JP4110381B2 - Hydrodynamic bearing device - Google Patents

Hydrodynamic bearing device Download PDF

Info

Publication number
JP4110381B2
JP4110381B2 JP2002272520A JP2002272520A JP4110381B2 JP 4110381 B2 JP4110381 B2 JP 4110381B2 JP 2002272520 A JP2002272520 A JP 2002272520A JP 2002272520 A JP2002272520 A JP 2002272520A JP 4110381 B2 JP4110381 B2 JP 4110381B2
Authority
JP
Japan
Prior art keywords
sleeve
dynamic pressure
gap
shaft
end side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002272520A
Other languages
Japanese (ja)
Other versions
JP2004108509A (en
Inventor
政良 大西
高橋  毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2002272520A priority Critical patent/JP4110381B2/en
Publication of JP2004108509A publication Critical patent/JP2004108509A/en
Application granted granted Critical
Publication of JP4110381B2 publication Critical patent/JP4110381B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、動圧軸受装置に関し、更に詳しくは、潤滑流体の外部への漏れおよび軸受の歳差運動に起因する動圧発生面の損傷を防止することのできる動圧軸受装置に関する。
【0002】
【従来の技術】
磁気ディスクや光ディスクなどに用いられるスピンドルモータ等のような高速回転装置を支持するための軸受装置として、動圧軸受装置(動圧流体軸受)が採用されている。動圧軸受装置は、一般に、シャフトとスリーブ等、相対回転自在に配置された二つの部材における互いの対向面(動圧面)のいずれか一方に、複数条の動圧溝を形成するとともに、その対向面間に潤滑油剤、液体金属等の液体、または種々の気体等の流体を充填した構成である。この構成により、動圧軸受装置は、二つの部材の相対回転時に、動圧溝のポンピング作用等によって流体に圧力(動圧)を発生させ、その動圧により二つの部材を非接触に支持する。
【0003】
図4は、従来の動圧軸受装置の構造を示す模式的断面図である。この例は、スラスト(アキシャル)方向の荷重を、軸部材先端に形成したピボット軸受で支承するラジアル動圧軸受を示している。このラジアル動圧軸受は、一方の開口が密閉された略筒状のスリーブ1と、このスリーブ1の他方の開口から挿入され、その内周に嵌合されるシャフト2と、から構成されている。なお、図示上方(軸方向上部)をこの動圧軸受における密閉端側、図示下方(軸方向下部)をこの動圧軸受における開放端側として説明する。
【0004】
スリーブ1は、筒状体11の密閉端側開口に蓋部材(スラスト板)12を嵌め入れ、これら筒状体11と蓋部材12とを、接着剤等を用いて一体として形成されている。また、シャフト2は、スリーブ1の密閉端側の開口から挿入され、このスリーブ1の内周に僅かの間隙を開けて回転自在に嵌合されている。このシャフト2のシャフト端部2aは、半球状に形成されているとともに、その先端が蓋部材12に接するように配置され、軸方向の荷重を支承するピボット軸受としての機能を果たす。また、シャフト2とスリーブ1との間の間隙には、潤滑流体(図示省略)が充填されるとともに、スリーブ1の開放端側の開口には、キャピラリーシール部が形成され、潤滑流体の外部への漏出防止が図られている。
【0005】
このシャフト2の外周面2xには、軸方向に所定の距離をおいて隣接する位置に、それぞれ周方向にヘリングボーンまたはV字パターンの密閉端側のラジアル動圧溝21および開放端側のラジアル動圧溝22が形成されている。なお、両ラジアル動圧溝21,22間の帯状の領域23は、これらの動圧溝21,22によって発生する動圧の干渉を防止するために設けられているもので、この構成により、シャフト2とスリーブ1が相対回転した場合、これらシャフト2の外周面2xとスリーブ1の内周面1xの間には、真中に非動圧発生帯33を挟んで、隣接する軸方向密閉端側および開放端側に、それぞれ密閉端側動圧発生帯31および開放端側動圧発生帯32が形成されることになる。
【0006】
以上のような構成の動圧軸受装置において、図5に示す断面図のように、2つ動圧発生帯31,32におけるスリーブ1の内周面1xあるいはシャフト2の外周面2xの一方をテーパ形状とし、これら動圧発生帯31,32内における隣接側(非動圧発生帯33側)のスリーブ1とシャフト2との間隙d1を、スリーブ両端側の間隙d2より大きくすることによって、相対回転時のオイル(潤滑流体)を非動圧発生帯33に集め、動圧発生面のオイル切れを防止する提案がなされている(例えば、特許文献1参照。)。
【0007】
【特許文献1】
特開2000−120662号公報
【0008】
【発明が解決しようとする課題】
ところで、以上のような動圧軸受装置においては、軸方向に隣接して形成された2つのラジアル動圧溝によって発生する動圧の差圧に起因して、スリーブ開放端側への潤滑流体漏れが発生してしまう場合があった。
【0009】
また、回転側であるシャフトあるいはスリーブが歳差運動(コニカル振れ回り)を起こした場合、その振れ量が大きくなるスリーブ内周面の軸方向両端部近傍において、シャフトとスリーブが接触してしまい、シャフト外周面およびスリーブ内周面に傷つき等の損傷が発生してしまうという問題があった。
【0010】
本発明は、このような実情に鑑みてなされたものであり、軸受の歳差運動に起因する損傷等の発生を防止しつつ、潤滑流体の外部への漏れを抑えることで寿命の長い動圧軸受装置を提供することを目的としている。
【0011】
【課題を解決するための手段】
前記の目的を達成するために、請求項1に記載の発明は、一方の開口が密閉されたスリーブの内周に、僅かの間隙を開けてシャフトが回転自在に嵌合され、これら対向するシャフトの外周面とスリーブの内周面との間には、円周方向に帯状の非動圧発生帯を挟んだ軸方向両側に、前記シャフト外周面あるいは前記スリーブ内周面のどちらか一方に軸方向に対称なヘリングボーンまたはV字パターンのラジアル動圧溝が形成された密閉端側動圧発生帯および開放端側動圧発生帯が、それぞれ設けられ、これらシャフトとスリーブの間の間隙に、潤滑流体が充填されているとともに、前記シャフトとスリーブの相対回転時に前記動圧溝で発生する動圧により、これらシャフトとスリーブの相対回転を非接触に支持する動圧軸受装置において、前記密閉端側動圧発生帯のスリーブ密閉端側および非動圧発生帯側におけるシャフトとスリーブとの間隙を、それぞれ第1の間隙、第2の間隙とし、前記開放端側動圧発生帯の非動圧発生帯側およびスリーブ開放端側におけるシャフトとスリーブとの間隙を、それぞれ第3の間隙、第4の間隙としたとき、第1の間隙が第2の間隙より大きく、かつ、第4の間隙が第3の間隙より大きく形成されているとともに、第1の間隙と第2の間隙との差が、第4の間隙と第3の間隙との差より大きくなる形状に、前記シャフト外周面あるいは前記スリーブ内周面が形成されていることを特徴とする。
【0012】
また、この動圧軸受装置の具体的な構成例として、前記動圧溝が前記シャフトの外周面に形成されているとともに、この動圧溝に対向する前記各動圧発生帯内のスリーブ内周面が、それぞれ軸方向にテーパ形状に形成されている構成を好適に採用することができる(請求項)。
【0013】
本発明は、軸方向に隣接する2つのラジアル動圧発生帯で発生する動圧により、シャフトとスリーブの相対回転を非接触に支持する動圧軸受装置において、その回転に歳差運動が発生した場合に、回転体の振れ量が大きくなるスリーブの密閉端側近傍および開放端側近傍におけるシャフトとスリーブとの間隙(径方向すきま)を、従来より大きく形成することにより、所期の目的を達成しようとするものである。
【0014】
すなわち、本発明によれば、密閉端側および開放端側の動圧発生帯部位における隣接側(非動圧発生帯側)のスリーブとシャフトの径方向間隙(第2の間隙および第3の間隙)より、それぞれの動圧発生帯におけるスリーブ両端側の間隙(第1の間隙および第4の間隙)を大きく形成することによって、動圧軸受装置の回転が歳差運動を起こした場合でも、これらシャフトとスリーブとの接触を防止することができる。
【0015】
また、本願発明の動圧軸受装置は、上記構成に加えて、これらシャフトとスリーブの間に充填される潤滑流体のスリーブ開放端側への漏れを防止する手段として、密閉端側の動圧発生帯における密閉端側の第1の間隙と非動圧発生帯側の第2の間隙との差が、開放端側の動圧発生帯における開放端側の第4の間隙と非動圧発生帯側の第3の間隙との差より大きくなる形状に、シャフトの外周面あるいはこれに対向するスリーブの内周面のどちらか一方を形成する。
【0016】
すなわち、2つの動圧発生帯内の間隙をスリーブ両端側に向かって広くなるように形成した場合、これらの動圧発生帯には、軸方向両端側(スリーブ密閉端側およびスリーブ開放端側)に向かう潤滑流体の流れが生じる。そのため、スリーブ開放端においては、この潤滑流体の移動によって圧力が上昇し、外部への漏れが発生してしまう恐れがあった。しかしながら、本発明の動圧軸受装置は、スリーブ密閉端側に向かう潤滑流体の流れの方が強くなるように、これらスリーブとシャフトとの間隙を構成したことにより、結果として潤滑流体はスリーブ密閉端側に押し込まれることになる。従って、本発明の動圧軸受装置は、潤滑流体のスリーブ開放端への漏れを抑制することが可能になる。
【0017】
【発明の実施の形態】
以下、図面を参照しつつこの発明の実施の形態について説明する。
図1は、本発明の第1の実施の形態における動圧軸受装置の構造を示す模式的断面図である。なお、従来例と同様の機能を有する構成部材には、同じ符号を付記する。また、密閉端側動圧発生帯31のスリーブ1密閉端側および非動圧発生帯33側におけるシャフト2とスリーブ1との間隙を、それぞれD1(第1の間隙)、D2(第2の間隙)とし、開放端側動圧発生帯32の非動圧発生帯33側およびスリーブ1開放端側におけるシャフト2とスリーブ1との間隙を、それぞれD3(第3の間隙)、D4(第4の間隙)として説明する。
【0018】
この第1の形態における動圧軸受装置も、基本的な構成は従来例と同様であり、一方の開口が密閉された略筒状のスリーブ1と、このスリーブ1の他方の開口から挿入され、その内周に嵌合されるシャフト2と、から構成されている。スリーブ1は、筒状体11の密閉端(図示上方)側開口に蓋部材(スラスト板)12を嵌め入れ、これら筒状体11と蓋部材12とを、接着剤等を用いて一体として形成されている。また、シャフト2は、スリーブ1の開放端(図示下方)側の開口から挿入され、このスリーブ1の内周に僅かの間隙を開けて回転自在に嵌合されている。なお、シャフト2とスリーブ1との間の間隙には、潤滑流体が充填されるとともに、スリーブ1の開放端側の開口には、キャピラリーシール部が形成され、潤滑流体の外部への漏出防止が図られている。
