeley Bionics An exoskeleton and method for controlling a swing leg of the exoskeleton
US8274244B2 (en) 2008-08-14 2012-09-25 Tibion Corporation Actuator system and method for extending a joint
US8058823B2 (en) 2008-08-14 2011-11-15 Tibion Corporation Actuator system with a multi-motor assembly for extending and flexing a joint
US20110082566A1 (en) * 2008-09-04 2011-04-07 Herr Hugh M Implementing a stand-up sequence using a lower-extremity prosthesis or orthosis
US20100174384A1 (en) 2008-09-04 2010-07-08 Iwalk, Inc. Hybrid terrain-adaptive lower-extremity systems
CN102164571B (en) * 2008-09-24 2014-12-24 伯克利仿生技术公司 Hip and knee actuation systems for lower limb orthotic devices
US20100132464A1 (en) * 2008-12-01 2010-06-03 Honda Motor Co., Ltd. Motion assisting device
US20100198124A1 (en) * 2009-01-30 2010-08-05 Kern Bhugra System and method for controlling the joint motion of a user based on a measured physiological property
US8639455B2 (en) 2009-02-09 2014-01-28 Alterg, Inc. Foot pad device and method of obtaining weight data
US20110196509A1 (en) * 2009-02-27 2011-08-11 Ut-Battelle, Llc Hydraulic apparatus with direct torque control
WO2010140975A1 (en) * 2009-06-02 2010-12-09 Agency For Science, Technology And Research A system and method for motor learning
US20140100494A1 (en) * 2009-06-03 2014-04-10 Board Of Regents, The University Of Texas System Smart gait rehabilitation system for automated diagnosis and therapy of neurologic impairment
US20100312152A1 (en) * 2009-06-03 2010-12-09 Board Of Regents, The University Of Texas System Smart gait rehabilitation system for automated diagnosis and therapy of neurologic impairment
CN104523404B (en) * 2009-07-01 2018-04-13 瑞克仿生学有限公司 The control system of mobility aid
US20110112447A1 (en) * 2009-10-05 2011-05-12 The Board Of Trustees Of The University Of Illinois Portable active fluid powered ankle-foot orthosis
JP5504810B2 (en) * 2009-10-06 2014-05-28 オムロンヘルスケア株式会社 Walking posture determination device, control program, and control method
WO2011055428A1 (en) * 2009-11-04 2011-05-12 トヨタ自動車株式会社 Walking aid device
JP5640991B2 (en) 2009-11-13 2014-12-17 トヨタ自動車株式会社 Walking assist device
DE102009056466A1 (en) * 2009-12-01 2011-06-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Adaptive control system for prostheses with arbitrary control
CN101791255B (en) * 2010-03-08 2012-07-18 上海交通大学 Walk-aiding exoskeleton robot system and control method
JP2013524880A (en) 2010-04-05 2013-06-20 アイウォーク, インコーポレイテッド Torque control in a prosthesis or brace
JP5588738B2 (en) * 2010-05-20 2014-09-10 本田技研工業株式会社 Walking motion assist device
US8623098B2 (en) * 2010-07-01 2014-01-07 Vanderbilt University Systems and method for volitional control of jointed mechanical devices based on surface electromyography
US8771208B2 (en) 2010-08-19 2014-07-08 Sunil K. Agrawal Powered orthosis systems and methods
US9480618B2 (en) * 2010-10-05 2016-11-01 Elizabeth T. Hsiao-Wecksler Portable active pneumatically powered ankle-foot orthosis
US9095417B2 (en) 2011-02-07 2015-08-04 Bioness Neuromodulation Ltd. Adjustable orthosis for electrical stimulation of a limb
TWI404525B (en) * 2011-03-14 2013-08-11 Oriental Inst Technology Walking control device for biped machine and method thereof
JP5854719B2 (en) * 2011-06-10 2016-02-09 本田技研工業株式会社 Battery pack housing structure, battery pack and walking assist device
US8868217B2 (en) 2011-06-27 2014-10-21 Bioness Neuromodulation Ltd. Electrode for muscle stimulation
WO2013067407A1 (en) 2011-11-02 2013-05-10 Iwalk, Inc. Biomimetic transfemoral prosthesis
US9498401B2 (en) 2011-12-20 2016-11-22 Massachusetts Institute Of Technology Robotic system for simulating a wearable device and method of use
KR101295966B1 (en) * 2011-12-28 2013-08-13 한국기술교육대학교 산학협력단 Power suit
US9682005B2 (en) 2012-02-24 2017-06-20 Massachusetts Institute Of Technology Elastic element exoskeleton and method of using same
US9221177B2 (en) 2012-04-18 2015-12-29 Massachusetts Institute Of Technology Neuromuscular model-based sensing and control paradigm for a robotic leg
US10531965B2 (en) 2012-06-12 2020-01-14 Bionx Medical Technologies, Inc. Prosthetic, orthotic or exoskeleton device
US9351900B2 (en) 2012-09-17 2016-05-31 President And Fellows Of Harvard College Soft exosuit for assistance with human motion
CN102922508B (en) * 2012-09-21 2015-01-07 西安交通大学 Exoskeleton robot system for reloading batteries of electric vehicle
