JP2005090508A - Temperature control method for internal combustion engine and cooling system for internal combustion engine - Google Patents

Temperature control method for internal combustion engine and cooling system for internal combustion engine Download PDF

Info

Publication number
JP2005090508A
JP2005090508A JP2004262149A JP2004262149A JP2005090508A JP 2005090508 A JP2005090508 A JP 2005090508A JP 2004262149 A JP2004262149 A JP 2004262149A JP 2004262149 A JP2004262149 A JP 2004262149A JP 2005090508 A JP2005090508 A JP 2005090508A
Authority
JP
Japan
Prior art keywords
coolant
hot water
internal combustion
combustion engine
water reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004262149A
Other languages
Japanese (ja)
Other versions
JP4098765B2 (en
Inventor
Eike Willers
ビラース アイク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Behr Thermot Tronik GmbH
Original Assignee
Behr Thermot Tronik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr Thermot Tronik GmbH filed Critical Behr Thermot Tronik GmbH
Publication of JP2005090508A publication Critical patent/JP2005090508A/en
Application granted granted Critical
Publication of JP4098765B2 publication Critical patent/JP4098765B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N19/00Starting aids for combustion engines, not otherwise provided for
    • F02N19/02Aiding engine start by thermal means, e.g. using lighted wicks
    • F02N19/04Aiding engine start by thermal means, e.g. using lighted wicks by heating of fluids used in engines
    • F02N19/10Aiding engine start by thermal means, e.g. using lighted wicks by heating of fluids used in engines by heating of engine coolants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P11/20Indicating devices; Other safety devices concerning atmospheric freezing conditions, e.g. automatically draining or heating during frosty weather
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P2005/105Using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P5/12Pump-driving arrangements
    • F01P2005/125Driving auxiliary pumps electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/14Indicating devices; Other safety devices
    • F01P2011/205Indicating devices; Other safety devices using heat-accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2023/00Signal processing; Details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • F01P2060/045Lubricant cooler for transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To give preheat to an internal combustion engine of an automobile when cold-started. <P>SOLUTION: The internal combustion engine 10 for the automobile has a hot water storage 25 attached to a cooling liquid circuit. When the internal combustion engine is operated off, an almost all amount of cooling liquid is supplied from the cooling liquid circuit to the hot water storage, and when the internal combustion engine is started, the cooling liquid is returned from the hot water storage to the cooling liquid circuit, again. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、自動車の内燃機関を温度調節する方法と、内燃機関のための冷却システムに関するものであって、内燃機関には液状の冷却液のための冷却液循環回路を有する冷却システムが設けられている。   The present invention relates to a method for adjusting the temperature of an internal combustion engine of an automobile and a cooling system for the internal combustion engine, the internal combustion engine being provided with a cooling system having a coolant circulation circuit for liquid coolant. ing.

内燃機関は、冷間始動後その駆動温度に達するまでは、大量の有害物質の遊離および高い摩擦とそれに結びついた摩耗のような、比較的悪い特性を有する。冷間始動の欠陥は、内燃機関の十分な予熱によって回避することができる。これまでこの目的のために提案された手段、特に冷却液循環回路内へ組み込まれる潜熱貯蔵器または温水貯蔵器は、これまで実際においては受け入れられていない。   Internal combustion engines have relatively bad characteristics, such as the release of a large amount of harmful substances and high friction and the associated wear, until the driving temperature is reached after a cold start. Cold start defects can be avoided by sufficient preheating of the internal combustion engine. So far, the means proposed for this purpose, in particular the latent heat reservoir or hot water reservoir incorporated into the coolant circulation circuit, have not been accepted in practice so far.

特許文献1からは、温水貯蔵器として冷却液循環回路の補償および排気容器を設けることが知られており、同容器は遮断機構によって遮断可能なバイパス導管を介して冷却液ポンプの吸込み側と接続されている。エンジンがOFFにされた場合には、冷却循環回路内にある補償容器の遮断機構が閉成され、始動の際に開放される。   From Patent Document 1, it is known to provide a coolant circulation circuit compensation and an exhaust container as a hot water reservoir, which is connected to the suction side of the coolant pump through a bypass conduit that can be shut off by a shut-off mechanism. Has been. When the engine is turned off, the shutoff mechanism of the compensation container in the cooling circuit is closed and opened at the start.

ドイツ公開公報DE1451890German publication DE1451890

本発明の課題は、冷却循環回路の冷却液の量を増大させる必要なしに、冷間始動の際の内燃機関の予熱を可能にすることである。   An object of the present invention is to enable preheating of an internal combustion engine during a cold start without having to increase the amount of coolant in the cooling circuit.

この課題は、内燃機関がOFFにされた場合に、ほぼ全部の量の冷却液が冷却液循環回路から温水貯蔵器へ給送され、内燃機関の始動時に温水貯蔵器から冷却液が再び冷却液循環回路内へ戻されることによって、解決される。   The problem is that when the internal combustion engine is turned off, almost the entire amount of coolant is fed from the coolant circulation circuit to the hot water reservoir, and the coolant is again supplied from the hot water reservoir when the internal combustion engine is started. It is solved by returning it to the circulation circuit.