【0019】
このシャフト2の外周面2xにも、従来例同様、軸方向に所定の距離をおいて隣接する位置に、それぞれ軸方向に対称なヘリングボーンまたはV字パターンの密閉端側のラジアル動圧溝21および開放端側のラジアル動圧溝22が形成されている。また、これらシャフト2の外周面2xとスリーブ1の内周面1xの間には、非動圧発生帯33を挟んで隣接する軸方向両側に、それぞれ密閉端側動圧発生帯31および開放端側動圧発生帯32が形成されている。
【0020】
本実施の形態における動圧軸受装置の特徴は、各動圧発生帯31,32におけるシャフト2とスリーブ1との間隙が、非動圧発生帯33側より軸方向両端側において大きく(D1>D2,D4>D3)、かつ、密閉端側動圧発生帯31における密閉端側の間隙D1と非動圧発生帯33側の間隙D2との差が、開放端側動圧発生帯32における開放端側の間隙D4と非動圧発生帯33側の間隙D3との差より大きく(D1−D2>D4−D3)なるように、各動圧発生帯31,32におけるスリーブ1の内周面1xが、それぞれテーパ形状に形成されている点である。
【0021】
以上の構成により、本実施の形態における動圧軸受装置は、これらシャフト2とスリーブ1の相対回転時に、回転側であるシャフト2あるいはスリーブ1が歳差運動(コニカル振れ回り)を起こした場合でも、その歳差運動による振れ量が大きくなるスリーブ両端側の間隙(D1,D4)が広く形成されていることから、これらシャフト1とスリーブ2との接触が生じにくく、傷つき等の損傷の発生を防止することができる。
【0022】
また、密閉端側動圧発生帯31におけるスリーブ内周面1xの傾斜が、開放端側動圧発生帯32における内周面1xの傾斜より大きいことから、開放端側(図示上方)よりも密閉端側(図示下方)に向かう潤滑流体の流れの方が強くなり、潤滑流体はスリーブ密閉端側に押し込まれることになる(ポンプイン効果)。従って、本実施の形態における動圧軸受装置は、潤滑流体の開放端側への漏れを防止する効果も併せて奏することができる。
【0023】
なお、以上の実施の形態においては、各動圧発生帯31,32におけるスリーブ内周面1xの形状をそれぞれテーパ形状としたが、潤滑流体をスリーブ両端方向に向かわせるスリーブ内周面1xの形状は、この例に限定されるものではなく、例えば、図2に示すように、各動圧発生帯31,32の軸方向略中央に、これら動圧発生帯31,32のスリーブ両端部側の間隙を広くする段部を形成しても良い。
【0024】
次に、本発明の第2の実施の形態について説明する。
図3は、本発明の第2の実施の形態における動圧軸受装置の構造を示す模式的断面図である。この動圧軸受装置は、第1の実施の形態と同様のラジアル動圧軸受に加え、シャフト2の一端に、軸方向の荷重を支承するスラスト動圧軸受が形成されている。
【0025】
この第2の実施の形態において使用されるシャフト2は、その外周面2xに第1の実施の形態と同様のラジアル動圧溝21,22が形成されているとともに、その一端に円板状のフランジ部2bが設けられている。また、このフランジ部2bの両端面2yおよび2zには、それぞれ周方向にヘリングボーンまたはV字パターンのスラスト動圧溝24および25が形成されている。スリーブ1は、筒状体11の密閉端(図示上方)側開口に、シャフト2のフランジ部2bを嵌め入れることのできる円周段部11aが形成されており、このシャフト2を嵌合した状態で、その開口に蓋部材(スラスト板)12を嵌め合わせて密閉され、接着剤等を用いて一体とされている。なお、このシャフト2のフランジ部2bとスリーブ1との相対回転は、シャフト2のフランジ部端面2yとスリーブ1の円周段部端面1yとの間に発生するスラスト方向の動圧と、シャフト2のフランジ部端面2xと蓋部材12の内側面12zとの間に発生するスラスト方向の動圧とによって、非接触に支持されることとなる。
【0026】
また、この動圧軸受装置におけるラジアル動圧軸受部位の構造は、第1の実施の形態と同様であり、密閉端側動圧発生帯31および開放端側動圧発生帯32におけるシャフト2とスリーブ1との間隙が、非動圧発生帯33側より軸方向両端側において大きく(D1>D2,D4>D3)、かつ、密閉端側動圧発生帯31における密閉端側の間隙D1と非動圧発生帯33側の間隙D2との差が、開放端側動圧発生帯32における開放端側の間隙D4と非動圧発生帯33側の間隙D3との差より大きく(D1−D2>D4−D3)なるように、動圧発生帯31,32におけるスリーブ1の内周面1xが、それぞれテーパ形状に形成されている。
【0027】
そのため、本実施の形態における動圧軸受装置は、シャフト2あるいはスリーブ1の回転が歳差運動(コニカル振れ回り)を起こした場合でも、これらシャフト2とスリーブ1との接触が生じにくく、傷つき等の損傷の発生を防止することができる。また、開放端側よりも密閉端側に向かう潤滑流体の流れの方が強くなり、潤滑流体が密閉端(スラスト動圧軸受)側に押し込まれることから、潤滑流体の開放端側への漏れを防止することができる。
【0028】
なお、以上の実施の形態においても、各動圧発生帯31,32部位におけるスリーブ内周面1xをそれぞれテーパ形状としたが、第1の実施の形態同様、このテーパ形状の代わりに、各動圧発生帯31,32内における軸方向略中央に段部を設け、潤滑流体をスリーブ両端部方向に向かわせるようにしても良い。
【0029】
また、以上2つの実施の形態においては、これら潤滑流体をスリーブ両端部方向に向かわせる形状を、スリーブ1の内周面1xに設けた例を示したが、このテーパ形状は、シャフト1の外周面2xに設けても良い。
【0030】
また更に、ラジアル動圧溝およびスラスト動圧溝は、シャフトあるいはスリーブのどちら側に設けても良く、本発明は、シャフト回転もしくはスリーブ回転のどちらのタイプの動圧軸受装置にも、等しく適用することができる。
【0031】
【発明の効果】
以上詳述したように、本発明の動圧軸受装置によれば、シャフトとスリーブの間に充填される潤滑流体のスリーブ開放端側への漏れを防止するとともに、軸受の回転が歳差運動を起こした場合でも、シャフトとスリーブとの接触が生じ難く、これら部材への傷つき等のトラブルの発生が防止され、もって寿命の長い動圧軸受装置とすることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態における動圧軸受装置の構造を示す模式的断面図である。
【図2】本発明の第1の実施の形態の動圧軸受装置におけるスリーブ内周面1xの段部形状を示す模式的断面図である。
【図3】本発明の第2の実施の形態における動圧軸受装置の構造を示す模式的断面図である。
【図4】従来の動圧軸受装置の構造を示す模式的断面図である。
【図5】従来の別の動圧軸受装置におけるスリーブ内周面1xの形状を示す模式的断面図である。
【符号の説明】
1 スリーブ
1x 内周面
2 シャフト
2x 外周面
2a シャフト端部
11 筒状体
12 蓋部材
21,22 ラジアル動圧溝
23 帯状の領域
24,25 スラスト動圧溝
31 密閉端側動圧発生帯
32 開放端側動圧発生帯
33 非動圧発生帯
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrodynamic bearing device, and more particularly to a hydrodynamic bearing device capable of preventing damage to a hydrodynamic pressure generation surface due to leakage of a lubricating fluid to the outside and precession of a bearing.
[0002]
[Prior art]
As a bearing device for supporting a high-speed rotating device such as a spindle motor used for a magnetic disk or an optical disk, a dynamic pressure bearing device (dynamic pressure fluid bearing) is adopted. In general, a hydrodynamic bearing device is formed with a plurality of dynamic pressure grooves on either one of mutually opposing surfaces (dynamic pressure surfaces) of two members such as a shaft and a sleeve that are relatively rotatable. It is the structure which filled fluids, such as lubricating oil agent, liquids, such as a liquid metal, or various gases between opposing surfaces. With this configuration, the dynamic pressure bearing device generates pressure (dynamic pressure) in the fluid by the pumping action of the dynamic pressure groove when the two members rotate relative to each other, and supports the two members in a non-contact manner by the dynamic pressure. .
[0003]
FIG. 4 is a schematic cross-sectional view showing the structure of a conventional hydrodynamic bearing device. This example shows a radial dynamic pressure bearing in which a thrust (axial) load is supported by a pivot bearing formed at the tip of a shaft member. This radial dynamic pressure bearing is constituted by a substantially cylindrical sleeve 1 whose one opening is sealed, and a shaft 2 which is inserted from the other opening of the sleeve 1 and is fitted to the inner periphery thereof. . The upper part in the figure (the upper part in the axial direction) will be described as the sealed end side in the dynamic pressure bearing, and the lower part in the figure (the lower part in the axial direction) will be described as the open end side in the dynamic pressure bearing.
