JP2005091143A - Radiation image conversion panel and method for manufacturing it - Google Patents

Radiation image conversion panel and method for manufacturing it Download PDF

Info

Publication number
JP2005091143A
JP2005091143A JP2003324610A JP2003324610A JP2005091143A JP 2005091143 A JP2005091143 A JP 2005091143A JP 2003324610 A JP2003324610 A JP 2003324610A JP 2003324610 A JP2003324610 A JP 2003324610A JP 2005091143 A JP2005091143 A JP 2005091143A
Authority
JP
Japan
Prior art keywords
phosphor layer
support
radiation image
image conversion
conversion panel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003324610A
Other languages
Japanese (ja)
Other versions
JP4474877B2 (en
Inventor
Hideki Shibuya
英樹 澁谷
Yoshitami Kasai
惠民 笠井
Kuniaki Nakano
中野  邦昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Medical and Graphic Inc
Original Assignee
Konica Minolta Medical and Graphic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical and Graphic Inc filed Critical Konica Minolta Medical and Graphic Inc
Priority to JP2003324610A priority Critical patent/JP4474877B2/en
Priority to DE602004015218T priority patent/DE602004015218D1/en
Priority to EP11156937.2A priority patent/EP2405447B1/en
Priority to EP11156946.3A priority patent/EP2405448B1/en
Priority to EP04021311A priority patent/EP1517340B1/en
Priority to EP08156787A priority patent/EP2001027B1/en
Priority to US10/938,817 priority patent/US20050056795A1/en
Publication of JP2005091143A publication Critical patent/JP2005091143A/en
Priority to US11/228,235 priority patent/US7153637B2/en
Priority to US11/593,556 priority patent/US7282310B2/en
Priority to US11/840,336 priority patent/US7704651B2/en
Application granted granted Critical
Publication of JP4474877B2 publication Critical patent/JP4474877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Conversion Of X-Rays Into Visible Images (AREA)
  • Luminescent Compositions (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the warpage and the inconsistencies of sensitivity in a radiation image conversion panel. <P>SOLUTION: Stimulable phosphors (CsBr:0.0002Eu) are filled as an evaporation material into a resistance heating crucible in an evaporation source 4, a support S is mounted on a support holder 5a and the distance between the support S and the evaporation source 4 is adjusted to 400 mm. After the inside of an evaporator 1 is evacuated for a short while, an Ar gas is introduced and the degree of vacuum is adjusted to 0.1 Pa, subsequently, the temperature of the support S is held at 100°C while rotating it at a speed of 10 rpm with a support rotation mechanism 5. Then, a stimulable phosphor layer is formed by heating the resistance heating crucible to evaporate the stimulable phosphors onto the support S and the evaporation is completed when the film thickness of the stimulable phosphor layer reaches about 500 μm. Subsequently, the stimulable phosphor layer is put into a protective layer bag in a dry air to obtain the radiation image conversion panel which has a structure where the stimulable phosphor layer is sealed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、気相堆積法により支持体上に輝尽性蛍光体層が形成された放射線画像変換パネル及びその放射線画像変換パネルの製造方法に関する。   The present invention relates to a radiation image conversion panel in which a photostimulable phosphor layer is formed on a support by a vapor deposition method and a method for manufacturing the radiation image conversion panel.

近年、放射線画像の撮影には、支持体上に輝尽性蛍光体が形成された撮影画像変換パネルが使用されている。これは、撮影時に被写体を透過した放射線を撮影画像変換パネル上に形成された輝尽性蛍光体層に吸収させ、その後輝尽性蛍光体層にレーザ光等の励起光を照射して輝尽性蛍光体層に蓄積された放射線エネルギーを蛍光として放射させてこの蛍光を検出することにより、画像化するものである。   In recent years, a radiographic image is captured using a captured image conversion panel in which a photostimulable phosphor is formed on a support. This is because the stimulable phosphor layer formed on the photographed image conversion panel absorbs the radiation that has passed through the subject at the time of photographing, and then the stimulable phosphor layer is irradiated with excitation light such as laser light. Radiation energy accumulated in the fluorescent layer is emitted as fluorescence, and this fluorescence is detected to form an image.

このような撮影画像変換パネルに輝尽性蛍光体層を形成する方法として、輝尽性蛍光体に結合剤を混合してパネルの支持体上に塗布する方法があるが、この方法では輝尽性蛍光体の純度が下がるため、励起光の進入及び輝尽発光の効率が低下し、撮影画像の鮮鋭度や粒状性などの画質の低下を招く。そこで、撮影画像の画質を向上させるために、輝尽性蛍光体層を気相堆積法により形成する方法が開発されている(例えば、特許文献1参照。)。この方法では、輝尽性蛍光体層は結合剤を含まず輝尽性蛍光体のみからなるので、励起光の進入及び輝尽発光の効率が良くなり、高画質な画像を得ることができる。   As a method for forming a photostimulable phosphor layer in such a photographed image conversion panel, there is a method in which a binder is mixed with the photostimulable phosphor and coated on the support of the panel. Since the purity of the fluorescent material is lowered, the efficiency of the excitation light and the stimulated light emission is lowered, and the image quality such as the sharpness and graininess of the photographed image is lowered. Therefore, in order to improve the image quality of the photographed image, a method of forming a photostimulable phosphor layer by a vapor deposition method has been developed (see, for example, Patent Document 1). In this method, the photostimulable phosphor layer does not contain a binder and is composed only of the photostimulable phosphor. Therefore, the efficiency of excitation light entry and photostimulated emission is improved, and a high-quality image can be obtained.

図4を参照して、気相堆積法による撮影画像変換パネルの従来の製造方法について説明する。
気相堆積法は、蒸着又はスパッタリング等により輝尽性蛍光体を支持体上に堆積させるものであり、例えば蒸着の場合は図4に示す蒸着装置10が使用されていた。蒸着装置10は、真空ポンプ11が備えられた真空容器12と、当該真空容器12内に、蒸発源13と、支持体Sを支持するとともに蒸発源13に対して支持体Sを水平方向(図中Aで示す方向)に往復搬送させる支持体搬送機構14とを備えて構成される。また、この蒸着装置10には、蒸発源13と支持体Sとの間に支持体Sへの蒸着を制限するためのスリットを有するスリット板15が設けられている。
With reference to FIG. 4, the conventional manufacturing method of the imaging | photography image conversion panel by a vapor deposition method is demonstrated.
In the vapor deposition method, a stimulable phosphor is deposited on a support by vapor deposition or sputtering. For example, in the case of vapor deposition, a vapor deposition apparatus 10 shown in FIG. 4 has been used. The vapor deposition apparatus 10 supports a vacuum vessel 12 provided with a vacuum pump 11, an evaporation source 13 and a support S in the vacuum vessel 12, and the support S in a horizontal direction with respect to the evaporation source 13 (see FIG. And a support conveying mechanism 14 that reciprocates in the direction indicated by the middle A). In addition, the vapor deposition apparatus 10 is provided with a slit plate 15 having a slit for restricting vapor deposition on the support S between the evaporation source 13 and the support S.

この蒸着装置10では、支持体Sを往復搬送しながら、蒸発源13からスリット15を通過した輝尽性蛍光体の蒸気を支持体Sに蒸着させることにより、支持体S上の一面にほぼ均一に輝尽性蛍光体層を形成することができる。
特開2002−214397号公報
In the vapor deposition apparatus 10, the vapor of the stimulable phosphor that has passed through the slit 15 from the evaporation source 13 is vapor deposited on the support S while reciprocating the support S, so that the surface of the support S is substantially uniform. A photostimulable phosphor layer can be formed.
Japanese Patent Laid-Open No. 2002-214397

輝尽性蛍光体層は、放射線を吸収してそのエネルギーを蓄積するものであるので、輝尽性蛍光体層における輝尽性蛍光体の膜厚が厚いほど感度は高くなり、輝尽性蛍光体に蓄積された放射線のエネルギーを放出可能なある限度の膜厚で感度は飽和する。
ところが、上記構成の蒸着装置10では、スリット15により蒸発源13から発せられた蒸気が乱れて支持体S側に進入することがあり、輝尽性蛍光体層の膜厚にムラが生じることがあった。そのため、パネル上で局所的に高感度の部分、低感度の部分ができ、感度ムラが生じることとなっていた。
Since the photostimulable phosphor layer absorbs radiation and accumulates its energy, the thicker the photostimulable phosphor layer in the photostimulable phosphor layer, the higher the sensitivity and the photostimulable fluorescence. Sensitivity saturates at a certain film thickness that can release the energy of radiation stored in the body.
However, in the vapor deposition apparatus 10 having the above configuration, the vapor emitted from the evaporation source 13 by the slit 15 may be disturbed and enter the support S side, resulting in unevenness in the film thickness of the photostimulable phosphor layer. there were. For this reason, a high-sensitivity portion and a low-sensitivity portion are locally generated on the panel, resulting in sensitivity unevenness.

一方で、CsBr等からなる輝尽性蛍光体層は膨張係数が大きいため、支持体上で応力が発生することとなる。そのため、膜厚が方向によってばらついていると、応力のバランスがとれず、支持体上に輝尽性蛍光体層を形成したパネルが反るという問題が発生していた。特に、炭素繊維が一方向に配されてなり、耐熱性樹脂が含浸された炭素繊維強化樹脂シートが複数積層されてなる支持体を適用した場合、支持体中の炭素繊維の向きに沿って反ることとなる。反りが生じたパネルは衝撃に弱く、輝尽性蛍光体層にひび割れが生じることが多い。また反りが原因で感度ムラが生じることがあった。   On the other hand, the photostimulable phosphor layer made of CsBr or the like has a large expansion coefficient, and therefore stress is generated on the support. For this reason, if the film thickness varies depending on the direction, the stress cannot be balanced, and the panel having the photostimulable phosphor layer formed on the support is warped. In particular, when a support in which carbon fibers are arranged in one direction and a plurality of carbon fiber reinforced resin sheets impregnated with a heat-resistant resin is applied is applied along the direction of the carbon fibers in the support. The Rukoto. A warped panel is vulnerable to impact, and the photostimulable phosphor layer is often cracked. In addition, sensitivity unevenness may occur due to warpage.