この種の温水貯蔵器は、常に冷却液によって満たされてはおらず、車両重量を取り立てて言うほど増大させない。他方で、実際には全量の冷却液が温水貯蔵器内へ給送されるので、熱い冷却液が利用されずに冷却液循環回路内へ残ることはないので、内燃機関の予熱のために利用可能な熱エネルギが極めて高くなる。   This type of hot water reservoir is not always filled with coolant and does not increase the vehicle weight as much. On the other hand, since the entire amount of coolant is actually fed into the hot water reservoir, hot coolant is not used and does not remain in the coolant circulation circuit, so it is used for preheating the internal combustion engine. The possible thermal energy is very high.

本発明の他の形態においては、冷却液循環回路内に室内暖房用熱交換器および/またはトランスミッションオイル用熱交換器および/またはエンジンオイル用熱交換器が設けられており、かつこの全部の冷却液循環回路から冷却液が温水貯蔵器内へ給送される。   In another embodiment of the present invention, a heat exchanger for indoor heating and / or a heat exchanger for transmission oil and / or a heat exchanger for engine oil are provided in the coolant circulation circuit, and all of the cooling is performed. Coolant is fed into the hot water reservoir from the liquid circulation circuit.

内燃機関のための冷却システムにおいては、本発明に基づく課題は、冷却液循環回路から分岐した回路内に温水貯蔵器が配置され、温水貯蔵器は、少なくとも冷却液循環回路の容積にほぼ相当する容積を有し、内燃機関がOFFにされた場合に冷却液を冷却液循環回路から温水貯蔵器内へ給送するための手段と、内燃機関がONにされた場合に冷却液を冷却液循環回路内へ戻すための手段とを備えている、いることによって、解決される。   In a cooling system for an internal combustion engine, the problem based on the present invention is that a hot water reservoir is arranged in a circuit branched from the coolant circulation circuit, and the hot water reservoir substantially corresponds to at least the volume of the coolant circulation circuit. Means for supplying coolant from the coolant circulation circuit into the hot water reservoir when the internal combustion engine is turned off, and circulating the coolant when the internal combustion engine is turned on. By means of returning to the circuit.

本発明の他の特徴と利点は、本発明の実施例についての以下の説明から明らかにされる。   Other features and advantages of the present invention will become apparent from the following description of embodiments of the present invention.

図1に示す内燃機関10は、ラジエータ11と共に冷却循環回路内に配置されている。冷却液ポンプ12は、導管13を介して冷却液を内燃機関10へ給送する。内燃機関10を出た冷却液は、導管14を介してラジエータ11の入口へ流れる。導管14からは、サーモスタット弁16へ通じるバイパス導管15が分岐しており、そのサーモスタット弁を通して内燃機関10から来る冷却液を導管17を介して直接冷却液ポンプ12によって吸い込むことができる。冷却液が冷たい場合には、サーモスタット弁16はバイパス導管15と冷却液ポンプ12へ通じる導管17の間の接続を開放するので、内燃機関を出た冷却液は直接また内燃機関10へ供給される。   An internal combustion engine 10 shown in FIG. 1 is disposed in a cooling circuit together with a radiator 11. The coolant pump 12 feeds the coolant to the internal combustion engine 10 via the conduit 13. The coolant exiting the internal combustion engine 10 flows to the inlet of the radiator 11 through the conduit 14. A bypass conduit 15 leading to the thermostat valve 16 branches from the conduit 14, and the coolant coming from the internal combustion engine 10 can be directly sucked by the coolant pump 12 through the conduit 17 through the thermostat valve. When the coolant is cold, the thermostat valve 16 opens the connection between the bypass conduit 15 and the conduit 17 leading to the coolant pump 12 so that the coolant leaving the internal combustion engine is supplied directly to the internal combustion engine 10 as well. .

サーモスタット弁16には、ラジエータ11から来る還流導管18が接続されている。バイパス導管15を介して供給される冷却液が予め定められた温度に達するとすぐに、サーモスタット弁16はバイパス導管を遮断して、還流導管18を開放することを開始するので、次々とラジエータ11から来る冷却液が導管17を介して冷却液ポンプ12の吸込み側へ達する。サーモスタット弁16は、バイパス導管15とクーラー還流導管18を通して導管17とそれに伴って内燃機関10へ供給される、冷却液の量を定める。それによって内燃機関10は、駆動温度に制御される。   A reflux conduit 18 coming from the radiator 11 is connected to the thermostat valve 16. As soon as the coolant supplied via the bypass conduit 15 reaches a predetermined temperature, the thermostat valve 16 shuts off the bypass conduit and starts to open the reflux conduit 18 so that the radiator 11 in turn. The coolant coming from the coolant reaches the suction side of the coolant pump 12 via the conduit 17. Thermostat valve 16 defines the amount of coolant that is supplied to conduit 17 and concomitantly internal combustion engine 10 through bypass conduit 15 and cooler return conduit 18. Thereby, the internal combustion engine 10 is controlled to the drive temperature.

エンジン出口導管14からは、熱交換器20へ通じる導管19が分岐しており、その熱交換器は車両のための室内暖房用構成部分である。熱交換器20から流出する冷却液は、混合室の領域においてサーモスタット弁16へ供給される。   The engine outlet conduit 14 branches off from a conduit 19 leading to a heat exchanger 20, which is an indoor heating component for the vehicle. The coolant flowing out of the heat exchanger 20 is supplied to the thermostat valve 16 in the region of the mixing chamber.

この冷却液循環回路の一番高い箇所に、図示されていない排気弁を介して導管22が接続されており、その導管は高いところに位置する補償容器23へ通じている。一点鎖線で示す導管22内を流れるのは、大体において空気または蒸気である。補償容器23内に集まる液状の冷却液は、導管24を介して冷却液循環回路へ戻される。この導管24は、冷却液ポンプ12の吸込み側に連通している。   A conduit 22 is connected to the highest portion of the coolant circulation circuit via an exhaust valve (not shown), and the conduit leads to a compensation vessel 23 located at a high position. It is mostly air or steam that flows in the conduit 22 indicated by the alternate long and short dash line. The liquid coolant collected in the compensation container 23 is returned to the coolant circulation circuit via the conduit 24. The conduit 24 communicates with the suction side of the coolant pump 12.

上述した冷却液循環回路からの分岐内に、温水貯蔵器25が配置されており、その温水貯蔵器の容積は、冷却循環回路内に、すなわち内燃機関10、ラジエータ11、熱交換器20、サーモスタット弁16および導管13、14、15、17、18、19および21内に存在しているほぼ全量の冷却液を収容することができるように、定められている。温水貯蔵器25は、導管26を介して冷却液ポンプ12の吸込み側に接続されている。導管26内には、電動駆動されるポンプ27と電気的に切り替え可能な弁28が配置されている。   A hot water reservoir 25 is arranged in the branch from the above-mentioned coolant circulation circuit, and the volume of the hot water reservoir is within the coolant circulation circuit, that is, the internal combustion engine 10, the radiator 11, the heat exchanger 20, and the thermostat. It is defined to accommodate substantially the entire amount of coolant present in the valve 16 and conduits 13, 14, 15, 17, 18, 19 and 21. The hot water reservoir 25 is connected to the suction side of the coolant pump 12 via a conduit 26. In the conduit 26, an electrically driven pump 27 and an electrically switchable valve 28 are arranged.

内燃機関10がOFFにされた場合には、ポンプ27がONにされ、そのポンプの駆動は予め定められた期間の間維持される。この期間は、そのポンプ内へ冷却液循環回路の全量の冷却液を吸い込んで、それまでに空になっている、すなわち空気を有する温水貯蔵器25へ給送することができるように、計算される。ポンプ27の電動機のスイッチONによって、電気的に操作可能な弁28、たとえば電磁弁28も開放される。全量の冷却液は、温水貯蔵器25内へポンプアップされ、すなわち冷却液循環回路11が空にされる。温水貯蔵器25内に含まれている空気は、導管29を介して流出し、その導管は補償容器23に接続されている。実際においては、この導管29内に遮断弁30を配置すると理にかなっており、その遮断弁も同様に電気的に操作可能であって、かつ弁28と共に開放し、かつ閉成される。冷却液がポンプ27によって冷却液循環回路から汲み出される間、空気は導管22を介してだんだんと冷却液循環回路内へ流れる。   When the internal combustion engine 10 is turned off, the pump 27 is turned on, and the drive of the pump is maintained for a predetermined period. This period is calculated so that the entire amount of coolant in the coolant circulation circuit can be drawn into the pump and delivered to the hot water reservoir 25 that has been emptied so far, i.e. with air. The When the switch of the electric motor of the pump 27 is turned ON, an electrically operable valve 28, for example, an electromagnetic valve 28 is also opened. The entire amount of coolant is pumped up into the hot water reservoir 25, i.e. the coolant circulation circuit 11 is emptied. The air contained in the hot water reservoir 25 flows out through the conduit 29, which is connected to the compensation container 23. In practice, it makes sense to place a shut-off valve 30 in this conduit 29, which is likewise electrically operable and opens and closes with the valve 28. While coolant is being pumped out of the coolant circulation circuit by the pump 27, air gradually flows into the coolant circulation circuit via the conduit 22.

内燃機関10の始動時に、弁28、30は開放される。しかし、内燃機関と共に始動する、電動ポンプとすることのできる、冷却液ポンプ12は、通常内燃機関10のクランク軸と駆動接続されており、温水貯蔵器25から冷却液を吸い込んで、それを内燃機関10内へ給送し、そこからさらに冷却循環回路内へ戻す。温水貯蔵器25は冷却液ポンプ12よりも高い場所にあるので、冷却液は重力に基づいて冷却液ポンプ12の吸込み側へ流れる。温水貯蔵器25が空になった後に、弁28、30は閉成する。   When the internal combustion engine 10 is started, the valves 28 and 30 are opened. However, the coolant pump 12, which can be an electric pump that starts with the internal combustion engine, is normally connected to the crankshaft of the internal combustion engine 10, sucks the coolant from the hot water reservoir 25, and supplies it to the internal combustion engine. The fuel is fed into the engine 10 and then returned to the cooling circuit. Since the hot water reservoir 25 is located higher than the coolant pump 12, the coolant flows to the suction side of the coolant pump 12 based on gravity. After the hot water reservoir 25 is empty, the valves 28 and 30 are closed.

好ましくは高性能の温水貯蔵器25が設けられ、その温水貯蔵器はできるだけ、24時間以内に摂氏約100°から60°への温度低下しか行われないように断熱されている。   A high performance hot water reservoir 25 is preferably provided, which is insulated so that as much as possible a temperature drop from about 100 degrees Celsius to 60 degrees Celsius occurs within 24 hours.

全ての熱い冷却液が冷却液循環回路から温水貯蔵器25内へ移送されるので、内燃機関10を予熱するためにそれに応じた高い熱エネルギが提供される。さらに、室内暖房用熱交換器20も内燃機関10の冷間始動の際に暖かい冷却液を供給されるので、暖房が極めて早期に応答する、という利点が得られる。   Since all hot coolant is transferred from the coolant circulation circuit into the hot water reservoir 25, a correspondingly high thermal energy is provided to preheat the internal combustion engine 10. Further, since the indoor heating heat exchanger 20 is also supplied with a warm coolant when the internal combustion engine 10 is cold-started, there is an advantage that heating responds very quickly.

図示の実施形態の変形例においては、温水貯蔵器は2段階で形成されており、すなわち2つのチャンバを有しており、それらが切り替え可能な供給装置を介して供給を受ける。この場合においては、第1段階において、第1のチャンバが内燃機関から取り出された冷却液の量で充填され、その後切り替えられて、第2の段階においては第2のチャンバがラジエータ11から来る冷却液で充填され、その冷却液は通常内燃機関から来る冷却液よりも冷たい。従って、異なる温度水準を有する2つの冷却液が混合されることが、防止される。   In a variant of the illustrated embodiment, the hot water reservoir is formed in two stages, i.e. it has two chambers, which are supplied via a switchable supply device. In this case, in the first stage, the first chamber is filled with the amount of coolant removed from the internal combustion engine and then switched, and in the second stage, the second chamber is cooled from the radiator 11. Filled with liquid, the coolant is usually cooler than the coolant coming from the internal combustion engine. Therefore, mixing of two coolants having different temperature levels is prevented.

図2に示す実施例は、同様に、内燃機関10、ラジエータ11、冷却液ポンプ12、サーモスタット弁16および車両の室内暖房用熱交換器20を備えた冷却液循環回路を有している。この冷却液循環回路には、排気導管22と還流導管24を有する補償容器23も属している。暖房用熱交換器20は、エンジン出口導管14には接続されていない。むしろ、熱交換器は別の導管31を介して、内燃機関10から流出する冷却液を供給される。熱交換器20からサーモスタット弁16の混合室へ至る導管内に、切り替え可能な制御弁32が配置されている。   The embodiment shown in FIG. 2 similarly includes a coolant circulation circuit including an internal combustion engine 10, a radiator 11, a coolant pump 12, a thermostat valve 16, and a heat exchanger 20 for heating the vehicle interior of the vehicle. A compensation vessel 23 having an exhaust conduit 22 and a reflux conduit 24 also belongs to this coolant circulation circuit. The heating heat exchanger 20 is not connected to the engine outlet conduit 14. Rather, the heat exchanger is supplied with coolant flowing out of the internal combustion engine 10 via a separate conduit 31. A switchable control valve 32 is arranged in the conduit from the heat exchanger 20 to the mixing chamber of the thermostat valve 16.

車両の室内暖房用熱交換器20に対して並列に、冷却液循環回路内にトランスミッションオイル用熱交換器33が設けられている。このトランスミッションオイル用熱交換器33は、冷却液と、内燃機関10に属するオートマチックトランスミッション34のオイルとによって貫流される。さらに、エンジンオイル用熱交換器35が設けられており、その熱交換器も同様に内燃機関の冷却液とエンジンオイルによって貫流される。   A transmission oil heat exchanger 33 is provided in the coolant circulation circuit in parallel with the vehicle interior heating heat exchanger 20. The transmission oil heat exchanger 33 is flown by the coolant and the oil of the automatic transmission 34 belonging to the internal combustion engine 10. Furthermore, a heat exchanger 35 for engine oil is provided, and the heat exchanger is also passed through by the coolant of the internal combustion engine and the engine oil.

この構造においても、温水貯蔵器25aが設けられており、その容積は、冷却液循環回路内に存在しているすべての冷却液量を収容することができるように、設計されている。温水貯蔵器25aは、導管26を介して冷却液ポンプ12の吸込み側に接続されている。導管26は、電動で駆動可能なポンプ27と電気的に切り替え可能な弁28、たとえば磁気弁を有している。温水貯蔵器は、導管29と切り替え可能な弁30を介して補償容器23に接続されている。   Also in this structure, the hot water reservoir 25a is provided, and the volume thereof is designed so as to be able to accommodate all the amount of the coolant existing in the coolant circulation circuit. The hot water reservoir 25 a is connected to the suction side of the coolant pump 12 through a conduit 26. The conduit 26 has an electrically driveable pump 27 and an electrically switchable valve 28, such as a magnetic valve. The hot water reservoir is connected to the compensation vessel 23 via a conduit 29 and a switchable valve 30.

温水貯蔵器25aと、室内暖房用熱交換器およびトランスミッションオイル用熱交換器33へ通じる導管31との間に、導管36が配置されており、その導管は他の切り替え可能な弁37と電動で駆動可能なポンプ38を有している。導管31内には、内燃機関10への還流を阻止する、図示されていない戻り止め弁が設けられている。   A conduit 36 is arranged between the hot water reservoir 25a and a conduit 31 leading to a heat exchanger 33 for indoor heating and a heat exchanger 33 for transmission oil, which conduit is electrically connected to another switchable valve 37. It has a pump 38 that can be driven. A detent valve (not shown) that prevents recirculation to the internal combustion engine 10 is provided in the conduit 31.