[0004]
In the sleeve 1, a lid member (thrust plate) 12 is fitted into the closed end side opening of the cylindrical body 11, and the cylindrical body 11 and the lid member 12 are integrally formed using an adhesive or the like. Further, the shaft 2 is inserted from the opening on the sealed end side of the sleeve 1 and is rotatably fitted with a slight gap on the inner periphery of the sleeve 1. The shaft end 2a of the shaft 2 is formed in a hemispherical shape and is disposed so that the tip thereof is in contact with the lid member 12, and functions as a pivot bearing that supports an axial load. The gap between the shaft 2 and the sleeve 1 is filled with a lubricating fluid (not shown), and a capillary seal portion is formed in the opening on the open end side of the sleeve 1 to the outside of the lubricating fluid. To prevent leakage.
[0005]
On the outer peripheral surface 2x of the shaft 2, a radial dynamic pressure groove 21 on the hermetic bone side or a V-shaped pattern on the hermetic end side in the circumferential direction and a radial on the open end side are adjacent to each other at a predetermined distance in the axial direction. A dynamic pressure groove 22 is formed. The band-like region 23 between the radial dynamic pressure grooves 21 and 22 is provided to prevent interference of dynamic pressure generated by these dynamic pressure grooves 21 and 22, and this configuration allows the shaft to 2 and the sleeve 1 rotate relative to each other, the non-dynamic pressure generating band 33 is sandwiched between the outer peripheral surface 2x of the shaft 2 and the inner peripheral surface 1x of the sleeve 1 and the adjacent axially sealed end side and The closed end side dynamic pressure generating band 31 and the open end side dynamic pressure generating band 32 are formed on the open end side, respectively.
[0006]
In the dynamic pressure bearing device configured as described above, one of the inner peripheral surface 1x of the sleeve 1 and the outer peripheral surface 2x of the shaft 2 in the two dynamic pressure generating bands 31 and 32 is tapered as shown in the sectional view of FIG. Relative rotation is achieved by making the gap d1 between the sleeve 1 and the shaft 2 on the adjacent side (non-dynamic pressure generation band 33 side) in the dynamic pressure generation bands 31, 32 larger than the gap d2 on both ends of the sleeve. Proposals have been made to collect the oil (lubricating fluid) at the time in the non-dynamic pressure generating zone 33 and prevent the dynamic pressure generating surface from running out of oil (for example, see Patent Document 1).
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 2000-120661
[Problems to be solved by the invention]
By the way, in the dynamic pressure bearing device as described above, the lubricating fluid leaks to the sleeve open end side due to the differential pressure of the dynamic pressure generated by the two radial dynamic pressure grooves formed adjacent to each other in the axial direction. May occur.
[0009]
In addition, when the shaft or sleeve on the rotating side causes precession (conical swing), the shaft and the sleeve come into contact in the vicinity of both axial end portions of the sleeve inner peripheral surface where the amount of swing increases. There has been a problem that damage such as scratches occurs on the outer peripheral surface of the shaft and the inner peripheral surface of the sleeve.
[0010]
The present invention has been made in view of such circumstances, and has a long dynamic life by preventing the occurrence of damage and the like due to precession of the bearing while suppressing leakage of the lubricating fluid to the outside. It aims at providing a bearing device.
[0011]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 is characterized in that a shaft is rotatably fitted with a slight gap on the inner periphery of a sleeve whose one opening is sealed. between the outer peripheral surface and the inner circumferential surface of the sleeve, the axial circumferentially axially opposite sides of the strip-shaped Hido pressure generating zone, to either of the shaft outer circumferential surface or in the sleeve peripheral surface A closed end side dynamic pressure generating zone and an open end side dynamic pressure generating zone each having a herringbone or V-shaped radial dynamic pressure groove formed in a direction symmetrical to each other are provided , and in the gap between the shaft and the sleeve, with lubricating fluid is filled, the dynamic pressure generated by the dynamic pressure groove when the relative rotation of the shaft and the sleeve, in the dynamic pressure bearing apparatus for supporting a relative rotation of these shafts and the sleeve in a non-contact, said The clearance between the shaft and the sleeve on the sleeve sealing end side and the non-dynamic pressure generation band side of the closed end side dynamic pressure generation band is defined as a first gap and a second gap, respectively. the gap between the shaft and the sleeve in the hydrodynamic band side and the sleeve open end, a third gap respectively, when a fourth gap, the first gap is larger than the second gap, and the fourth The shaft outer peripheral surface has a shape in which the gap is formed larger than the third gap, and the difference between the first gap and the second gap is larger than the difference between the fourth gap and the third gap. Alternatively, the inner peripheral surface of the sleeve is formed .
