JP2005090637A - Dynamic pressure bearing, method of manufacturing the dynamic pressure bearing, and rotary device - Google Patents

Dynamic pressure bearing, method of manufacturing the dynamic pressure bearing, and rotary device Download PDF

Info

Publication number
JP2005090637A
JP2005090637A JP2003325328A JP2003325328A JP2005090637A JP 2005090637 A JP2005090637 A JP 2005090637A JP 2003325328 A JP2003325328 A JP 2003325328A JP 2003325328 A JP2003325328 A JP 2003325328A JP 2005090637 A JP2005090637 A JP 2005090637A
Authority
JP
Japan
Prior art keywords
bearing
dynamic pressure
bearing member
manufacturing
pressure bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003325328A
Other languages
Japanese (ja)
Inventor
Yuji Shishido
祐司 宍戸
Shinichiro Kato
新一郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2003325328A priority Critical patent/JP2005090637A/en
Publication of JP2005090637A publication Critical patent/JP2005090637A/en
Pending legal-status Critical Current

Links

Landscapes

  • Mounting Of Bearings Or Others (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dynamic pressure bearing manufacturable at low cost, not causing the leakage of a lubricating oil, and having excellent reliability, a method of manufacturing the dynamic pressure bearing, and a rotary device. <P>SOLUTION: The dynamic pressure bearing 20A of the first embodiment of this invention comprises a bearing member 30 formed by combining a plurality of partial arc members 30A and 30B having a dynamic pressure generating groove 31 formed in the inner peripheral thereof and a resin housing 40 in which step parts 41A and 41B having diameters larger than the inner diameter of the bearing member 30 are formed and formed by out-sert molding. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、潤滑流体に動圧を発生させ、その動圧により軸部材と軸受部材とを相対的に回転自在に支持するように構成した動圧軸受、その製造方法及び回転機器に関するものである。   The present invention relates to a dynamic pressure bearing configured to generate dynamic pressure in a lubricating fluid and to relatively rotatably support a shaft member and a bearing member by the dynamic pressure, a manufacturing method thereof, and a rotating device. .

先ず、図を用いて、従来技術の動圧軸受の構成、構造及び製造方法を説明する。   First, the configuration, structure, and manufacturing method of a conventional hydrodynamic bearing will be described with reference to the drawings.

図10は従来技術の動圧軸受を斜視図、図11は図10に示した動圧軸受装置の組立状態を示した外観斜視図、そして図12は一般的な動圧軸受装置の構造を示した平面図である。これらの図は公開特許、特開2000−170746の公開公報に掲載されている図の内、それぞれ図1、図5、図8に相当し、それらを再掲したものである。   FIG. 10 is a perspective view of a conventional hydrodynamic bearing, FIG. 11 is an external perspective view showing an assembled state of the hydrodynamic bearing device shown in FIG. 10, and FIG. 12 shows the structure of a general hydrodynamic bearing device. FIG. These figures correspond to FIGS. 1, 5, and 8, respectively, among the figures published in the published patent and Japanese Laid-Open Patent Publication No. 2000-170746, which are reprinted.

この動圧軸受は、動圧発生溝2b(図12)を設けた3個の部分円弧状部材15aを組み合わせ、軸受スリーブ(軸受部材)15を形成し、これを軸受ホルダー12で保持して軸受としている。   In this dynamic pressure bearing, three partial arcuate members 15a provided with dynamic pressure generating grooves 2b (FIG. 12) are combined to form a bearing sleeve (bearing member) 15, which is held by the bearing holder 12 to be a bearing. It is said.

この動圧軸受の製造方法では、動圧発生溝2bと部分円弧状部材15aを粉末冶金法などで形成し、それを環状として組み上げ、軸受としたもので、従来、軸受の内周に動圧発生溝を形成する手段であるエッチング、転造方法に比べ、簡素な優れた製造方法である。   In this method of manufacturing a dynamic pressure bearing, the dynamic pressure generating groove 2b and the partial arcuate member 15a are formed by a powder metallurgy method or the like and assembled into an annular shape to form a bearing. Compared with the etching and rolling methods, which are means for forming the generation grooves, the manufacturing method is simple and excellent.

同公開特許では、精度良く、部分円弧状部材15a同士を組み合わせることに要点をおき、互いに接する面に凹凸溝15f(図11)を設け、位置決めとすることを特徴としている。   In this patent, the main point is to combine the partial arc-shaped members 15a with high accuracy, and the feature is that the concave and convex grooves 15f (FIG. 11) are provided on the surfaces that are in contact with each other for positioning.

また、部分円弧状部材15aを組合せた環状部材を環状のハウジング12に圧入することで部分円弧状部材15a同士を締結している。   The partial arc-shaped members 15 a are fastened together by press-fitting an annular member in which the partial arc-shaped members 15 a are combined into the annular housing 12.

