JP2005094185A - 画像処理システム、画像処理装置、および撮像制御方法 - Google Patents

画像処理システム、画像処理装置、および撮像制御方法 Download PDF

Info

Publication number
JP2005094185A
JP2005094185A JP2003322629A JP2003322629A JP2005094185A JP 2005094185 A JP2005094185 A JP 2005094185A JP 2003322629 A JP2003322629 A JP 2003322629A JP 2003322629 A JP2003322629 A JP 2003322629A JP 2005094185 A JP2005094185 A JP 2005094185A
Authority
JP
Japan
Prior art keywords
image data
image
image processing
processing system
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003322629A
Other languages
English (en)
Inventor
Fumiko Uchino
文子 内野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Inc
Original Assignee
Konica Minolta Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Inc filed Critical Konica Minolta Inc
Priority to JP2003322629A priority Critical patent/JP2005094185A/ja
Publication of JP2005094185A publication Critical patent/JP2005094185A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Color Television Image Signal Generators (AREA)
  • Studio Devices (AREA)

Abstract

【課題】遠隔地より人間をはじめとする種々の対象物について詳細な検査を容易に可能とする技術を提供する。
【解決手段】ユーザの爪について、RGBの3つの波長域のそれぞれにおける分光成分に応じた3波長域画像データを取得する。この3波長域画像データに基づいたRGBの画素値と、健常者の爪の色の平均値である基準値とを比較する。比較の結果、RGBについて差分が所定値(15階調)よりも大きな場合は、より詳細な画像情報を得るために、同じ構図で5つの波長域のそれぞれにおける分光成分に応じた5波長域画像データを取得する。そして、5波長域画像データに基づいて爪の分光反射率を算出し、さらに、Lab測色値に変換して、健常者の爪の色を示す基準範囲と比較することにより、ユーザの健康状態の検査を実施し、検査結果(診断結果)をユーザに伝える。
【選択図】図9

Description

被写体に係る光学像に基づいて撮影画像を取得する撮像手段を有する画像処理システム、画像処理装置、および撮像制御方法に関する。
近年、高齢化社会などを反映して、老人の在宅医療などの現場において、遠隔地より老人の様子を見守るための手法が種々提案されている。
例えば、老人の体に装着される種々の計測機器より、血圧、体温、および脈拍などといったバイタルサインに関する情報をネットワークを介して受信し、遠隔地より健康診断を行うものが考えられる。そして、このようなバイタルサインを計測する機器の正しい装着状況などを遠隔地より確認するため、日常的にカメラを用いて監視するような技術が提案されている(例えば、特許文献1)。
このような技術に関する先行技術文献としては、以下のようなものがある。
特開平11−155823号公報
上記背景技術において提案されている技術では、バイタルサインなどごく簡単な数値に基づいた診断しか行うことができず、通常医者が往診などにおいて患者の種々の部位を視認しつつ行うような診断・検査を行うことができない。
そして、このような問題は、検査対象が老人に代表される人間などの場合に限られず、検査対象が、植物などの種々の生命体や工業的に生産される種々の部品などといった検査対象となり得るものである場合一般に共通する。
本発明は、上記課題に鑑みてなされたものであり、遠隔地より人間をはじめとする種々の対象物について詳細な検査を容易に可能とする技術を提供することを目的とする。
上記の課題を解決するために、請求項1の発明は、被写体に係る光学像に基づいて画像データを取得する画像入力装置と、ネットワークを介して前記画像入力装置とデータ送受信可能に接続されるサーバとを備えた画像処理システムであって、前記画像入力装置が、被写体の光学像から、所定数の波長域のそれぞれにおける第1の分光成分に応じた第1の画像データを取得する第1の撮像手段と、前記被写体の光学像から、前記所定数よりも多数の波長域のそれぞれにおける第2の分光成分に応じた第2の画像データを生成するための画像情報を取得可能な第2の撮像手段とを有し、前記サーバが、前記第1の画像データに基づいて得られる第1の対象値と所定の第1の基準値とを比較する比較手段と、前記比較手段による比較結果に応じて前記第2の撮像手段を選択的に能動化させて前記画像情報を得るように制御する制御手段とを有することを特徴とする。
また、請求項2の発明は、請求項1に記載の画像処理システムであって、前記サーバが、前記第2の撮像手段によって取得される前記画像情報から前記第2の画像データを生成する生成手段と、前記第2の画像データに基づいて得られる第2の対象値と所定の第2の基準値とを比較することによって、前記被写体の状況に異状が発生しているか否かを判別する判別手段とを備えることを特徴とする。
また、請求項3の発明は、請求項2に記載の画像処理システムであって、前記サーバが、前記制御手段によって前記第2の撮像手段が能動化された際に、前記第1の対象値と前記判別手段による判別結果とに基づいて、前記第1の基準値を更新する更新手段をさらに備えることを特徴とする。
また、請求項4の発明は、請求項1から請求項3のいずれかに記載の画像処理システムであって、前記被写体が人間の身体の特定部位であり、前記第1の基準値が、前記特定部位の外観に基づく異状判別の基準値として設定されていることを特徴とする。
また、請求項5の発明は、請求項1から請求項4のいずれかに記載の画像処理システムであって、所定のタイミングにおいて、前記第1の撮像手段による前記第1の画像データの取得を行うように警告を発する警告手段をさらに備えることを特徴とする。
また、請求項6の発明は、画像処理装置であって、被写体の光学像から、所定数の波長域のそれぞれにおける第1の分光成分に応じた第1の画像データを取得する第1の撮像手段と、前記被写体の光学像から、前記所定数よりも多数の波長域のそれぞれにおける第2の分光成分に応じた第2の画像データを生成するための画像情報を取得可能な第2の撮像手段とを有し、前記サーバが、前記第1の画像データに基づいて得られる対象値と所定の基準値とを比較する比較手段と、前記比較手段による比較結果に応じて前記第2の撮像手段を選択的に能動化させて前記画像情報を得るように制御する制御手段とを備えることを特徴とする。
また、請求項7の発明は、分光可能な波長域の数が比較的少ない第1の撮像手段と、分光可能な波長域の数が比較的多い第2の撮像手段を備えた画像処理装置を制御する方法であって、前記第1の撮像手段を能動化することによって、被写体の光学像から、比較的少ない数の波長域のそれぞれにおける第1の分光成分に応じた第1の画像データを取得するステップと、前記第1の画像データに基づいて得られる対象値と所定の基準値とを比較するステップと、前記比較手段による比較結果に応じて前記第2の撮像手段を能動化し、それによって、前記被写体の光学像から、比較的多い数の波長域のそれぞれにおける第2の分光成分に応じた第2の画像データを取得するステップとを備えることを特徴とする。
請求項1に記載の発明によれば、第1の撮像手段によって比較的少ない数の波長域のそれぞれにおける分光成分に応じた第1の画像データを取得し、その第1の画像データに基づいた対象値と所定の基準値とを比較し、その比較結果に応じて、第2の撮像手段を能動化させ、比較的数の多い波長域のそれぞれにおける分光成分に応じた第2の画像データを生成するための画像情報を取得することで、遠隔地より人間をはじめとする種々の対象物について詳細な検査を容易に可能とする技術を提供することができる。
特に、請求項2に記載の発明によれば、比較的数の多い波長域のそれぞれにおける分光成分に応じた第2の画像データに基づいて得られる対象値と所定の基準値とを比較することによって、被写体の状況に異状が発生しているか否かを判別するため、詳細な検査を容易に実施できる。
また、請求項3に記載の発明によれば、第2の撮像手段が能動化された際に、第1の画像データに基づいて得られる対象値と、第2の画像データに基づいた異状発生の有無についての判別結果とに基づいて、第1の画像データに基づいて得られる対象値と比較する基準値を更新するため、比較的数の多い波長域のそれぞれにおける分光成分に応じた第2の画像データを取得するための撮影を行うか否か精度良く判断することができる。
また、請求項4に記載の発明によれば、被写体を人間の身体の特定部位とし、第1の画像データに基づいて得られる対象値と比較する基準値が、人間の身体の特定部位の外観に基づく異状判別の基準値として設定されているため、遠隔地より人間の詳細な検査を容易に実施することができる。
また、請求項5に記載の発明によれば、予め決まったタイミングで比較的数の少ない波長域のそれぞれにおける分光成分に応じた第1の画像データを取得するように警告を行うため、検査を正確に実施することができる。
また、請求項6に記載の発明によれば、請求項1に記載の発明と同様な効果を奏することができる。
また、請求項7に記載の発明によれば、請求項1に記載の発明と同様な効果を奏することができる。
以下、本発明の実施形態を図面に基づいて説明する。
<1.画像処理システムの概要>
図1は、本発明の実施形態に係る画像処理システム1の概要を例示する図である。
図1に示す画像処理システム1では、デジタルカメラ等によって構成される画像入力装置100Aがローカルサーバ200Aを介してネットワーク500に対してデータ送受信可能に接続されている。また、各種画像処理等を行うためのネットワークサーバ600がネットワーク500に対してデータ送受信可能に接続されている。つまり、画像入力装置100Aとネットワークサーバ600とがネットワークを介してデータを相互に送受信することができるように接続されている。
ここで、「ネットワーク」とは、データ通信を行う通信回線網であり、具体的には、インターネット、LAN、WAN、CATVなどの、電気通信回線(光通信回線を含む)により構成される各種の通信回線網である。ネットワークに対する接続形態は、専用回線などを利用した常時接続であってもよいし、アナログ回線あるいはデジタル回線(ISDN)などの電話回線を利用したダイアルアップ接続などの一時的な接続のいずれであってもよい。また、その伝送方式は、無線方式および有線方式のいずれであってもよい。
更に、ネットワーク500に対して、画像入力装置100Aおよびローカルサーバ200Aと同様な構成の画像入力装置100B〜100Eおよびローカルサーバ200B〜200Eがそれぞれデータ送受信可能に接続されている。
図1に示す画像処理システム1は、例えば、独居老人向けの在宅医療などの現場に用いられ、各画像入力装置100A〜100Eおよびローカルサーバ200A〜200Eは、それぞれ、一組として各独居老人宅等に設置されている。具体的には、画像入力装置100Aおよびローカルサーバ200Aがある独居老人宅に設置されている。
画像入力装置100A〜100Eおよびローカルサーバ200A〜200Eの各組合せは、各々同様な機能構成等を有するため、以下、画像入力装置100Aおよびローカルサーバ200Aの一組を例にとって説明する。
画像入力装置100Aは、上述したように、独居老人宅において所定の場所に設置されるが、具体的には、一般家庭における画像入力装置100Aの設置場所としては、洗面所、リビング、寝室、玄関などの任意の場所でかまわない。但し、後述する健康診断においては、毎日一定時刻など、所定のタイミングで健康状態の検査(診断)を行うことが、健康診断の精度アップに資する。そのため、画像入力装置100Aの設置場所は、毎日一定時間帯に行く用事が発生するような場所に設置されることが好ましい。
画像入力装置100Aは、静止画像を取得するものであり、監視カメラのように常時監視するような類のものではないため、プライバシーを不必要に侵害するような問題は生じない。なお、画像入力装置100Aとしては、後述するようにRGBの3つの色成分(3つの波長域)の画素値からなる画像データを取得する一般的なデジタルカメラとほぼ同様なものとなっている。
また、ネットワークサーバ600は、CPUと、各種データやプログラム等を格納するROMやハードディスクなどを備えて構成される記憶部などとを備えて構成され、記憶部に格納されるプログラムをCPUが読み出して実行することで、各種機能や動作が実現される。
<2.画像入力装置の概要>
図2は、本発明の実施形態に係る画像入力装置100Aの外観構成を例示する斜視図である。
レンズユニット11は、複数のレンズを有するレンズ系111、レンズ系111によって結像される被写体に係る光学像に基づいて画像を取得するCCD112、および被写体からの光(反射光)をレンズ系111からCCD112へと導く光路に対して挿入および退避されるフィルタ32を有する。
レンズ系111は、複数のレンズのレンズ位置を変更することにより、一般的なズームやオートフォーカス(AF)の動作を実現する。
CCD112は、被写体に係る光学像が結像される受光部を有する。この受光部は、図3に示すようなR(赤).G(緑),B(青)の色成分に対応する波長域の光をそれぞれ透過するカラーフィルタが各画素に対応するように市松模様に配列された、いわゆるベイヤ配列を有している。図3では、3つの色成分全てを含む2×2のフィルタ配列(以下、「単位セル」と称する)のみを示しているが、実際には、数百万画素分に対応するフィルタが配列される。なお、以下では、Rの光を透過するフィルタを「Rフィルタ」、Gの光を透過するフィルタを「Gフィルタ」、Bの光を透過するフィルタを「Bフィルタ」と称し、RGBフィルタが配列された画素をそれぞれ「R画素」「G画素」「B画素」と称する。
そして、CCD112は、被写体に係る光学像を、RGBの色成分の画像信号(各画素で受光された画素信号の信号列からなる信号)に光電変換して出力する。つまり、CCD112は、被写体の光学像を、RGBの3つの波長域のそれぞれにおける分光成分に応じた画像信号(画像データ)を変換し、出力する。CCD112から出力される画像信号は本体部12へと送られる。つまり、画像入力装置100Aは、CCD112により、被写体に係る光学像に基づいて画像データを取得する。
また、フィルタ32は、後述するような所定の光透過特性を有し、その光透過特性により、フィルタ32が光路に対して挿入されている場合と退避されている場合とで、R,B画素で光電変換の対象となる光の波長域が変換する。更に、レンズユニット11には、操作者が被写体(撮影対象)を捉えるためのファインダ113が設けられる。
本体部12には、シャッタスタートボタン(シャッタボタン)122が設けられ、操作者がファインダ113を介して被写体を捉え、シャッタボタン122を操作することにより、CCD112にて電気的に画像(画像データ)が取得される。
また、レンズユニット11には、図4に外観が例示されているような汎用のフラッシュ装置121が外部より装着されている。具体的には、レンズ系111にフラッシュ装置121の円筒状の部分111Aが嵌合されて固定されている。また、フラッシュ装置121が有する2つの発光部121A,121Bに対してそれぞれ電力および発光制御信号を伝達するための2つのアダプタAA,ABが本体部12の図示を省略する端子に着装される。そして、画像データ取得時において、必要に応じてフラッシュ装置121が発光する。なお、フラッシュ装置121の発光部121A,121Bは、いわゆる標準光源D50の光を被写体に照射するように設計されている。
また、本体部12の側面には、本体部12とローカルサーバ200Aとの間でデータの送受信を行うための通信ケーブルを着装するケーブル着装部125が設けられる。つまり、CCD112で取得される画像データは、画像入力装置100A内で必要な処理が行われた上で、ケーブル着装部125、通信ケーブル、ローカルサーバ200A、およびネットワーク500を介して、ネットワークサーバ600に送信可能となっている。
また、一般的なデジタルカメラと同様に、CCD112からの画像データは本体部12内部にて後述する処理が行われ、必要に応じて本体部12に装着されている記録媒体123(いわゆる、メモリカード)に記録される。記録媒体123は本体部12下面の蓋を開けて取出ボタン124を操作することにより本体部12から取り出される。
更に、本体部12の背面には液晶のディスプレイ、操作ボタン等が設けられ、操作者が画面(ライブビュー)を見ながらボタンを操作することにより所望の入力操作が行われる。なお、上述したシャッタボタン122および操作ボタンをまとめて、以下、必要に応じて「操作部」と総称する。そして、ここでは、操作者が操作部等を種々操作することにより、後述する健康診断を行うための一連の撮影動作が行われる。
また、画像入力装置100Aの前面には、スピーカSPとランプLPとが設けられている。
<3.画像入力装置の機能構成>
図5は、本発明の実施形態に係る画像入力装置100Aの機能構成を示すブロック図である。図5では、画像入力装置100Aの機能構成のうち、主に健康診断を行うための一連の撮影動作に係る機能構成について示している。
図5に示す構成のうち、レンズ系111、CCD112、A/D変換部115、操作部26、CPU21、ROM22およびRAM23は画像を取得する機能を実現する。すなわち、レンズ系111により被写体に係る光学像がCCD112の受光面上に結像され、操作部26に含まれるシャッタボタン122が押下されるとCCD112からの画像データがA/D変換部115によりデジタル変換される。なお、A/D変換部115では、例えば、0から1023の1024階調で各色成分の画素値を示す10ビットのデジタル画像データに変換される。A/D変換部115で変換されたデジタル画像データは本体部12のRAM23に一時的に記憶される。また、必要に応じ、被写体からの光をレンズ系111からCCD112へと導く光路に対して、フィルタ32が挿入された状態(以下、「フィルタON状態」と称する)および光路から退避された状態(以下、「フィルタOFF状態」と称する)に設定することができる。また、レンズ系111に含まれる複数のレンズの位置が変更されることで、ズームやAFを実現する。なお、これらの動作・処理の制御はCPU21がROM22内に記憶されているプログラム221に従って動作することにより行われる。
RAM23に一時的に記憶された画像データは、ケーブル着装部125などを介して、ローカルサーバ200Aに送信される。つまり、画像入力装置100Aにおいて取得される画像データが、ローカルサーバ200A、ネットワーク500等を介して、ネットワークサーバ600に送信可能となっている。なお、ネットワークサーバ600では、画像入力装置100Aから送信される画像データを解析することで、後述する健康診断を行うことができる。画像入力装置100Aとネットワークサーバ600等との間におけるデータ送受信は、CPU21で実行されるプログラム221などによって制御される。
フィルタ32が光路に対して挿入および退避される場合については、後述する健康診断の動作において説明するが、フィルタ32の挿入時および退避時にそれぞれ取得されるRGBの3つの波長域ごとのデータからなる画像データ(すなわち、RGBの3つの波長域のそれぞれにおける分光成分に応じた画像データ)(以下、「3波長域画像データ」と称する)を、ネットワークサーバ600が受信し、ネットワークサーバ600において、例えば5つの異なる光の波長域ごとのデータからなる画像データ(すなわち、5つの波長域のそれぞれにおける分光成分に応じた画像データ)(以下、「5波長域画像データ」と称する)を生成することができる。つまり、フィルタ32の挿入、退避によって、単にフィルタ32の退避時(通常撮影時)において取得される画像データよりも比較的数の多い波長域のそれぞれにおける分光成分に応じた画像データを取得することができる。
なお、以下では、3および5波長域画像データを取得する撮影をそれぞれ「3波長域撮影」および「5波長域撮影」と称する。
よって、CCD112などが、人間の身体の特定部位等といった被写体の光学像から、所定数(ここでは、RGBの3つ)の波長域のそれぞれにおける分光成分に応じた第1の画像データ(ここでは、3波長域画像データ)を取得する手段として機能するとともに、所定数(ここでは、RGBの3つ)よりも多数(ここでは、5つ)のそれぞれにおける分光成分に応じた第2の画像データ(ここでは、5波長域画像データ)を生成するための画像情報(ここでは、3および5波長域画像データ)を取得する手段として機能する。言い換えれば、画像処理システム1は、分光可能な波長域の数が比較的少ない3波長域撮影と、分光可能な波長域の数が比較的多い5波長域撮影を実施可能な機能を有する。
なお、「特定被写体(または、被写体)」という文言は、撮影対象となる特定ユーザの身体の特定部位を示す場合と、世間一般の身体の特定部位を示す場合とがある。
また、ネットワークサーバ600では、例えば、5波長域画像データより、被写体の正しい色(照明条件に左右されない物体色、すなわち分光反射率)を算出することができる。5波長域画像データの生成および分光反射率の算出方法などについては後述する。
また、必要に応じ、一般的なデジタルカメラと同様に、本体部12のCPU21において、取得された画像データに対し、色バランス補正処理や圧縮処理等の各種画像処理を行い、記録媒体123に記録することもできる。なお、健康診断を行うための撮影動作においては、フラッシュ装置121からの標準光によって照射される被写体の色を正確に認識するために、色バランス補正処理は行われない。
また、本体部12は、記録媒体123に記録される画像データを読出して生成される再生画像やライブビュー画像などを表示するディスプレイ25を有している。また、本体部12には、スピーカSPおよびランプLPが設けられており、CPU21で実行されるプログラム221にしたがって、その動作が制御される。ここでは、健康診断の精度アップのために、スピーカSPから音声によるお知らせアラームを発生させたり、ランプLPを点滅させたりして、毎日所定のタイミングで健康診断用の撮影を行うように促す。つまり、スピーカSPやランプLPなどが、所定のタイミングにおいて、3波長域撮影によって3波長域画像データの取得を行うように警告を発する。このような警告を発することで、予め決まったタイミングで3波長域画像データを取得することができるため、健康状態などの検査を正確に実施することができる。なお、所定タイミングは、本体部12内に内臓されるリアルタイムクロック(不図示)とCPU21などが協働することで管理、計測することができる。
<4.5波長域画像データの生成方法>
ここでは、5波長域画像データを生成するために、フィルタON状態における3波長域画像データ(以下、「フィルタON画像データ」と称する)とフィルタOFF状態における3波長域画像データ(以下、「フィルタOFF画像データ」と称する)とを取得する。そして、2つの3波長域画像データ(フィルタON/OFF画像データ)から分光する波長域数を増加させた5波長域画像データを生成する。
図6は、5波長域画像データの生成方法を説明するための図である。図6では、ある単位セルに着目し、フィルタOFF状態においてR,G,B画素で受光される光の強度と光の波長との関係をそれぞれ曲線R0,G0,B0で示し、フィルタON状態においてR,B画素で受光される光の強度と光の波長との関係をそれぞれ曲線R1,B1で示し、併せて、フィルタ32の光透過率特性(フィルタ32を透過する光の強度と光の波長との関係)が曲線F0で示されている。
曲線F0は、曲線R0,B0をそれぞれ2つに分断するようなものとなっている。よって、R画素については、フィルタON状態でフィルタ32およびRフィルタを透過して受光される光の強度と波長との関係は、曲線R0とはピーク位置が異なる曲線R1で示されるようなものとなる。同様に、B画素については、フィルタON状態でフィルタ32およびBフィルタを透過して受光される光の強度と波長との関係は、曲線B0とはピーク位置が異なる曲線B1で示されるようなものとなる。そして、RおよびB画素について、フィルタOFF状態とフィルタON状態とにおける受光強度の差分は、それぞれ曲線R1,B1とはピーク位置が異なる曲線R2,B2で示されるようなものとなる。
しがたって、あるセルのR,B画素について、フィルタOFF画像データからフィルタON画像データを減算することで、曲線B2,R2に対応する画像データ(画素値)を得ることができる。すなわち、2つの3波長域画像データであるフィルタOFFおよびON(OFF/ON)画像データに基づいて、曲線R1,R2,G0,B1,B2に対応する5つの波長域のそれぞれにおける分光成分に応じた画像データ(5波長域画像データ)を生成することができる。つまり、1つのセルで捉えられる略同一の位置について、5種類の異なる波長域に関する画像データを得ることができる。
以下、フィルタ32とRフィルタの双方を光が透過する際の光の透過率を「R1分光透過率」と称し、Rフィルタの光の透過率(以下「R0分光透過率」)とR1分光透過率との差分を「R2分光透過率」と称し、フィルタ32とBフィルタの双方を光が透過する際の光の透過率を「B1分光透過率」と称し、Bフィルタの光の透過率(以下「B0分光透過率」)とB1分光透過率との差分を「B2分光透過率」と称し、Gフィルタの光の透過率を「G0分光透過率」と称する。なお、これらR1,R2,G0,B1,B2分光透過率は、フィルタ32,RGBフィルタの特性の初期設定によって一義的に定まる。
そうすると、ここでは、CCD112内の各セルは、被写体からの反射光のうち、異なる波長域に対応するR1,R2,G0,B1,B2分光透過率を有する5つのフィルタを透過する透過光の強度を、それぞれ測定したのと同じ結果を得ることができ、その結果、5つの異なる波長域にそれぞれ対応する分光成分、すなわち、5つの画像データ(撮影画像)を得ることができる。このように、画像入力装置100Aでは、一般的なデジタルカメラにフィルタ32を光路に対して挿入/退避させることができる機構を単純に付加するだけで、例えば、5波長域画像データなどのように、比較的多数の波長域のそれぞれにおける分光成分に応じた画像データを生成することができる。
なお、ここでは、ネットワークサーバ600において、2つの3波長域画像データから5波長域画像データが生成されるが、この動作についてはさらに後述する。
<5.分光反射率の算出方法>
上述した5波長域画像データに基づいて、一般的な手法によって、分光反射率を算出することができるが、ここで、一般的な分光反射率の算出方法の一例について説明する。
上述したように、画像処理システム1では、5つの異なる波長域に対応する5つの画像データを得ることができる。言い換えれば、第1〜第5番目の異なる波長域に対応する撮影画像を得ることができる。なお、以下では、より一般化した形で、m個の異なる波長域に対応するm個の画像データを取得した場合について説明する。
CCD112の各セルでは、第1〜第m番目(ここでは、m=5)の波長域に対応する受光強度(センサ応答)vi(i=1,...,m)が測定される。なお、以下では、各セルを1つの画素として考え、1つの画素について受光強度vi(i=1,...,m)が測定されるものとして説明する。
受光強度viは、各画像内の各画素位置(x,y)における画素値として取得されるため、各座標値x,yの関数となる。
第i番目の波長域(i=1,...,m)に対応する撮影画像内の位置(x,y)における画素値vi(x,y)は、「光学第27巻7号」(社団法人応用物理学会分科会日本光学会発行)の384頁〜391頁(津村徳道、羽石秀昭、三宅洋一著)によれば、次の数1で表される。
Figure 2005094185
ここで、r(x,y,λ)は撮影対象物(被写体)の画像位置(x,y)における波長λごとの反射率(すなわち分光反射率)を表し、S(λ)は撮像系の総合分光感度(以下、「撮像系総合分光感度」とも称する)を表す。撮像系総合分光感度は、CCD112のRGBフィルタを除く分光感度だけでなく、レンズ系の分光感度をも考慮した、総合的な分光感度である。言い換えれば、撮像系総合分光感度は、RGBフィルタを除くCCD112およびレンズ系を含む撮像系に関する分光感度である。また、E(λ)は照明の分光放射輝度を表し、ti(λ)は、第1〜第m番目の波長域に対応する分光透過率(ここでは、R1,R2,G0,B1,B2分光透過率)を示す。なお、λ1,λ2は、それぞれ、積分範囲の下限の波長および上限の波長である。
次に数学的な取り扱いを簡略化するため、分光分布を離散化し、数1で表現されるm個の関係をベクトルおよび行列を用いてまとめると、数2のように表現できる。ただし、数2およびそれ以降の数式においては、位置(x,y)に関する表記は適宜省略するものとする。
Figure 2005094185
ここで、列(縦)ベクトルvは、その要素として、複数(m個)のフィルタを透過した透過光の強度を表す上記のセンサ応答vi(i=1,...,m)を縦に並べたm次元のベクトルである。このベクトルvは「センサ応答ベクトル」とも称することができる。たとえば、5種類のフィルタ透過画像を得る場合には、このセンサ応答ベクトルvは、各フィルタに対応する5種類のセンサ応答(画素値)で構成される5次元の列ベクトル(m=5)となる。
また、列ベクトルrは、物体色の分光反射率(分光分布)を表すh次元のベクトルである。ベクトルrは、物体色を表すベクトルであり、「分光反射率ベクトル」とも称することができる。たとえば、可視光線の400nm〜700nmの波長領域における10nm刻みの31の代表値で離散化を図る場合には、この分光反射率ベクトルrは、各代表値に対応する31の感度で構成される31次元の列ベクトル(h=31)となる。
さらに、行列Eは、照明の分光放射輝度を表すh×hの対角行列であり、照明輝度行列とも称することができる。行列Sは、撮像系の総合分光感度を表すh×hの対角行列であり、撮像系感度行列とも称することができる。
また、行列Tは、数3に示すように、m個の列ベクトルti(h×1)の転置ベクトル(すなわち行ベクトルti t)を縦方向に配列した行列であり、m行h列(m×hとも表記する)のサイズを有している。m個の列ベクトルti(h×1)のそれぞれは、各フィルタの分光特性(ここでは、R1,R2,G0,B1,B2分光透過率)を示すベクトルである。そのため、この行列Tは、フィルタ分光特性行列とも称することができる。なお、この明細書において、記号(*)tは、転置ベクトルあるいは転置行列を意味するものとする。
Figure 2005094185
上記の行列T,E,Sを数4に示すように行列Fとしてまとめて表記すると、数2に示す分光反射率ベクトルrとセンサ応答ベクトルvとの関係は、数5のように表すことができる。なお、行列Fは、m×hのサイズを有している((m,h)型の行列であるとも表現できる)。
Figure 2005094185
Figure 2005094185
この画像処理システム1において「分光画像」を求めるということは、各画素に関して、センサ応答ベクトルvに基づいて分光反射率ベクトルrを求めることに相当する。すなわち、この数5を、分光反射率ベクトルrについて解くことと等価である。
しかしながら、この画像処理システム1において、分光反射率ベクトルrの次元数hはセンサ応答ベクトルvの次元数mよりも大きい(h>m)ため、m×h型の行列Fは正方行列ではなく正則でない。したがって、逆行列が存在しないため、数5を分光反射率ベクトルrについて解くことができない。
そこで、分光反射率ベクトルrは、各種の推定手法に基づく推定により近似的に求められる。
分光画像撮影に関する近似手法としては、たとえば、次の2つの手法が挙げられる。
1つは、1)比較的少数の基底関数を主成分分析法により求め、分光分布をそれらの基底関数の線形結合として近似する手法(以下、「低次元線形近似法」とも略称する)である。また、もう1つは、2)重回帰分析を用いる手法(以下、「重回帰分析法」とも略称する)である。
これらの近似手法によれば、比較的少数のフィルタ透過光強度に基づいて分光分布を近似的に求めること(言い換えれば、推定すること)ができる。
ここでは、前者の手法(低次元線形近似法)を例にとって説明し、後者の手法(重回帰分析法)については、説明を省略する。
前者の手法においては、後述する数11に基づいて、センサ応答ベクトルvから、分光反射率ベクトルrの推定値reを求める。以下では、その概要を説明する。
一般に、分光反射率ベクトルr(h次元ベクトル)は、主成分ベクトルbj(h次元ベクトル)と各主成分ベクトルbjに対する係数wj(スカラー)とを用いた線形結合として、数6のように表現できる。
Figure 2005094185
このように、分光反射率ベクトルrは、基底関数に相当する主成分ベクトルbj(j=1,...,K)を用いて表現される。
なお、主成分ベクトルbjは、統計的手法(主成分分析法)により求められる。具体的には、主成分ベクトルbjは、複数(K個)のサンプルの分光反射率ベクトルに関する共分散行列の固有分解を用いて求められる。また、求められた複数の固有ベクトルのうち、固有値の大きいものから順に第1主成分ベクトル,第2主成分ベクトル,...,第j主成分ベクトル,...の名称が付される。
ここでは、数6における全ての主成分ベクトルbj(基底関数)を用いるのではなく、第1主成分ベクトルから第k主成分ベクトルまでのk個(ただし、k<K)の主成分ベクトルbj(j=1,...,k)を用いることによって、分光反射率ベクトルrを近似的に表現する。すなわち、数7のように、分光反射率ベクトルrを近似分光反射率ベクトル(言い換えれば推定分光反射率ベクトル)reで近似するものとする。
Figure 2005094185
また、この近似分光反射率ベクトルreは、数8で表現される。
Figure 2005094185
なお、行列Bは、k個の主成分ベクトル(縦ベクトル)bjを横方向に並べた行列であり、h×kのサイズを有している。また、係数ベクトルwは、その要素としてk個の係数wj(j=1,...,k)を縦に並べたk次元のベクトルである。ただし、次元数kは、後述の計算の便宜上、センサ応答ベクトルvの次元数mと同一(k=m)とする。すなわち、主成分ベクトルの数kを、フィルタ数(波長域数とも称する)mと等しくなるように設定する。
このとき、数5、数7および数8を用いて数9の関係が導かれる。
Figure 2005094185
ここで、(m×k)の行列(FB)は、k=mであるので(m×m)の正方行列である。そして、行列(FB)が正則であるとすれば、行列(FB)は逆行列を有する。このとき、係数ベクトルwは、行列(FB)の逆行列(FB)-1を用いて、数10で表現される。
Figure 2005094185
したがって、近似分光反射率ベクトルreは、数11のように表現される。なお、数11は、数10を数8に代入すること等によって得られる。
Figure 2005094185
行列F(=TES)および行列Bの各要素は既知(各部の初期設定によって決定される)であるので、数11を用いれば、分光反射率ベクトルrの推定値である近似分光反射率ベクトルreを、センサ応答ベクトルvに基づいて求めることができる。
なお、以下では、近似分光反射率ベクトルreを、被写体(撮影対象物)の分光反射率rとして、説明を行う。
<6.健康診断>
以下、画像処理システム1における健康診断について説明する。
<撮影部位と構図>
画像処理システム1における健康診断では、色や形状が健康状態を反映する身体の部位(例えば、顔、舌、口腔、耳、うなじ、瞼の裏、白眼、爪、手の甲、手の平など)のうちいずれか1箇所、または複数箇所を選択し、その特定部位を継続的に撮影して、健康診断を行う。以下、手の甲と爪を撮影する場合を例にとって説明する。
ここで、継続的に特定部位を撮影して健康診断を行うためには、特定部位を毎回同一の構図(撮影角度、撮影距離、画角など)で撮影する必要がある。よって、所定のガイドを用いて構図を規定することが望まれる。例えば、画像入力装置100Aの正面方向(撮影方向)に、複数のガイドのうち任意のガイドが引き出し可能に設置され、順次任意のガイドを引き出し、設定して、特定部位の位置、角度などをガイドに合わせて規定することで、構図を一定とすることができる。
図7は、手の甲を撮影する状態を例示する図であり、図8は、手の爪を側面より撮影する状態を例示する図である。図7および図8は、画像入力装置100Aのレンズ系111の方向から見た図である。
例えば、L字型アングルL1が平板HB1上に設けられたガイドを画像入力装置100Aの正面に引き出し、図7に示すように、手HDをL字型アングルL1に沿わせ、手HDの平を平板HB1に密着させた状態とすることで、手の甲を特定の構図で撮影することができる。また、L字型アングルL2が平板HB2上に設けられたガイドを画像入力装置100Aの正面に引き出し、図8に示すように、指(例えば、人差し指)FGをL字型アングルL2に沿わせ、指FGの特定の側面(例えば、人差し指の中指側の側面)を平板HB2に密着させた状態とすることで、手の爪を特定の構図で撮影することができる。平板HB1,HB2は、手HDの甲や爪の肌色と色を区別し易いように、黒など肌色と著しく異なる色で構成される。
なお、手の甲や爪以外の部位が撮影対象であっても、その部位の形状などを考慮したガイドを適用することで、同様に特定の構図を規定、維持することができる。
<照明方法>
一般的なデジタルカメラでは、照明光源の違いをホワイトバランス(WB)の補正によって補完する。しかし、通常、WB補正により、同じ被写体を撮影しても、照明条件の差によって被写体の色が大きく異なるものとして画像データが取得されることが頻繁に起こる。このような照明光源の変化は、被写体の色を正しく把握する上で、阻害要因となり得るため、健康診断の実施時には、撮影時には常にフラッシュ装置121を発光させ、照明光源を一定とする。
フラッシュ装置121は、被写体をよりよい状態で撮影するために、被写体に対して左右45度方向から2つの発光部121A,121Bで照明する。そうすると、正反射光がレンズ系111に入射するのを防ぎ、被写体に影ができず、被写体の色などを把握する上で好ましい撮影が可能となる。なお、一般的なデジタルカメラに内蔵されているような内蔵フラッシュを照明光源として採用することによっても照明光源を一定のものとすることができる。
<健康診断の動作フローと原理説明>
図9および図10は、健康診断の動作フローを例示するフローチャートである。図9および図10に示す動作フローでは、所定のタイミングにおける1回分の健康診断の動作フローを示している。なお、この動作フローは、画像入力装置100AのCPU21とネットワークサーバ600とが協働することにより、実現される。
この健康診断の動作フローでは、一般的なRGBの3波長域画像データに基づいて、簡易的な診断を行い、健康状態に異状が発生している可能性がある場合は、5波長域画像データに基づいたより詳細な診断(詳細診断)を行う。
なお、上述したように、本実施形態では、5波長域画像データに基づいて分光反射率を算出するが、3波長域画像データに基づいて分光反射率を算出することも可能である。つまり、上述した分光反射率の算出方法において、m=3とすることもできる。しかし、分光反射率の算出精度などを考慮すると、一般的に、mはなるべく大きな数であることが望ましいことが知られている。よって、ここでは、単に3波長域画像データから分光反射率を算出するよりも、5波長域画像データから分光反射率を算出する方が精度良く分光反射率を求めることができ、ひいては、精度良い検査が実施可能となる。したがって、本実施形態では、簡易診断では3波長域撮影を行い、詳細診断では5波長域撮影を行うように設定されている。
健康診断の動作では、まず、所定のタイミング(例えば、毎日の所定時刻)となると、健康診断用の撮影を行うように、画像入力装置100Aから音声やランプの点滅などによって警告が行われる。
そして、画像入力装置100Aから発せられる音声ガイドに従って、ユーザーが操作部26を種々操作しつつ、図7に示すような状態で、手HDの甲を撮影することで、手の甲の全体を捉えた画像データ(以下、「画像データA」と称する)を取得して、ネットワークサーバ600に送信する(ステップS1)。さらに、画像入力装置100Aから発せられる音声ガイドに従って、ユーザーが操作部26を種々操作しつつ、図8に示すような状態で、指FGの側面側より爪を捉えた画像データ(以下、「画像データB」と称する)を取得して、ネットワークサーバ600に送信する(ステップS2)。ステップS1およびS2における画像データA,Bの取得が完了すると、ステップS3に進む。
ステップS3では、ネットワークサーバ600において、画像データAより爪の部分のデータを抽出し、各指ごとに、爪に係る画素値(RGB値)を記憶し、ステップS4に進む。ここでは、例えば、まず、画像データAから背景色との違いを利用して手(例えば、肌色)の部分のデータを検出・抽出する。次に、エッジ抽出等によって、手の爪とそれ以外の部分とを区別して、各指ごとに手の爪の部分に係る画像データを抽出する。
ステップS4では、ネットワークサーバ600において、画像データBより爪と指の形状を認識し、爪の反り具合と指先の角度を検出して記憶し、ステップS5に進む。ここでは、例えば、まず、エッジ抽出等によって、指の爪とそれ以外の部分とを区別する。そして、爪の付け根の点P0を検出する。更に、その付け根の点P0から爪側とその逆側に一定距離だけ進んだ点P1,P2と点P0とを結ぶ直線(点P0とP1とを結ぶ直線と、点P0とP2とを結ぶ直線)のなす角度を検出することにより、図11に示すような爪と爪の付け根側の皮膚の部分とのなす角度(指先の角度)を検出することができる。具体的には、図11(a),(b)で示すような指先の角度θ1およびθ2を検出することができる。
また、ここでは、例えば、爪の付け根の点P0から爪側に一定距離だけ進んだ点P3における爪の外形(曲線)に対する接線と、点P3と爪の先端PEとを結んだ直線とのなす角度を爪の反り具合を示す角度(以下、「爪の反り角度」と称する)として検出することができる。具体的には、図12に示すように、爪の反り角度θ3を検出することができる。なお、以下では、図12に示すように、爪が指の外側に凸の形状となっている場合は、角度θ3は負の値を示すものとし、逆に爪が指の外側に凹の形状、すなわち、爪が反り返って中央が凹んだ状態になっている場合は、角度θ3は正の値を示すものとする。
ステップS5では、ネットワークサーバ600において、ステップS3で検出した爪の色を示す画素値と基準値とを比較する。そして、基準値との差が所定値(例えば、15階調)より大きな場合は、ネットワークサーバ600から送信される信号に基づいて、画像入力装置100Aから音声などの警告が発せられ、ステップS6に進む。ここで、基準値としては、人間の身体の特定部位の外観に基づく異状判別の基準値、例えば、ユーザーの初期における爪の色を示す画素値(初期値)や、健常者の爪の色を示す画素値の平均値(統計値)を用いることができる。つまり、ネットワークサーバ600が、内蔵するCPUによって、3波長域画像データに基づいて得られる色情報に係る対象値(ここでは、画素値)と、特定被写体(ここでは、爪)の反射光の色情報に係る所定の基準値とを比較する。そして、ここでは、基準値との差が15階調よりも大きな爪を有する指が存在する場合は、健康状態に異状が発生している可能性があることを示す警告を発する。
このステップS5における異状の有無の判別は、より詳しい診断をするか否かを決定するための簡易診断にあたるため、所定値(ここでは、15階調)は、正確を期すような値ではない。そこで、所定値としては少し厳し目の値(ここでは、より小さな値)に初期設定しておき、5波長域画像データに基づいたより詳細な診断の機会を逃さないようにすることが好ましい。なお、ここでは、画素値(すなわち、各色成分に係る輝度値)について比較を行ったが、色度などの他の種類の値などに変換して、比較を行っても良い。
ステップS6では、ネットワークサーバ600において、ステップS4で検出した爪の反り角度、および指先の角度と所定の閾値とを比較し、それぞれ所定の閾値よりも大きな場合は、ネットワークサーバ600から送信される信号に基づいて、画像入力装置100Aから音声などの警告が発せられ、ステップS7に進む。ここで、所定の閾値としては、健康状態に異状が発生している可能性が考えられる場合とそうでない場合との境界を示す統計的な値を設定することができる。例えば、図11(a)に示すように指先の角度θ1が160度程度の場合は、何の異状もなく正常な場合であり、図11(b)に示すように指先の角度θ2が200度以上となる場合は、肺ガンや心臓疾患の疑いがあるため、その旨の警告を発する。つまり、指先の角度については、所定の閾値として200度を設定することができる。一方、爪の反り角度については、例えば、負の角度となったような場合は、鉄欠乏性貧血などの疑いがあるため、その旨の警告を発する。
ここでは、ステップS5およびS6における処理がネットワークサーバ600内で数分以内に行われることにより、簡易診断が行われ、ユーザに対して、その場で結果を伝える。そして、音声によって、例えば、「健康でした」「異状は認められません」「異状が認められましたので、引き続き5波長域撮影を行って下さい」などの結果を伝えることができる。また、ランプLPによって、異状なしを示すグリーンのランプの点灯、および5波長域撮影が必要な場合を示す赤のランプ点滅などで結果を伝えることができる。
ステップS7では、ステップS5において爪の色について警告が出ているか否かを判別する。ここでは、ステップS5において爪の色について警告が出ていればステップS8に進み、出ていなければ健康診断の動作フローを終了し、次回の所定のタイミングを待つ。
ステップS8では、5波長域撮影が行われ、被写体の正しい色(照明条件に左右されない物体色、すなわち分光反射率)を算出し、ステップS9に進む。つまり、ネットワークサーバ600は、内蔵するCPUにより、ステップS5における爪の色情報の比較結果に応じて、5波長域撮影を行う機能(手段)を選択的に能動化させて5波長域画像データを生成するための画像情報を得るように制御する。
このステップS8では、図10に示すステップS81からS84の処理が行われる。上述した3波長域撮影による簡易診断では、比較対象となった各指の爪の部分のRGB値は絶対的な色(いわゆる物体色)ではない。よって、ステップS8では、簡易診断で健康状態に異状が発生している可能性が高いと判別された場合には、5波長域撮影を行うことで、画素毎の分光反射率を取得し、絶対的な物体色に基づいて、より正確な診断を行う。
ステップS81では、自動的にフィルタON状態となっており、その状態でユーザが画像入力装置100Aの音声ガイドに従って操作部26を種々操作することで、被写体(ここでは、手の甲)を撮影する。そして、手の甲の全体を捉えたフィルタON画像データを取得し、ネットワーク500等を介してネットワークサーバ600にフィルタON画像データが送信される。また、フィルタON状態における撮影の直後に、自動的にフィルタOFF状態となり、自動的に被写体(ここでは、手の甲)を撮影して、手の甲の全体を捉えたフィルタOFF画像データを取得し、ネットワーク500等を介してネットワークサーバ600にフィルタOFF画像データが送信される(ステップS82)。そして、引き続いてステップS83に進む。
ステップS83では、サーバ600のCPUにおいて、爪に関し、ステップS81およびS82で取得されたフィルタOFF/ON画像データを減算することで、新たに2つの波長域に係る画像データを生成して、5波長域画像データを生成・取得し、ステップS84に進む。つまり、サーバ600のCPUにより、5波長域撮影によって取得される画像情報(フィルタOFF/ON画像データ)から5波長域画像データを生成する。ここでは、まず、上述したステップS3と同様に、フィルタOFF/ON画像データから爪の部分を抽出し、爪の部分について、上述した手法によって5波長域画像データを取得する。
ステップS84では、一般的な手法を用いて分光反射率を計算することで、5波長域撮影、および分光反射率の算出処理を終了し、図9のステップS9に進む。なお、一般的な分光反射率の計算手法については、例えば、上述したような手法がある。
ステップS9では、ネットワークサーバ600が、ステップS8において算出された画素毎の分光反射率に基づいて、より詳細な診断を行う。そして、診断結果が、ネットワーク500を介して画像入力装置100Aに送信され、ディスプレイ25へ表示されたり、スピーカSPから音声として発せられたりすることなどにより、ユーザ(被験者)に対して報告される。
ここでは、爪の部分のうちの一定面積分(例えば、10画素四方)について、各画素毎の分光反射率をLab表色系の値に変換し、その平均値を、爪の部分をLab表色系で表色した正確な測色値(以下、「Lab測色値」と称する)として算出する。なお、分光反射率からLab値への変換は、一般的に公知の方法によって行うことができる。例えば、分光反射率からLab値への変換式は、数12および数13のように表すことができる。
Figure 2005094185
Figure 2005094185
また、ネットワークサーバ600の記憶部には、予め爪の色についてのデータベースが格納されており、そのデータベースによって、健康な爪の色の基準範囲を規定しておく。この基準範囲は、健康な人の爪の色の統計値から予め求めることができ、等色色空間であるLab空間では、ある閉鎖的な三次元空間(範囲)で表すことできる。図13は、Lab空間上における健康な爪の色の基準範囲を例示する図である。
ネットワークサーバ600では、算出されたLab測色値UVをL,a,bが直交するLab三次元色空間上にプロットし、Lab測色値UVが基準範囲外であれば、ユーザの健康状態に何らかの異状が発生している可能性が高いと判断し、Lab測色値(例えば、図13に示すような基準範囲とLab測色値との関係が解る図と数値)等とともに直ちに医療機関での診断を受けるように勧める旨の診断結果を報告する。一方、Lab測色値が基準範囲内の場合には、Lab測色値等とともにユーザの健康状態には異状が無い可能性が高い旨を診断結果として報告する。つまり、ここでは、5波長域撮影による詳細診断で、異状が認められれば、その診断結果と共に医療機関への受診を強く促す。つまり、ネットワークサーバ600が、内蔵するCPUにおいて、5波長域画像データに基づいて得られる対象値(特定被写体の分光反射率を変換したLab測色値)と、特定被写体(ここでは、爪)からの反射光に係る所定の基準値(ここでは、基準範囲)とを比較することによって、特定被写体の状況に異状が発生しているか否かを判別することで、ユーザの健康状態に異状が発生しているか否かを判別する。
このように、画像処理システム1が、身体の所定の部位に係る画像を入力することによって、医者が問診で行っているような診断を代行し、病気のチェックのみならず、健康度の目安を診断結果として報告する。そのため、各人の健康に対する意識を高め、健康増進を図ることができる。そして、必要な場合にのみ医療機関へ行けば済むようになる。
なお、上述したように、ネットワーク500を介してデータの送受信をすることにより、ネットワークサーバ600で診断を実施するには、転送時間等も必要となるため、ユーザが診断結果を得られるまで若干の時間を要する。しかし、現状の各種転送・処理速度等を考慮すると、10分以内には、ユーザの元へ診断結果が報告(伝達)されるものと考えられ、ユーザは自分の家に居ながらにして、その場で診断結果を受け取ることができる。つまり、5波長域撮影による詳細な診断が時を置かずにその場で実行されるため、病院へ行って検診を受けようと思いながらもズルズルとそのままになってしまうといった有りがちな状態を回避することができる。
そして、ステップS9での処理が完了すると、健康診断の動作フローを終了し、次回の所定のタイミングを待つ。
以上のように、本発明の実施形態に係る画像処理システム1では、特定被写体(ここでは、人間の指の爪)について、簡易的に比較的少数(ここでは、RGBの3つ)の波長域のそれぞれにおける分光成分に応じた画像データ(ここでは、3波長域画像データ)を取得する。そして、その取得した画像データに基づいた対象値と所定の基準値とを比較する。さらに、その比較結果に応じて、より詳細な画像情報を得るために比較的多数(ここでは、5つ)の波長域のそれぞれにおける分光成分に応じた画像データ(ここでは、5波長域画像データ)を取得するような撮像制御を行う。その結果、遠隔地より人間をはじめとする種々の対象物について詳細な診断や検査などを容易に行うことができる。
そして、特定被写体について、5波長域画像データに基づく値(ここでは、分光反射率をLab測色値に変換した値)と基準値(ここでは、基準範囲)とを比較して、被写体の状況について異状の発生の有無を判別する。この5波長域画像データによって求められる分光反射率は、特定被写体の正しい物体色を表すため、詳細かつ正確な診断や検査などを容易に実施することができる。また、3波長域撮影による簡易診断と、5波長域撮影による詳細診断との2段階を経ることにより、医療機関への受診が必要か否かの判断を正確かつ容易に行うことができるため、ユーザは早期の対処が可能となる。
なお、上述のように5波長域撮影による詳細診断をある程度短時間で行うことが可能であるが、3波長域撮影による簡易診断に要する時間と比べるとかなりの長時間を要してしまう。よって、ここでは、日常的には、3波長域撮影による簡易診断のみを継続的に行い、簡易診断の結果、健康状態に異状が発生している可能性がある場合にのみ、同じ部位について5波長域撮影による詳細診断を行う。その結果、ユーザは健康診断に要する時間をそれほど気にすることなく、手間を掛けずに気軽に健康診断を継続的に受けることができ、必要に応じて、より詳細かつ正確な診断を受けることができる。
<7.その他>
以上、この発明の実施形態について説明したが、この発明は上記説明した内容のものに限定されるものではない。
◎例えば、上述した実施形態では、詳細診断を5波長域画像データに基づいて行ったが、これに限られるものではなく、例えば、4つ以上の波長域のそれぞれにおける分光成分に応じた画像データに基づいて詳細診断を行うようにしても良い。なお、フィルタ32の光透過特性を適宜変更することにより、例えば、フィルタON状態において、4〜6つの波長域のそれぞれにおける分光成分に応じた画像データを取得することが可能である。
◎また、上述した実施形態では、簡易診断を3波長域画像データに基づいて行い、詳細診断を5波長域画像データに基づいて行ったが、これに限られるものではなく、例えば、簡易診断を1つの波長域についての画像データ(例えば、モノクロ画像データ)に基づいて行い、詳細診断を3つの波長域のそれぞれにおける分光成分に応じた3波長域画像データに基づいて行うようにしても良い。つまり、通常は比較的少数の波長域のそれぞれにおける分光成分に応じた画像データに基づいて簡易診断を行い、必要に応じて、比較的多数の波長域のそれぞれにおける分光成分に応じた画像データに基づいて詳細診断を行うようにしても良い。
◎また、上述した実施形態では、特定被写体として手の爪を例にとって説明したが、特定被写体としては、これに限られず、例えば、顔、舌、口腔、耳、うなじ、瞼の裏、手の甲、手の平、白眼など、その部位の色や形状などが健康状態を反映する身体の部位のうち、いずれか一箇所または複数の箇所を特定被写体としても良い。
そして、例えば、舌や瞼の裏などの撮影が困難な部位を特定被写体とする場合は、毎回5波長域撮影を行うと仮定すると、2フレーム分の撮影時間において無理な姿勢をとらざるを得ない。これに対して、上述した実施形態のように、通常は3波長域撮影を行い、必要に応じて5波長域撮影を行うような構成とすることにより、毎回の健康診断時には、1フレーム分の撮影時間だけ無理な姿勢をとるだけで済む。そのため、楽に健康診断を受けることが可能となる。なお、舌を特定被写体とすると、東洋医学などにおける健康診断にも活用することができる。
◎また、上述した実施形態では、特定被写体は、人間の身体の部位であったが、これに限られるものではなく、例えば、植物や工業的生産過程における工業生産物などの色情報に基づいて、植物や工業生産物などにおける異状の発生の有無を判断するようにしても良い。つまり、特定被写体は、異状の発生の有無を、形状や色情報などの外観に関する情報から判別することができるような対象物であれば何でも良い。
なお、例えば、特定被写体が人間の身体に含まれる特定部位である場合は、比較的少数の波長域のそれぞれにおける分光成分に応じた画像データに基づいて得られる対象値と比較する基準値が、人間の身体の特定部位の外観に基づく異状判別の基準値として設定されるため、遠隔地より人間の詳細な健康診断すなわち検査を容易に実施することができる。一方、特定被写体が工業生産物の特定部位などである場合は、遠隔地より工業生産物の品質異状などの検査を容易に実施することができる。
◎また、ネットワークサーバ600内などに、特定ユーザの過去の診断結果(例えば、簡易診断の結果)を継続的に蓄積していき、個人個人の爪の色などの変化の特徴などをつかむようにするようにしても良い。このような構成とすることで、統計値などを基準とした絶対的な診断ではなく、いつもとは様子が違う、などといった変化をつかむことができる。また、その日のみなど一定期間の診断結果は、画像入力装置100A内に記録されるようにしても良く、一週間に一度など定期的に診断結果をローカルサーバ200Aやネットワークサーバ600へ転送し、各サーバにおいて長期間記録するようにしても良い。なお、診断結果の保存については、画像処理システム1による健康診断のサービス開始時において、ユーザが料金や希望するサービス内容によって、種々選択できるようにしても良い。
◎また、上述した実施形態では、簡易診断において、爪の色を示す画素値と基準値とを比較して、基準値との差が所定値より大きな場合には、5波長域撮影による詳細診断を行うように制御したが、これに限られるものではなく、例えば、ネットワークサーバ600内などに、特定ユーザの過去の診断結果を蓄積しておき、特定のユーザに係る爪などの色が、その人の過去の傾向から外れていれば、健康状態に異状が発生しているものとして判別するようにしても良い。具体的には、特定ユーザの爪の色を示す画素値が、その人の初期の爪の色を示す画素値から所定の閾値以上外れるような場合や、時間に対する画素値の変化の割合(傾き)が通常よりも大きな場合などに、5波長域撮影による詳細診断を行うようにしても良い。このような構成とすることで、個々人の特徴に即した健康診断を行うことが可能となる。
◎また、3波長域撮影による簡易診断によって5波長域撮影が必要であると判断された場合であっても、5波長域撮影による詳細診断によって異状が認められない場合がある。そのような場合は、その結果をフィードバックして、その後の3波長域撮影による健康診断の判断基準を変更するようにしても良い。例えば、5波長域撮影によって異状が認められないとされた際における3波長域画像データの値を健常者の爪の色を示す画素値として、健常者の爪の色を示す画素値の平均値(統計値)に反映させるようにしても良い。つまり、ネットワークサーバ600内のCPUにおいて、5波長域撮影に係る機能が能動化された際に、基準値との比較対象となった3波長域画像データに基づいて得られる対象値と、5波長域撮影による詳細診断の異状の有無の判別結果とに基づいて、簡易診断における基準値を更新するようにしても良い。
このような構成とすることによって、比較的多数の波長域のそれぞれにおける分光成分に応じた画像データ(ここでは、5波長域画像データ)を取得するための撮影を行うか否かを判別するための閾値をより信頼性のある値とすることができる。つまり、5波長画像データを取得するための5波長域撮影を実施するか否かの判断精度を向上させることができる。すなわち、より精度良く判断することができる。
◎また、例えば、ステップS5において、基準値との差が16階調であった場合であっても、5波長域撮影による詳細診断により異状が認められない場合がある。そのような場合は、その結果をフィードバックして、その後の3波長域撮影による健康診断の判断基準を変更するようにしても良い。例えば、その後の3波長域撮影による簡易診断においては、基準値との差が16階調の場合は、異状が発生している可能性がないものとして、5波長域撮影による詳細診断を行う必要がないものとして判断するようにしても良い。つまり、その後の3波長域撮影による簡易診断においては、基準値との差が16階調よりも大きな場合にのみ5波長域撮影による詳細診断を行うように判断するようにしても良い。
◎また、上述した実施形態では、画像入力装置100A〜100Eがローカルサーバ200A〜200Eを介してネットワーク500にデータ送受信可能に接続されていたが、これに限られるものではなく、図14に示すように画像入力装置100A〜100Eが直接ネットワーク500に対してデータ送受信可能に接続されているものでも良い。また、図15に示すように、各家庭等において、ネットワークサーバ600をローカルサーバとして保有し、そのネットワークサーバ600と画像入力装置100Aとが単なる通信ケーブル等によって構成されるローカルエリアネットワーク等でデータ送受信可能に接続されるようなものであっても良い。また、ネットワークサーバ600内における健康診断に関する機能の一部または全部を画像入力装置100A内に有するようにして、画像入力装置100Aを種々の画像処理を行う画像処理装置などとするようにしても良い。このような構成とすることによっても上述した実施形態と同様な効果を得ることができる。
但し、5波長域画像データから分光反射率を算出して、より詳細な診断を行うには、かなりの計算負荷がかかる。そのため、画像入力装置100A内のみで健康診断を行うには、画像入力装置100A内に大容量のメモリなどが必要となり、画像入力装置100A自体の大型化および高価格化などのデメリットを生じる。また、計算時間が長くなり、診断結果を得られるまでに長時間を要するなどのデメリットも生じる。よって、画像入力装置100Aのみで健康診断の動作すべてを行うのは現実的ではなく、詳細な診断など計算負荷が大きな処理は、画像入力装置100Aとネットワーク500を介して接続されるネットワークサーバ600等で行うか、または、ローカルサーバ200A等で行うことが望ましい。
◎また、上述した実施形態では、画像入力装置100A内で、フィルタ32が自動的にフィルタON/OFF状態となったが、これに限られるものではなく、例えば、フラッシュ装置121の発光部121A,121Bの前面に対してフィルタ32が挿入および退避されるようなものとしても良い。このような構成とすることで、画像入力装置100Aとして一般的なデジタルカメラをそのまま適用することができ、画像入力装置100Aの低コスト化に資することができる。
◎また、上述した実施形態では、画像入力装置100Aでは、フィルタ32が自動的にフィルタON/OFF状態となったが、これに限られるものではなく、例えば、フィルタ32が画像入力装置内に内臓されるものではなく、音声ガイドなどを含む警告などに従って、ユーザが手動でフィルタ32をレンズ系111の前面に装着/脱着することで、5波長域撮影をするようにしても良い。このような構成とすることで、特に高価な専用機器を使用しなくとも、一般的なデジタルカメラで、比較的多数の波長域のそれぞれにおける分光成分に応じた画像データを生成することができる。
◎また、上述した実施形態では、CCD112からの画像データが、A/D変換部115において、0から1023の1024階調で各色成分の画素値を示す10ビットのデジタル画像データに変換されたが、これに限られるものではなく、例えば、0から4095の4096階調で各色成分の画素値を示す12ビットのデジタル画像データに変換されるなど、他の階調数で各色成分の画素値を示すデジタル画像データに変換されても良い。
本発明の実施形態に係る画像処理システムの概要を例示する図である。 本発明の実施形態に係る画像入力装置の外観構成を示す斜視図である。 CCDのベイヤ配列を説明するための図である。 画像入力装置に装着されるフラッシュ装置の外観を示す図である。 本発明の実施形態に係る画像入力装置の機能構成を示すブロック図である。 5波長域画像データの生成方法を説明するための図である。 手の甲を撮影する状態を例示する図である。 手の爪を側面より撮影する状態を例示する図である。 健康診断の動作フローを示すフローチャートである。 健康診断の動作フローを示すフローチャートである。 指先の角度を例示する図である。 爪の反りを例示する図である。 Lab空間上における健康な爪の色の基準範囲を例示する図である。 本発明の変形例に係る画像処理システムの概要を例示する図である。 本発明の変形例に係る画像処理システムの概要を例示する図である。
符号の説明
1 画像処理システム
11 レンズユニット
12 本体部
21 CPU
25 ディスプレイ
26 操作部
32 フィルタ
100A〜100E 画像入力装置
112 CCD
200A〜200E ローカルサーバ
500 ネットワーク
600 ネットワークサーバ
LP ランプ
SP スピーカ

Claims (7)

  1. 被写体に係る光学像に基づいて画像データを取得する画像入力装置と、ネットワークを介して前記画像入力装置とデータ送受信可能に接続されるサーバとを備えた画像処理システムであって、
    前記画像入力装置が、
    被写体の光学像から、所定数の波長域のそれぞれにおける第1の分光成分に応じた第1の画像データを取得する第1の撮像手段と、
    前記被写体の光学像から、前記所定数よりも多数の波長域のそれぞれにおける第2の分光成分に応じた第2の画像データを生成するための画像情報を取得可能な第2の撮像手段と、
    を有し、
    前記サーバが、
    前記第1の画像データに基づいて得られる第1の対象値と所定の第1の基準値とを比較する比較手段と、
    前記比較手段による比較結果に応じて前記第2の撮像手段を選択的に能動化させて前記画像情報を得るように制御する制御手段と、
    を有することを特徴とする画像処理システム。
  2. 請求項1に記載の画像処理システムであって、
    前記サーバが、
    前記第2の撮像手段によって取得される前記画像情報から前記第2の画像データを生成する生成手段と、
    前記第2の画像データに基づいて得られる第2の対象値と所定の第2の基準値とを比較することによって、前記被写体の状況に異状が発生しているか否かを判別する判別手段と、
    を備えることを特徴とする画像処理システム。
  3. 請求項2に記載の画像処理システムであって、
    前記サーバが、
    前記制御手段によって前記第2の撮像手段が能動化された際に、前記第1の対象値と前記判別手段による判別結果とに基づいて、前記第1の基準値を更新する更新手段、
    をさらに備えることを特徴とする画像処理システム。
  4. 請求項1から請求項3のいずれかに記載の画像処理システムであって、
    前記被写体が人間の身体の特定部位であり、
    前記第1の基準値が、前記特定部位の外観に基づく異状判別の基準値として設定されていることを特徴とする画像処理システム。
  5. 請求項1から請求項4のいずれかに記載の画像処理システムであって、
    所定のタイミングにおいて、前記第1の撮像手段による前記第1の画像データの取得を行うように警告を発する警告手段、
    をさらに備えることを特徴とする画像処理システム。
  6. 画像処理装置であって、
    被写体の光学像から、所定数の波長域のそれぞれにおける第1の分光成分に応じた第1の画像データを取得する第1の撮像手段と、
    前記被写体の光学像から、前記所定数よりも多数の波長域のそれぞれにおける第2の分光成分に応じた第2の画像データを生成するための画像情報を取得可能な第2の撮像手段と、
    を有し、
    前記サーバが、
    前記第1の画像データに基づいて得られる対象値と所定の基準値とを比較する比較手段と、
    前記比較手段による比較結果に応じて前記第2の撮像手段を選択的に能動化させて前記画像情報を得るように制御する制御手段と、
    を備えることを特徴とする画像処理装置。
  7. 分光可能な波長域の数が比較的少ない第1の撮像手段と、分光可能な波長域の数が比較的多い第2の撮像手段を備えた画像処理装置を制御する方法であって、
    前記第1の撮像手段を能動化することによって、被写体の光学像から、比較的少ない数の波長域のそれぞれにおける第1の分光成分に応じた第1の画像データを取得するステップと、
    前記第1の画像データに基づいて得られる対象値と所定の基準値とを比較するステップと、
    前記比較手段による比較結果に応じて前記第2の撮像手段を能動化し、それによって、前記被写体の光学像から、比較的多い数の波長域のそれぞれにおける第2の分光成分に応じた第2の画像データを取得するステップと、
    を備えることを特徴とする撮像制御方法。
JP2003322629A 2003-09-16 2003-09-16 画像処理システム、画像処理装置、および撮像制御方法 Pending JP2005094185A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003322629A JP2005094185A (ja) 2003-09-16 2003-09-16 画像処理システム、画像処理装置、および撮像制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003322629A JP2005094185A (ja) 2003-09-16 2003-09-16 画像処理システム、画像処理装置、および撮像制御方法

Publications (1)

Publication Number Publication Date
JP2005094185A true JP2005094185A (ja) 2005-04-07

Family

ID=34453920

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003322629A Pending JP2005094185A (ja) 2003-09-16 2003-09-16 画像処理システム、画像処理装置、および撮像制御方法

Country Status (1)

Country Link
JP (1) JP2005094185A (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008257381A (ja) * 2007-04-03 2008-10-23 Sony Corp 情報解析システム、情報解析装置、情報解析方法および情報解析プログラム、ならびに、記録媒体
JP2013081601A (ja) * 2011-10-07 2013-05-09 Topcon Corp 眼科情報処理システム、眼科情報処理サーバー及び眼科情報処理方法
JP2014524273A (ja) * 2011-08-01 2014-09-22 コーニンクレッカ フィリップス エヌ ヴェ 生体の測定読み出しを得る及び処理するデバイス及び方法
JP2015221276A (ja) * 2015-08-06 2015-12-10 株式会社トプコン 眼科情報処理システム、眼科情報処理サーバー及び眼科情報処理方法
JP2018508298A (ja) * 2014-12-03 2018-03-29 乃承 曹 美爪装置及び美爪方法、健康管理方法、情報プッシュ方法
JP2021519200A (ja) * 2018-03-30 2021-08-10 ノースウェスタン ユニヴァーシティNorthwestern University ワイヤレス皮膚センサ、ならびに方法および使用
WO2023022131A1 (ja) * 2021-08-20 2023-02-23 シチズン時計株式会社 判定装置、判定方法、及び判定プログラム
US11619547B2 (en) 2018-09-25 2023-04-04 Greentropism Remote spectrometer control system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008257381A (ja) * 2007-04-03 2008-10-23 Sony Corp 情報解析システム、情報解析装置、情報解析方法および情報解析プログラム、ならびに、記録媒体
JP2014524273A (ja) * 2011-08-01 2014-09-22 コーニンクレッカ フィリップス エヌ ヴェ 生体の測定読み出しを得る及び処理するデバイス及び方法
JP2013081601A (ja) * 2011-10-07 2013-05-09 Topcon Corp 眼科情報処理システム、眼科情報処理サーバー及び眼科情報処理方法
JP2018508298A (ja) * 2014-12-03 2018-03-29 乃承 曹 美爪装置及び美爪方法、健康管理方法、情報プッシュ方法
JP2015221276A (ja) * 2015-08-06 2015-12-10 株式会社トプコン 眼科情報処理システム、眼科情報処理サーバー及び眼科情報処理方法
JP2021519200A (ja) * 2018-03-30 2021-08-10 ノースウェスタン ユニヴァーシティNorthwestern University ワイヤレス皮膚センサ、ならびに方法および使用
JP7258121B2 (ja) 2018-03-30 2023-04-14 ノースウェスタン ユニヴァーシティ ワイヤレス皮膚センサ、ならびに方法および使用
US11619547B2 (en) 2018-09-25 2023-04-04 Greentropism Remote spectrometer control system
WO2023022131A1 (ja) * 2021-08-20 2023-02-23 シチズン時計株式会社 判定装置、判定方法、及び判定プログラム

Similar Documents

Publication Publication Date Title
CN105636506B (zh) 用于远程光体积描记法的自动相机调节
US20170164888A1 (en) Organ imaging device
WO2006064635A1 (ja) 診断システム
US9445713B2 (en) Apparatuses and methods for mobile imaging and analysis
JP6545658B2 (ja) ビリルビンレベルを推定すること
EP3664704B1 (en) Device, system and method for determining a physiological parameter of a subject
JP2007125151A (ja) 診断システム及び診断装置
CN105451646A (zh) 用于提取生理信息的设备、系统和方法
JP4487535B2 (ja) 健康度測定システムおよびプログラム
KR101998595B1 (ko) 이미지 기반 황달 진단 방법 및 장치
CN101652097A (zh) 与生命体征床旁监护仪结合的图像捕获
CN104540438A (zh) 图像处理装置和内窥镜装置
WO2014002255A1 (ja) 健康管理支援装置、方法およびプログラム
WO2016067892A1 (ja) 健康度出力装置、健康度出力システムおよびプログラム
CN106462926A (zh) 健康度判定装置以及健康度判定系统
JP2005094185A (ja) 画像処理システム、画像処理装置、および撮像制御方法
CN211094138U (zh) 一种基于单镜头反光式相机的视网膜血氧饱和度测量系统
JP2022137109A (ja) 画像表示システム、及び画像表示方法
CN116322486A (zh) 痤疮严重程度分级方法和设备
KR102123121B1 (ko) 사용자의 신원 파악이 가능한 혈압 모니터링 방법 및 시스템
TWI759218B (zh) 非接觸式心律類別監測系統及方法
Chand et al. Identifying oral cancer using multispectral snapshot camera
TWI489306B (zh) Health status assessment methods and the use of the method of health assessment system
US20160242678A1 (en) Organ image photographing apparatus
CN114376491A (zh) 内窥镜成像装置及其方法、系统以及电子设备

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310