本発明の課題は、放射線画像変換パネルにおける反り及び感度ムラを低減することである。   An object of the present invention is to reduce warpage and sensitivity unevenness in a radiation image conversion panel.

請求項1に記載の発明は、
気相堆積法により形成された蛍光体層を有する放射線画像変換パネルにおいて、
蛍光体層における膜厚分布が±20%以下であり、かつ膜厚分布が等方的であることを特徴とする。
The invention described in claim 1
In a radiation image conversion panel having a phosphor layer formed by a vapor deposition method,
The film thickness distribution in the phosphor layer is ± 20% or less, and the film thickness distribution is isotropic.

請求項2に記載の発明は、請求項1に記載の放射線画像変換パネルにおいて、
蛍光体層における膜厚分布が±15%以下であることを特徴とする。
The invention according to claim 2 is the radiation image conversion panel according to claim 1,
The film thickness distribution in the phosphor layer is ± 15% or less.

請求項3に記載の発明は、請求項2に記載の放射線画像変換パネルにおいて、
蛍光体層における膜厚分布が±10%以下であることを特徴とする。
The invention according to claim 3 is the radiation image conversion panel according to claim 2,
The film thickness distribution in the phosphor layer is ± 10% or less.

請求項4に記載の発明は、請求項3に記載の放射線画像変換パネルにおいて、
蛍光体層における膜厚分布が±5%以下であることを特徴とする。
The invention according to claim 4 is the radiation image conversion panel according to claim 3,
The film thickness distribution in the phosphor layer is characterized by being ± 5% or less.

請求項5に記載の発明は、
気相堆積法により形成された蛍光体層を有する放射線画像変換パネルにおいて、
蛍光体層における膜厚の変動係数が40%以下であり、かつ膜厚が蛍光体層の中心から同心円状に等しい膜厚で分布することを特徴とする。
The invention described in claim 5
In a radiation image conversion panel having a phosphor layer formed by a vapor deposition method,
The variation coefficient of the film thickness in the phosphor layer is 40% or less, and the film thickness is distributed with the same film thickness concentrically from the center of the phosphor layer.

請求項6に記載の発明は、請求項5に記載の放射線画像変換パネルにおいて、
蛍光体層における膜厚の変動係数が30%以下であることを特徴とする。
The invention according to claim 6 is the radiation image conversion panel according to claim 5,
The variation coefficient of the film thickness in the phosphor layer is 30% or less.

請求項7に記載の発明は、請求項6に記載の放射線画像変換パネルにおいて、
蛍光体層における膜厚の変動係数が20%以下であることを特徴とする。
The invention according to claim 7 is the radiation image conversion panel according to claim 6,
The variation coefficient of the film thickness in the phosphor layer is 20% or less.

請求項8に記載の発明は、請求項7に記載の放射線画像変換パネルにおいて、
蛍光体層における膜厚の変動係数が10%以下であることを特徴とする。
The invention according to claim 8 is the radiation image conversion panel according to claim 7,
The variation coefficient of the film thickness in the phosphor layer is 10% or less.

請求項9に記載の発明は、請求項1〜8の何れか一項に記載の放射線画像変換パネルにおいて、
蛍光体層を構成する蛍光体が下記式(1)で示されるハロゲン化アルカリを母体とする輝尽性蛍光体を含有することを特徴とする。
M1X・aM2X′2・bM3X"3:eA・・・(1)
但し、式中でM1はLi、Na、K、Rb及びCsの各原子から選ばれる少なくとも1種のアルカリ金属原子であり、M2はBe、Mg、Ca、Sr、Ba、Zn、Cd、Cu及びNiの各原子から選ばれる少なくとも1種の二価金属原子であり、M3はSc、Y、La、Ce、Pr、Nd、Pm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Al、Ga及びInの各原子から選ばれる少なくとも1種の三価金属原子であり、X、X′、X"はF、Cl、Br及びIの各原子から選ばれる少なくとも1種のハロゲン原子であり、AはEu、Tb、In、Ce、Tm、Dy、Pr、Ho、Nd、Yb、Er、Gd、Lu、Sm、Y、Tl、Na、Ag、Cu及びMgの各原子から選ばれる少なくとも1種の金属原子である。また、a、b、eはそれぞれ0≦a<0.5、0≦b<0.5、0<e<1.0の範囲の数値を示す。
The invention according to claim 9 is the radiation image conversion panel according to any one of claims 1 to 8,
The phosphor constituting the phosphor layer contains a stimulable phosphor based on an alkali halide represented by the following formula (1).
M1X · aM2X '2 · bM3X " 3: eA ··· (1)
In the formula, M1 is at least one alkali metal atom selected from Li, Na, K, Rb and Cs atoms, and M2 is Be, Mg, Ca, Sr, Ba, Zn, Cd, Cu and At least one divalent metal atom selected from each atom of Ni, and M3 is Sc, Y, La, Ce, Pr, Nd, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, At least one trivalent metal atom selected from each atom of Lu, Al, Ga and In, and X, X ′ and X ″ are at least one halogen selected from each atom of F, Cl, Br and I A is an atom, and A is selected from each atom of Eu, Tb, In, Ce, Tm, Dy, Pr, Ho, Nd, Yb, Er, Gd, Lu, Sm, Y, Tl, Na, Ag, Cu, and Mg. At least one metal atom, and a, b, and e are numerical values in the ranges of 0 ≦ a <0.5, 0 ≦ b <0.5, and 0 <e <1.0, respectively.

請求項10に記載の発明は、
請求項1〜9の何れか一項に記載の放射線画像変換パネルを製造する放射線画像変換パネルの製造方法であって、
真空容器と、この真空容器内に設けられて、支持体に蛍光体を蒸着させる蒸発源と、支持体を支持するとともに当該支持体を蒸発源に対して回転させる支持体回転機構とを備えた蒸着装置を使用し、蒸着時に前記支持体回転機構により支持体を回転させながら、前記蒸発源から蒸発する蛍光体を支持体上に蒸着させて蛍光体層を形成することを特徴とする。
The invention according to claim 10 is:
A method for manufacturing a radiation image conversion panel for manufacturing the radiation image conversion panel according to any one of claims 1 to 9,
A vacuum vessel, an evaporation source that is provided in the vacuum vessel and deposits the phosphor on the support, and a support rotating mechanism that supports the support and rotates the support relative to the evaporation source. A vapor deposition apparatus is used, and a phosphor layer is formed by vapor-depositing phosphors evaporated from the evaporation source on the support while rotating the support by the support rotating mechanism during vapor deposition.

請求項1に記載の発明によれば、蛍光体層における膜厚分布が±20%以下、かつ膜厚が蛍光体層の中心から同心円上に等しい膜厚で分布するように蛍光体層が構成されるので、膜厚を均一化して感度ムラを低減させることができるとともに、蛍光体層の形成によりパネル上で発生する応力を相殺してパネルの反りを低減させることができる。   According to the first aspect of the present invention, the phosphor layer is configured such that the film thickness distribution in the phosphor layer is ± 20% or less, and the film thickness is distributed with the same film thickness concentrically from the center of the phosphor layer. Therefore, the film thickness can be made uniform to reduce sensitivity unevenness, and the stress generated on the panel can be offset by the formation of the phosphor layer, and the warpage of the panel can be reduced.

請求項2に記載の発明によれば、蛍光体層における膜厚分布が±20%以下となるように蛍光体層が構成されるので、膜厚をより均一化して感度ムラをさらに低減させることができる。   According to the second aspect of the present invention, since the phosphor layer is configured so that the film thickness distribution in the phosphor layer is ± 20% or less, the film thickness is made more uniform to further reduce the sensitivity unevenness. Can do.

請求項3に記載の発明によれば、蛍光体層における膜厚分布が±15%以下となるように蛍光体層が構成されるので、膜厚をより均一化して感度ムラをさらに低減させることができる。   According to the third aspect of the present invention, since the phosphor layer is configured so that the film thickness distribution in the phosphor layer is ± 15% or less, the film thickness is made more uniform to further reduce the sensitivity unevenness. Can do.

請求項4に記載の発明によれば、蛍光体層における膜厚分布が±5%以下となるように蛍光体層が構成されるので、膜厚をさらに均一化して感度ムラを著しく低減させることができる。   According to the invention described in claim 4, since the phosphor layer is configured such that the film thickness distribution in the phosphor layer is ± 5% or less, the film thickness is further uniformed to significantly reduce the sensitivity unevenness. Can do.

請求項5に記載の発明によれば、蛍光体層における膜厚の変動係数が40%以下、かつ膜厚が蛍光体層の中心から同心円上に等しい膜厚で分布するように蛍光体層が構成されるので、膜厚を均一化して感度ムラを低減させることができるとともに、蛍光体層の形成によりパネル上で発生する応力を相殺してパネルの反りを低減させることができる。   According to the fifth aspect of the present invention, the phosphor layer has a coefficient of variation of film thickness of 40% or less in the phosphor layer, and the phosphor layer is distributed with the same film thickness concentrically from the center of the phosphor layer. Since it is configured, the film thickness can be made uniform to reduce the sensitivity unevenness, and the stress generated on the panel can be offset by the formation of the phosphor layer, and the warpage of the panel can be reduced.

請求項6に記載の発明によれば、蛍光体層における膜厚の変動係数が30%以下となるように蛍光体層が構成されるので、膜厚をより均一化して感度ムラをさらに低減させることができる。   According to the sixth aspect of the present invention, since the phosphor layer is configured so that the variation coefficient of the film thickness in the phosphor layer is 30% or less, the film thickness is made more uniform and the sensitivity unevenness is further reduced. be able to.