特開2000−170746(第4〜6頁、図1、図5、図8)JP 2000-170746 (pages 4-6, FIG. 1, FIG. 5, FIG. 8)

しかし、部分円弧状部材15aを凹凸同士で組み合わせる前記の従来技術では、如何に部分円弧状部材15a同士の接面を密着させようとしても、潤滑油の漏洩を防止することは不可能であるし、部分円弧状部材15aからなる軸受スリーブ15をハウジング12内に圧入すれば、軸受部材となる軸受スリーブ15の内周の径精度が縮小されるという欠点もある。   However, in the above-described conventional technique in which the partial arc-shaped members 15a are combined with the concaves and convexes, it is impossible to prevent leakage of the lubricating oil no matter how the contact surfaces of the partial arc-shaped members 15a are brought into close contact with each other. If the bearing sleeve 15 made of the partial arcuate member 15a is press-fitted into the housing 12, there is a disadvantage that the radial accuracy of the inner periphery of the bearing sleeve 15 that becomes the bearing member is reduced.

また、部分円弧状部材15a同士の位置精度は接面に設けられた凹凸部15fのみに頼っているので、軸受内径の精度を維持することが困難であるという欠点もある。   Further, since the positional accuracy between the partial arcuate members 15a depends only on the uneven portion 15f provided on the contact surface, there is a drawback that it is difficult to maintain the accuracy of the bearing inner diameter.

即ち、従来技術の動圧軸受は良好な潤滑を得難いという欠点がある。   That is, the conventional hydrodynamic bearing has a drawback that it is difficult to obtain good lubrication.

本発明の動圧軸受は、内周に動圧発生溝が形成された複数の部分円弧状部材を組み合わせてなる軸受部材と、その軸受部材の内径より大なる径を持つ段部が設けられ、アウトサート成形により形成された樹脂製ハウジング部材とを具備して構成されていることを特徴とする。   The dynamic pressure bearing of the present invention is provided with a bearing member formed by combining a plurality of partial arc-shaped members formed with dynamic pressure generating grooves on the inner periphery, and a step portion having a diameter larger than the inner diameter of the bearing member, And a resin housing member formed by outsert molding.

また、本発明の動圧軸受の製造方法は、内周に動圧発生溝が形成された複数の部分円弧状部材を組み合わせて軸受部材とし、その軸受部材の内径より大なる径を持つ段部が設けられた樹脂製ハウジング部材をアウトサート成形により形成することを特徴とする。   The method for manufacturing a hydrodynamic bearing according to the present invention includes a stepped portion having a diameter larger than the inner diameter of the bearing member by combining a plurality of partial arc-shaped members having dynamic pressure generating grooves formed on the inner periphery thereof. The resin housing member provided with is formed by outsert molding.

更に、本発明の回転機器は、内周に動圧発生溝が形成された複数の部分円弧状部材を組み合わせてなる軸受部材と、その軸受部材の内径より大なる径を持つ段部が設けられ、アウトサート成形により形成された樹脂製ハウジングとを具備して構成されている動圧軸受に、中央部に向かうに従って径大となるテーパー部が少なくとも一端に形成された軸を差し込み、そのテーパー部が前記段部に対向する位置に配置されて構成されていることを特徴とする。   Furthermore, the rotating device of the present invention is provided with a bearing member formed by combining a plurality of partial arc-shaped members having dynamic pressure generating grooves formed on the inner periphery, and a step portion having a diameter larger than the inner diameter of the bearing member. A shaft having a tapered portion formed at least at one end is inserted into a dynamic pressure bearing having a resin housing formed by outsert molding, and the diameter thereof increases toward the center portion. Is arranged at a position facing the stepped portion.

本発明の動圧軸受は、複数の部分円弧状部材を組み合わせることで軸受部材を形成し、軸受部材の周囲をアウトサートで樹脂を成形し、段部を設けた形状の樹脂製ハウジング部材でシームレスに構成したので、安価でかつ潤滑油の漏洩のない信頼性に優れた動圧軸受を得ることができた。   The hydrodynamic bearing according to the present invention forms a bearing member by combining a plurality of partial arc-shaped members, resin is molded around the bearing member by outsert, and a resin housing member having a stepped shape is seamless. Therefore, it was possible to obtain a hydrodynamic bearing that is inexpensive and excellent in reliability without leakage of lubricating oil.

また、複数の部分円弧状部材を、内周部を基準にして、複数組み合わせた状態でアウトサート成形、樹脂製のハウジングで固定したことから、安価でかつ潤滑油の漏洩のない、軸受部材内径精度の良好な、信頼性の優れた動圧軸受が得られる。   In addition, since the multiple partial arc-shaped members are fixed together by outsert molding and resin housing in a combined state with respect to the inner periphery, the inner diameter of the bearing member is inexpensive and does not leak lubricating oil A hydrodynamic bearing with good accuracy and excellent reliability can be obtained.