US20140100493A1 (en) * 2012-10-04 2014-04-10 Travis Craig Bipedal Exoskeleton and Methods of Use
US9775763B2 (en) * 2012-12-19 2017-10-03 Intel Corporation Adaptive exoskeleton, control system and methods using the same
US10528135B2 (en) 2013-01-14 2020-01-07 Ctrl-Labs Corporation Wearable muscle interface systems, devices and methods that interact with content displayed on an electronic display
US9299248B2 (en) 2013-02-22 2016-03-29 Thalmic Labs Inc. Method and apparatus for analyzing capacitive EMG and IMU sensor signals for gesture control
US9889058B2 (en) 2013-03-15 2018-02-13 Alterg, Inc. Orthotic device drive system and method
US10152082B2 (en) 2013-05-13 2018-12-11 North Inc. Systems, articles and methods for wearable electronic devices that accommodate different user forms
JP5961331B2 (en) * 2013-05-30 2016-08-02 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア User combined human machine interface
KR20160016925A (en) 2013-05-31 2016-02-15 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 Soft exosuit for assistance with human motion
WO2015006235A1 (en) * 2013-07-12 2015-01-15 The State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of The University Of Oregon Powered prosthetic devices using emg-based locomotion state classifier
CN103431976B (en) * 2013-07-19 2016-05-04 燕山大学 Based on lower limb rehabilitation robot system and the control method thereof of electromyographic signal feedback
US9408316B2 (en) 2013-07-22 2016-08-02 Thalmic Labs Inc. Systems, articles and methods for strain mitigation in wearable electronic devices
US20150124566A1 (en) 2013-10-04 2015-05-07 Thalmic Labs Inc. Systems, articles and methods for wearable electronic devices employing contact sensors
US11426123B2 (en) 2013-08-16 2022-08-30 Meta Platforms Technologies, Llc Systems, articles and methods for signal routing in wearable electronic devices that detect muscle activity of a user using a set of discrete and separately enclosed pod structures
CN103462781B (en) * 2013-08-22 2015-07-08 上海交通大学 Lower limb rehabilitation training robot
US9788789B2 (en) 2013-08-30 2017-10-17 Thalmic Labs Inc. Systems, articles, and methods for stretchable printed circuit boards
US9372535B2 (en) 2013-09-06 2016-06-21 Thalmic Labs Inc. Systems, articles, and methods for electromyography-based human-electronics interfaces
US9483123B2 (en) 2013-09-23 2016-11-01 Thalmic Labs Inc. Systems, articles, and methods for gesture identification in wearable electromyography devices
KR20150039640A (en) * 2013-10-02 2015-04-13 삼성전자주식회사 Baby carrier
KR102146363B1 (en) * 2013-10-31 2020-08-20 삼성전자주식회사 Wearable robot and control method for the same
CA2928873A1 (en) 2013-11-12 2015-05-21 Ekso Bionics, Inc. Machine to human interfaces for communication from a lower extremity orthotic
KR20150055958A (en) * 2013-11-14 2015-05-22 삼성전자주식회사 Wearable robot and control method for the same
KR102073001B1 (en) 2013-11-29 2020-02-04 삼성전자주식회사 Wearable robot and method for controlling the same
AU2014364219A1 (en) 2013-12-09 2016-06-30 President And Fellows Of Harvard College Assistive flexible suits, flexible suit systems, and methods for making and control thereof to assist human mobility
KR102172975B1 (en) * 2013-12-10 2020-11-02 삼성전자주식회사 Wearable robot and control method for the same
KR102193771B1 (en) * 2013-12-16 2020-12-22 삼성전자주식회사 Wearable robot and method for controlling the same
CN106029039B (en) 2013-12-16 2018-03-27 麻省理工学院 The optimal design of lower limb exoskeleton or KAFO
KR102122856B1 (en) * 2013-12-17 2020-06-15 삼성전자주식회사 A walk-assistive apparatus and a method for controlling the walk-assistive apparatus
KR102131277B1 (en) * 2013-12-30 2020-07-07 삼성전자주식회사 A walk-assistive apparatus and a method for controlling the walk-assistive apparatus
CN103654774B (en) * 2014-01-02 2016-08-17 北京思睿博创科技有限公司 Wearable movable bracelet
US10278883B2 (en) 2014-02-05 2019-05-07 President And Fellows Of Harvard College Systems, methods, and devices for assisting walking for developmentally-delayed toddlers
CN106102504A (en) 2014-02-14 2016-11-09 赛尔米克实验室公司 For the elastic system of power cable, goods and method and the wearable electronic installation using elastic power cable
US9867985B2 (en) 2014-03-24 2018-01-16 Bioness Inc. Systems and apparatus for gait modulation and methods of use