請求項7に記載の発明によれば、蛍光体層における膜厚の変動係数が20%以下となるように蛍光体層が構成されるので、膜厚をより均一化して感度ムラをさらに低減させることができる。   According to the seventh aspect of the present invention, since the phosphor layer is configured so that the variation coefficient of the film thickness in the phosphor layer is 20% or less, the film thickness is made more uniform to further reduce sensitivity unevenness. be able to.

請求項8に記載の発明によれば、蛍光体層における膜厚の変動係数が10%以下となるように蛍光体層が構成されるので、膜厚をさらに均一化して感度ムラを著しく低減させることができる。   According to the eighth aspect of the present invention, since the phosphor layer is configured so that the variation coefficient of the film thickness in the phosphor layer is 10% or less, the film thickness is further uniformed to significantly reduce the sensitivity unevenness. be able to.

請求項9に記載の発明によれば、一般式(1)で示す輝尽性蛍光体、M1X・aM2X′2・bM3X"3:eAを蛍光体層の原料として適用することができる。 According to the ninth aspect of the present invention, the stimulable phosphor represented by the general formula (1), M1X · aM2X ′ 2 · bM3X ″ 3 : eA, can be applied as a raw material of the phosphor layer.

請求項10に記載の発明によれば、支持体を回転させながら、この支持体上に蛍光体を蒸着させるので、蛍光体の膜厚が均一になるように、また膜厚が蛍光体層の中心から同心円状に等しい膜厚で分布するように支持体上に蛍光体層を形成することができる。従って、蛍光体層における膜厚分布又は変動係数を低減させるとともにパネル上に発生する応力を相殺して、感度ムラが少なくかつ反りが少ない放射線画像変換パネルを製造することができる。   According to the invention described in claim 10, since the phosphor is deposited on the support while rotating the support, the film thickness of the phosphor layer is made uniform so that the film thickness of the phosphor becomes uniform. The phosphor layer can be formed on the support so as to be distributed with the same film thickness concentrically from the center. Accordingly, it is possible to manufacture a radiation image conversion panel with less sensitivity unevenness and less warpage by reducing the film thickness distribution or coefficient of variation in the phosphor layer and canceling the stress generated on the panel.

以下、本発明について詳細に説明する。
図1に、本発明を適用した放射線画像変換パネルPを示す。
図1に示すように、放射線画像変換パネルPは、支持体Sと、当該支持体S上に気相堆積法により輝尽性蛍光体の柱状結晶が形成された輝尽性蛍光体層Rとから構成され、必要に応じてこの輝尽性蛍光体層R上に輝尽性蛍光体層Rを保護する保護層(図示せず)が設けられる。
Hereinafter, the present invention will be described in detail.
FIG. 1 shows a radiation image conversion panel P to which the present invention is applied.
As shown in FIG. 1, the radiation image conversion panel P includes a support S, and a stimulable phosphor layer R in which columnar crystals of the stimulable phosphor are formed on the support S by a vapor deposition method. A protective layer (not shown) for protecting the photostimulable phosphor layer R is provided on the photostimulable phosphor layer R as necessary.

支持体Sの材料としては、従来の放射線画像変換パネルの支持体として公知の材料から任意に選ぶことができるが、気相体積法により蛍光体層を形成する際の支持体となる場合には、石英ガラス、アルミニウム、鉄、スズ、クロム等からなる金属シート及び炭素繊維が一方向に配されてなるシートに耐熱性樹脂が含有された炭素繊維強化樹脂シートが好ましい。   The material of the support S can be arbitrarily selected from known materials as a support for a conventional radiation image conversion panel, but in the case of becoming a support for forming a phosphor layer by a vapor volume method. In addition, a metal sheet made of quartz glass, aluminum, iron, tin, chromium and the like and a carbon fiber reinforced resin sheet containing a heat resistant resin in a sheet in which carbon fibers are arranged in one direction are preferable.

また、支持体Sには、その表面を平滑な面とするために樹脂層Saを有することが好ましい。樹脂層Saは、ポリイミド、ポリエチレンテレフタレート、パラフィン、グラファイト等の化合物を含有し、その膜厚は約5μm〜50μmであることが好ましい。この樹脂層は、支持体Sの表面又は裏面に設けてもよいし、両面に設けてもよい。   Further, the support S preferably has a resin layer Sa in order to make the surface smooth. The resin layer Sa contains a compound such as polyimide, polyethylene terephthalate, paraffin, graphite, and the film thickness is preferably about 5 μm to 50 μm. This resin layer may be provided on the front surface or the back surface of the support S, or may be provided on both surfaces.

さらに、支持体S上に樹脂層Saを設ける手段としては、貼合法、塗設法等の手段が挙げられる。貼合は加熱、加圧ローラを用いて行い、加熱条件としては約80〜150℃がこのマスク、加圧条件年は4.90×10〜2.94×102(N/cm)、搬送速度は0.1〜2.0(m/秒)が好ましい。   Furthermore, means for providing the resin layer Sa on the support S include means such as a bonding method and a coating method. Bonding is performed using heating and a pressure roller, and the heating condition is about 80 to 150 ° C., the pressure condition year is 4.90 × 10 to 2.94 × 102 (N / cm), the conveyance speed. Is preferably 0.1 to 2.0 (m / sec).

本発明に係る輝尽性蛍光体層Rは、下記の一般式(1)で示される輝尽性蛍光体を含有することが好ましい。
M1X・aM2X′2・bM3X"3:eA・・・(1)
但し、式中でM1はLi、Na、K、Rb及びCsの各原子から選ばれる少なくとも1種のアルカリ金属原子であり、M2はBe、Mg、Ca、Sr、Ba、Zn、Cd、Cu及びNiの各原子から選ばれる少なくとも1種の二価金属原子であり、M3はSc、Y、La、Ce、Pr、Nd、Pm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Al、Ga及びInの各原子から選ばれる少なくとも1種の三価金属原子であり、X、X′、X"はF、Cl、Br及びIの各原子から選ばれる少なくとも1種のハロゲン原子であり、AはEu、Tb、In、Ce、Tm、Dy、Pr、Ho、Nd、Yb、Er、Gd、Lu、Sm、Y、Tl、Na、Ag、Cu及びMgの各原子から選ばれる少なくとも1種の金属原子である。また、a、b、eはそれぞれ0≦a<0.5、0≦b<0.5、0<e<1.0の範囲の数値を示す。
The photostimulable phosphor layer R according to the present invention preferably contains a photostimulable phosphor represented by the following general formula (1).
M1X · aM2X '2 · bM3X " 3: eA ··· (1)
In the formula, M1 is at least one alkali metal atom selected from Li, Na, K, Rb and Cs atoms, and M2 is Be, Mg, Ca, Sr, Ba, Zn, Cd, Cu and At least one divalent metal atom selected from each atom of Ni, and M3 is Sc, Y, La, Ce, Pr, Nd, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, At least one trivalent metal atom selected from each atom of Lu, Al, Ga and In, and X, X ′ and X ″ are at least one halogen selected from each atom of F, Cl, Br and I A is an atom, and A is selected from each atom of Eu, Tb, In, Ce, Tm, Dy, Pr, Ho, Nd, Yb, Er, Gd, Lu, Sm, Y, Tl, Na, Ag, Cu, and Mg. At least one metal atom, and a, b, and e are numerical values in the ranges of 0 ≦ a <0.5, 0 ≦ b <0.5, and 0 <e <1.0, respectively.

上記一般式(1)において、M1はLi、Na、K、Rb及びCsの各原子から選ばれる少なくとも1種のアルカリ土類金属原子であるが、中でもRb及びCsの各原子から選ばれる少なくとも1種の原子が好ましく、さらに好ましくはCs原子である。   In the general formula (1), M1 is at least one alkaline earth metal atom selected from each atom of Li, Na, K, Rb, and Cs, and at least one selected from each atom of Rb and Cs. A seed atom is preferred, more preferably a Cs atom.

また、M2はBe、Mg、Ca、Sr、Ba、Zn、Cd、Cu及びNiの各原子から選ばれる少なくとも1種の二価金属原子であるが、中でも好ましく用いられるのは、Be、Mg、Ca、Sr及びBaから選ばれる原子である。   M2 is at least one divalent metal atom selected from the atoms of Be, Mg, Ca, Sr, Ba, Zn, Cd, Cu, and Ni. Among these, Be, Mg, An atom selected from Ca, Sr and Ba.

M3はSc、Y、La、Ce、Pr、Nd、Pm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Al、Ga及びInの各原子から選ばれる少なくとも1種の三価金属原子であるが、中でも好ましく用いられるのは、Y、Ce、Sm、Eu、Al、La、Gd、Lu、Ga及びInから選ばれる原子である。   M3 is at least one selected from Sc, Y, La, Ce, Pr, Nd, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Al, Ga, and In atoms. Among the valent metal atoms, atoms preferably selected from Y, Ce, Sm, Eu, Al, La, Gd, Lu, Ga, and In are preferable.

AはEu、Tb、In、Ce、Tm、Dy、Pr、Ho、Nd、Yb、Er、Gd、Lu、Sm、Y、Tl、Na、Ag、Cu及びMgの各原子から選ばれる少なくとも1種の金属原子であるが、中でも好ましくはEu原子である。   A is at least one selected from the atoms of Eu, Tb, In, Ce, Tm, Dy, Pr, Ho, Nd, Yb, Er, Gd, Lu, Sm, Y, Tl, Na, Ag, Cu, and Mg. Of these, the Eu atom is preferred.

輝尽性蛍光体の輝尽発光の輝度向上の観点から、X、X′、X"はF、Cl、Br及び
Iの各原子から選ばれる少なくとも1種のハロゲン原子であるが、F、Cl及びBrから選ばれる少なくとも1種の原子が好ましく、Br原子がさらに好ましい。
From the viewpoint of improving the brightness of the photostimulated luminescence of the photostimulable phosphor, X, X ′ and X ″ are at least one halogen atom selected from F, Cl, Br and I atoms. And at least one atom selected from Br and Br are more preferable, and a Br atom is more preferable.