そしてまた、樹脂製ハウジングの成形後に、軸受内周にサイジングを施すことにより、更に内径の真円度や径精度の良好な動圧軸受を得ることができる。   Further, by sizing the inner circumference of the bearing after molding of the resin housing, it is possible to obtain a dynamic pressure bearing with a better roundness of the inner diameter and better radial accuracy.

更に、本発明の回転機器は多量の潤滑油を保持し、温度変化による潤滑油の膨張や収縮など、環境の変化にも強いものが得られる。   Furthermore, the rotating device of the present invention can retain a large amount of lubricating oil and can be resistant to environmental changes such as expansion and contraction of the lubricating oil due to temperature changes.

本発明は、内周に動圧発生溝が形成された複数の部分円弧状部材を組み合わせてなる軸受部材の内径より大なる径を持つ段部が形成された樹脂製ハウジング部材で被覆することで油漏れがしない動圧軸受を実現した。   The present invention covers a resin housing member in which a step portion having a diameter larger than the inner diameter of a bearing member formed by combining a plurality of partial arc-shaped members having dynamic pressure generating grooves formed on the inner periphery is formed. A hydrodynamic bearing that does not leak oil has been realized.

以下、図を用いて、本発明の実施例の動圧軸受、その製造方法及び回転機器を説明する。   Hereinafter, a dynamic pressure bearing, a manufacturing method thereof, and a rotating device according to an embodiment of the present invention will be described with reference to the drawings.

図1は本発明の第1実施例の動圧軸受の断面図、そして図2は図1に示した動圧軸受に組み込まれる動圧軸受の部分円弧状部材である。   FIG. 1 is a sectional view of a fluid dynamic bearing according to a first embodiment of the present invention, and FIG. 2 is a partial arc member of the fluid dynamic bearing incorporated in the fluid dynamic bearing shown in FIG.

図1において、符号20Aは本発明の第1実施例の動圧軸受を指していて、この動圧軸受20Aは、複数の部分円弧状部材30A、30Bから成る軸受部材30とそれらの外周面及び両端面を被覆した樹脂製ハウジング40とから構成されている。   In FIG. 1, reference numeral 20A denotes a dynamic pressure bearing according to the first embodiment of the present invention. The dynamic pressure bearing 20A includes a bearing member 30 composed of a plurality of partial arcuate members 30A and 30B, outer peripheral surfaces thereof, and It is comprised from the resin housing 40 which coat | covered both end surfaces.

部分円弧状部材30A、30Bは、図2に示したように、それぞれ内周面にヘリングボーン形状などの動圧発生溝31が形成されており、焼結金属やナイロン、ポリイミド、液晶ポリマーなどの樹脂などで形成されている。このような部分円弧状部材30A、30Bが複数個、図示の例では2個の半円形の部分円弧状部材30A、30Bが端面を突き合わせて軸受部材30が構成されている。そして部分円弧状部材30A、30Bの継ぎ目Jは、動圧発生溝31の底部に設けられている。動圧発生溝31の底部に継ぎ目Jを設ければ、動圧軸受20Aの内周精度を維持し易くなるという利点がある。   As shown in FIG. 2, the partial arc-shaped members 30 </ b> A and 30 </ b> B are each formed with a dynamic pressure generating groove 31 such as a herringbone shape on the inner peripheral surface, and are made of sintered metal, nylon, polyimide, liquid crystal polymer, or the like. It is made of resin. The bearing member 30 is configured by a plurality of such partial arcuate members 30A and 30B, in the illustrated example, two semicircular partial arcuate members 30A and 30B abut end faces. The joint J between the partial arc-shaped members 30 </ b> A and 30 </ b> B is provided at the bottom of the dynamic pressure generating groove 31. Providing the joint J at the bottom of the dynamic pressure generating groove 31 has an advantage that it is easy to maintain the inner peripheral accuracy of the dynamic pressure bearing 20A.

樹脂製ハウジング40は、軸受部材30の円周面及び両端面の一部分を被覆するように、軸受部材30の内径より大なる内径の段部41A、41Bが形成されるように、後記するアウトサート成形法により軸受部材30を被覆するように形成されている。   The resin housing 40 is an outsert described later so that step portions 41A and 41B having an inner diameter larger than the inner diameter of the bearing member 30 are formed so as to cover a part of the circumferential surface and both end surfaces of the bearing member 30. It is formed so as to cover the bearing member 30 by a molding method.