ポンプ27、弁28、30、弁37およびポンプ38の駆動は、制御装置39を介して行われる。制御装置39は、特にこの目的のために設計された、貯蔵器システムまたは熱管理のための制御装置あるいはエンジン制御装置とすることができる。この制御装置39は、制御弁32も駆動し、その制御弁は車両の室内暖房用熱交換器への供給を制御する。   The drive of the pump 27, the valves 28 and 30, the valve 37 and the pump 38 is performed via a control device 39. The controller 39 may be a reservoir system or a controller for thermal management or an engine controller designed specifically for this purpose. The control device 39 also drives the control valve 32, which controls the supply to the heat exchanger for indoor heating of the vehicle.

内燃機関10が停止した場合に、制御装置39はポンプ27をスイッチONして、弁28と30を開放する。冷却液は、実際には完全に、温水貯蔵器25a内へポンプアップされ、冷却液循環回路は空にされる。この冷却液循環回路内へ、導管22を介して補償容器23から空気が流入する。温水貯蔵器25a内に存在していた空気は、弁30と導管29を介して補償容器23内へ流入する。   When the internal combustion engine 10 is stopped, the control device 39 switches on the pump 27 and opens the valves 28 and 30. The coolant is actually completely pumped into the hot water reservoir 25a and the coolant circulation circuit is emptied. Air flows from the compensation container 23 into the coolant circulation circuit via the conduit 22. Air existing in the hot water reservoir 25 a flows into the compensation container 23 through the valve 30 and the conduit 29.

内燃機関をONにする場合に、冷却液循環回路への冷却液の還流は、図1を用いてすでに説明したように行うことができる。しかしまた、段階を設けて、たとえば制御装置39によってまず弁37を開放し、ポンプをスイッチONして、まず熱い冷却液が熱交換器20と熱交換器33内へポンピングされ、そこから内燃機関10へ流れるようにすることも、可能である。弁30は開放されているので、温水貯蔵器25a内へ空気が流入することができる。弁28は、遅れて開放することができるので、内燃機関10がONにされた後に遅延をもって冷却液が温水貯蔵器25aから内燃機関10内へ、そしてそこからクーラー内へポンピングされる。   When the internal combustion engine is turned on, the coolant can be recirculated to the coolant circulation circuit as already described with reference to FIG. However, a stage is also provided, for example by the control device 39 first opening the valve 37 and switching on the pump so that hot coolant is first pumped into the heat exchanger 20 and the heat exchanger 33 from which the internal combustion engine It is also possible to flow to 10. Since the valve 30 is opened, air can flow into the hot water reservoir 25a. Since the valve 28 can be opened late, the coolant is pumped from the hot water reservoir 25a into the internal combustion engine 10 and from there into the cooler with a delay after the internal combustion engine 10 is turned on.

内燃機関を温度調節することができるようにするために、本発明に基づく方法に加えて、あるいは本発明に基づく方法の代わりに、内燃機関がOFFにされた場合に全量のエンジンオイルがホットオイル貯蔵器内へ汲み込まれ、そのホットオイル貯蔵器はそれまでに空になっており、すなわち空気を有しているようにすることができる。その場合には内燃機関の始動の際に、エンジンオイルが空のオイル循環回路内へ、すなわちオイルクーラーとオイル冷却通路内へ戻るようにポンピングされる。オイルクーラーは、空気または好ましくは内燃機関の冷却液を供給される熱交換器とすることができる。ホットオイル貯蔵器は、オイル循環回路の分岐内に配置されて、電動駆動されるオイルポンプを有する。分岐は、好ましくはオイル循環回路に属するオイルポンプの吸込み側に接続される。ホットオイル貯蔵器は、オイル循環回路のオイルポンプよりも高い位置に配置されると、理にかなっている。   In order to be able to regulate the temperature of the internal combustion engine, in addition to or instead of the method according to the invention, the entire amount of engine oil is hot oil when the internal combustion engine is switched off. Pumped into a reservoir, the hot oil reservoir may have been previously emptied, i.e. have air. In that case, when the internal combustion engine is started, the engine oil is pumped back into the empty oil circulation circuit, that is, into the oil cooler and the oil cooling passage. The oil cooler can be a heat exchanger which is supplied with air or preferably a coolant of the internal combustion engine. The hot oil reservoir has an oil pump which is disposed in the branch of the oil circulation circuit and is electrically driven. The branch is preferably connected to the suction side of the oil pump belonging to the oil circulation circuit. The hot oil reservoir makes sense when placed higher than the oil pump in the oil circulation circuit.

本発明に基づく冷却液システムの概略図である。1 is a schematic view of a coolant system according to the present invention. 冷却循環回路内にさらに他の熱交換器を有する冷却液システムの概略図である。It is the schematic of the cooling fluid system which has another heat exchanger in a cooling circuit.

符号の説明Explanation of symbols

10 内燃機関
11 ラジエータ
12 冷却液ポンプ
13、14、17、19、22、24、26、29、31、36 導管
15 バイパス導管
16 サーモスタット弁
18、24 還流導管
20 熱交換器
23 補償容器
25、25a 温水貯蔵器
27,38 (電動)ポンプ
28 弁
30 弁
32 制御弁
33 トランスミッションオイル用熱交換器
34 オートマチックトランスミッション
35 エンジンオイル用熱交換器
39 制御装置
DESCRIPTION OF SYMBOLS 10 Internal combustion engine 11 Radiator 12 Coolant pump 13, 14, 17, 19, 22, 24, 26, 29, 31, 36 Pipe 15 Bypass pipe 16 Thermostat valve 18, 24 Reflux pipe 20 Heat exchanger 23 Compensation vessel 25, 25a Hot water storage 27, 38 (Electric) pump 28 Valve 30 Valve 32 Control valve 33 Heat exchanger for transmission oil 34 Automatic transmission 35 Heat exchanger for engine oil 39 Control device

Claims (14)

冷却液のための冷却液循環回路を備えた冷却システムが付設されている自動車の内燃機関(10)の温度調節方法であって、
内燃機関(10)がOFFにされた場合に、ほぼ全部の量の冷却液が冷却液循環回路から、それまでに空にされている温水貯蔵器(25、25a)内へ給送されて、内燃機関(10)の始動時に、前記温水貯蔵器から冷却液が再び冷却液循環回路内へ戻されることを特徴とする方法。
A method for adjusting the temperature of an internal combustion engine (10) of an automobile, to which a cooling system having a coolant circulation circuit for coolant is attached,
When the internal combustion engine (10) is turned off, almost the entire amount of coolant is fed from the coolant circulation circuit into the hot water reservoir (25, 25a) that has been emptied so far, A method wherein the coolant is returned from the hot water reservoir back into the coolant circulation circuit when the internal combustion engine (10) is started.
温水貯蔵器(25、25a)内への冷却液の給送が、内燃機関(10)のOFF後に時間遅延されて実施されることを特徴とする請求項1に記載の方法。   2. The method according to claim 1, wherein the feeding of the coolant into the hot water reservoir is performed with a time delay after the internal combustion engine is turned off. 冷却循環回路へ冷却液を戻すことが、内燃機関(10)の始動後に時間遅延されて実施されることを特徴とする請求項1または2に記載の方法。   The method according to claim 1 or 2, characterized in that the return of the coolant to the cooling circuit is carried out with a time delay after the start of the internal combustion engine (10). 冷却液循環回路内に、室内暖房用熱交換器および/またはトランスミッションオイル用熱交換器および/またはエンジンオイル用熱交換器が配置されており、かつ
冷却液循環回路全体から冷却液が温水貯蔵器(25、25a)内へ給送されることを特徴とする請求項1から3のいずれか1項に記載の方法。
A heat exchanger for room heating and / or a heat exchanger for transmission oil and / or a heat exchanger for engine oil are arranged in the coolant circulation circuit, and the coolant is supplied from the entire coolant circulation circuit to the hot water storage device. The method according to any one of claims 1 to 3, characterized in that it is fed into (25, 25a).
温水貯蔵器(25、25a)から冷却液が2つ以上の箇所において同時におよび/または時間遅延して供給されることを特徴とする請求項1から4のいずれか1項に記載の方法。   5. The method according to claim 1, wherein the coolant is supplied from the hot water reservoir (25, 25a) at two or more points simultaneously and / or with a time delay. 内燃機関(10)とラジエータ(11)の間に冷却液のための冷却液循環回路を有している、内燃機関(10)のための冷却システムであって、
冷却液循環回路から分岐した回路内に温水貯蔵器(25、25a)が配置され、
温水貯蔵器(25、25a)は、少なくとも冷却液循環回路の容積にほぼ相当する容積を有し、内燃機関(10)がOFFにされた場合に冷却液を冷却液循環回路から温水貯蔵器(25、25a)内へ給送するための手段(27、28)と、内燃機関(10)がONにされた場合に冷却液を冷却液循環回路内へ戻すための手段(12、37、38)とを備えている、
ことを特徴とする冷却システム。
A cooling system for an internal combustion engine (10) having a coolant circulation circuit for the coolant between the internal combustion engine (10) and the radiator (11),
A hot water reservoir (25, 25a) is arranged in a circuit branched from the coolant circulation circuit,
The hot water reservoir (25, 25a) has a volume at least approximately equivalent to the volume of the coolant circulation circuit, and when the internal combustion engine (10) is turned off, the coolant is sent from the coolant circulation circuit to the hot water reservoir ( 25, 25a) means for feeding (27, 28) and means for returning the coolant into the coolant circulation circuit when the internal combustion engine (10) is turned on (12, 37, 38). )
A cooling system characterized by that.
温水貯蔵器(25、25a)へ通じる導管(26)内に、電気的に駆動可能なポンプ(27)が配置されていることを特徴とする請求項6に記載の冷却システム。   7. Cooling system according to claim 6, characterized in that an electrically drivable pump (27) is arranged in the conduit (26) leading to the hot water reservoir (25, 25a). 温水貯蔵器(25、25a)の前段に、電気的に切り替え可能な弁(28)が接続されていることを特徴とする請求項6または7に記載の冷却システム。   The cooling system according to claim 6 or 7, characterized in that an electrically switchable valve (28) is connected upstream of the hot water reservoir (25, 25a). 温水貯蔵器(25、25a)へ通じる導管(26)が、内燃機関(10)へ冷却液を給送する冷却液ポンプ(12)の吸込み側において、冷却液循環回路に接続されていることを特徴とする請求項6から8のいずれか1項に記載の冷却システム。   The conduit (26) leading to the hot water reservoir (25, 25a) is connected to the coolant circulation circuit on the suction side of the coolant pump (12) for feeding coolant to the internal combustion engine (10). 9. A cooling system according to any one of claims 6 to 8, characterized in that: 温水貯蔵器(25、25a)は、冷却ポンプ(12)よりも高い場所に配置されていることを特徴とする請求項6から9のいずれか1項に記載の冷却システム。   The cooling system according to any one of claims 6 to 9, characterized in that the hot water reservoir (25, 25a) is arranged higher than the cooling pump (12). 温水貯蔵器(25、25a)および冷却液循環回路の最も高い箇所が、補償容器(23)に接続されていることを特徴とする請求項6から10のいずれか1項に記載の冷却システム。   11. Cooling system according to any one of claims 6 to 10, characterized in that the hot water reservoir (25, 25a) and the highest point of the coolant circulation circuit are connected to a compensation vessel (23). 温水貯蔵器(25、25a)を補償容器(23)と接続する導管(29)内に、電気的に切り替え可能な弁(30)が配置されていることを特徴とする請求項6から11のいずれか1項に記載の冷却システム。   12. An electrically switchable valve (30) is arranged in the conduit (29) connecting the hot water reservoir (25, 25a) with the compensation vessel (23). The cooling system according to any one of claims. 温水貯蔵器(25、25a)から、電動のポンプ(38)と切り替え可能な弁(27)を有する1本または複数本の導管が、補助装置の1つまたは複数の熱交換器へ通じていることを特徴とする請求項6から12のいずれか1項に記載の冷却システム。   From the hot water reservoir (25, 25a), one or more conduits with an electric pump (38) and a switchable valve (27) lead to one or more heat exchangers of the auxiliary device. The cooling system according to any one of claims 6 to 12, characterized in that: 少なくとも2つのチャンバを有する温水貯蔵器(25、25a)が設けられており、前記チャンバが選択的に冷却液で充填され、かつ/または空にすることができることを特徴とする請求項6から13のいずれか1項に記載の冷却システム。   A hot water reservoir (25, 25a) having at least two chambers is provided, wherein the chambers can be selectively filled with cooling liquid and / or emptied. The cooling system according to any one of the above.
JP2004262149A 2003-09-15 2004-09-09 Temperature control method for internal combustion engine and cooling system for internal combustion engine Active JP4098765B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10344018.6A DE10344018B4 (en) 2003-09-15 2003-09-15 Cooling system set up for an internal combustion engine with a hot water tank

Publications (2)

Publication Number Publication Date
JP2005090508A true JP2005090508A (en) 2005-04-07
JP4098765B2 JP4098765B2 (en) 2008-06-11

Family

ID=34441782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004262149A Active JP4098765B2 (en) 2003-09-15 2004-09-09 Temperature control method for internal combustion engine and cooling system for internal combustion engine

Country Status (3)

Country Link
US (1) US20050229873A1 (en)
JP (1) JP4098765B2 (en)
DE (1) DE10344018B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011226373A (en) * 2010-04-20 2011-11-10 Nissan Motor Co Ltd Cooling device of vehicle

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006020951A1 (en) * 2005-07-28 2007-02-01 Audi Ag Cooling system for a vehicle and method for operating a cooling system
US7467605B2 (en) * 2006-05-26 2008-12-23 Visteon Global Technologies, Inc. Thermal energy recovery and management system
DE102010013047B4 (en) * 2010-03-27 2014-08-28 Innovationsschatz Gmbh Method for utilizing the waste heat of an internal combustion engine, in particular a piston engine, by means of a heat accumulator and cooling system for carrying out the method
DE102011050199A1 (en) 2011-05-06 2012-11-08 Dbk David + Baader Gmbh Coolant circuit
DE102011050200A1 (en) 2011-05-06 2012-11-08 Dbk David + Baader Gmbh Heat accumulator for receiving medium such as coolant of coolant circuit, has heater which is immersed in receiving space to surround receiving space and is designed as heat radiator so that heat is dissipated mainly by heat radiation
US8863702B2 (en) 2011-10-20 2014-10-21 Innovationsschatz Gmbh Internal combustion engine of an automotive vehicle with a heat storage device that provides reusable heat
DE102011116387B4 (en) * 2011-10-20 2014-01-23 Innovationsschatz Gmbh Internal combustion engine, in particular for motor vehicles with a heat accumulator for the use of engine waste heat and method for their use
US8794195B2 (en) * 2012-02-03 2014-08-05 Ford Global Technologies, Llc Heat storage system for an engine
DE102012206119A1 (en) 2012-04-13 2013-10-17 Behr Gmbh & Co. Kg Method for a cycle with heat storage
DE102015105921B4 (en) * 2015-04-17 2024-05-08 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Cooling system for a vehicle and method for operating the same
EP3246541B1 (en) 2016-05-16 2018-07-18 C.R.F. Società Consortile per Azioni Cooling system for an internal combustion engine of a motor vehicle
CN106523238B (en) * 2016-10-29 2017-08-22 段文清 A kind of loading machine engine water circulation controlling means and system
DE102016015007A1 (en) 2016-12-16 2017-07-27 Daimler Ag Cooling system, in particular high-voltage battery cooling system for a motor vehicle
EP3369907B1 (en) * 2017-03-03 2019-04-10 C.R.F. Società Consortile per Azioni Cooling system for an internal combustion engine of a motor-vehicle
US10626838B2 (en) 2017-08-15 2020-04-21 Denso International America, Inc. Thermal storage expansion tank
DE102018205345B4 (en) * 2018-04-10 2020-06-04 Ford Global Technologies, Llc Electric motor with liquid cooling and use of such an electric motor
DE102018214899B3 (en) * 2018-09-03 2019-12-24 Ford Global Technologies, Llc Cooling system of an internal combustion engine of a motor vehicle, in which bubbles in the coolant flow are effectively prevented

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE472787C (en) * 1929-03-05 Kurt Lohse Arrangement of a storage tank for warm cooling water in automobile engines
DE305694C (en) *
DE303935C (en) *
US2401510A (en) * 1944-03-25 1946-06-04 Rowley Kennard Albert Engine cooling system
DE1451890A1 (en) * 1963-08-07 1969-11-06 Rheinstahl Henschel Ag Storage for cooling water of internal combustion engines for cold start
DE2916216A1 (en) * 1979-04-21 1980-11-06 Bosch Gmbh Robert Preheating system for IC engine - stores waste heat as latent heat and uses salt solution changing from crystalline to liquid form releasing heat to oil circuit
DE3215342A1 (en) * 1982-04-24 1983-10-27 Peter Dr. 8000 München Haslbeck Storage of heat from the cooling medium and engine oil on internal combustion engines
DE4136910C2 (en) * 1991-11-09 1994-10-20 Schatz Oskar Method for quickly setting the operating temperature of a mass by means of a flowable or free-flowing heat transfer medium, in particular for rapid heating of a motor vehicle engine during a cold start
DE4431351A1 (en) * 1994-09-02 1996-03-07 Bayerische Motoren Werke Ag Vehicle with IC engine, transmission and heat store
DE19535027A1 (en) * 1995-09-19 1997-03-27 Schatz Thermo System Gmbh Automobile storage heater operating system for cold starting of engine
JP3555269B2 (en) * 1995-08-31 2004-08-18 株式会社デンソー Vehicle cooling water temperature control system
US5896833A (en) * 1996-08-30 1999-04-27 Denso Corporation Cooling water circuit system and cooling water control valve
DE19818030C2 (en) * 1998-04-22 2003-12-18 Schatz Thermo System Gmbh Method and device for operating a coolant circuit of an internal combustion engine
TW404007B (en) * 1998-12-16 2000-09-01 United Microelectronics Corp The manufacture method of interconnects
US6492222B1 (en) * 1999-12-22 2002-12-10 Texas Instruments Incorporated Method of dry etching PZT capacitor stack to form high-density ferroelectric memory devices
JP2002198443A (en) * 2000-12-26 2002-07-12 Nec Corp Semiconductor device and its fabricating method
TWI264818B (en) * 2001-04-03 2006-10-21 Matsushita Electric Ind Co Ltd Semiconductor device and its production method
US6734477B2 (en) * 2001-08-08 2004-05-11 Agilent Technologies, Inc. Fabricating an embedded ferroelectric memory cell
US6773930B2 (en) * 2001-12-31 2004-08-10 Texas Instruments Incorporated Method of forming an FeRAM capacitor having a bottom electrode diffusion barrier
JP2003332426A (en) * 2002-05-17 2003-11-21 Renesas Technology Corp Method for manufacturing semiconductor device and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011226373A (en) * 2010-04-20 2011-11-10 Nissan Motor Co Ltd Cooling device of vehicle

Also Published As

Publication number Publication date
US20050229873A1 (en) 2005-10-20
JP4098765B2 (en) 2008-06-11
DE10344018B4 (en) 2016-12-22
DE10344018A1 (en) 2005-06-23

Similar Documents

Publication Publication Date Title
JP4098765B2 (en) Temperature control method for internal combustion engine and cooling system for internal combustion engine
KR101420887B1 (en) Vehicle cooling system with directed flows
US9890756B2 (en) Heat storage in engine cooling system
US6520136B2 (en) Warm-up control device for internal-combustion engine and warm-up control method
US7721683B2 (en) Integrated engine thermal management
KR101394051B1 (en) Engine cooling system for vehicle and control method in the same
US7263954B2 (en) Internal combustion engine coolant flow
JP7048437B2 (en) Vehicle heat management system
KR20120078542A (en) Integrated pump, coolant flow control and heat exchange device
JP7248378B2 (en) Method for operating ship cooling system
WO2016028548A1 (en) Thermal management system with heat recovery and method of making and using the same
GB2540401A (en) A cooling assembly
JP5801593B2 (en) Thermal storage heating system for vehicles
JP2008082225A (en) Cooling device for engine
JP2014145326A (en) Internal combustion engine
JP2010169010A (en) Cooling device for internal combustion engine
JP4239368B2 (en) Internal combustion engine having a heat storage device
KR100727165B1 (en) Cooling system by electronic controlling type thermostat and method for controlling the same
JP2014070501A (en) Oil cooling structure
RU2251021C2 (en) Internal combustion engine supercharging air temperature control system
JP2001206049A (en) Cooling device for internal combustion engine
JP2009103048A (en) Engine cooling system
JP2010174785A (en) Cooling device for internal combustion engine
JP2001280133A (en) Cooling water controller
JPH108934A (en) Internal combustion engine, and gas heat pump device using the engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080313

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110321

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130321

Year of fee payment: 5