また、一般式(1)において、a、b、eはそれぞれ0≦a<0.5、0≦b<0.5、0<e<1.0の範囲の数値であるが、好ましくは0≦b<10-2である。 In the general formula (1), a, b and e are numerical values in the range of 0 ≦ a <0.5, 0 ≦ b <0.5 and 0 <e <1.0, respectively, preferably 0 ≦ b <10 −2 .

本発明の一般式(1)で示される輝尽性蛍光体は、例えば以下の方法により製造される。
まず、蛍光体原料として下記の原料(a)、(b)、(e)が準備される。
原料(a):NaF、NaCl、NaBr、NaI、KF、KCl、KBr、KI、RbBr、RbI、CsF、CsCl、CsBr及びCsIから選ばれる少なくとも1種若しくは2種以上の化合物。
The photostimulable phosphor represented by the general formula (1) of the present invention is produced, for example, by the following method.
First, the following raw materials (a), (b), and (e) are prepared as phosphor raw materials.
Raw material (a): at least one compound selected from NaF, NaCl, NaBr, NaI, KF, KCl, KBr, KI, RbBr, RbI, CsF, CsCl, CsBr and CsI.

原料(b):MgF2、MgCl2、MgBr2、MgI2、CaF2、CaCl2、CaBr2、CaI2、SrF2、SrCl2、SrBr2、SrI2、BaF2、BaCl2、BaBr2、BaBr2・2H2O、BaI2、ZnF2、ZnCl2、ZnBr2、ZnI2、CdF2、CdCl2、CdBr2、CdI2、CuF2、CuCl2、CuBr2、CuI、NiF2、NiCl2、NiBr2及びNiI2の化合物から選ばれる1種又は2種以上の化合物。 Material (b): MgF 2, MgCl 2, MgBr 2, MgI 2, CaF 2, CaCl 2, CaBr 2, CaI 2, SrF 2, SrCl 2, SrBr 2, SrI 2, BaF 2, BaCl 2, BaBr 2, BaBr 2 .2H 2 O, BaI 2 , ZnF 2 , ZnCl 2 , ZnBr 2 , ZnI 2 , CdF 2 , CdCl 2 , CdBr 2 , CdI 2 , CuF 2 , CuCl 2 , CuBr 2 , CuI, NiF 2 , NiCl 2 , one or more compounds selected from the compounds of NiBr 2 and NiI 2.

原料(e):Eu、Tb、In、Ce、Tm、Dy、Pr、Ho、Nd、Yb、Er、Gd、Lu、Sm、Y、Tl、Na、Ag、Cu及びMgから選ばれる金属原子を含む化合物。   Raw material (e): Eu, Tb, In, Ce, Tm, Dy, Pr, Ho, Nd, Yb, Er, Gd, Lu, Sm, Y, Tl, Na, Ag, Cu and Mg. Containing compounds.

一般式(1)におけるa、b、eの数値範囲となるように、原料(a)、(b)、(e)の蛍光体原料を秤量し、純粋にて溶解する。この際、乳鉢、ボールミル、ミキサーミル等を用いて十分に混合してもよい。
次に、得られた水蒸気のpH値Cを0<C<7に調整するように所定の酸を加えた後、水分を蒸発気化させる。
The phosphor materials of the raw materials (a), (b), and (e) are weighed so as to be in the numerical ranges of a, b, and e in the general formula (1), and are dissolved purely. At this time, the mixture may be sufficiently mixed using a mortar, a ball mill, a mixer mill or the like.
Next, a predetermined acid is added so that the pH value C of the obtained water vapor is adjusted to 0 <C <7, and then water is evaporated.

次に、水分を蒸発気化して得られた原料混合物を石英ルツボ或いはアルミナルツボ等の耐熱性容器に充填して電気炉中で焼成を行う。焼成温度は500〜1000℃が好ましい。焼成時間は原料混合物の充填量、焼成温度等によって異なるが、0.5〜6時間が好ましい。また、焼成雰囲気としては少量の水素ガスを含む窒素ガス雰囲気、少量の一酸化炭素を含む炭素ガス雰囲気等の弱還元性雰囲気、窒素ガス雰囲気、アルゴンガス雰囲気等の中性雰囲気、或いは少量の酸素ガスを含む弱酸化性雰囲気が好ましい。   Next, the raw material mixture obtained by evaporating moisture is filled in a heat-resistant container such as a quartz crucible or an alumina crucible and fired in an electric furnace. The firing temperature is preferably 500 to 1000 ° C. The firing time varies depending on the filling amount of the raw material mixture, the firing temperature and the like, but is preferably 0.5 to 6 hours. The firing atmosphere is a nitrogen gas atmosphere containing a small amount of hydrogen gas, a weak reducing atmosphere such as a carbon gas atmosphere containing a small amount of carbon monoxide, a neutral atmosphere such as a nitrogen gas atmosphere or an argon gas atmosphere, or a small amount of oxygen. A weak oxidizing atmosphere containing gas is preferred.

なお、上記の焼成条件で一度焼成した後、焼成物を電気炉から取り出して粉砕し、しかる後、焼成物粉末を再び耐熱性容器に充填して電気炉に入れ、上記と同一の焼成条件で再焼成を行えば輝尽性蛍光体の発光輝度を電気炉から取り出して空気中で放令することによっても所望の輝尽性蛍光体を得ることができるが、焼成時と同じ、弱還元性雰囲気若しくは中性雰囲気のままで冷却してもよい。   After firing once under the above firing conditions, the fired product is taken out from the electric furnace and pulverized, and then the fired product powder is again filled in a heat-resistant container and placed in the electric furnace, under the same firing conditions as above. If re-firing, the desired stimulable phosphor can be obtained by taking out the luminous brightness of the stimulable phosphor from the electric furnace and releasing it in the air. You may cool in an atmosphere or neutral atmosphere.

また、焼成物を電気炉内で加熱部より冷却部へ移動させて、弱酸化性雰囲気で急冷することにより、得られた輝尽性蛍光体の輝尽発光輝度をより一層高めることができ好ましい。   In addition, by moving the fired product from the heating unit to the cooling unit in an electric furnace and quenching in a weakly oxidizing atmosphere, it is possible to further increase the photostimulable luminance of the resulting photostimulable phosphor. .

このようにして製造された輝尽性蛍光体を気相堆積法により支持体S上に蒸着させ、輝尽性蛍光体層Rを形成する。気相堆積法としては、蒸着法、スパッタリング法、CVD(Chemical Vapour Deposition)法、イオンプレーティング法、その他の方法を用いることができるが、本発明では特に蒸着法が好ましい。   The photostimulable phosphor thus produced is vapor-deposited on the support S by a vapor deposition method to form the photostimulable phosphor layer R. As the vapor deposition method, an evaporation method, a sputtering method, a CVD (Chemical Vapor Deposition) method, an ion plating method, and other methods can be used. In the present invention, the evaporation method is particularly preferable.

以下、本発明に好適な蒸着法により輝尽性蛍光体を支持体S上に蒸着させる例を説明する。
蒸着には、図2に示す蒸着装置1を用いる。図2に示すように、蒸着装置1は、真空容器2と、当該真空容器2内の排気及び大気の導入を行う真空ポンプ3と、真空容器2内に設けられて支持体Sに蒸気を蒸着させる蒸発源4と、支持体Sを保持するとともに、支持体Sを蒸発源4に対して回転させる支持体回転機構5等を備えて構成される。
Hereinafter, an example in which the photostimulable phosphor is deposited on the support S by a deposition method suitable for the present invention will be described.
The vapor deposition apparatus 1 shown in FIG. 2 is used for vapor deposition. As shown in FIG. 2, the vapor deposition apparatus 1 vapor-deposits vapor on a support S provided in the vacuum vessel 2, a vacuum pump 3 that exhausts the vacuum vessel 2 and introduces air into the vacuum vessel 2. An evaporation source 4 to be held, a support S, and a support rotating mechanism 5 that rotates the support S with respect to the evaporation source 4 are provided.

蒸発源4は、輝尽性蛍光体を収容して抵抗加熱法で加熱するため、ヒータを巻いたアルミナ製のルツボから構成してもよいし、ボートや高融点金属からなるヒータから構成してもよい。また、輝尽性蛍光体を加熱する方法は、抵抗加熱法以外に電子ビームによる加熱や、高周波誘導による加熱等の方法でもよいが、本発明では、比較的簡単な構成で取り扱いが容易、安易かつ非常に多くの物質に適用可能である点から抵抗加熱法が好ましい。また、蒸発源4は分子源エピタキシャル法による分子線源でもよい。   The evaporation source 4 contains a stimulable phosphor and is heated by a resistance heating method. Therefore, the evaporation source 4 may be composed of an alumina crucible wound with a heater, or a boat or a heater made of a refractory metal. Also good. In addition to the resistance heating method, the stimulable phosphor may be heated by an electron beam or a high frequency induction. However, in the present invention, it is easy to handle with a relatively simple configuration. The resistance heating method is preferable because it can be applied to a large number of substances. The evaporation source 4 may be a molecular beam source by a molecular source epitaxial method.

支持体回転機構5は、例えば支持体Sを保持するための支持体ホルダ5aと、当該支持体ホルダ5aを回転させる回転軸5bと、真空容器2外に配置されて回転軸5bの駆動源となるモータ(図示しない)等から構成される。   The support rotation mechanism 5 includes, for example, a support holder 5a for holding the support S, a rotation shaft 5b for rotating the support holder 5a, a drive source for the rotation shaft 5b disposed outside the vacuum vessel 2, and And a motor (not shown).