このように本発明の動圧軸受20Aは、複数の部分円弧状部材30A、30Bを組合せた状態で、その円周面及びこれに連続する両端面を、段部41A、41Bを設けた形状で、アウトサート成形法で樹脂モールドしたので、両部分円弧状部材30A、30Bの継ぎ目Jは樹脂製ハウジング40でシームレスに覆われており、継ぎ目Jから潤滑油Lが動圧軸受20Aの外部へ漏洩することは全くない。   As described above, the hydrodynamic bearing 20A according to the present invention is a state in which the circumferential surface and both end surfaces continuous to the circumferential surface and the both end surfaces thereof are provided with the step portions 41A and 41B in a state where the plurality of partial arcuate members 30A and 30B are combined. Since the resin molding is performed by the outsert molding method, the joint J between the two arcuate members 30A and 30B is seamlessly covered with the resin housing 40, and the lubricating oil L leaks from the joint J to the outside of the hydrodynamic bearing 20A. There is nothing to do.

次に、図3及び図4を用いて本発明の動圧軸受20Aの製造方法を説明する。図3は本発明の動圧軸受の製造方法を示す工程図であり、図4は図3の製造工程で得られた動圧軸受に対するサイジング処理を示す断面図である。   Next, a manufacturing method of the hydrodynamic bearing 20A of the present invention will be described with reference to FIGS. FIG. 3 is a process diagram showing a method for manufacturing a dynamic pressure bearing according to the present invention, and FIG. 4 is a cross-sectional view showing a sizing process for the dynamic pressure bearing obtained in the manufacturing process of FIG.

先ず、図3Aに示したように、部分円弧状部材30A、30Bを、粉末冶金製法、樹脂モールドなどを用い、動圧発生溝31と同時に成形、一組の部分円弧状部材30A、30Bを用意する。   First, as shown in FIG. 3A, partial arc-shaped members 30A and 30B are formed simultaneously with the dynamic pressure generating groove 31 using a powder metallurgy method, a resin mold, etc., and a pair of partial arc-shaped members 30A and 30B are prepared. To do.

次に、図3Bに示したように、これら部分円弧状部材30A、30Bを、樹脂成形用金型50の内の上ピン52及び下ピン53を用いて軸受部材30の内径を基準に組合せ、円筒形の軸受部材30になるように合体する。この時、上ピン52、下ピン53のそれぞれの径大部521、531で軸受部材30の両端部を挟持してもよい(図3C)。   Next, as shown in FIG. 3B, the partial arcuate members 30A and 30B are combined using the upper pin 52 and the lower pin 53 in the resin molding die 50 on the basis of the inner diameter of the bearing member 30, They are combined to form a cylindrical bearing member 30. At this time, both end portions of the bearing member 30 may be sandwiched between the large diameter portions 521 and 531 of the upper pin 52 and the lower pin 53 (FIG. 3C).

この金型50のゲート51から金型50内に樹脂Rを注入し、樹脂製ハウジング40を形成する(図3A、図3C)。この時、上ピン52及び下ピン53の径大部521、531により、軸受部材30の軸方向の両端部には段部41A、41Bが形成されるだけでなく、それらの端部が段部41A、41Bにより密閉された構造となるので、樹脂Rが軸受部材30の内周部に入り込むことを防ぐという重要な機能がある。   Resin R is injected into the mold 50 from the gate 51 of the mold 50 to form the resin housing 40 (FIGS. 3A and 3C). At this time, the large diameter portions 521 and 531 of the upper pin 52 and the lower pin 53 form not only the step portions 41A and 41B at both axial ends of the bearing member 30, but also the end portions of the step portions 41A and 41B. Since the structure is hermetically sealed by 41A and 41B, there is an important function of preventing the resin R from entering the inner peripheral portion of the bearing member 30.

更に、軸受部材30が、粉末冶金製法で焼結金属などから成る場合には、内径精度を向上させるために、図4に示したように、サイジング工程を経て、サイジングバー60を用い、軸受部材30の内径の精度を出すようにすることもできる。   Further, when the bearing member 30 is made of a sintered metal or the like by a powder metallurgy manufacturing method, as shown in FIG. 4, a sizing bar 60 is used after the sizing process as shown in FIG. An accuracy of 30 inner diameters can be obtained.

以上が本発明の動圧軸受の製造方法であるが、重要な点は、
1)部分円弧状部材30A、30B同士の位置決めを、最も重要な内周面で直接位置決め にしているので軸受部材30の内周精度が得やすく、良好な潤滑を得ることができるこ と
2)アウトサート成形により樹脂製ハウジング40を形成することにより、完全に継ぎ目 Jを封止することができるので、継ぎ目Jからの潤滑油Lの漏洩がなく、良好な潤滑を 得ることができる
3)段部41A、41Bを設けることにより、部分円弧状部材30A、30Bのモールド 成形時の固定ができるだけでなく、アウトサート成形時に軸受部材30の内周部に樹脂 Rが流れ込むことを確実に防ぐことができ、内周精度を維持し、良好な潤滑を得ること ができる
4)更に、軸受部材30の内周にサイジングバー60を挿入し、サイジング工程をふむこ ともできて、一層内径精度を求めることができ、良好な潤滑が得られる。また、最後に サイジング工程を設けることで、部分円弧状部材30A、30B同士が多少ずれた状態 で組み立てられていても、軸受部材30内周の真円度や径精度を簡単に得ることができ る
などという利点がある。
The above is the manufacturing method of the hydrodynamic bearing of the present invention, but the important point is
1) Since the positioning of the partial arc-shaped members 30A and 30B is directly performed on the most important inner peripheral surface, the inner peripheral accuracy of the bearing member 30 can be easily obtained and good lubrication can be obtained 2). By forming the resin housing 40 by outsert molding, the seam J can be completely sealed, so that the lubricating oil L does not leak from the seam J and good lubrication can be obtained. By providing the portions 41A and 41B, not only can the partial arc-shaped members 30A and 30B be fixed during molding, but also the resin R can be reliably prevented from flowing into the inner peripheral portion of the bearing member 30 during outsert molding. 4) Furthermore, the inner circumference accuracy can be maintained and good lubrication can be obtained. 4) Further, a sizing bar 60 is inserted into the inner circumference of the bearing member 30 to cover the sizing process. Can be, it is possible to obtain the more inner diameter accuracy, good lubrication can be obtained. In addition, by providing a sizing step at the end, the roundness and diameter accuracy of the inner circumference of the bearing member 30 can be easily obtained even when the partially arcuate members 30A and 30B are assembled in a slightly shifted state. There is an advantage such as.

図5は本発明の動圧軸受20Aを搭載した回転機器の一つであるモータ100を示した断面図である。   FIG. 5 is a cross-sectional view showing a motor 100 which is one of rotating devices on which the hydrodynamic bearing 20A of the present invention is mounted.

モータ100は軸110にファン120が取り付けられたファンモータとして示した。モータ100は部分円弧状部材30A、30Bを組み合わせて軸受部材30とし、更に、周囲をアウトサート成形による樹脂製ハウジング40でシームレスに覆っているので、安価でかつ潤滑油Lの漏洩のない、信頼性の高いモータとなっている。   The motor 100 is shown as a fan motor in which a fan 120 is attached to a shaft 110. Since the motor 100 combines the partial arc-shaped members 30A and 30B to form the bearing member 30, and the periphery is seamlessly covered with the resin housing 40 by outsert molding, the reliability is low and the leakage of the lubricating oil L does not occur. It is a highly efficient motor.

更に、図6を用いて、段部41A、41Bを設けることの利点を説明する。段部41A、41Bは、アウトサート成形時、樹脂Rが軸受部材30の内周面に浸入することを防ぐために設けられているだけでなく、図6に示したように、段部41A、41Bに対向して軸110に形成されたテーパー部111を配設することで、圧力勾配を用いた表面張力シールの構成要素として用いることもできる。ここでテーパー部111は、軸受部材30の内部へ向かうにつれて径が大となるテーパーである。   Furthermore, the advantage of providing the step portions 41A and 41B will be described with reference to FIG. The step portions 41A and 41B are provided not only to prevent the resin R from entering the inner peripheral surface of the bearing member 30 during outsert molding, but also as shown in FIG. By disposing the tapered portion 111 formed on the shaft 110 so as to face the surface, it can also be used as a component of a surface tension seal using a pressure gradient. Here, the taper portion 111 is a taper whose diameter increases toward the inside of the bearing member 30.

軸受部材30の内周よりも径大なる段部41A、41Bに対向してテーパー部111を配置しているので、テーパー部111を軸受部材30の内周面に対向して設けるよりも、多量の潤滑油Lを保持することができるので、温度変化による潤滑油Lの膨張や収縮など、環境の変化にも強くなるという効果もある。即ち、段部41A、41Bを設けることは、樹脂製ハウジング40を形成する時に、軸受部材30の内周面への樹脂Rの回り込みを防止するという重要な役割の他に、従来に比し環境の変化に強い表面張力シールを構成する要素としても重要なものとなっている。   Since the tapered portion 111 is disposed opposite to the step portions 41A and 41B having a diameter larger than the inner periphery of the bearing member 30, the taper portion 111 is larger than the tapered portion 111 provided opposite to the inner peripheral surface of the bearing member 30. Since the lubricating oil L can be held, there is an effect that the lubricating oil L is resistant to environmental changes such as expansion and contraction of the lubricating oil L due to temperature changes. In other words, the provision of the step portions 41A and 41B has an important role in preventing the resin R from wrapping around the inner peripheral surface of the bearing member 30 when the resin housing 40 is formed. It is also important as an element that constitutes a surface tension seal that is resistant to changes.

第1実施例において、軸受部材30を構成する場合に部分円弧状部材30A、30Bを円筒状に合体させ、軸受部材30の内周面の真円度を出した状態で保持し、金型50に配置することは難しい。従って、第1実施例の動圧軸受20Aの製造方法においては、サイジング工程を経て軸受部材30の内周面の真円度を出すことが望ましい。   In the first embodiment, when the bearing member 30 is configured, the partial arc-shaped members 30A and 30B are combined into a cylindrical shape, and are held in a state where the roundness of the inner peripheral surface of the bearing member 30 is obtained. Difficult to place in. Therefore, in the manufacturing method of the hydrodynamic bearing 20A of the first embodiment, it is desirable that the roundness of the inner peripheral surface of the bearing member 30 is obtained through a sizing process.

しかし、本第2実施例の動圧軸受、その製造方法及び回転機器においては、この点を部分的に改良したものであって、その構造及び製造方法を図7及び図8を用いて説明する。   However, the hydrodynamic bearing, the manufacturing method thereof, and the rotating device of the second embodiment are obtained by partially improving this point, and the structure and the manufacturing method will be described with reference to FIGS. .

図9に示した本第2実施例の動圧軸受20Bは、部分円弧状部材30A、30Bを組み合わせた軸受部材30の外周面にゴムバンドのような弾性バンド61で縛り、その後、前記第1実施例で説明した製造方法で樹脂Rをアウトサートで金型50内に注入し、段部41A、41Bが形成された樹脂製ハウジング40を形成したものである。   The dynamic pressure bearing 20B of the second embodiment shown in FIG. 9 is bound to the outer peripheral surface of the bearing member 30 in which the partial arc-shaped members 30A and 30B are combined with an elastic band 61 such as a rubber band, and then the first The resin R is injected into the mold 50 by outsert by the manufacturing method described in the embodiment, and the resin housing 40 in which the step portions 41A and 41B are formed is formed.

この場合、図8Aに平面図で示したように、一対の部分円弧状部材30A、30Bの外形寸法に誤差があれば、そのような部分円弧状部材30A、30Bを合体して弾性バンド61で縛った軸受部材30は、図8Aに示したように、軸受部材30の外周面は真円になろうとするが、その内周面は若干(数μm)ずれてしまう。しかし、金型50でアウトサート成形する際に、軸受部材30の両端部から内周部に上ピン52と下ピン53とを挿入することにより、図8Bに示したように、軸受部材30の外周面は部分円弧状部材30A、30Bがずれて段差ができるが、その内周面は真円となり、モータ100を構成する軸110を円滑に軸支することができる。   In this case, as shown in the plan view of FIG. 8A, if there is an error in the external dimensions of the pair of partial arcuate members 30A and 30B, the partial arcuate members 30A and 30B are combined to form the elastic band 61. As shown in FIG. 8A, the bound bearing member 30 tends to have a perfect circle on the outer peripheral surface of the bearing member 30, but the inner peripheral surface is slightly shifted (several μm). However, when outsert molding is performed with the mold 50, the upper pin 52 and the lower pin 53 are inserted from both ends of the bearing member 30 to the inner peripheral portion, as shown in FIG. The partial arc-shaped members 30 </ b> A and 30 </ b> B are displaced on the outer peripheral surface to form a step, but the inner peripheral surface is a perfect circle and can smoothly support the shaft 110 constituting the motor 100.

次に、図9に示したように、それぞれの部分円弧状部材30A、30Bの外周面の同一高さ位置に弾性バンド61が嵌る幅と深さの凹溝32を形成するとよい。このような凹溝32を形成することにより、両部分円弧状部材30A、30Bの組み合わせ作業を効率的に行うことができ、そして締めた弾性バンド61の位置が一定の箇所に留めることができる。   Next, as shown in FIG. 9, a groove 32 having a width and a depth in which the elastic band 61 fits may be formed at the same height position on the outer peripheral surface of each of the partial arcuate members 30A and 30B. By forming such a concave groove 32, it is possible to efficiently perform a combination operation of both partial arc-shaped members 30A and 30B, and it is possible to keep the tightened elastic band 61 at a fixed position.

以上、モータの動圧軸受を採り上げて説明したが、本発明はモータの動圧軸受に限定されるものではなく、例えば、ポンプの回転軸、ドラム、発電機、マイクロタービン、マイクロ車軸など、ベアリングが必要である通常の回転機器の動圧軸受やマイクロマシン用ベアリングのような動圧軸受、その製造方法及び回転機器にも適用できることを付言しておく。   As described above, the description has been given by taking the dynamic pressure bearing of the motor as an example, but the present invention is not limited to the dynamic pressure bearing of the motor. It should be noted that the present invention can also be applied to a dynamic pressure bearing such as a dynamic pressure bearing of a normal rotating device or a bearing for a micromachine, a manufacturing method thereof, and a rotating device.

本発明の第1実施例の動圧軸受の断面図である。It is sectional drawing of the dynamic pressure bearing of 1st Example of this invention. 図1に示した動圧軸受に組み込まれる動圧軸受の部分円弧状部材である。2 is a partial arc-shaped member of a dynamic pressure bearing incorporated in the dynamic pressure bearing shown in FIG. 1. 本発明の動圧軸受の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the dynamic pressure bearing of this invention. 図3の製造工程で得られた動圧軸受に対するサイジング処理を示す断面図である。It is sectional drawing which shows the sizing process with respect to the hydrodynamic bearing obtained by the manufacturing process of FIG. 本発明の第1実施例の動圧軸受を組み込んだファンモータの断面図である。It is sectional drawing of the fan motor incorporating the dynamic pressure bearing of 1st Example of this invention. 本発明の第1実施例の動圧軸受の一部拡大断面図である。It is a partially expanded sectional view of the dynamic pressure bearing of 1st Example of this invention. 本発明の第2実施例の動圧軸受の断面図である。It is sectional drawing of the dynamic pressure bearing of 2nd Example of this invention. 本発明の第2実施例の動圧軸受の構成部材である軸受部材の平面図である。It is a top view of the bearing member which is a structural member of the dynamic pressure bearing of 2nd Example of this invention. 本発明の第2実施例の動圧軸受に好適な軸受部材の斜視図である。It is a perspective view of the bearing member suitable for the dynamic pressure bearing of 2nd Example of this invention. 従来技術の動圧軸受の斜視図である。It is a perspective view of a conventional hydrodynamic bearing. 従来技術の動圧軸受の分解斜視図である。It is a disassembled perspective view of the conventional dynamic pressure bearing. 図10に用いられている軸受部材の平面図である。It is a top view of the bearing member used for FIG.

符号の説明Explanation of symbols

20A 本発明の第1実施例の動圧軸受
20B 本発明の第2実施例の動圧軸受
30 軸受部材
30A、30B 部分円弧状部材
31 動圧発生溝
40 樹脂製ハウジング
41A、41B 樹脂製ハウジング40の段部
50 樹脂成形金型
51 ゲート
52 上ピン
521 径大部
53 下ピン
531 径大部
60 サイジングバー
61 弾性バンド
100 モータ
110 モータ100の軸
111 軸110のテーパー部
L 潤滑油
R 樹脂
20A Dynamic pressure bearing of the first embodiment of the present invention 20B Dynamic pressure bearing of the second embodiment of the present invention 30 Bearing member 30A, 30B Partial arc member 31 Dynamic pressure generating groove 40 Resin housing 41A, 41B Resin housing 40 Step part 50 Resin molding die 51 Gate 52 Upper pin 521 Large diameter part 53 Lower pin 531 Large diameter part 60 Sizing bar 61 Elastic band 100 Motor 110 Motor 100 shaft 111 Shaft 110 taper part L Lubricating oil R Resin

Claims (7)

内周に動圧発生溝が形成された複数の部分円弧状部材を組み合わせてなる軸受部材と、
該軸受部材の内径より大なる径を持つ段部が設けられ、アウトサート成形により形成された樹脂製ハウジングとを具備して構成されていることを特徴とする動圧軸受。
A bearing member formed by combining a plurality of partial arc-shaped members having dynamic pressure generating grooves formed on the inner periphery;
A hydrodynamic bearing comprising: a step portion having a diameter larger than the inner diameter of the bearing member; and a resin housing formed by outsert molding.
部分円弧状部材の接合部が動圧発生溝の底部に設けられていることを特徴とする請求項1に記載の動圧軸受。   2. The hydrodynamic bearing according to claim 1, wherein the joint portion of the partial arc-shaped member is provided at the bottom of the dynamic pressure generating groove. 内周に動圧発生溝が形成された複数の部分円弧状部材を組み合わせて軸受部材とし、該軸受部材の内径より大なる径を持つ段部が設けられた樹脂製ハウジング部材をアウトサート成形により形成することを特徴とする動圧軸受の製造方法。   A plurality of partial arc-shaped members having dynamic pressure generating grooves formed on the inner periphery are combined to form a bearing member, and a resin housing member provided with a step portion having a diameter larger than the inner diameter of the bearing member is formed by outsert molding. A method of manufacturing a hydrodynamic bearing, characterized by comprising: 前記複数の部分円弧状部材を組み合わせて弾性バンドで締め付けて軸受部材とし、該軸受部材の内径より大なる径を持つ段部が設けられた樹脂製ハウジング部材をアウトサート成形により形成したことを特徴とする動圧軸受の製造方法。   The plurality of partial arcuate members are combined and tightened with an elastic band to form a bearing member, and a resin housing member provided with a step portion having a diameter larger than the inner diameter of the bearing member is formed by outsert molding. A method for manufacturing a hydrodynamic bearing. 複数の部分円弧状部材の内周部を合わせ基準にすることを特徴とする請求項3または請求項4に記載の動圧軸受の製造方法。   The method for manufacturing a hydrodynamic bearing according to claim 3 or 4, wherein inner peripheral portions of the plurality of partial arcuate members are used as a reference. 内周に動圧発生溝が設けられた複数の部分円弧状部材を組み合わせて軸受部材とし、該軸受部材の内径より大なる径を持つ段部が設けられた樹脂製ハウジング部材をアウトサート成形により形成した後に、軸受部の内周部をサイジング処理することを特徴とする動圧軸受の製造方法。   A plurality of partially arcuate members having dynamic pressure generating grooves on the inner periphery are combined to form a bearing member, and a resin housing member having a step portion having a diameter larger than the inner diameter of the bearing member is formed by outsert molding. A method of manufacturing a hydrodynamic bearing, comprising: sizing the inner peripheral portion of the bearing portion after forming. 内周に動圧発生溝が形成された複数の部分円弧状部材を組み合わせてなる軸受部材と、
該軸受部材の内径より大なる径を持つ段部が設けられ、アウトサート成形により形成された樹脂製ハウジングとを具備して構成されている動圧軸受に、中央部に向かうに従って径大となるテーパー部が少なくとも一端に形成された軸を差し込み、該テーパー部が前記段部に対向する位置に配置されて構成されていることを特徴とする回転機器。
A bearing member formed by combining a plurality of partial arc-shaped members having dynamic pressure generating grooves formed on the inner periphery;
A hydrodynamic bearing having a step portion having a diameter larger than the inner diameter of the bearing member and having a resin housing formed by outsert molding increases in diameter toward the center portion. A rotating device comprising: a shaft having a tapered portion formed at least at one end; and the tapered portion being arranged at a position facing the stepped portion.
JP2003325328A 2003-09-17 2003-09-17 Dynamic pressure bearing, method of manufacturing the dynamic pressure bearing, and rotary device Pending JP2005090637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003325328A JP2005090637A (en) 2003-09-17 2003-09-17 Dynamic pressure bearing, method of manufacturing the dynamic pressure bearing, and rotary device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003325328A JP2005090637A (en) 2003-09-17 2003-09-17 Dynamic pressure bearing, method of manufacturing the dynamic pressure bearing, and rotary device

Publications (1)

Publication Number Publication Date
JP2005090637A true JP2005090637A (en) 2005-04-07

Family

ID=34455799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003325328A Pending JP2005090637A (en) 2003-09-17 2003-09-17 Dynamic pressure bearing, method of manufacturing the dynamic pressure bearing, and rotary device

Country Status (1)

Country Link
JP (1) JP2005090637A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7411762B2 (en) 2004-10-04 2008-08-12 Nidec Corporation Fluid dynamic pressure bearing including dynamic pressure generating grooves, and spindle motor and disc drive including the bearing
US20100061669A1 (en) * 2005-05-24 2010-03-11 Ntn Corporation housing for fluid lubrication bearing apparatuses

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7411762B2 (en) 2004-10-04 2008-08-12 Nidec Corporation Fluid dynamic pressure bearing including dynamic pressure generating grooves, and spindle motor and disc drive including the bearing
US20100061669A1 (en) * 2005-05-24 2010-03-11 Ntn Corporation housing for fluid lubrication bearing apparatuses
US8267587B2 (en) * 2005-05-24 2012-09-18 Ntn Corporation Housing for fluid lubrication bearing apparatuses

Similar Documents

Publication Publication Date Title
US7391139B2 (en) Spindle motor and rotation apparatus
JP4959078B2 (en) Hydrodynamic bearing spindle motor
JP4460730B2 (en) Spindle motor
JP2000350408A (en) Motor for driving recovering disk
JP2006322581A (en) Divided cage and divided type bearing provided with it
US7550887B2 (en) Spindle motor and method of manufacturing spindle motor
US5628569A (en) Fluid bearing unit and manufactured method thereof
JP2000291648A (en) Dynamic pressure-type bearing unit
JP2007107641A (en) Spindle motor and turning device
JP2005090637A (en) Dynamic pressure bearing, method of manufacturing the dynamic pressure bearing, and rotary device
US5240332A (en) Dynamic pressure bearing device
JP2004108550A (en) Hydrodynamic bearing device
JP2014190377A (en) Bearing device
JP3892995B2 (en) Hydrodynamic bearing unit
JP2004108549A (en) Hydrodynamic bearing device
JP2007060731A (en) Spindle motor and rotary device
JPS5834684B2 (en) Multi-arc sliding bearing device
JP2008261397A (en) Dynamic pressure bearing device
JP4110381B2 (en) Hydrodynamic bearing device
WO2009144988A1 (en) Foil bearing
JP3904179B2 (en) Spindle motor
JP7213329B1 (en) bearing material
JP2004176815A (en) Liquid bearing device
JPH07208461A (en) Bearing device for steering column
JPH08275448A (en) Motor