[0012]
As a specific configuration example of a dynamic pressure bearing device of this, the with dynamic pressure grooves are formed on the outer circumferential surface of the shaft, said inner sleeve in each dynamic pressure generating zone facing the dynamic pressure grooves peripheral surface, a configuration that is formed in a tapered shape in the axial direction can be suitably employed (claim 2).
[0013]
According to the present invention, in the hydrodynamic bearing device that supports the relative rotation of the shaft and the sleeve in a non-contact manner due to the dynamic pressure generated in the two radial dynamic pressure generation bands adjacent in the axial direction, precession occurs in the rotation. In this case, the desired goal is achieved by forming a larger clearance (diameter in the radial direction) between the shaft and the sleeve near the sealed end and near the open end of the sleeve where the deflection of the rotating body increases. It is something to try.
[0014]
That is, according to the present invention, the radial gap (second gap and third gap) between the sleeve and the shaft on the adjacent side (non-dynamic pressure generation band side) in the dynamic pressure generation band portions on the closed end side and the open end side. Therefore, even if rotation of the hydrodynamic bearing device causes precession by forming a large gap (first gap and fourth gap) on both ends of the sleeve in each dynamic pressure generation zone, Contact between the shaft and the sleeve can be prevented.
[0015]
In addition to the above-described configuration, the hydrodynamic bearing device according to the present invention also provides dynamic pressure generation on the sealed end side as a means for preventing leakage of the lubricating fluid filled between the shaft and the sleeve to the sleeve open end side. The difference between the first gap on the closed end side in the belt and the second gap on the non-dynamic pressure generating band side is the fourth gap on the open end side and the non-dynamic pressure generating band in the dynamic pressure generating band on the open end side. Either the outer peripheral surface of the shaft or the inner peripheral surface of the sleeve facing the shaft is formed in a shape larger than the difference with the third gap on the side.
[0016]
That is, when the gap between the two dynamic pressure generating bands is formed so as to widen toward both ends of the sleeve, these dynamic pressure generating bands include both ends in the axial direction (sleeve sealed end side and sleeve open end side). A flow of lubricating fluid toward the Therefore, at the open end of the sleeve, the pressure increases due to the movement of the lubricating fluid, and there is a possibility that leakage to the outside may occur. However, in the hydrodynamic bearing device of the present invention, the gap between the sleeve and the shaft is configured so that the flow of the lubricating fluid toward the sleeve closed end side becomes stronger. Will be pushed to the side. Therefore, the hydrodynamic bearing device of the present invention can suppress the leakage of the lubricating fluid to the sleeve open end.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic cross-sectional view showing the structure of a hydrodynamic bearing device according to a first embodiment of the present invention. In addition, the same code | symbol is attached | subjected to the structural member which has the same function as a prior art example. Further, the gap between the shaft 2 and the sleeve 1 on the sleeve 1 sealed end side and the non-dynamic pressure generating band 33 side of the sealed end side dynamic pressure generating band 31 is defined as D1 (first gap) and D2 (second gap), respectively. ), And the gap between the shaft 2 and the sleeve 1 on the non-dynamic pressure generating band 33 side of the open end side dynamic pressure generating band 32 and the open end side of the sleeve 1 are D3 (third gap) and D4 (fourth), respectively. This will be described as a gap.
[0018]