なお、支持体ホルダ5aには、支持体Sを加熱する加熱ヒータ(図示せず)を備えることが好ましい。支持体Sを加熱することによって、支持体S表面の吸着物を離脱・除去し、支持体S表面と輝尽性蛍光体層Rとの間に不純物層が発生することを防いだり、密着性の強化や輝尽性蛍光体層の膜質調整を行うことができる。   The support holder 5a preferably includes a heater (not shown) for heating the support S. By heating the support S, the adsorbate on the surface of the support S is removed and removed, and an impurity layer is prevented from being generated between the surface of the support S and the stimulable phosphor layer R, and adhesion is improved. And the film quality of the photostimulable phosphor layer can be adjusted.

さらに、支持体Sと蒸発源4との間に、蒸発源4から支持体Sに至る空間を遮断するシャッタ(図示しない)を備えるようにしてもよい。シャッタにより輝尽性蛍光体の表面に付着した蒸着の目的物以外の物質が蒸着の初期段階で蒸発し、支持体に付着することを防ぐことができる。   Furthermore, a shutter (not shown) that blocks a space from the evaporation source 4 to the support S may be provided between the support S and the evaporation source 4. It is possible to prevent substances other than the target of vapor deposition attached to the surface of the photostimulable phosphor by the shutter from evaporating at the initial stage of vapor deposition and adhering to the support.

次に、蒸着装置1を使用した蒸着方法について説明する。
まず、支持体ホルダ5aに支持体Sを取り付ける。次いで、真空容器2内を真空排気する。その後、支持体回転機構5により支持体ホルダ5aを蒸発源に対して回転させ、真空容器2内の真空度が蒸着可能な真空度に達したら、加熱された蒸発源4から輝尽性蛍光体を蒸発させて、支持体S表面に輝尽性蛍光体を所望の厚さに成長させる。この場合において、支持体Sと蒸発源4との距離は、100mm〜1500mmの間で調節する。
Next, a vapor deposition method using the vapor deposition apparatus 1 will be described.
First, the support body S is attached to the support body holder 5a. Next, the vacuum container 2 is evacuated. Thereafter, the support holder 5a is rotated with respect to the evaporation source by the support rotating mechanism 5, and when the degree of vacuum in the vacuum vessel 2 reaches a vacuum level at which vapor deposition is possible, the stimulable phosphor is heated from the heated evaporation source 4. Is evaporated, and the photostimulable phosphor is grown on the surface of the support S to a desired thickness. In this case, the distance between the support S and the evaporation source 4 is adjusted between 100 mm and 1500 mm.

また、上記蒸着工程では複数回に分けて輝尽性蛍光体層Rを形成することも可能である。さらに、蒸着工程では、複数の抵抗加熱器、或いはエレクトロンビームを用いて共蒸着し、支持体S上で目的とする輝尽性蛍光体を合成すると同時に輝尽性蛍光体層を形成することも可能である。   In the vapor deposition step, the photostimulable phosphor layer R can be formed in a plurality of times. Further, in the vapor deposition process, a plurality of resistance heaters or an electron beam may be co-deposited to synthesize the desired photostimulable phosphor on the support S and at the same time form a photostimulable phosphor layer. Is possible.

また、蒸着法においては、蒸着時、必要に応じて被蒸着体(支持体、保護層又は中間層)を冷却或いは加熱してもよい。さらに、蒸着終了後、輝尽性蛍光体層を加熱処理してもよい。また、蒸着法においては必要に応じてO2、H2等のガスを導入して蒸着する反応性蒸着を行ってもよい。 In the vapor deposition method, the vapor deposition target (support, protective layer or intermediate layer) may be cooled or heated as necessary during vapor deposition. Further, the stimulable phosphor layer may be heat-treated after the vapor deposition. In the vapor deposition method, reactive vapor deposition may be performed in which vapor deposition is performed by introducing a gas such as O 2 or H 2 as necessary.

形成する輝尽性蛍光体層Rの膜厚は、放射線画像変換パネルの使用目的によって、また輝尽性蛍光体の種類により異なるが、本発明の効果を得る観点から50μm〜2000μmの範囲であり、好ましくは50μm〜1000μm、さらに好ましくは100μm〜800μmの範囲である。   The film thickness of the photostimulable phosphor layer R to be formed varies depending on the intended use of the radiation image conversion panel and the type of stimulable phosphor, but is in the range of 50 μm to 2000 μm from the viewpoint of obtaining the effects of the present invention. The range is preferably 50 μm to 1000 μm, more preferably 100 μm to 800 μm.

また、上記の蒸着法による輝尽性蛍光体層Rの形成にあたり、輝尽性蛍光体層Rが形成される支持体Sの温度は、室温(RT)〜300℃に設定することが好ましく、さらに好ましくは50〜200℃である。   In forming the photostimulable phosphor layer R by the above vapor deposition method, the temperature of the support S on which the photostimulable phosphor layer R is formed is preferably set to room temperature (RT) to 300 ° C. More preferably, it is 50-200 degreeC.

以上のようにして輝尽性蛍光体層Rを形成した後、必要に応じて輝尽性蛍光体層Rを覆うようにして保護層を設けることとしてもよい。保護層は、保護層用の塗布液を輝尽性蛍光体層Rの表面に直接塗布して形成することとしてもよいし、予め別途形成した保護層を輝尽性蛍光体層に接着してもよい。   After forming the photostimulable phosphor layer R as described above, a protective layer may be provided so as to cover the photostimulable phosphor layer R as necessary. The protective layer may be formed by directly applying a coating solution for the protective layer to the surface of the photostimulable phosphor layer R, or by adhering a separately formed protective layer to the photostimulable phosphor layer. Also good.

保護層の材料としては、酢酸セルロース、ニトロセルロース、ポリメチルメタクリレート、ポリビニルブチラール、ポリビニルホルマール、ポリカーボネート、ポリエステル、ポリエチレンテレフタレート、ポリエチレン、ポリ塩化ビニリデン、ナイロン、ポリ四フッ化エチレン、ポリ三フッ化−塩化エチレン、四フッ化エチレン−六フッ化プロピレン共重合体、塩化ビニリデン−塩化ビニル共重合体、塩化ビニリデン−アクリロニトリル共重合体等の通常の保護層用材料が適用可能である。他に、透明なガラス基板を保護層として用いることもできる。   Materials for the protective layer include cellulose acetate, nitrocellulose, polymethyl methacrylate, polyvinyl butyral, polyvinyl formal, polycarbonate, polyester, polyethylene terephthalate, polyethylene, polyvinylidene chloride, nylon, polytetrafluoroethylene, polytrifluoride-chloride. Usual protective layer materials such as ethylene, tetrafluoroethylene-hexafluoropropylene copolymer, vinylidene chloride-vinyl chloride copolymer, vinylidene chloride-acrylonitrile copolymer are applicable. In addition, a transparent glass substrate can be used as the protective layer.

また、この保護層は、蒸着法、スパッタリング法等により、SiC、SiO2、SiN、Al23等の無機物質を積層して形成してもよい。これらの保護層の層厚は、0.1μm〜2000μmが好ましい。 The protective layer may be formed by laminating inorganic substances such as SiC, SiO 2 , SiN, Al 2 O 3 by vapor deposition, sputtering, or the like. The thickness of these protective layers is preferably 0.1 μm to 2000 μm.

以下、実施例を挙げて本発明を具体的に説明するが、本発明の実施態様はこれらに限定されるものではない。
(支持体の作成)
炭素繊維強化樹脂シートを複数積層して130℃で加熱し、100(N/cm)の圧力をかけて支持体Sを得た。
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, the embodiment of this invention is not limited to these.
(Create support)
A plurality of carbon fiber reinforced resin sheets were laminated and heated at 130 ° C., and a support S was obtained by applying a pressure of 100 (N / cm).

(輝尽性蛍光体層の形成)
輝尽性蛍光体としてCsBr:0.0002Euを製造し、この輝尽性蛍光体を支持体S上に蒸着させて輝尽性蛍光体層Rを形成し、以下に示す実施例1〜5、比較例1、2の放射線画像変換パネルを製造した。実施例1〜5では図2に示す蒸着装置1を使用して蒸着を行い、比較例1、2では図4に示す蒸着装置10を使用して蒸着を行った。
(Formation of photostimulable phosphor layer)
CsBr: 0.0002Eu was produced as a photostimulable phosphor, and this photostimulable phosphor was deposited on a support S to form a photostimulable phosphor layer R. Examples 1 to 5 shown below Radiation image conversion panels of Comparative Examples 1 and 2 were produced. In Examples 1-5, vapor deposition was performed using the vapor deposition apparatus 1 shown in FIG. 2, and in Comparative Examples 1 and 2, vapor deposition was performed using the vapor deposition apparatus 10 shown in FIG.

[実施例1]
まず、上記輝尽性蛍光体(CsBr:0.0002Eu)を蒸着材料として蒸発源4内の抵抗加熱ルツボに充填し、支持体ホルダ5aに支持体Sを設置した。
次に、支持体Sと蒸着源4との距離を300mmに調節した。
続いて、蒸着装置1内を一旦排気し、Arガスを導入して0.1Paに真空度を調節した後、支持体回転機構5により10rpmの速度で支持体Sを回転しながら、支持体Sの温度を100℃に保持した。次いで、抵抗加熱ルツボを加熱して輝尽性蛍光体を支持体S上に蒸着させて輝尽性蛍光体層を形成し、輝尽性蛍光体層の膜厚が約500μmとなったところで蒸着を終了させた。次いで、乾燥空気内で輝尽性蛍光体層を保護層袋に入れ、輝尽性蛍光体層が密封された構造の放射線画像変換パネルを得た。
[Example 1]
First, the photostimulable phosphor (CsBr: 0.0002Eu) was filled in a resistance heating crucible in the evaporation source 4 as an evaporation material, and the support S was placed on the support holder 5a.
Next, the distance between the support S and the vapor deposition source 4 was adjusted to 300 mm.
Subsequently, the inside of the vapor deposition apparatus 1 is once evacuated, Ar gas is introduced and the degree of vacuum is adjusted to 0.1 Pa, and then the support S is rotated by the support rotating mechanism 5 at a speed of 10 rpm. Was maintained at 100 ° C. Next, the resistance heating crucible is heated to deposit the photostimulable phosphor on the support S to form the photostimulable phosphor layer. When the film thickness of the photostimulable phosphor layer becomes about 500 μm, the deposition is performed. Was terminated. Next, the stimulable phosphor layer was placed in a protective layer bag in dry air to obtain a radiation image conversion panel having a structure in which the stimulable phosphor layer was sealed.