US10199008B2 (en) 2014-03-27 2019-02-05 North Inc. Systems, devices, and methods for wearable electronic devices as state machines
CN103860298B (en) * 2014-03-31 2015-08-19 北京大学 A kind of non-contact capacitance sensor-based system for intelligent artificial limb
CN103932872B (en) * 2014-04-09 2015-10-07 罗勇 Cerebral hemorrhage semiparalysis recovery machine
US10864100B2 (en) 2014-04-10 2020-12-15 President And Fellows Of Harvard College Orthopedic device including protruding members
WO2015174998A1 (en) 2014-05-16 2015-11-19 Massachusetts Institute Of Technology Apparatus and method for supporting a human body using supernumerary artificial limbs
US10123929B2 (en) 2014-06-17 2018-11-13 Colorado School Of Mines Wrist and forearm exoskeleton
US9757254B2 (en) * 2014-08-15 2017-09-12 Honda Motor Co., Ltd. Integral admittance shaping for an exoskeleton control design framework
US10231851B2 (en) * 2014-08-29 2019-03-19 Conor J. MADDRY Pneumatic electromyographic exoskeleton
KR102292683B1 (en) 2014-09-12 2021-08-23 삼성전자주식회사 Method and apparatus for gait task recognition
US10434030B2 (en) 2014-09-19 2019-10-08 President And Fellows Of Harvard College Soft exosuit for assistance with human motion
KR102342072B1 (en) * 2014-10-14 2021-12-22 삼성전자주식회사 Method and apparatus for conrolling walking assist
CN105616042B (en) * 2014-10-30 2017-10-10 中国科学院深圳先进技术研究院 A kind of Intelligent artificial hand control system
US9807221B2 (en) 2014-11-28 2017-10-31 Thalmic Labs Inc. Systems, devices, and methods effected in response to establishing and/or terminating a physical communications link
TWI601526B (en) * 2015-01-30 2017-10-11 Hiwin Tech Corp Lower limb rehabilitation device control method and the implementation of the method of lower limb rehabilitation device
US10078435B2 (en) 2015-04-24 2018-09-18 Thalmic Labs Inc. Systems, methods, and computer program products for interacting with electronically displayed presentation materials
KR102482436B1 (en) * 2015-09-02 2022-12-28 삼성전자주식회사 Walking assist apparatus and operating method thereof
TWI564129B (en) * 2015-11-27 2017-01-01 財團法人工業技術研究院 Method for estimating posture of robotic walking aid
US10195099B2 (en) * 2016-01-11 2019-02-05 Bionic Power Inc. Method and system for intermittently assisting body motion
EP3402404B1 (en) 2016-01-11 2021-07-21 Bioness Inc. Apparatus for gait modulation
CN105560017B (en) * 2016-01-12 2018-07-06 陈烁 Hinged booster
CN109069278A (en) 2016-03-13 2018-12-21 哈佛大学校长及研究员协会 Flexible member for being anchored on body
ITUA20163488A1 (en) * 2016-05-16 2017-11-16 Univ Degli Studi Di Siena SYSTEM FOR GUIDING THE STEP OF A SUBJECT
US11498203B2 (en) 2016-07-22 2022-11-15 President And Fellows Of Harvard College Controls optimization for wearable systems
CN106156524B (en) * 2016-07-29 2018-08-28 东北大学 A kind of online gait planning method of Intelligent lower limb power assisting device
US11020261B2 (en) 2016-08-23 2021-06-01 Seismic Holdings, Inc. Patch systems for use with assistive exosuit
US20180055713A1 (en) * 2016-08-23 2018-03-01 Superflex, Inc. Systems and methods for portable powered stretching exosuit
US11052011B2 (en) 2016-09-02 2021-07-06 Panasonic Intellectual Property Management Co., Ltd. Standing-up assistance apparatus, standing-up assistance method, and non-transitory computer-readable recording medium
JP6890286B2 (en) * 2016-09-02 2021-06-18 パナソニックIpマネジメント株式会社 Standing motion support device, standing motion support method and program
JP6832530B2 (en) * 2016-09-30 2021-02-24 パナソニックIpマネジメント株式会社 Assist system, assist method and computer program
KR102536856B1 (en) * 2016-10-31 2023-05-25 삼성전자주식회사 Apparatus for gait assistance and operating method thereof
JP6793203B2 (en) * 2016-11-18 2020-12-02 Cyberdyne株式会社 Artificial limb movement assisting device and artificial limb movement assisting method
WO2018170170A1 (en) 2017-03-14 2018-09-20 President And Fellows Of Harvard College Systems and methods for fabricating 3d soft microstructures
CN106924015A (en) * 2017-04-18 2017-07-07 佛山市神风航空科技有限公司 A kind of walking apparatus
KR102546547B1 (en) * 2018-01-11 2023-06-22 삼성전자주식회사 Method and apparatus for assisting walking
CN112004511A (en) * 2018-02-17 2020-11-27 哈佛学院院长及董事 Wearable device for prevention of musculoskeletal injuries and performance enhancement
JP7167473B2 (en) * 2018-04-11 2022-11-09 株式会社ジェイテクト motion support system
CN108743260B (en) * 2018-06-05 2020-08-11 河北雅诗莉医药科技有限公司 Intelligent shifting rehabilitation vehicle with multi-stage rocker arm structure
US11772259B1 (en) * 2019-02-06 2023-10-03 Aptima, Inc. Enhanced activated exoskeleton system
US20200337597A1 (en) * 2019-04-25 2020-10-29 Arizona Board Of Regents On Behalf Of Arizona State University Soft hip extension device to aid hemiparetic gait
CN110710984B (en) * 2019-10-18 2021-11-02 福州大学 Ankle moment prediction method of recursion cerebellum model based on surface electromyogram signal
CN111251276A (en) * 2020-01-20 2020-06-09 南方科技大学 Power assisting method and device based on gesture, server and storage medium
US20220151858A1 (en) * 2020-11-16 2022-05-19 KYOCERA AVX Components Corporation Exoskeleton Powered Using an Ultracapacitor
CN112545536B (en) * 2020-12-02 2023-07-04 复旦大学附属华山医院 Action auxiliary device based on brain plasticity and control method and circuit thereof
USD1011398S1 (en) 2021-08-13 2024-01-16 Festool Gmbh Wearable robotic exoskeleton
CN114797007B (en) * 2022-04-02 2023-06-06 中国科学技术大学先进技术研究院 Wearable underwater exoskeleton robot for rehabilitation and using method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134340B2 (en) * 1981-01-27 1986-08-07 Sakai Iryo Kk
JPH02298479A (en) * 1989-05-09 1990-12-10 Nippon Telegr & Teleph Corp <Ntt> Learning type robot hand for electromuscle control
JPH07163607A (en) * 1993-12-13 1995-06-27 Tokyo R & D:Kk Motor-driven auxiliary device for walking staircase or the like
JP2000166997A (en) * 1998-12-10 2000-06-20 Nsk Ltd Walking auxiliary device
JP2003079684A (en) * 2001-06-27 2003-03-18 Honda Motor Co Ltd Torque imparting system
JP2003116893A (en) * 2001-10-18 2003-04-22 Honda Motor Co Ltd Device and method for judging waking state

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5178161A (en) * 1988-09-02 1993-01-12 The Board Of Trustees Of The Leland Stanford Junior University Microelectronic interface
US5103807A (en) * 1991-04-26 1992-04-14 John Makaran Shape memory alloy orthotic device
US5282460A (en) * 1992-01-06 1994-02-01 Joyce Ann Boldt Three axis mechanical joint for a power assist device
US5432417A (en) * 1992-04-30 1995-07-11 Honda Giken Kogyo Kabushiki Kaisha Locomotion control system for legged mobile robot
US5413611A (en) * 1992-07-21 1995-05-09 Mcp Services, Inc. Computerized electronic prosthesis apparatus and method
US6695885B2 (en) * 1997-02-26 2004-02-24 Alfred E. Mann Foundation For Scientific Research Method and apparatus for coupling an implantable stimulator/sensor to a prosthetic device
US7824314B2 (en) * 1998-04-23 2010-11-02 Maresh Joseph D Adjustable stride length exercise method and apparatus
US6493608B1 (en) * 1999-04-07 2002-12-10 Intuitive Surgical, Inc. Aspects of a control system of a minimally invasive surgical apparatus
WO2001013778A2 (en) * 1999-08-20 2001-03-01 Riso Ronald R Emg control of prosthesis
US6689074B2 (en) * 2000-03-28 2004-02-10 Seiko Epson Corporation Wearable muscular-force supplementing device
ATE471136T1 (en) * 2000-08-25 2010-07-15 Healthsouth Corp MOTORIZED OBEDIENCE
US7918808B2 (en) * 2000-09-20 2011-04-05 Simmons John C Assistive clothing
US6725101B2 (en) * 2000-12-13 2004-04-20 Xerox Corporation Method and apparatus for using fast fourier transform feedback to compensate for non-linear motion
US7442212B2 (en) * 2001-01-12 2008-10-28 The United States Of America As Represented By The Department Of Health And Human Services Decoding algorithm for neuronal responses
US7217247B2 (en) * 2002-09-23 2007-05-15 Honda Giken Kogyo Kabushiki Kaisha Gravity compensation method in a human assist system and a human assist system with gravity compensation control
WO2003033070A1 (en) * 2001-10-16 2003-04-24 Case Western Reserve University Neural prosthesis
US7396337B2 (en) * 2002-11-21 2008-07-08 Massachusetts Institute Of Technology Powered orthotic device
US6966882B2 (en) * 2002-11-25 2005-11-22 Tibion Corporation Active muscle assistance device and method
US7725175B2 (en) * 2002-12-04 2010-05-25 Kinetic Muscles, Inc. System and method for neuromuscular reeducation
EP1607195B1 (en) * 2003-03-27 2011-01-05 Sony Corporation Robot device and method of controlling the same
JP4178186B2 (en) * 2003-08-21 2008-11-12 国立大学法人 筑波大学 Wearable motion assist device, control method for wearable motion assist device, and control program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6134340B2 (en) * 1981-01-27 1986-08-07 Sakai Iryo Kk
JPH02298479A (en) * 1989-05-09 1990-12-10 Nippon Telegr & Teleph Corp <Ntt> Learning type robot hand for electromuscle control
JPH07163607A (en) * 1993-12-13 1995-06-27 Tokyo R & D:Kk Motor-driven auxiliary device for walking staircase or the like
JP2000166997A (en) * 1998-12-10 2000-06-20 Nsk Ltd Walking auxiliary device
JP2003079684A (en) * 2001-06-27 2003-03-18 Honda Motor Co Ltd Torque imparting system
JP2003116893A (en) * 2001-10-18 2003-04-22 Honda Motor Co Ltd Device and method for judging waking state

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
中井隆雄,山海嘉之: "表面筋電位を用いた外骨格パワーアシストシステムに関する研究", 第19回日本ロボット学会学術講演会予稿集, vol. 第3分冊, JPN6007013672, 18 September 2001 (2001-09-18), pages 1261 - 1262, ISSN: 0001058098 *
李秀雄,山海嘉之: "膝関節周りのEMGとインピーダンス調整に基づいたHAL−3による脚のパワーアシスト制御", 第20回日本ロボット学会学術講演会予稿集(CD−ROM), vol. 1F34, JPN6007013671, 12 October 2002 (2002-10-12), ISSN: 0000964815 *
鈴木洋輔,外2名: "ウェアラブルセンサスーツ−第3報,表面筋電位を用いた関節トルク設定のための自動校正法−", ロボティクス・メカトロニクス講演会2004, JPN6007013667, 18 June 2004 (2004-06-18), pages 178 - 189, ISSN: 0001058099 *

Cited By (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006167223A (en) * 2004-12-16 2006-06-29 Honda Motor Co Ltd Method, system, and program for controlling external force
JP4541867B2 (en) * 2004-12-16 2010-09-08 本田技研工業株式会社 External force control method, external force control system, and external force control program
US7860562B2 (en) 2004-12-16 2010-12-28 Honda Motor Co., Ltd. External force control method, external force control system and external force control program
JP2007097636A (en) * 2005-09-30 2007-04-19 Matsushita Electric Ind Co Ltd Muscular strength assisting apparatus
JP2007130234A (en) * 2005-11-10 2007-05-31 Matsushita Electric Ind Co Ltd Human body motion aid
JP2008110198A (en) * 2006-10-03 2008-05-15 Univ Of Tsukuba Motion assisting device and motion assisting device maintenance/management system
KR101122348B1 (en) 2006-10-03 2012-05-24 고쿠리쯔 다이가쿠 호징 츠쿠바 다이가쿠 Motion assisting device and motion assisting device maintenance/management system
WO2008041614A1 (en) 2006-10-03 2008-04-10 University Of Tsukuba Motion assisting device and motion assisting device maintenance/management system
US8425436B2 (en) 2006-10-03 2013-04-23 University Of Tsukuba Motion assistive device and maintenance management system for motion assistive device
US8690802B2 (en) 2007-08-20 2014-04-08 University Of Tsukuba Motion-assist system of wearable motion-assist device, wearable motion-assist device, and motion-assist method of wearable motion-assist device
WO2009025256A1 (en) 2007-08-20 2009-02-26 University Of Tsukuba Action-aiding system for wearable type action-aiding device, wearable type action-aiding device, and action-aiding method for the wearable type action-aiding device
JP2009066395A (en) * 2007-08-20 2009-04-02 Univ Of Tsukuba Action-aiding system for wearable type action-aiding device, wearable type action-aiding device, and action-aiding method for wearable type action-aiding device
US9168195B2 (en) 2007-08-20 2015-10-27 University Of Tsukuba Motion-assist system of wearable motion-assist device, wearable motion-assist device, and motion-assist method of wearable motion-assist device
JP2009060946A (en) * 2007-09-04 2009-03-26 Univ Of Tsukuba Wearable action aid, its control method and program
JP2009095382A (en) * 2007-10-12 2009-05-07 Univ Of Tsukuba Embedded type action assisting apparatus, its control method and program
US8773148B2 (en) 2007-12-27 2014-07-08 University Of Tsukuba Centroid position detector device and wearing type action assistance device including centroid position detector device
EP2226006A4 (en) * 2007-12-27 2016-03-23 Univ Tsukuba Detector for position of gravitational center and wearing-type motion assisting device equipped with detector for position of gravitational center
JPWO2009084387A1 (en) * 2007-12-27 2011-05-19 国立大学法人 筑波大学 Center-of-gravity position detection device and wearable movement assist device equipped with center-of-gravity position detection device
WO2009084387A1 (en) 2007-12-27 2009-07-09 University Of Tsukuba Detector for position of gravitational center and wearing-type motion assisting device equipped with detector for position of gravitational center
JP4997614B2 (en) * 2007-12-27 2012-08-08 国立大学法人 筑波大学 Center-of-gravity position detection device and wearable movement assist device equipped with center-of-gravity position detection device
JP2010022439A (en) * 2008-07-15 2010-02-04 Kyokko Denki Kk Motion detecting multi-joint structure
JP2010057611A (en) * 2008-09-02 2010-03-18 Nec System Technologies Ltd Body training apparatus and program
JP2010142558A (en) * 2008-12-22 2010-07-01 Toyota Motor Corp Walking aid
CN102387760A (en) * 2009-04-09 2012-03-21 国立大学法人筑波大学 Wearable motion assist device
CN104188739A (en) * 2009-04-09 2014-12-10 国立大学法人筑波大学 Wearable motion assist device
KR101361999B1 (en) * 2009-04-09 2014-02-11 고쿠리쯔 다이가쿠 호징 츠쿠바 다이가쿠 Wearable motion assist device
JP2010240285A (en) * 2009-04-09 2010-10-28 Univ Of Tsukuba Wearable motion assisting device
WO2010117065A1 (en) * 2009-04-09 2010-10-14 国立大学法人筑波大学 Wearable motion assist device
US8998831B2 (en) 2009-04-09 2015-04-07 University Of Tsukuba Wearable type movement assisting apparatus
JP2010253048A (en) * 2009-04-24 2010-11-11 Toyota Motor Corp Leg assisting orthosis
KR20120089439A (en) * 2009-07-01 2012-08-10 렉스 바이오닉스 리미티드 Control system for a mobility aid
KR101709605B1 (en) 2009-07-01 2017-02-23 렉스 바이오닉스 리미티드 Control system for a mobility aid
JP2011120786A (en) * 2009-12-11 2011-06-23 Toyota Motor Corp Action estimating unit and action assisting device
JP2011193941A (en) * 2010-03-18 2011-10-06 Waseda Univ System for suppressing involuntary movement, movement recognition device, and program for the movement recognition device
JP2011239887A (en) * 2010-05-17 2011-12-01 Toyota Motor Corp Threshold adjustment method for idling leg or standing leg determination algorithm used for walking assistant device
US9554960B2 (en) 2010-11-24 2017-01-31 Kawasaki Jukogyo Kabushiki Kaisha Wearable motion supporting device
WO2013035814A1 (en) * 2011-09-06 2013-03-14 国立大学法人 和歌山大学 Power-assisting robotic device and control method thereof
US9855654B2 (en) 2011-09-06 2018-01-02 Wakayama University Power assist robot apparatus and control method therefor
JP2013052192A (en) * 2011-09-06 2013-03-21 Wakayama Univ Power assist robotic device and control method of the same
KR101280364B1 (en) * 2011-09-23 2013-07-01 한국과학기술연구원 Apparatus for supporting a muscular strength of arm
JP2013138848A (en) * 2011-12-05 2013-07-18 Wakayama Univ Power-assisting robotic device and control method thereof
JP2013173190A (en) * 2012-02-23 2013-09-05 Univ Of Tsukuba Mounting type action assisting device
JP2014155998A (en) * 2013-02-18 2014-08-28 Advanced Telecommunication Research Institute International Power assist robot
JP2016525394A (en) * 2013-07-19 2016-08-25 バイオニック ラボラトリーズ インコーポレイテッドBionik Laboratories, Inc. Control system for exoskeleton device
US11921471B2 (en) 2013-08-16 2024-03-05 Meta Platforms Technologies, Llc Systems, articles, and methods for wearable devices having secondary power sources in links of a band for providing secondary power in addition to a primary power source
US11079846B2 (en) 2013-11-12 2021-08-03 Facebook Technologies, Llc Systems, articles, and methods for capacitive electromyography sensors
US11666264B1 (en) 2013-11-27 2023-06-06 Meta Platforms Technologies, Llc Systems, articles, and methods for electromyography sensors
WO2015115491A1 (en) 2014-01-30 2015-08-06 国立大学法人筑波大学 Wearable action assistance device and wearable action assistance device manipulation unit
WO2015115490A1 (en) 2014-01-30 2015-08-06 国立大学法人筑波大学 Wearable action assistance device
JP2015221140A (en) * 2014-05-23 2015-12-10 日本電信電話株式会社 Device, method and program of body condition presentation
US10684692B2 (en) 2014-06-19 2020-06-16 Facebook Technologies, Llc Systems, devices, and methods for gesture identification
US10656711B2 (en) 2016-07-25 2020-05-19 Facebook Technologies, Llc Methods and apparatus for inferring user intent based on neuromuscular signals
US11337652B2 (en) 2016-07-25 2022-05-24 Facebook Technologies, Llc System and method for measuring the movements of articulated rigid bodies
US11000211B2 (en) 2016-07-25 2021-05-11 Facebook Technologies, Llc Adaptive system for deriving control signals from measurements of neuromuscular activity
US10990174B2 (en) 2016-07-25 2021-04-27 Facebook Technologies, Llc Methods and apparatus for predicting musculo-skeletal position information using wearable autonomous sensors
WO2018038225A1 (en) * 2016-08-24 2018-03-01 Cyberdyne株式会社 Organism activity detection device and organism activity detection system
JP2018029773A (en) * 2016-08-24 2018-03-01 Cyberdyne株式会社 Biological activity detection device and biological activity detection system
US11944579B2 (en) 2016-08-24 2024-04-02 Cyberdyne Inc. Biological activity detection apparatus and biological activity detection system
JP2018038785A (en) * 2016-09-02 2018-03-15 パナソニックIpマネジメント株式会社 Standing action support device, and standing action support method and program
US11635736B2 (en) 2017-10-19 2023-04-25 Meta Platforms Technologies, Llc Systems and methods for identifying biological structures associated with neuromuscular source signals
US11587242B1 (en) 2018-01-25 2023-02-21 Meta Platforms Technologies, Llc Real-time processing of handstate representation model estimates
US10950047B2 (en) 2018-01-25 2021-03-16 Facebook Technologies, Llc Techniques for anonymizing neuromuscular signal data
US10496168B2 (en) 2018-01-25 2019-12-03 Ctrl-Labs Corporation Calibration techniques for handstate representation modeling using neuromuscular signals
US10504286B2 (en) 2018-01-25 2019-12-10 Ctrl-Labs Corporation Techniques for anonymizing neuromuscular signal data
WO2019148002A1 (en) * 2018-01-25 2019-08-01 Ctrl-Labs Corporation Techniques for anonymizing neuromuscular signal data
US11069148B2 (en) 2018-01-25 2021-07-20 Facebook Technologies, Llc Visualization of reconstructed handstate information
US11361522B2 (en) 2018-01-25 2022-06-14 Facebook Technologies, Llc User-controlled tuning of handstate representation model parameters
US10817795B2 (en) 2018-01-25 2020-10-27 Facebook Technologies, Llc Handstate reconstruction based on multiple inputs
US11127143B2 (en) 2018-01-25 2021-09-21 Facebook Technologies, Llc Real-time processing of handstate representation model estimates
US11331045B1 (en) 2018-01-25 2022-05-17 Facebook Technologies, Llc Systems and methods for mitigating neuromuscular signal artifacts
US10489986B2 (en) 2018-01-25 2019-11-26 Ctrl-Labs Corporation User-controlled tuning of handstate representation model parameters
US10460455B2 (en) 2018-01-25 2019-10-29 Ctrl-Labs Corporation Real-time processing of handstate representation model estimates
US11163361B2 (en) 2018-01-25 2021-11-02 Facebook Technologies, Llc Calibration techniques for handstate representation modeling using neuromuscular signals
JP2019126668A (en) * 2018-01-26 2019-08-01 学校法人 中央大学 Control method of assist device, and assist device
JP7142338B2 (en) 2018-01-26 2022-09-27 学校法人 中央大学 Assist device control method and assist device
US10937414B2 (en) 2018-05-08 2021-03-02 Facebook Technologies, Llc Systems and methods for text input using neuromuscular information
US11036302B1 (en) 2018-05-08 2021-06-15 Facebook Technologies, Llc Wearable devices and methods for improved speech recognition
US11216069B2 (en) 2018-05-08 2022-01-04 Facebook Technologies, Llc Systems and methods for improved speech recognition using neuromuscular information
US10592001B2 (en) 2018-05-08 2020-03-17 Facebook Technologies, Llc Systems and methods for improved speech recognition using neuromuscular information
US10772519B2 (en) 2018-05-25 2020-09-15 Facebook Technologies, Llc Methods and apparatus for providing sub-muscular control
US11129569B1 (en) 2018-05-29 2021-09-28 Facebook Technologies, Llc Shielding techniques for noise reduction in surface electromyography signal measurement and related systems and methods
US10687759B2 (en) 2018-05-29 2020-06-23 Facebook Technologies, Llc Shielding techniques for noise reduction in surface electromyography signal measurement and related systems and methods
US10970374B2 (en) 2018-06-14 2021-04-06 Facebook Technologies, Llc User identification and authentication with neuromuscular signatures
US11045137B2 (en) 2018-07-19 2021-06-29 Facebook Technologies, Llc Methods and apparatus for improved signal robustness for a wearable neuromuscular recording device
US11179066B2 (en) 2018-08-13 2021-11-23 Facebook Technologies, Llc Real-time spike detection and identification
US10842407B2 (en) 2018-08-31 2020-11-24 Facebook Technologies, Llc Camera-guided interpretation of neuromuscular signals
US10905350B2 (en) 2018-08-31 2021-02-02 Facebook Technologies, Llc Camera-guided interpretation of neuromuscular signals
US11567573B2 (en) 2018-09-20 2023-01-31 Meta Platforms Technologies, Llc Neuromuscular text entry, writing and drawing in augmented reality systems
US10921764B2 (en) 2018-09-26 2021-02-16 Facebook Technologies, Llc Neuromuscular control of physical objects in an environment
US10970936B2 (en) 2018-10-05 2021-04-06 Facebook Technologies, Llc Use of neuromuscular signals to provide enhanced interactions with physical objects in an augmented reality environment
US11797087B2 (en) 2018-11-27 2023-10-24 Meta Platforms Technologies, Llc Methods and apparatus for autocalibration of a wearable electrode sensor system
US11941176B1 (en) 2018-11-27 2024-03-26 Meta Platforms Technologies, Llc Methods and apparatus for autocalibration of a wearable electrode sensor system
US10905383B2 (en) 2019-02-28 2021-02-02 Facebook Technologies, Llc Methods and apparatus for unsupervised one-shot machine learning for classification of human gestures and estimation of applied forces
US11481030B2 (en) 2019-03-29 2022-10-25 Meta Platforms Technologies, Llc Methods and apparatus for gesture detection and classification
US11961494B1 (en) 2019-03-29 2024-04-16 Meta Platforms Technologies, Llc Electromagnetic interference reduction in extended reality environments
US11481031B1 (en) 2019-04-30 2022-10-25 Meta Platforms Technologies, Llc Devices, systems, and methods for controlling computing devices via neuromuscular signals of users
US11493993B2 (en) 2019-09-04 2022-11-08 Meta Platforms Technologies, Llc Systems, methods, and interfaces for performing inputs based on neuromuscular control
US11907423B2 (en) 2019-11-25 2024-02-20 Meta Platforms Technologies, Llc Systems and methods for contextualized interactions with an environment
US11868531B1 (en) 2021-04-08 2024-01-09 Meta Platforms Technologies, Llc Wearable device providing for thumb-to-finger-based input gestures detected based on neuromuscular signals, and systems and methods of use thereof

Also Published As

Publication number Publication date
PL1661543T3 (en) 2017-07-31
JP4178186B2 (en) 2008-11-12
EP1661543A4 (en) 2009-07-15
CN101926722A (en) 2010-12-29
CA2696131C (en) 2013-03-05
WO2005018525A1 (en) 2005-03-03
US20060211956A1 (en) 2006-09-21
EP1661543B1 (en) 2017-02-01
CA2559856C (en) 2010-09-21
EP1661543A1 (en) 2006-05-31
US8622938B2 (en) 2014-01-07
US8888722B2 (en) 2014-11-18
US20100280628A1 (en) 2010-11-04
CA2696131A1 (en) 2005-03-03
CN101926722B (en) 2012-11-21
CA2559856A1 (en) 2005-03-03
US7785279B2 (en) 2010-08-31
HK1095509A1 (en) 2007-05-11
US20090319054A1 (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP4178186B2 (en) Wearable motion assist device, control method for wearable motion assist device, and control program
JP4487060B2 (en) Wearable motion assist device, control method for wearable motion assist device, and control program
JP5642534B2 (en) Wearable motion assist device, its interface device and program
Quintero et al. A method for the autonomous control of lower limb exoskeletons for persons with paraplegia
JP4178185B2 (en) Wearable motion assist device, drive source control method and program in wearable motion assist device
KR101052692B1 (en) Motion Assistance System of Mountable Motion Aid, Mounted Motion Aid, and Motion Assistance Method of Mounted Motion Aid
Suzuki et al. Intention-based walking support for paraplegia patients with Robot Suit HAL
JP5189911B2 (en) Wearable movement assist device, reference parameter database construction device, drive control method in wearable motion assist device, reference parameter database construction method, and program thereof
JP6340528B2 (en) BMI exercise assist device
JP5244348B2 (en) Wearable motion assist device and control method thereof
JP2018099767A (en) Motion assist device
Lenzi et al. Reducing muscle effort in walking through powered exoskeletons
US20230293381A1 (en) Exoskeleton for rehabilitation
JP6872847B2 (en) Operation assist device, operation method of operation assist device, and operation assist control program
Elias et al. Robotic walkers from a clinical point of view: feature-based classification and proposal of the UFES Walker
Kawamoto Wearable robot technology
de Suraÿ et al. Design and experimental performance assessment of a hip flexion assistive device
CN109730905A (en) A kind of lower limb robot

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060915

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080710

R150 Certificate of patent or registration of utility model

Ref document number: 4178186

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140905

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250