The basic structure of the hydrodynamic bearing device according to the first embodiment is the same as that of the conventional example, and is inserted from the substantially cylindrical sleeve 1 whose one opening is sealed, and the other opening of the sleeve 1, It is comprised from the shaft 2 fitted by the inner periphery. In the sleeve 1, a lid member (thrust plate) 12 is fitted into an opening on the closed end (upper side in the drawing) side of the cylindrical body 11, and the cylindrical body 11 and the lid member 12 are integrally formed using an adhesive or the like. Has been. The shaft 2 is inserted through an opening on the open end (lower side in the drawing) side of the sleeve 1 and is rotatably fitted in the inner periphery of the sleeve 1 with a slight gap. The gap between the shaft 2 and the sleeve 1 is filled with a lubricating fluid, and a capillary seal portion is formed at the opening on the open end side of the sleeve 1 to prevent leakage of the lubricating fluid to the outside. It is illustrated.
[0019]
Similarly to the conventional example, the radial dynamic pressure groove 21 on the hermetic bone or V-shaped sealed end side of the herringbone or V-shaped pattern is also provided on the outer peripheral surface 2x of the shaft 2 at positions adjacent to each other at a predetermined distance in the axial direction. A radial dynamic pressure groove 22 on the open end side is formed. Further, between the outer peripheral surface 2x of the shaft 2 and the inner peripheral surface 1x of the sleeve 1, the sealed end side dynamic pressure generating band 31 and the open end are respectively provided on both sides in the adjacent axial direction with the non-dynamic pressure generating band 33 interposed therebetween. A side dynamic pressure generating zone 32 is formed.
[0020]
The hydrodynamic bearing device according to the present embodiment is characterized in that the gap between the shaft 2 and the sleeve 1 in each of the dynamic pressure generating bands 31 and 32 is larger at both axial ends than the non-dynamic pressure generating band 33 (D1> D2 , D4> D3), and the difference between the gap D1 on the closed end side dynamic pressure generating band 31 and the gap D2 on the non-dynamic pressure generating band 33 side is the open end in the open end side dynamic pressure generating band 32. The inner peripheral surface 1x of the sleeve 1 in each of the dynamic pressure generating bands 31 and 32 is larger than the difference between the gap D4 on the side and the gap D3 on the non-dynamic pressure generating band 33 side (D1-D2> D4-D3). , Are each formed in a tapered shape.
[0021]
With the above configuration, the hydrodynamic bearing device according to the present embodiment is capable of precessing (conical swinging) when the shaft 2 or the sleeve 1 on the rotating side is caused to rotate relative to the shaft 2 and the sleeve 1. Since the gaps (D1, D4) on both ends of the sleeve where the deflection due to the precession is large are formed widely, the shaft 1 and the sleeve 2 are unlikely to come into contact with each other, and damage such as scratches may occur. Can be prevented.
[0022]
In addition, since the inclination of the sleeve inner peripheral surface 1x in the sealed end side dynamic pressure generating band 31 is larger than the inclination of the inner peripheral surface 1x in the open end side dynamic pressure generating band 32, it is sealed from the open end side (upper side in the drawing). The flow of the lubricating fluid toward the end side (downward in the figure) becomes stronger, and the lubricating fluid is pushed into the sleeve sealing end side (pump-in effect). Therefore, the hydrodynamic bearing device in the present embodiment can also exhibit the effect of preventing leakage of the lubricating fluid to the open end side.
[0023]
In the above-described embodiment, the shape of the sleeve inner peripheral surface 1x in each of the dynamic pressure generating bands 31, 32 is tapered, but the shape of the sleeve inner peripheral surface 1x that directs the lubricating fluid toward both ends of the sleeve. Is not limited to this example. For example, as shown in FIG. 2, at the approximate center in the axial direction of each of the dynamic pressure generating bands 31, 32, the sleeves on both ends of the dynamic pressure generating bands 31, 32 are disposed. A stepped portion that widens the gap may be formed.
[0024]
Next, a second embodiment of the present invention will be described.
FIG. 3 is a schematic cross-sectional view showing the structure of the hydrodynamic bearing device according to the second embodiment of the present invention. In this dynamic pressure bearing device, a thrust dynamic pressure bearing for supporting an axial load is formed at one end of the shaft 2 in addition to the radial dynamic pressure bearing similar to that of the first embodiment.
[0025]
The shaft 2 used in the second embodiment has the same radial dynamic pressure grooves 21 and 22 as those in the first embodiment formed on the outer peripheral surface 2x thereof, and has a disk-like shape at one end thereof. A flange portion 2b is provided. Further, herringbone or V-shaped thrust dynamic pressure grooves 24 and 25 are formed in the circumferential direction on both end faces 2y and 2z of the flange portion 2b, respectively. In the sleeve 1, a circumferential step portion 11 a into which the flange portion 2 b of the shaft 2 can be fitted is formed in the opening on the sealed end (upper side in the drawing) side of the cylindrical body 11, and the shaft 2 is fitted. Then, a lid member (thrust plate) 12 is fitted into the opening and sealed, and integrated with an adhesive or the like. The relative rotation between the flange portion 2 b of the shaft 2 and the sleeve 1 is caused by the dynamic pressure in the thrust direction generated between the flange portion end surface 2 y of the shaft 2 and the circumferential step end surface 1 y of the sleeve 1, and the shaft 2. This is supported in a non-contact manner by the dynamic pressure in the thrust direction generated between the flange portion end surface 2x and the inner surface 12z of the lid member 12.
[0026]
Further, the structure of the radial dynamic pressure bearing portion in this dynamic pressure bearing device is the same as that of the first embodiment, and the shaft 2 and the sleeve in the closed end side dynamic pressure generating band 31 and the open end side dynamic pressure generating band 32. 1 is larger at both axial ends than the non-dynamic pressure generating band 33 side (D1> D2, D4> D3), and is not stationary with the gap D1 on the sealed end side in the sealed end side dynamic pressure generating band 31. The difference between the gap D2 on the pressure generation band 33 side is larger than the difference between the gap D4 on the open end side in the open end side dynamic pressure generation band 32 and the gap D3 on the non-dynamic pressure generation band 33 side (D1-D2> D4). -D3) As shown, the inner peripheral surface 1x of the sleeve 1 in the dynamic pressure generating bands 31, 32 is formed in a tapered shape.
[0027]
For this reason, the hydrodynamic bearing device according to the present embodiment makes it difficult for the shaft 2 and the sleeve 1 to come into contact with each other even when the rotation of the shaft 2 or the sleeve 1 causes a precession motion (conical swinging). The occurrence of damage can be prevented. In addition, the flow of the lubricating fluid toward the closed end side becomes stronger than the open end side, and the lubricating fluid is pushed into the closed end (thrust dynamic pressure bearing) side, so that leakage of the lubricating fluid to the open end side is prevented. Can be prevented.
[0028]
In the embodiment described above, the sleeve inner peripheral surface 1x in each of the dynamic pressure generating bands 31 and 32 has a tapered shape. However, as in the first embodiment, instead of the tapered shape, A stepped portion may be provided at substantially the center in the axial direction in the pressure generating bands 31 and 32 so that the lubricating fluid is directed toward both ends of the sleeve.
[0029]
In the above two embodiments, the example in which the lubricating fluid is directed to both ends of the sleeve is provided on the inner peripheral surface 1x of the sleeve 1, but this tapered shape is the outer periphery of the shaft 1. It may be provided on the surface 2x.
[0030]
Still further, the radial dynamic pressure groove and the thrust dynamic pressure groove may be provided on either side of the shaft or the sleeve, and the present invention is equally applicable to either type of dynamic pressure bearing device of shaft rotation or sleeve rotation. be able to.
[0031]
【The invention's effect】
As described above in detail, according to the hydrodynamic bearing device of the present invention, the lubricating fluid filled between the shaft and the sleeve is prevented from leaking to the sleeve open end side, and the rotation of the bearing precesses. Even if it occurs, it is difficult for the shaft and the sleeve to come into contact with each other, troubles such as damage to these members are prevented, and a fluid dynamic bearing device having a long life can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing the structure of a fluid dynamic bearing device according to a first embodiment of the present invention.
FIG. 2 is a schematic cross-sectional view showing a step shape of a sleeve inner peripheral surface 1x in the hydrodynamic bearing device according to the first embodiment of the present invention.
FIG. 3 is a schematic cross-sectional view showing the structure of a fluid dynamic bearing device according to a second embodiment of the present invention.
FIG. 4 is a schematic cross-sectional view showing the structure of a conventional hydrodynamic bearing device.
FIG. 5 is a schematic cross-sectional view showing the shape of a sleeve inner peripheral surface 1x in another conventional hydrodynamic bearing device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Sleeve 1x Inner peripheral surface 2 Shaft 2x Outer peripheral surface 2a Shaft end 11 Cylindrical body 12 Cover member 21,22 Radial dynamic pressure groove 23 Band-shaped area | region 24,25 Thrust dynamic pressure groove 31 Sealed end side dynamic pressure generating band 32 Opening End-side dynamic pressure generation zone 33 Non-dynamic pressure generation zone

Claims (2)

一方の開口が密閉されたスリーブの内周に、僅かの間隙を開けてシャフトが回転自在に嵌合され、これら対向するシャフトの外周面とスリーブの内周面との間には、円周方向に帯状の非動圧発生帯を挟んだ軸方向両側に、前記シャフト外周面あるいは前記スリーブ内周面のどちらか一方に軸方向に対称なヘリングボーンまたはV字パターンのラジアル動圧溝が形成された密閉端側動圧発生帯および開放端側動圧発生帯が、それぞれ設けられ、これらシャフトとスリーブの間の間隙に、潤滑流体が充填されているとともに、前記シャフトとスリーブの相対回転時に前記動圧溝で発生する動圧により、これらシャフトとスリーブの相対回転を非接触に支持する動圧軸受装置において、
前記密閉端側動圧発生帯のスリーブ密閉端側および非動圧発生帯側におけるシャフトとスリーブとの間隙を、それぞれ第1の間隙、第2の間隙とし、前記開放端側動圧発生帯の非動圧発生帯側およびスリーブ開放端側におけるシャフトとスリーブとの間隙を、それぞれ第3の間隙、第4の間隙としたとき、第1の間隙が第2の間隙より大きく、かつ、第4の間隙が第3の間隙より大きく形成されているとともに、第1の間隙と第2の間隙との差が、第4の間隙と第3の間隙との差より大きくなる形状に、前記シャフト外周面あるいは前記スリーブ内周面が形成されていることを特徴とする動圧軸受装置。
A shaft is rotatably fitted to the inner periphery of the sleeve, with one opening sealed, with a slight gap between them, and the circumferential direction between the outer peripheral surface of the opposing shaft and the inner peripheral surface of the sleeve A herringbone or V-shaped radial dynamic pressure groove symmetrical in the axial direction is formed on either the outer peripheral surface of the shaft or the inner peripheral surface of the sleeve on both sides in the axial direction across the belt-like non-dynamic pressure generating band. A closed end side dynamic pressure generating zone and an open end side dynamic pressure generating zone are provided, and a gap between the shaft and the sleeve is filled with a lubricating fluid, and the relative rotation of the shaft and the sleeve In the hydrodynamic bearing device that supports the relative rotation of the shaft and the sleeve in a non-contact manner by the dynamic pressure generated in the hydrodynamic groove,
The clearance between the shaft and the sleeve on the sleeve sealing end side and the non-dynamic pressure generating band side of the sealed end side dynamic pressure generating zone is defined as a first gap and a second gap, respectively. When the gap between the shaft and the sleeve on the non-dynamic pressure generating band side and the sleeve open end side is the third gap and the fourth gap, respectively, the first gap is larger than the second gap, and the fourth gap Is formed larger than the third gap, and the difference between the first gap and the second gap is larger than the difference between the fourth gap and the third gap. A hydrodynamic bearing device in which a surface or an inner peripheral surface of the sleeve is formed.
前記動圧溝が前記シャフトの外周面に形成されているとともに、この動圧溝に対向する前記各動圧発生帯内のスリーブ内周面が、それぞれ軸方向にテーパ形状に形成されていることを特徴とする請求項1に記載の動圧軸受装置。The dynamic pressure groove is formed on the outer peripheral surface of the shaft, and the inner peripheral surface of the sleeve in each of the dynamic pressure generating zones facing the dynamic pressure groove is formed in a tapered shape in the axial direction. The hydrodynamic bearing device according to claim 1.
JP2002272520A 2002-09-19 2002-09-19 Hydrodynamic bearing device Expired - Fee Related JP4110381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002272520A JP4110381B2 (en) 2002-09-19 2002-09-19 Hydrodynamic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002272520A JP4110381B2 (en) 2002-09-19 2002-09-19 Hydrodynamic bearing device

Publications (2)

Publication Number Publication Date
JP2004108509A JP2004108509A (en) 2004-04-08
JP4110381B2 true JP4110381B2 (en) 2008-07-02

Family

ID=32269514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002272520A Expired - Fee Related JP4110381B2 (en) 2002-09-19 2002-09-19 Hydrodynamic bearing device

Country Status (1)

Country Link
JP (1) JP4110381B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009017700A1 (en) * 2009-04-15 2010-10-21 Minebea Co., Ltd. Fluid dynamic bearing system and spindle motor with such a storage system
JP5342959B2 (en) 2009-08-07 2013-11-13 サムスン電機ジャパンアドバンスドテクノロジー株式会社 Disk drive
KR101141332B1 (en) 2010-08-05 2012-05-07 삼성전기주식회사 Fluid dynamic bearing assembly
KR102648545B1 (en) * 2016-07-19 2024-03-18 엘지이노텍 주식회사 Fan motor and vehicle having the same

Also Published As

Publication number Publication date
JP2004108509A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
JP6861730B2 (en) Sliding parts
JP6683630B2 (en) Sliding parts
JP6076971B2 (en) Sliding parts
JPS6233470B2 (en)
JPH0255671B2 (en)
JP4110381B2 (en) Hydrodynamic bearing device
US7625122B2 (en) Fluid dynamic bearing
JP2018159392A (en) Rolling bearing
AU2002329686B2 (en) Seal and bearing assembly
JPS624565B2 (en)
JP2002286026A (en) Sliding bearing structure
JP2003013976A (en) Rolling bearing
JPS6216767Y2 (en)
JP2003097725A (en) Sealing device
JP2004108549A (en) Hydrodynamic bearing device
JP3892995B2 (en) Hydrodynamic bearing unit
JP4051552B2 (en) Hydrodynamic bearing device
JP2020176673A (en) Seal structure and seal
JP2004084813A (en) Rolling bearing
JP2020159456A (en) Sealing device and rolling bearing
WO2020218286A1 (en) Sliding component
KR102580857B1 (en) Rolling bearing having improved sealing function
WO2021205555A1 (en) Sliding component
JP2011153658A (en) Sealing device of rolling bearing unit for supporting axle of railway rolling stock
KR200323188Y1 (en) retainer for ball bearing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070713

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080325

R150 Certificate of patent or registration of utility model

Ref document number: 4110381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110418

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120418

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130418

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140418

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees