JP2005090376A - 内燃機関とスターリング機関とを備える動力装置 - Google Patents

内燃機関とスターリング機関とを備える動力装置 Download PDF

Info

Publication number
JP2005090376A
JP2005090376A JP2003325865A JP2003325865A JP2005090376A JP 2005090376 A JP2005090376 A JP 2005090376A JP 2003325865 A JP2003325865 A JP 2003325865A JP 2003325865 A JP2003325865 A JP 2003325865A JP 2005090376 A JP2005090376 A JP 2005090376A
Authority
JP
Japan
Prior art keywords
engine
internal combustion
combustion engine
cooling water
warm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003325865A
Other languages
English (en)
Inventor
Masayoshi Mori
正芳 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003325865A priority Critical patent/JP2005090376A/ja
Publication of JP2005090376A publication Critical patent/JP2005090376A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

【課題】 水冷式内燃機関とスターリング内燃機関とを備える動力装置において、スターリング機関の機関回転速度を制御することにより排気ガスの熱エネルギの回収量を高めて、内燃機関の暖機を一層促進する。
【解決手段】 動力装置は、水冷式内燃機関とスターリング機関と制御装置とを備える。スターリング機関は、内燃機関の排気ガスにより作動ガスを加熱する加熱器と、内燃機関の冷却水により作動ガスを冷却する冷却器とを備える。制御装置は、冷却水温度Tを検出する冷却水温度センサにより内燃機関が暖機状態にあることが検出されたとき(S2)、発電機を駆動するスターリング機関の負荷Lsを減少させる(S6)ことによりスターリング機関の機関回転速度Nsを上昇させる。
【選択図】 図4

Description

本発明は、水冷式内燃機関と、該内燃機関の排気ガスの熱エネルギを利用して駆動されるスターリング機関とを備える動力装置に関する。
内燃機関が発生する熱エネルギを利用してスターリング機関を作動させる装置として、例えば特許文献1に開示されたものが知られている。この装置では、発電機や補機を駆動するスターリング機関の加熱器は、内燃機関の排気系に設けられた排気浄化用の触媒コンバータにより構成されて、その反応熱により作動ガスが加熱される。一方、冷却器には内燃機関の冷却装置を流れる冷却水が供給されて、該冷却水により作動ガスが冷却される。そして、冷却器では、触媒コンバータの反応熱で加熱された作動ガスが有する熱が放熱されるので、冷却器からは、流入時に比べて高温になった冷却水が流出して、内燃機関の冷却装置に戻る。このため、内燃機関の暖機時には、内燃機関を循環する冷却水の温度が、冷却器からの冷却水の流入がない場合に比べて高められて、暖機が促進される。
特開2002−266701号公報
しかしながら、前記従来技術には、内燃機関の暖機時に、特に内燃機関の始動直後など、排気ガスの温度が低く、しかもその流量も少なくて、排気ガスの熱エネルギが小さく、したがって冷却器での作動ガスからの放熱量も少ないときに、冷却器で放出される熱により、暖機を積極的に促進させる思想はない。その理由は、排気浄化性能を向上させるためには、内燃機関の暖機時に低温状態にある触媒コンバータの温度を早期に活性温度まで高める必要があり、加熱器を兼ねる触媒コンバータにおいて作動ガスに多量の熱が伝達されることは好ましくないからである。
本発明は、このような事情に鑑みてなされたものであり、請求項1,2記載の発明は、水冷式内燃機関と該内燃機関の冷却水が冷却器に供給されるスターリング内燃機関とを備える動力装置において、スターリング機関の機関回転速度を制御することにより排気ガスの熱エネルギの回収量を高めて、内燃機関の暖機を一層促進することを目的とする。そして、請求項2記載の発明は、さらに、スターリング機関による負荷機器の駆動と暖機の促進とを同時に達成することを目的とする。
請求項1記載の発明は、冷却回路を備える水冷式内燃機関と、前記冷却回路を循環する冷却水により作動ガスを冷却する冷却器を備えるスターリング機関とを備える動力装置において、前記動力装置は、前記内燃機関の暖機状態を検出する暖機状態検出手段と、前記スターリング機関の機関回転速度を制御する回転速度制御手段と、制御装置とを備え、前記スターリング機関は前記内燃機関の排気ガスにより作動ガスを加熱する加熱器を備え、前記制御装置は、前記暖機状態検出手段により前記暖機状態が検出されたとき、前記回転速度制御手段により前記機関回転速度を上昇させる動力装置である。
これによれば、内燃機関の暖機時に、スターリング機関の機関回転速度が上昇するため、加熱器での作動ガスの、排気ガスからの単位時間当たりの受熱量および冷却器での作動ガスから冷却水への単位時間当たりの放熱量が増加して、冷却水への排気ガスの熱エネルギの回収量が高められ、冷却回路での冷却水温度の上昇が促進される。そして、冷却水温度の上昇促進に伴い、潤滑油の温度上昇が促進されて、潤滑油の粘度が低下することによる摩擦損失の減少が促進され、また冷却水を利用する空調装置の暖房の立上がり特性が向上する。
請求項2記載の発明は、請求項1記載の動力装置において、前記回転速度制御手段は、負荷機器を駆動する前記スターリング機関の負荷を制御する負荷制御手段を備え、前記制御装置は、前記内燃機関が暖機状態にあるとき、前記負荷制御手段により前記負荷を減少させることにより前記機関回転速度を上昇させるものである。
これによれば、内燃機関の暖機時に、排気ガスの熱エネルギが比較的高速回転での運転が可能な程度の大きさであるときには、スターリング機関により負荷機器が駆動されると同時に、スターリング機関の負荷を減少させることにより機関回転速度が上昇して、冷却器での作動ガスからの放熱量が増加する。
請求項1記載の発明によれば、次の効果が奏される。すなわち、スターリング機関は、内燃機関の冷却回路を循環する冷却水により作動ガスを冷却する冷却器と、内燃機関の排気ガスにより作動ガスを加熱する加熱器とを備え、制御装置は、内燃機関の暖機時に、スターリング機関の機関回転速度を上昇させることにより、冷却器での作動ガスから冷却水への放熱量が増加して、冷却回路での冷却水温度の上昇が促進されるので、内燃機関の暖機が一層促進され、それに伴って、潤滑油の粘度による摩擦損失の減少が促進されて燃費が改善され、しかも暖房の立上がり特性が向上して、暖房性能が向上する。
請求項2記載の発明によれば、引用された請求項記載の発明の効果に加えて、次の効果が奏される。すなわち、制御装置は、負荷機器を駆動するスターリング機関の負荷を減少させて機関回転速度を上昇させることにより、負荷機器の駆動と、冷却器での作動ガスからの放熱量の増加による内燃機関の暖機促進を同時に達成できる。
以下、本発明の実施形態を図1ないし図4を参照して説明する。
図1を参照すると、本発明が適用された動力装置は、水冷式の多気筒内燃機関1と、電動機および発電機の機能を有する電動発電機3と、電動発電機3を駆動する一方で電動発電機3により駆動され得るスターリング機関4と、バッテリ5と、制御装置(以下、「ECU」という。)6を有する制御システムと、を備える。そして、前記動力装置は車両に搭載されて、内燃機関1は駆動対象である前記車両を駆動する。ここで、電動発電機3は、スターリング機関4により駆動される負荷機器であると同時にスターリング機関4を駆動する駆動手段でもある。
内燃機関1は、ピストンが往復動可能に嵌合する複数のシリンダが形成されたシリンダブロックおよびシリンダブロックに結合されるシリンダヘッドを備える機関本体2と、燃料噴射弁などの燃料供給装置から供給された燃料が混合されて混合気を形成する吸入空気を燃焼室に導く吸気装置と、燃料が燃焼室内で燃焼して発生する燃焼ガスを排気ガスとして内燃機関1の外部に導く排気管7を備える排気装置と、機関本体2を冷却する冷却水が循環する冷却回路8とを備える。
燃焼ガスの圧力により駆動される前記ピストンはクランク軸(図示されず)を回転駆動し、該クランク軸の動力が、変速機を含む動力伝達装置を介して前記車両の駆動輪に伝達される。また、排気ガスは、排気管7を通り、その途中でスターリング機関4の作動ガスを加熱する。具体的には、排気管7には、排気ガスの流れの下流に向かって、排気浄化装置である触媒装置9、スターリング機関4の加熱器47およびマフラ10が順次設けられ、排気ガスは、触媒装置9により無害化された後に、加熱器47を通過し、さらにマフラ10を経て大気中に放出される。
電動発電機3は、その回転軸がスターリング機関4の出力軸であるクランク軸44と連結されることにより、スターリング機関4により回転駆動されて発電すると共に、スターリング機関4の始動時に、バッテリ5から供給される電力によりクランク軸44を回転駆動する。
電動発電機3で発生した電力により充電されるバッテリ5は、内燃機関1および前記車両の全ての電装品に給電可能である。そして、電圧調整器やインバータなどを備える制御器11は、ECU6により制御されて、電動発電機3で発生した電力によるバッテリ5の充電、そしてバッテリ5から電動発電機3および前記電装品への給電を制御する。
また、電動発電機3には、電動発電機3が発電機として機能するときのスターリング機関4の負荷Lsを制御する負荷制御手段としての界磁調整器12が設けられており、この界磁調整器12により界磁電流が調整されて電動発電機3の発電時の負荷、すなわちスターリング機関4の負荷Lsが制御される。
冷却回路8は、内燃機関1の前記クランク軸の動力または電動機により駆動される冷却水ポンプ13と、前記シリンダブロックおよび前記シリンダヘッドに形成される冷却水ジャケット14と、ラジエータ15と、内燃機関1が暖機状態にあるとき(すなわち、暖機時)に冷却水ジャケット14の冷却水がラジエータ15を流通することなく、バイパス通路17を通って循環するための回路を形成するサーモスタット16とを備える。
そして、サーモスタット16が閉弁状態にある内燃機関1の暖機時には、冷却水ポンプ13の吐出路に連通する吐出側通路18からの冷却水は、冷却水ジャケット14に流入して前記シリンダブロックおよび前記シリンダヘッド等を冷却した後、冷却水ジャケット14に連通するバイパス通路17を経て、冷却水ポンプ13の吸入路に連通する吸入側通路19に流入し、冷却水ポンプ13により再度圧送される。それゆえ、暖機時には、冷却水ポンプ13、吐出側通路18、冷却水ジャケット14、バイパス通路17および吸入側通路19により構成される暖機時冷却回路が形成される。
サーモスタット16が開弁状態にある内燃機関1の暖機完了後(以下、「暖機後」という。)には、バイパス通路17が閉じられて、冷却水ポンプ13から吐出されて吐出側通路18を流通する冷却水は、冷却水ジャケット14に流入して前記シリンダブロックおよび前記シリンダヘッド等を冷却した後、冷却水ジャケット14から出口通路20を経てラジエータ15に流入する。そして、ラジエータ15で放熱して低温になった冷却水は、入口通路21を流通し、開弁しているサーモスタット16を経て、吸入側通路19に流入して、冷却水ポンプ13により再度圧送される。それゆえ、内燃機関1の暖機後には、主として、冷却水ポンプ13、吐出側通路18、冷却水ジャケット14、ラジエータ15および吸入側通路19により構成される暖機後冷却回路が形成される。
また、冷却回路8を構成する吐出側通路18からは、車室用空調装置のヒータコア22に冷却水を導く暖房回路23と、内燃機関1の潤滑系統に設けられたオイルクーラ24に冷却水を導くオイルクーラ回路25とがそれぞれ分岐して設けられる。オイルポンプから吐出されてオイル流入通路26を経て流入した潤滑油が、冷却水と熱交換をした後にオイル流出通路27を経て流出するオイルクーラ24は、内燃機関1の暖機時などで潤滑油が低温状態にあるときは、潤滑油を昇温させるオイルウォーマとして機能する。
暖房回路23は、冷却水ジャケット14から熱交換後の昇温した冷却水をヒータコア22に導く供給通路23aと、ヒータコア22で放熱した後の冷却水を吸入側通路19に導く戻り通路23bと、供給通路23aに設けられてヒータコア22への冷却水の供給量を制御する制御弁23cとを備える。また、オイルクーラ回路25は、冷却水ジャケット14からの昇温した冷却水をオイルクーラ24に導く供給通路25aと、オイルクーラ24で熱交換した後の冷却水を吸入側通路19に、この実施形態では戻り通路23bを介して導く戻り通路25bとを備える。
スターリング機関4は、シリンダ41と、シリンダ41と一体化されてクランク軸44が収容されるクランク室43を形成するクランクケース42と、シリンダ41内に同軸に配置されて往復動可能に嵌合されたディスプレーサピストン45およびパワーピストン46と、ディスプレーサピストン45およびパワーピストン46に連結されて、パワーピストン46により回転駆動されるクランク軸44と、加熱器47と、再生器48と、冷却器49とを備える。
シリンダ41内で、シリンダ41とディスプレーサピストン45との間に形成される可変容積空間である高温空間50と、ディスプレーサピストン45とパワーピストン46との間に形成される可変容積空間である低温空間51とは、加熱器47、再生器48および冷却器49にそれぞれ形成された流路を介して常時連通状態にある。そして、高温空間50、低温空間51および前記流路には、作動ガスとしての高圧のヘリウムガスが封入されている。
ディスプレーサピストン45およびパワーピストン46は、充填ガスである高圧のヘリウムガスが封入されているクランク室43内において、往復運動を回転運動に変換する運動変換機構、例えばスコッチヨーク機構を介してクランク軸44に連結される。
高温熱源としての、内燃機関1の排気ガスが、排気管7を通じて供給される加熱器47において、高温空間50と再生器48とを連通させる前記流路を形成する加熱管が排気ガスにより加熱されて、作動ガスが加熱される。
一方、低温熱源としての、冷却回路8を循環する冷却水が、冷却回路8から分岐した供給通路52aを経て供給される冷却器49において、低温空間51と再生器48とを連通させる前記流路を形成する冷却管が冷却水により冷却されて、作動ガスが冷却される。供給通路52aは、好ましくは、冷却水ジャケット14に流入する前のラジエータ15で放熱して低温となった冷却水が冷却器49に供給されるように、吐出側通路18から分岐する。
また、作動ガスを冷却した後に、冷却器49から流出する冷却水を冷却回路8に戻すための戻り通路52bは、この実施形態では、戻り通路23bを介して冷却回路8に連通する。このため、内燃機関1の暖機時および暖機後に、戻り通路52bの冷却水は、戻り通路23bを経て吸入側通路19に流入することで冷却回路8に戻る。このように、供給通路52aおよび戻り通路52bを備える作動ガス冷却用回路52により、冷却回路8の冷却水の一部が冷却器49を流通する。
ディスプレーサピストン45は、パワーピストン46に対してほぼ90°進んだ位相で往復運動し、ディスプレーサピストン45およびパワーピストン46による高温空間50および低温空間51の容積変化に応じて、作動ガスが、加熱器47、再生器48および冷却器49を通って高温空間50と低温空間51との間で流動する。そして、高温空間50の容積が大きくなるとき、両空間50,51内での作動ガスの圧力が増加し、この高圧となった作動ガスの圧力によりパワーピストン46が駆動されて、クランク軸44が回転駆動され、クランク軸44が電動発電機3を駆動する。
また、スターリング機関4の冷却器49から戻り通路52bを流通して冷却回路8に戻る冷却水は、排気ガスで加熱された作動ガスを冷却した後であることから、供給通路52aの冷却水よりも温度が高く、しかも内燃機関1の暖機時には、昇温した冷却水が前記暖機時冷却回路を循環することになるので、内燃機関1の暖機が促進され、さらに前記車室用空調装置による暖房時には、暖房の立上がりが良好になり、またオイルクーラ24での潤滑油の温度も上昇し、潤滑油の粘度が低下することにより、摩擦損失が減少して、燃費が改善される。
ところで、スターリング機関4の軸出力特性は、内燃機関1の運転状態に応じて変化し、実質的に、冷却水に比べて大幅に温度が変化する排気ガスの熱エネルギに支配される。そして、図2に示されるように、一般に、熱エネルギが大きくなるほど、スターリング機関4の軸出力および最大軸出力は大きくなる特性を有すると共に、その運転可能な回転速度領域も拡大する。なお、図2において、排気ガスの熱エネルギは、軸出力の特性C1,特性C2,特性C3,特性C4,特性C5の順に大きくなる。
また、最大軸出力が得られるときのスターリング機関4の機関回転速度Ns(すなわち、最適回転速度Nsp)も、熱エネルギが大きくなるほど大きくなる。なお、図2において、機関回転速度Ns1,Ns2,Ns3,Ns4,Ns5は、各特性C1〜C5での最適回転速度Nspを示している。そこで、内燃機関1の暖機後は、排気ガスの熱エネルギを最大限回収するためには、運転状態に応じて排気ガスの熱エネルギが変化するとき、その熱エネルギに応じて最大軸出力で電動発電機3が駆動されるように、機関回転速度Nsを最適回転速度Nspに制御することが好ましい。
また、軸出力特性C、受熱量特性Qiおよび放熱量特性Qoを示す図3参照すると、スターリング機関4は、耐久性や安全性の確保の観点から設定される許容回転速度に対して、ある程度のマージンを持って該許容回転速度よりも小さく設定された最大回転速度Nsmax 以下で運転される。そして、図3に示されるように、排気ガスの熱エネルギ状態(ここでは、熱エネルギが比較的大きいときの例が示されている。)が一定であるときの軸出力特性Cにおいて、最大軸出力は、運転可能な回転速度領域の中央付近よりもやや高速側の機関回転速度Ns(前記最適回転速度Nsp)で得られるのに対して、加熱器47において作動ガスが受け取る受熱量および冷却器49において作動ガスから冷却水に放出する放熱量は、機関回転速度Nsが大きくなるほど大きくなる。
このことから、機関回転速度Nsを制御することにより、冷却器49での冷却水への放熱量を制御できることが判る。そこで、この動力装置においては、内燃機関1の暖機時に、スターリング機関4の機関回転速度Nsを上昇させることにより、内燃機関1の暖機の一層促進を図ると共に、それに伴って、潤滑油の昇温を促進して摩擦損失の低減による燃費の改善を図り、また暖房の立上がり特性の向上を図っている。
以下、図1,図4を参照して、ECU6によるスターリング機関4の回転速度制御を中心に説明する。
図1を参照すると、ECU6は、内燃機関1が暖機状態にあるときには、機関回転速度Nsを上昇させる回転速度制御を実行し、暖機後は、機関回転速度Nsを、最大軸出力が得られる最適回転速度Nspに設定する回転速度制御を実行する。そのため、前記制御システムは、ECU6のほかに、スターリング機関4の機関回転速度Nsをクランク軸44の回転に基づいて検出する回転速度検出手段61、界磁電流を検出することによりスターリング機関4の負荷Lsを検出する負荷検出手段62、および加熱器47の入口での排気ガスの流量および温度、冷却器49の入口での冷却水の温度などの状態量検出手段、そして内燃機関1の運転状態検出手段を備える。
前記運転状態検出手段は、内燃機関1が暖機状態にあることを検出する暖機状態検出手段としての機関温度検出手段でもある冷却水温度センサ63、内燃機関1の機関回転速度を検出する回転速度検出手段、吸入空気量を検出するエアフローセンサ、外気温度を検出する外気温度センサなどから構成される。
そして、ECU6は、入出力インターフェース、中央演算処理装置(CPU)、各種の制御プログラムや各種のマップが記憶されたROMおよび各種のデータが一時的に記憶されるRAMなどの記憶装置を備えるマイクロコンピュータで構成されている。
以下、図4のフローチャートを参照して、内燃機関1の暖機時に、ECU6により実行される負荷Lsの制御による暖機時の回転速度制御ルーチンを説明する。なお、一般には、このルーチンが実行されているとき、時間の経過と共に、排気ガスの熱エネルギが次第に増加して、スターリング機関4の運転可能な回転速度領域が拡大する。
ステップS1では、停止状態にあった内燃機関1が始動して、内燃機関1が運転中であるか否かが、例えば内燃機関1の機関回転速度に基づいて判断され、運転中でないとき、このルーチンは終了する。ステップS1での判断が肯定されると、ステップS2では、冷却水温度センサ63により検出された冷却水ジャケット14の冷却水温度Tが読み込まれた後、ステップS3に進んで、冷却水温度Tが所定温度Tc以下か否かが判断される。この所定温度Tcは、内燃機関1が暖機状態にあるか否かを区別する温度であり、サーモスタット16が開弁する温度に対応する温度に設定される。
ステップS3の判断が肯定されて、冷却水温度Tが所定温度Tc以下であり、暖機時であると判断されると、ステップS4で、回転速度検出手段61により検出されたスターリング機関4の機関回転速度Nsが読み込まれる。そして、ステップS5に進んで、機関回転速度Nsが最大回転速度Nsmax 以下であるか否かが判断され、その判断が肯定されるとき、ステップS6に進んで、界磁調整器12に供給される界磁電流量を減少させることにより、界磁調整器12が、スターリング機関4の負荷Lsが所定量ΔL1だけ減少するように制御される。この結果、負荷Lsの減少により、機関回転速度Nsが上昇して、冷却器49での冷却水への放熱量が増加し、前記暖機時冷却回路を循環する冷却水の温度が上昇する。それゆえ、界磁調整器12は、機関回転速度Nsを制御する回転速度制御手段でもある。
また、ステップS5での判断が否定されて、機関回転速度Nsが最大回転速度Nsmax を越えるときは、ステップS7に進んで、機関回転速度Nsを最大回転速度Nsmax 以下にするために、界磁調整器12が、負荷Lsが所定量ΔL2だけ増加するように制御される。ここで、所定量ΔL1と所定量ΔL2とは、異なる値または同じ値であってもよいが、スターリング機関4の耐久性および安全性を優先して、所定量ΔL2を所定量ΔL1よりも大きくすることが好ましい。
その後、ステップS6,S7の処理が実行された後、ステップS2,S3の処理が実行され、ステップS3の判断が否定されて、内燃機関1の暖機が完了するまで、ステップS2〜S7の処理が繰り返される。そして、暖機の初期段階では、ステップS4〜S6の処理から構成される急速暖機手段により、最大回転速度Nsmax 以下の運転領域において、機関回転速度Nsが最大回転速度Nsmax または最大回転速度Nsmax 付近の値に保持されるので、冷却器49での冷却水への放熱量を増加が促進される。
そして、ステップS3での判断が否定されたとき、ステップS8に進んで、排気ガスの熱エネルギ状態に応じて、スターリング機関4の機関回転速度Nsを、最大軸出力が得られる最適回転速度Nspにするための回転速度制御に移行して、このルーチンは終了する。
次に、前述のように構成された実施形態の作用および効果について説明する。
内燃機関1の暖機時には、冷却回路8内の冷却水は、バイパス通路17を流通する前記暖機時冷却回路を循環する。
このとき、スターリング機関4は、冷却回路8(暖機時は、前記暖機時冷却回路)を循環する冷却水により作動ガスを冷却する冷却器49と、内燃機関1の排気ガスにより作動ガスを加熱する加熱器47とを備え、ECU6は、冷却水温度センサ63により内燃機関1が暖機状態にあることが検出されたとき、機関回転速度Nsを上昇させることにより、加熱器47での作動ガスの、排気ガスからの単位時間当たりの受熱量および冷却器49での作動ガスから冷却水への単位時間当たりの放熱量が増加して、冷却水への排気ガスの熱エネルギの回収量が高められ、冷却回路8での冷却水温度Tの上昇が促進されるので、内燃機関1の暖機が一層促進される。
そして、冷却水温度Tの上昇促進に伴い、暖機時には冷却水温度Tよりも低温状態にある潤滑油が、オイルクーラ24における冷却水との熱交換により加熱されて、その温度上昇が促進され、潤滑油の粘度が低下することによって、摩擦損失の減少が促進されて燃費が改善され、また冷却水を利用する空調装置の暖房の立上がり特性が向上するので、暖房性能が向上する。
さらに、内燃機関1の暖機時に、最大回転速度Nsmax 以下の機関回転速度Nsでの運転領域で、ECU6は、電動発電機3を駆動するスターリング機関4の負荷Lsを減少させて機関回転速度Nsを上昇させることにより、スターリング機関4により電動発電機3が駆動されると同時に、負荷Lsが減少することで機関回転速度Nsが上昇して、冷却器49での作動ガスからの放熱量が増加するので、電動発電機3の駆動と、冷却器49での作動ガスからの放熱量の増加による内燃機関1の暖機促進を同時に達成できる。
内燃機関1の暖機の初期段階では、前記急速暖機手段が、最大回転速度Nsmax 以下の運転領域において、機関回転速度Nsを最大回転速度Nsmax または最大回転速度Nsmax 付近の値に保持することにより、従来に比べて、冷却器49での作動ガスからの放熱量が特に増加して、内燃機関1の暖機が急速に進行するので、暖機の初期段階での潤滑油の昇温が急速に進行して、摩擦損失減少により、燃費が一層改善され、また暖房の立上がり特性が一層向上する。
また、暖機後は、スターリング機関4は、最大軸出力が得られる最適回転速度Nspで運転されるように、界磁調整器12を制御することにより、スターリング機関4の負荷Lsを制御して、機関回転速度Nsが制御される。そして、この回転速度制御により、排気ガスの熱エネルギが効率よく発電量として回収される。なお、暖機後は、冷却器49には、吐出側通路18の、ラジエータ15で放熱した後の低温の冷却水が供給通路52aを経て導かれるので、軸出力が増加する。
以下、前述した実施形態の一部の構成を変更した実施形態について、変更した構成に関して説明する。
前記実施形態では、暖機状態検出手段は、冷却水温度センサ63から構成されたが、内燃機関1の潤滑油の温度を検出する油温センサであってもよい。また、発電機は、電動発電機であったが、電動機機能を持たない発電機であってもよい。その場合、駆動手段としての電動機が、発電機とは別個に設けられる。負荷機器は、発電機以外のポンプなどの前記車両または内燃機関1に設けられる補機であってもよい。
内燃機関1は、前記実施形態では車両に使用されるものであったが、鉛直方向を指向するクランク軸を備える船外機等の船舶推進装置に使用されるものであってもよい。また、内燃機関は、レシプロ式内燃機関以外の内燃機関であってもよい。
本発明の実施形態を示し、内燃機関およびスターリング機関を備える動力装置の構成を説明するための模式図である。 図1のスターリング機関の排気ガスの異なる熱エネルギ状態での軸出力特性を示すグラフである。 図1のスターリング機関の排気ガスの熱エネルギが最大に近い状態での、軸出力特性、受熱量特性および放熱量特性を示すグラフである。 図2のスターリング機関における暖機時の回転速度制御ルーチンを説明するためのフローチャートである。
符号の説明
1…内燃機関、2…機関本体、3…電動発電機、4…スターリング機関、5…バッテリ、6…ECU、7…排気管、8…冷却回路、9…触媒装置、10…マフラ、11…制御器、12…界磁調整器、13…冷却水ポンプ、14…冷却水ジャケット、15…ラジエータ、16…サーモスタット、17…バイパス通路、18…吐出側通路、19…吸入側通路、20…出口通路、21…入口通路、22…ヒータコア、23…暖房回路、24…オイルクーラ、25…オイルクーラ回路、26…オイル流入通路、27…オイル流出通路、41…シリンダ、42…クランクケース、43…クランク室、44…クランク軸、45…ディスプレーサピストン、46…パワーピストン、47…加熱器、48…再生器、49…冷却器、50…高温空間、51…低温空間、52…作動ガス冷却用回路、61…回転速度検出手段、62…負荷検出手段、63…冷却水温度センサ、
C,C1〜C5…特性、Ns…機関回転速度、Nsp…最適回転速度、Nsmax …最大回転速度、Ls…負荷、Qi…受熱量特性、Qo…放熱量特性、T…冷却水温度、Tc…所定温度。

Claims (2)

  1. 冷却回路を備える水冷式内燃機関と、前記冷却回路を循環する冷却水により作動ガスを冷却する冷却器を備えるスターリング機関とを備える動力装置において、
    前記動力装置は、前記内燃機関の暖機状態を検出する暖機状態検出手段と、前記スターリング機関の機関回転速度を制御する回転速度制御手段と、制御装置とを備え、前記スターリング機関は前記内燃機関の排気ガスにより作動ガスを加熱する加熱器を備え、前記制御装置は、前記暖機状態検出手段により前記暖機状態が検出されたとき、前記回転速度制御手段により前記機関回転速度を上昇させることを特徴とする動力装置。
  2. 前記回転速度制御手段は、負荷機器を駆動する前記スターリング機関の負荷を制御する負荷制御手段を備え、前記制御装置は、前記内燃機関が暖機状態にあるとき、前記負荷制御手段により前記負荷を減少させることにより前記機関回転速度を上昇させることを特徴とする請求項1記載の動力装置。
JP2003325865A 2003-09-18 2003-09-18 内燃機関とスターリング機関とを備える動力装置 Pending JP2005090376A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003325865A JP2005090376A (ja) 2003-09-18 2003-09-18 内燃機関とスターリング機関とを備える動力装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003325865A JP2005090376A (ja) 2003-09-18 2003-09-18 内燃機関とスターリング機関とを備える動力装置

Publications (1)

Publication Number Publication Date
JP2005090376A true JP2005090376A (ja) 2005-04-07

Family

ID=34456198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003325865A Pending JP2005090376A (ja) 2003-09-18 2003-09-18 内燃機関とスターリング機関とを備える動力装置

Country Status (1)

Country Link
JP (1) JP2005090376A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7730723B2 (en) 2006-03-30 2010-06-08 Toyota Jidosha Kabushiki Kaisha Exhaust heat recovery apparatus
US7895835B2 (en) 2006-03-09 2011-03-01 Toyota Jidosha Kabushiki Kaisha Exhaust heat recovery apparatus
JP2011106469A (ja) * 2011-03-03 2011-06-02 Chugoku Electric Power Co Inc:The 燃料供給装置
CN102345484A (zh) * 2010-08-02 2012-02-08 李昌福 发电消音器
WO2012108030A1 (ja) * 2011-02-10 2012-08-16 トヨタ自動車株式会社 冷却システム
US8250869B2 (en) 2006-03-01 2012-08-28 Toyota Jidosha Kabushiki Kaisha Exhaust heat recovery apparatus
WO2012137287A1 (ja) 2011-04-04 2012-10-11 トヨタ自動車株式会社 スターリングエンジンの出力制御装置
JP2016003638A (ja) * 2014-06-19 2016-01-12 日野自動車株式会社 廃熱回収装置
CN108167086A (zh) * 2017-11-21 2018-06-15 上海齐耀动力技术有限公司 一种高压富氧燃烧斯特林发电系统及其控制方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8250869B2 (en) 2006-03-01 2012-08-28 Toyota Jidosha Kabushiki Kaisha Exhaust heat recovery apparatus
US7895835B2 (en) 2006-03-09 2011-03-01 Toyota Jidosha Kabushiki Kaisha Exhaust heat recovery apparatus
US7730723B2 (en) 2006-03-30 2010-06-08 Toyota Jidosha Kabushiki Kaisha Exhaust heat recovery apparatus
CN102345484A (zh) * 2010-08-02 2012-02-08 李昌福 发电消音器
DE112011104871T5 (de) 2011-02-10 2013-12-24 Toyota Jidosha Kabushiki Kaisha Kühlsystem
WO2012108030A1 (ja) * 2011-02-10 2012-08-16 トヨタ自動車株式会社 冷却システム
CN102971518A (zh) * 2011-02-10 2013-03-13 丰田自动车株式会社 冷却系统
JP5333679B2 (ja) * 2011-02-10 2013-11-06 トヨタ自動車株式会社 冷却システム
US8978597B2 (en) 2011-02-10 2015-03-17 Toyota Jidosha Kabushiki Kaisha Cooling system
DE112011104871B4 (de) * 2011-02-10 2016-08-25 Toyota Jidosha Kabushiki Kaisha Kühlsystem
JP2011106469A (ja) * 2011-03-03 2011-06-02 Chugoku Electric Power Co Inc:The 燃料供給装置
WO2012137287A1 (ja) 2011-04-04 2012-10-11 トヨタ自動車株式会社 スターリングエンジンの出力制御装置
US9010118B2 (en) 2011-04-04 2015-04-21 Toyota Jidosha Kabushiki Kaisha Output controller for stirling engine
JP2016003638A (ja) * 2014-06-19 2016-01-12 日野自動車株式会社 廃熱回収装置
CN108167086A (zh) * 2017-11-21 2018-06-15 上海齐耀动力技术有限公司 一种高压富氧燃烧斯特林发电系统及其控制方法

Similar Documents

Publication Publication Date Title
JP4248303B2 (ja) 燃焼機関およびスターリング機関を備える動力装置
US8950184B2 (en) Device for utilizing waste heat
JP4277046B2 (ja) 内燃機関の冷却装置
CN109057937A (zh) 一种冷却液循环系统
WO2013031287A1 (ja) 廃熱利用装置
JP5333659B2 (ja) 廃熱回生システム
WO2014010159A1 (ja) 車両用冷却システム
JP2005113719A (ja) 内燃機関とスターリング機関とを備える動力装置
CN102297009A (zh) 一种混合动力车冷却系统
RU2518764C1 (ru) Устройство и способ для нагрева теплоносителя, циркулирующего в системе охлаждения
JP2005090376A (ja) 内燃機関とスターリング機関とを備える動力装置
JP2004332596A (ja) 熱電発電装置
JP5230702B2 (ja) 水冷式内燃機関の冷却装置
JP2013160058A (ja) 内燃機関温度調整システム
RU155350U1 (ru) Двигатель внутреннего сгорания с жидкостным охлаждением со вторичным контуром
US20090217667A1 (en) External combustion engine
CN106870098A (zh) 一种发动机冷却系统
JP2006250037A (ja) エンジンの冷却装置
JP5516433B2 (ja) ランキンサイクルシステム装置
US20130019595A1 (en) Control apparatus and control method for stirling engine
JP2005113810A (ja) スターリング機関
JPS6380050A (ja) 駆動装置
CN210370885U (zh) 车用发动机冷却系统及车用发动机
CN218542388U (zh) 一种汽车发动机的冷却系统、发动机及汽车
KR102644820B1 (ko) 가스엔진 발전 시스템