[実施例2]
実施例1と同様に輝尽性蛍光体及び支持体Sを設置後、支持体Sと蒸発源4との距離を400mmに調節した。その後は実施例1と同様の方法で放射線画像変換パネルを製造した。
[Example 2]
In the same manner as in Example 1, after the stimulable phosphor and the support S were installed, the distance between the support S and the evaporation source 4 was adjusted to 400 mm. Thereafter, a radiation image conversion panel was manufactured in the same manner as in Example 1.

[実施例3]
実施例1と同様に輝尽性蛍光体及び支持体Sを設置後、支持体Sと蒸発源4との距離を600mmに調節した。その後は実施例1と同様の方法で放射線画像変換パネルを製造した。
[Example 3]
In the same manner as in Example 1, after the stimulable phosphor and the support S were installed, the distance between the support S and the evaporation source 4 was adjusted to 600 mm. Thereafter, a radiation image conversion panel was manufactured in the same manner as in Example 1.

[実施例4]
実施例1と同様に輝尽性蛍光体及び支持体Sを設置後、支持体Sと蒸発源4との距離を800mmに調節した。その後は実施例1と同様の方法で放射線画像変換パネルを製造した。
[Example 4]
In the same manner as in Example 1, after the stimulable phosphor and the support S were installed, the distance between the support S and the evaporation source 4 was adjusted to 800 mm. Thereafter, a radiation image conversion panel was manufactured in the same manner as in Example 1.

[実施例5]
実施例1と同様に輝尽性蛍光体及び支持体Sを設置後、支持体Sと蒸発源4との距離を1000mmに調節した。その後は実施例1と同様の方法で放射線画像変換パネルを製造した。
[Example 5]
After the stimulable phosphor and the support S were installed in the same manner as in Example 1, the distance between the support S and the evaporation source 4 was adjusted to 1000 mm. Thereafter, a radiation image conversion panel was manufactured in the same manner as in Example 1.

[比較例1]
まず、上記輝尽性蛍光体(CsBr:0.0002Eu)を蒸着材料として、蒸着装置10(図4参照)における蒸発源13内の抵抗加熱ルツボに充填し、支持体ホルダ14aに支持体Sを設置した。
次に、支持体Sと蒸着源13との距離を400mmに調節した。
続いて、蒸着装置1内を一旦排気し、Arガスを導入して0.1Paに真空度を調節した後、支持体搬送機構14により支持体Sを方向Aにおいて往復搬送しながら、支持体Sの温度を100℃に保持した。次いで、抵抗加熱ルツボを加熱して輝尽性蛍光体を支持体S上に蒸着させて輝尽性蛍光体層を形成し、輝尽性蛍光体層の膜厚が約500μmとなったところで蒸着を終了させた。次いで、乾燥空気内で輝尽性蛍光体層を保護層袋に入れ、輝尽性蛍光体層が密封された構造の放射線画像変換パネルを得た。
[Comparative Example 1]
First, the stimulable phosphor (CsBr: 0.0002Eu) is used as a vapor deposition material, and the resistance heating crucible in the evaporation source 13 in the vapor deposition apparatus 10 (see FIG. 4) is filled, and the support S is placed on the support holder 14a. installed.
Next, the distance between the support S and the vapor deposition source 13 was adjusted to 400 mm.
Subsequently, after the inside of the vapor deposition apparatus 1 is once exhausted, Ar gas is introduced and the degree of vacuum is adjusted to 0.1 Pa, and then the support S is transported back and forth in the direction A by the support transport mechanism 14. Was maintained at 100 ° C. Next, the resistance heating crucible is heated to deposit the photostimulable phosphor on the support S to form the photostimulable phosphor layer. When the film thickness of the photostimulable phosphor layer becomes about 500 μm, the deposition is performed. Was terminated. Next, the stimulable phosphor layer was placed in a protective layer bag in dry air to obtain a radiation image conversion panel having a structure in which the stimulable phosphor layer was sealed.

[比較例2]
比較例1と同様に輝尽性蛍光体及び支持体Sを設置後、支持体Sと蒸発源4との距離を1000mmに調節した。その後は比較例1と同様の方法で放射線画像変換パネルを製造した。
[Comparative Example 2]
After the photostimulable phosphor and the support S were installed as in Comparative Example 1, the distance between the support S and the evaporation source 4 was adjusted to 1000 mm. Thereafter, a radiation image conversion panel was produced in the same manner as in Comparative Example 1.

以上のような実施例1〜5、比較例1、2で得られた放射線画像変換パネルについて、下記のような評価を行った。   The following evaluations were performed on the radiation image conversion panels obtained in Examples 1 to 5 and Comparative Examples 1 and 2 as described above.

《膜厚分布特性》
膜厚分布特性は、放射線画像変換パネル上で等間隔に並んだ30の測定点で膜厚を測定して、膜厚がほぼ同一である測定点を曲線(この曲線を等厚線という。)で結び、膜厚分布が等方的であるか異方的であるかを判別した。ここで、膜厚分布が等方的であるとは、パネルの中心から等距離の位置で膜厚がほぼ均一であり、方向によって膜厚にばらつきが無いことをいう。一方、膜厚分布が異方的であるとは、パネルの中心から方向によって膜厚にばらつきがあることをいう。
例えば、図3(a)に示すように、等厚線がパネルの中心から同心円状(正円、楕円含む)に広がる形状の場合は等方的であると判別し、図3(b)に示すように等厚線が一方向に並列していたり、図3(c)に示すように同心円状の幾つかの等厚線が局所的に存在する場合は異方的であると判別する。
<< Thickness distribution characteristics >>
Regarding the film thickness distribution characteristics, the film thickness is measured at 30 measurement points arranged at equal intervals on the radiation image conversion panel, and the measurement points having the same film thickness are curves (this curve is referred to as an iso-thick line). To determine whether the film thickness distribution is isotropic or anisotropic. Here, that the film thickness distribution is isotropic means that the film thickness is substantially uniform at a position equidistant from the center of the panel, and there is no variation in film thickness depending on the direction. On the other hand, that the film thickness distribution is anisotropic means that the film thickness varies depending on the direction from the center of the panel.
For example, as shown in FIG. 3 (a), it is determined that the iso-thick line is isotropic when it extends concentrically (including a perfect circle and an ellipse) from the center of the panel. As shown in FIG. 3, if the iso-thickness lines are arranged in parallel in one direction, or if several iso-concentric contour lines are locally present as shown in FIG.

《膜厚分布》
膜厚分布は、輝尽性蛍光体層における輝尽性蛍光体の膜厚のばらつきの程度を示す指標値となるものである。膜厚分布は、輝尽性蛍光体層における最大膜厚DMax及び最小膜厚Dminを測定して、下記式(2)により算出した。
<Film thickness distribution>
The film thickness distribution is an index value indicating the degree of variation in the film thickness of the photostimulable phosphor in the photostimulable phosphor layer. The film thickness distribution was calculated by the following formula (2) by measuring the maximum film thickness D Max and the minimum film thickness D min in the photostimulable phosphor layer.

Figure 2005091143
Figure 2005091143

《変動係数》
変動係数は、膜厚分布と同様に輝尽性蛍光体層における輝尽性蛍光体の膜厚のばらつきの程度を示す指標値となるものである。変動係数は、放射線画像変換パネル上で等間隔に並んだ50の測定点で輝尽性蛍光体層の膜厚を測定し、各測定点における膜厚の平均膜厚Dav、その平均膜厚の標準偏差Ddevを求めて、下記式(3)により算出した。
《Coefficient of variation》
The variation coefficient is an index value indicating the degree of variation in the film thickness of the photostimulable phosphor in the photostimulable phosphor layer, similarly to the film thickness distribution. The coefficient of variation was determined by measuring the film thickness of the photostimulable phosphor layer at 50 measurement points arranged at equal intervals on the radiation image conversion panel, and calculating the average film thickness D av of the film thickness at each measurement point. Was calculated by the following formula (3).

Figure 2005091143
Figure 2005091143

《感度ムラ》
放射線画像変換パネルに管電圧80kVpの放射線を輝尽性蛍光体とは逆の支持体側から均一に照射した後、当該放射線画像変換パネルPをHe−Neレーザ光(波長633nm)で走査して励起した。そして、放射線画像変換パネル上に等間隔に並んだ25の測定点において、輝尽性蛍光体層から放射される輝尽発光を受光器(分光感度S−5の光電子像倍管)で受光してその強度を測定し、各測定点における測定強度のうち、最大強度KMax、最小強度Kmin、各測定強度の平均強度Kavを求めて、下記式(4)により感度ムラを算出した。
<Sensitivity unevenness>
The radiation image conversion panel is uniformly irradiated with radiation with a tube voltage of 80 kVp from the support side opposite to the stimulable phosphor, and then the radiation image conversion panel P is scanned with He-Ne laser light (wavelength 633 nm) and excited. did. Then, at 25 measurement points arranged at equal intervals on the radiation image conversion panel, the photostimulated luminescence emitted from the photostimulable phosphor layer is received by a photoreceiver (photoelectron image multiplier of spectral sensitivity S-5). Then, the maximum intensity K Max , the minimum intensity K min , and the average intensity K av of each measurement intensity among the measurement intensities at each measurement point were obtained, and the sensitivity unevenness was calculated by the following formula (4).

Figure 2005091143
Figure 2005091143

《相対感度》
相対感度は、比較例1の放射線画像変換パネルにおける輝尽発光の輝度を基準として、比較例1の放射線画像変換パネルとの相対的な感度を示すものである。相対感度は、感度ムラの場合と同様に、放射線画像変換パネルの輝尽性蛍光体層から放射される輝尽発光の強度を25の測定点で測定し、これを輝度として比較例1における平均輝度K1、各実施例1〜5又は比較例2における平均輝度Knをそれぞれ求めて、下記式(5)により算出した。
<Relative sensitivity>
The relative sensitivity indicates a relative sensitivity with respect to the radiation image conversion panel of Comparative Example 1 on the basis of the brightness of the stimulated emission in the radiation image conversion panel of Comparative Example 1. As in the case of uneven sensitivity, the relative sensitivity was determined by measuring the intensity of the photostimulated luminescence emitted from the photostimulable phosphor layer of the radiation image conversion panel at 25 measurement points. brightness K 1, asking each average luminance K n in each example 1-5 and Comparative example 2, was calculated by the following equation (5).

Figure 2005091143
Figure 2005091143

《反り》
放射線画像変換パネルの反り量は、放射線画像変換パネルを真直度の良いステンレス板に5度の角度で立てかけた時の上側2角を隙間ゲージで測定し、さらにパネルを180度回転させてその上側2角(つまり、残りの2角)を隙間ゲージで測定し、その最大値を反り量(mm)とした。
"warp"
The amount of warpage of the radiation image conversion panel is measured by measuring the upper two corners with a gap gauge when the radiation image conversion panel is leaned against a stainless steel plate with good straightness at an angle of 5 degrees. Two corners (that is, the remaining two corners) were measured with a gap gauge, and the maximum value was taken as the amount of warpage (mm).

《耐衝撃性》
500gの鉄球を放射線画像変換パネルから、20cmの高さから落下させた後、ひび割れの様子を下記の評価基準で目視評価した。さらに、その後放射線画像変換パネルに、管電圧80kVpの放射線を照射した後、パネルをHe−Neレーザ光(波長633nm)で走査して励起し、蛍光体層から放射される輝尽発光を光電変換素子により電気信号(画像信号)に変換する。そして、変換された画像信号を表示手段に表示出力又は印刷手段により印刷出力し、出力された画像を目視により下記の評価基準で評価した。
《Shock resistance》
After dropping a 500 g iron ball from a radiation image conversion panel from a height of 20 cm, the state of cracking was visually evaluated according to the following evaluation criteria. Further, after irradiating the radiation image conversion panel with radiation having a tube voltage of 80 kVp, the panel is scanned and excited with He-Ne laser light (wavelength 633 nm), and the stimulated luminescence emitted from the phosphor layer is photoelectrically converted. It is converted into an electric signal (image signal) by the element. The converted image signal was displayed on the display means or printed out by the printing means, and the output image was visually evaluated according to the following evaluation criteria.

耐衝撃性の評価基準は以下に示す通りである。
◎:ひび割れがなく、また画像ムラのない均一な画像である。
○:ひび割れがなく、画質的にほとんど気にならない程度である。
△:ひび割れが見られ、画欠が確認されるが、実用上許容できる範囲内である。
×:ひび割れが見られ、明らかな画欠が認められ、実用上問題が発生する。
The evaluation criteria for impact resistance are as follows.
A: A uniform image with no cracks and no image unevenness.
○: There is no crack, and the image quality is hardly a concern.
(Triangle | delta): Although a crack is seen and a notch is confirmed, it exists in the range accept | permitted practically.
X: Cracks are observed, clear notches are recognized, and problems occur in practice.

以上の評価結果を表1に示す。

Figure 2005091143
The above evaluation results are shown in Table 1.
Figure 2005091143

表1の結果から明らかなように、支持体Sと蒸発源4との距離を400mm以上に調整し、かつ支持体Sを回転しながら蒸着した放射線画像変換パネル(実施例2〜5)では、膜厚分布を±20%以下に低減させることができる。膜厚分布を±20%以下とすると、感度ムラを20%以下と、比較例1、2と比して半減させることができ、画質を向上させることができるといえる。同様に、実施例1〜5の放射線画像変換パネルでは、変動係数を40%以下に低減させて、感度ムラを30%以下と著しく低減させることができる。   As is clear from the results of Table 1, in the radiation image conversion panel (Examples 2 to 5) in which the distance between the support S and the evaporation source 4 was adjusted to 400 mm or more and vapor deposition was performed while rotating the support S. The film thickness distribution can be reduced to ± 20% or less. When the film thickness distribution is ± 20% or less, it can be said that the sensitivity unevenness is 20% or less, which is halved compared to Comparative Examples 1 and 2, and the image quality can be improved. Similarly, in the radiation image conversion panels of Examples 1 to 5, the variation coefficient can be reduced to 40% or less, and the sensitivity unevenness can be significantly reduced to 30% or less.

また、膜厚分布が±20%以下、±15%以下、±10%以下、±5%以下と低くなるにつれて、感度ムラが低減するとともに相対感度が向上しているが、特に膜厚分布が±5%を切る実施例5では、顕著に感度ムラが低減しており、相対感度も各実施例の中では最高値を示している。同様に、変動係数が40%以下、30%以下、20%以下、10%以下と低くなるにつれて、感度ムラが低減するとともに相対感度が何れも向上していることがわかる。   In addition, as the film thickness distribution becomes lower than ± 20%, ± 15% or lower, ± 10% or lower, and ± 5% or lower, the sensitivity unevenness is reduced and the relative sensitivity is improved. In Example 5, which is less than ± 5%, the sensitivity unevenness is remarkably reduced, and the relative sensitivity is the highest value in each Example. Similarly, it can be seen that as the coefficient of variation decreases to 40% or less, 30% or less, 20% or less, and 10% or less, the sensitivity unevenness is reduced and the relative sensitivity is improved.

一方で、支持体Sを回転させながら蒸着を行った実施例1〜5は、何れも膜厚分布特性が等方性を有しており、反りが1.0mm以下と比較例1、2と比して極端に小さい。また、耐衝撃性についても等方性を有する実施例1〜5では、ひび割れはほとんど見られず、特に膜厚分布が小さい実施例4、5では良好な画質をも実現可能であるといえる。これに比べて比較例1、2では、等方性を有する比較例2であっても、ひび割れが見られ、耐衝撃性の評価は低い。   On the other hand, each of Examples 1 to 5 in which deposition was performed while rotating the support S had an isotropic film thickness distribution characteristic, and warpage was 1.0 mm or less, and Comparative Examples 1 and 2. Compared to extremely small. Moreover, in Examples 1-5 which are isotropic about impact resistance, a crack is hardly seen, and it can be said that favorable image quality is also realizable in Examples 4 and 5 with especially small film thickness distribution. Compared with this, in Comparative Examples 1 and 2, even in Comparative Example 2 having isotropic properties, cracks are seen, and the evaluation of impact resistance is low.

本実施の形態における放射線画像変換パネルを示す図である。It is a figure which shows the radiographic image conversion panel in this Embodiment. 本発明に係る蒸着装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the vapor deposition apparatus which concerns on this invention. (a)膜厚分布特性が等方的である例を示す図である。(b)、(c)膜厚分布特性が異方的である例を示す図である。(A) It is a figure which shows the example whose film thickness distribution characteristic is isotropic. (B), (c) It is a figure which shows the example whose film thickness distribution characteristic is anisotropic. 従来の蒸着装置の概略構成を示す断面図である。It is sectional drawing which shows schematic structure of the conventional vapor deposition apparatus.

符号の説明Explanation of symbols

P 放射線画像変換パネル
R 輝尽性蛍光体層
S 支持体
1 蒸着装置
2 真空容器
3 真空ポンプ
4 蒸発源
5 支持体回転機構
5a 支持体ホルダ
5b 回転軸
P radiation image conversion panel R photostimulable phosphor layer S support 1 vapor deposition device 2 vacuum vessel 3 vacuum pump 4 evaporation source 5 support rotating mechanism 5a support holder 5b rotating shaft

Claims (10)

気相堆積法により形成された蛍光体層を有する放射線画像変換パネルにおいて、
蛍光体層における膜厚分布が±20%以下であり、かつ膜厚分布が等方的であることを特徴とする放射線画像変換パネル。
In a radiation image conversion panel having a phosphor layer formed by a vapor deposition method,
A radiation image conversion panel characterized in that the film thickness distribution in the phosphor layer is ± 20% or less and the film thickness distribution is isotropic.
蛍光体層における膜厚分布が±15%以下であることを特徴とする請求項1に記載の放射線画像変換パネル。   The radiation image conversion panel according to claim 1, wherein a film thickness distribution in the phosphor layer is ± 15% or less. 蛍光体層における膜厚分布が±10%以下であることを特徴とする請求項2に記載の放射線画像変換パネル。   The radiation image conversion panel according to claim 2, wherein a film thickness distribution in the phosphor layer is ± 10% or less. 蛍光体層における膜厚分布が±5%以下であることを特徴とする請求項3に記載の放射線画像変換パネル。   The radiation image conversion panel according to claim 3, wherein the film thickness distribution in the phosphor layer is ± 5% or less. 気相堆積法により形成された蛍光体層を有する放射線画像変換パネルにおいて、
蛍光体層における膜厚の変動係数が40%以下であり、かつ膜厚分布が等方的であることを特徴とする放射線画像変換パネル。
In a radiation image conversion panel having a phosphor layer formed by a vapor deposition method,
A radiation image conversion panel characterized in that the variation coefficient of the film thickness in the phosphor layer is 40% or less and the film thickness distribution is isotropic.
蛍光体層における膜厚の変動係数が30%以下であることを特徴とする請求項5に記載の放射線画像変換パネル。   6. The radiation image conversion panel according to claim 5, wherein the variation coefficient of the film thickness in the phosphor layer is 30% or less. 蛍光体層における膜厚の変動係数が20%以下であることを特徴とする請求項6に記載の放射線画像変換パネル。   The radiation image conversion panel according to claim 6, wherein the coefficient of variation of the film thickness in the phosphor layer is 20% or less. 蛍光体層における膜厚の変動係数が10%以下であることを特徴とする請求項7に記載の放射線画像変換パネル。   The radiation image conversion panel according to claim 7, wherein a variation coefficient of a film thickness in the phosphor layer is 10% or less. 蛍光体層を構成する蛍光体が下記式(1)で示されるハロゲン化アルカリを母体とする輝尽性蛍光体を含有することを特徴とする請求項1〜8の何れか一項に記載の放射線画像変換パネル。
M1X・aM2X′2・bM3X"3:eA・・・(1)
但し、式中でM1はLi、Na、K、Rb及びCsの各原子から選ばれる少なくとも1種のアルカリ金属原子であり、M2はBe、Mg、Ca、Sr、Ba、Zn、Cd、Cu及びNiの各原子から選ばれる少なくとも1種の二価金属原子であり、M3はSc、Y、La、Ce、Pr、Nd、Pm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Al、Ga及びInの各原子から選ばれる少なくとも1種の三価金属原子であり、X、X′、X"はF、Cl、Br及びIの各原子から選ばれる少なくとも1種のハロゲン原子であり、AはEu、Tb、In、Ce、Tm、Dy、Pr、Ho、Nd、Yb、Er、Gd、Lu、Sm、Y、Tl、Na、Ag、Cu及びMgの各原子から選ばれる少なくとも1種の金属原子である。また、a、b、eはそれぞれ0≦a<0.5、0≦b<0.5、0<e<1.0の範囲の数値を示す。
The phosphor constituting the phosphor layer contains a stimulable phosphor based on an alkali halide represented by the following formula (1), according to any one of claims 1 to 8. Radiation image conversion panel.
M1X · aM2X '2 · bM3X " 3: eA ··· (1)
In the formula, M1 is at least one alkali metal atom selected from Li, Na, K, Rb and Cs atoms, and M2 is Be, Mg, Ca, Sr, Ba, Zn, Cd, Cu and At least one divalent metal atom selected from each atom of Ni, and M3 is Sc, Y, La, Ce, Pr, Nd, Pm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, At least one trivalent metal atom selected from each atom of Lu, Al, Ga and In, and X, X ′ and X ″ are at least one halogen selected from each atom of F, Cl, Br and I A is an atom, and A is selected from each atom of Eu, Tb, In, Ce, Tm, Dy, Pr, Ho, Nd, Yb, Er, Gd, Lu, Sm, Y, Tl, Na, Ag, Cu, and Mg. At least one metal atom, and a, b, and e are numerical values in the ranges of 0 ≦ a <0.5, 0 ≦ b <0.5, and 0 <e <1.0, respectively.
請求項1〜9の何れか一項に記載の放射線画像変換パネルを製造する放射線画像変換パネルの製造方法であって、
真空容器と、この真空容器内に設けられて、支持体に蛍光体を蒸着させる蒸発源と、支持体を支持するとともに当該支持体を蒸発源に対して回転させる支持体回転機構とを備えた蒸着装置を使用し、蒸着時に前記支持体回転機構により支持体を回転させながら、前記蒸発源から蒸発する蛍光体を支持体上に蒸着させて蛍光体層を形成することを特徴とする放射線画像変換パネルの製造方法。
A method for manufacturing a radiation image conversion panel for manufacturing the radiation image conversion panel according to any one of claims 1 to 9,
A vacuum vessel, an evaporation source that is provided in the vacuum vessel and deposits the phosphor on the support, and a support rotating mechanism that supports the support and rotates the support relative to the evaporation source. A radiation image characterized in that a phosphor layer is formed by vapor-depositing a phosphor evaporated from the evaporation source on a support while rotating the support by the support rotating mechanism during vapor deposition using a vapor deposition apparatus. A method for manufacturing a conversion panel.
JP2003324610A 2003-09-17 2003-09-17 Radiation image conversion panel and method for manufacturing radiation image conversion panel Expired - Fee Related JP4474877B2 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2003324610A JP4474877B2 (en) 2003-09-17 2003-09-17 Radiation image conversion panel and method for manufacturing radiation image conversion panel
EP11156937.2A EP2405447B1 (en) 2003-09-17 2004-09-08 Radiographic image conversion panel and production method thereof
EP11156946.3A EP2405448B1 (en) 2003-09-17 2004-09-08 Radiographic image conversion panel and production method thereof
EP04021311A EP1517340B1 (en) 2003-09-17 2004-09-08 Radiographic image conversion panel and production method thereof
EP08156787A EP2001027B1 (en) 2003-09-17 2004-09-08 Radiographic image conversion panel and production method thereof
DE602004015218T DE602004015218D1 (en) 2003-09-17 2004-09-08 Radiation image converter and method for its production
US10/938,817 US20050056795A1 (en) 2003-09-17 2004-09-13 Radiographic image conversion panel and production method thereof
US11/228,235 US7153637B2 (en) 2003-09-17 2005-11-10 Radiographic image conversion panel
US11/593,556 US7282310B2 (en) 2003-09-17 2006-11-07 Radiographic image conversion panel and production method thereof
US11/840,336 US7704651B2 (en) 2003-09-17 2007-08-17 Radiographic image conversion panel and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003324610A JP4474877B2 (en) 2003-09-17 2003-09-17 Radiation image conversion panel and method for manufacturing radiation image conversion panel

Publications (2)

Publication Number Publication Date
JP2005091143A true JP2005091143A (en) 2005-04-07
JP4474877B2 JP4474877B2 (en) 2010-06-09

Family

ID=34455316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003324610A Expired - Fee Related JP4474877B2 (en) 2003-09-17 2003-09-17 Radiation image conversion panel and method for manufacturing radiation image conversion panel

Country Status (1)

Country Link
JP (1) JP4474877B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010007807A1 (en) * 2008-07-18 2010-01-21 コニカミノルタエムジー株式会社 Radiation scintillator and radiation image sensor
JP2011033466A (en) * 2009-07-31 2011-02-17 Hamamatsu Photonics Kk Scintillator panel
US7994490B2 (en) 2008-04-21 2011-08-09 Hamamatsu Photonics K. K. Radiation image converting panel
US8368025B2 (en) 2008-08-28 2013-02-05 Konica Minolta Medical & Graphic, Inc. Radiation image conversion panel and production method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7994490B2 (en) 2008-04-21 2011-08-09 Hamamatsu Photonics K. K. Radiation image converting panel
WO2010007807A1 (en) * 2008-07-18 2010-01-21 コニカミノルタエムジー株式会社 Radiation scintillator and radiation image sensor
US20110017912A1 (en) * 2008-07-18 2011-01-27 Narito Goto Radiation scintillator and radiation image detector
US8461536B2 (en) * 2008-07-18 2013-06-11 Konica Minolta Medical & Graphic, Inc. Radiation scintillator and radiation image detector
JP5353886B2 (en) * 2008-07-18 2013-11-27 コニカミノルタ株式会社 Radiation scintillator and radiation image detector
US8368025B2 (en) 2008-08-28 2013-02-05 Konica Minolta Medical & Graphic, Inc. Radiation image conversion panel and production method thereof
JP2011033466A (en) * 2009-07-31 2011-02-17 Hamamatsu Photonics Kk Scintillator panel

Also Published As

Publication number Publication date
JP4474877B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
US7704651B2 (en) Radiographic image conversion panel and production method thereof
JP2005106682A (en) Radiation image conversion panel and its manufacturing method
JP4474877B2 (en) Radiation image conversion panel and method for manufacturing radiation image conversion panel
EP1516905A2 (en) Radiation image conversion panel and preparation method thereof
JP4333304B2 (en) Radiation image conversion panel and method for manufacturing radiation image conversion panel
US7223989B2 (en) Radiation image conversion panel
JP3952012B2 (en) Radiation image conversion panel and method for manufacturing radiation image conversion panel
JP2005091146A (en) Radiological image conversion panel and manufacturing method of radiological image conversion panel
JP2006090851A (en) Apparatus for manufacturing radiographic image conversion panel and method of manufacturing radiographic image conversion panel
US7081333B2 (en) Radiation image conversion panel and preparation method thereof
JP2005091140A (en) Radiation image conversion panel and method for manufacturing it
JP4345460B2 (en) Radiation image conversion panel
JP2005091148A (en) Radiological image conversion panel and manufacturing method of radiological image conversion panel
JP3997978B2 (en) Radiation image conversion panel
JP4830280B2 (en) Radiation image conversion panel manufacturing apparatus and radiation image conversion panel manufacturing method
JP5136662B2 (en) Radiation image conversion panel manufacturing apparatus and radiation image conversion panel manufacturing method
JP2005098716A (en) Radiological image conversion panel and manufacturing method of radiological image conversion panel
JP2005106770A (en) Radiation image conversion panel and manufacturing method for it
JP2005106771A (en) Radiation image conversion panel and manufacturing method for it
JP4752254B2 (en) Radiation image conversion panel, manufacturing method and manufacturing apparatus thereof
JP2005106544A (en) Radiation image conversion panel and method for manufacturing it
JP2006090888A (en) Radiographic image conversion panel and manufacturing method for radiographic image conversion panel
JP2004212189A (en) Radiation image conversion panel and method for manufacturing it
JP2005156411A (en) Radiological image conversion panel
JP2006010617A (en) Manufacturing method of radiation conversion panel and its manufacture equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100216

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100301

R150 Certificate of patent or registration of utility model

Ref document number: 4474877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees