JP2005089794A - Method for effectively utilizing iron-making dust as resource - Google Patents

Method for effectively utilizing iron-making dust as resource Download PDF

Info

Publication number
JP2005089794A
JP2005089794A JP2003322436A JP2003322436A JP2005089794A JP 2005089794 A JP2005089794 A JP 2005089794A JP 2003322436 A JP2003322436 A JP 2003322436A JP 2003322436 A JP2003322436 A JP 2003322436A JP 2005089794 A JP2005089794 A JP 2005089794A
Authority
JP
Japan
Prior art keywords
dust
iron
raw material
making
steelmaking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003322436A
Other languages
Japanese (ja)
Inventor
Atsushi Eba
篤 江場
Kouichirou Shibata
耕一朗 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Nippon Steel Corp
Original Assignee
Kobe Steel Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Nippon Steel Corp filed Critical Kobe Steel Ltd
Priority to JP2003322436A priority Critical patent/JP2005089794A/en
Publication of JP2005089794A publication Critical patent/JP2005089794A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture Of Iron (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for effectively utilizing iron-making dust as a resource with which the iron-making dust generated from the iron-making process of reducing, melting, refining, etc., are fully regeneration-utilized in the iron-making process, and zero-emission of the iron-making dust is realized and an infrastructure scale needed in a plurality of iron-works can be minimized. <P>SOLUTION: In the method for effectively utilizing the iron-making dust as the resource generated in the iron-making process, such as the reducing, melting, refining, this method is characterized in that the iron-making dust containing ≥0.1% volatile metal, such as Zn, is used as a desiliconizing agent or dephosphorizing agent, and collected dust generated at the desiliconizing time or dephosphorizing time and excessive dust which can not be used as the desiliconizing agent and dephosphorizing agent, is kneaded together with a carbonaceous material for reduction to form an aggregate, and reduced iron obtained by reducing this aggregate with an exclusive-use reducing furnace, is used as a steelmaking raw material, and the collection dust generated in the exclusive-use reducing furnace, is used as a non-ferrous raw material. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、主原料中スクラップ配合比を1%以上とする製鋼法(電気炉製鋼法、冷鉄源溶解法、Cupla溶銑・転炉製鋼法、高炉・転炉製鋼法 等) において、還元・溶解・精練等の製鉄プロセスより発生する製鉄ダストを資源化して有効利用する方法に関する。   The present invention is a steelmaking method (electric furnace steelmaking method, cold iron source melting method, Cupla hot metal / converter steelmaking method, blast furnace / converter steelmaking method, etc.) in which the scrap mixing ratio in the main raw material is 1% or more. The present invention relates to a method for effectively utilizing iron-making dust generated from iron-making processes such as melting and scouring.

製鉄プロセスで発生するZn含有製鉄ダストの利用法としては、例えば、(1) 特公平2-8002号公報に開示されているように、Zn含有ダストを溶銑中にランスを用いて吹き込み、酸化Znを溶銑中のC、Siにより還元してZn蒸気として分離させ、これを集塵機により捕集してZnを濃縮回収する方法や、 (2) 特開平9-25504号公報や特開平8-333612号公報に開示されているように、Zn含有ダストを溶銑脱P剤として添加し、溶銑中Pを除去するとともにZnを濃縮回収する方法 、 (3) 特開平11-92812号公報に開示されているように、Zn含有ダストを溶銑脱Siあるいは転炉へ繰り返し使用することによりZnを濃縮回収する方法、(4) 特開2000-45012号公報に開示されているように、溶解専用転炉および精練専用転炉で発生するダストに炭材を内装させて塊成化し、予備還元炉で予備還元後再使用するダスト利用方法等が提案されている。   As a method of utilizing Zn-containing iron-making dust generated in the iron-making process, for example, as disclosed in (1) Japanese Patent Publication No. 2-8002, Zn-containing dust is blown into a hot metal using a lance, and Zn oxide is oxidized. (2) Japanese Patent Laid-Open No. 9-25504 and Japanese Patent Laid-Open No. 8-333612, in which hot metal is reduced with Zn and C in the hot metal to separate Zn vapor and collected by a dust collector. As disclosed in Japanese Laid-Open Patent Publication No. 11-92812, a method of adding Zn-containing dust as a hot metal dephosphorizing agent to remove P in hot metal and concentrating and recovering Zn is disclosed. Thus, a method of concentrating and recovering Zn by repeatedly using Zn-containing dust in hot metal de-Si or converter, (4) As disclosed in JP 2000-45012 A, a melting-dedicated converter and scouring Carbonized material is agglomerated and agglomerated in dust generated in a dedicated converter, and reserved in a preliminary reduction furnace. A dust utilization method that is reused after reduction has been proposed.

しかし、(1)の方法は、Zn濃縮の基本的な反応を開示したものであり、これを実際の製鉄プロセスに適用するための具体的な検討はなされていなかった。
また、(2)の方法は、Zn酸化物と溶銑中のC、SiおよびPとが反応するに多大な熱を損失させるため、処理前の溶銑中の顕熱・潜熱が許容されるまでのZn含有製鉄ダスト処理法に過ぎず、製鉄工程で発生する全ダストを再生利用することはできなかった。
また、(3)の方法は、Zn含有ダストを溶銑脱Siあるいは転炉へ繰り返し使用することでZn含有ダストを有価物のレベルにまでZn濃縮回収する方法としているが、Zn含有ダストの繰り返し使用回数を管理し、繰り返し次数毎に分別回収することは非現実的であり、実施するのは困難であった。
また、(4)の方法は、製鉄工程で発生する全ダストを同方法にて利用するには、予備還元炉の処理能力を必要以上に肥大な物とさせ、 経済性なる点で万全な対策とは言い難かった。
特公平2-8002号公報 特開平9-25504号公報 特開平8-333612号公報 特開平11-92812号公報 特開2000-45012号公報
However, the method (1) discloses the basic reaction of Zn enrichment, and no specific study has been made to apply this to an actual iron making process.
In addition, since the method (2) loses a great deal of heat when the Zn oxide reacts with C, Si and P in the hot metal, sensible heat and latent heat in the hot metal before the treatment are allowed. It was only a Zn-containing iron-making dust treatment method, and all the dust generated in the iron-making process could not be recycled.
The method of (3) is a method of concentrating and recovering Zn-containing dust to the level of valuable materials by repeatedly using Zn-containing dust to hot metal de-Si or converters, but repeatedly using Zn-containing dust. It has been unrealistic to manage the number of times and separate and collect for each repeated order, and it was difficult to implement.
In addition, the method (4) uses the pre-reduction furnace with a larger capacity than necessary in order to use all the dust generated in the steelmaking process. It was hard to say.
Japanese Patent Publication No. 2-8002 Japanese Patent Laid-Open No. 9-25504 JP-A-8-333612 Japanese Patent Laid-Open No. 11-92812 JP 2000-45012 A

本発明は、前述のような従来技術の問題点を解決し、還元・溶解・精練等の製鉄プロセスより発生する製鉄ダストを製鉄工程内で完全に再生利用し、製鉄ダストのゼロ・エミッション化を実現する製鉄ダストの資源化有効利用方法を提供することを課題とする。
また、複数の製鉄所間でZn含有率に応じた最適なダスト処理法を実施することで必要とするインフラ規模をミニマイズできる製鉄ダストの資源化有効利用方法を提供することを課題とする。
The present invention solves the problems of the prior art as described above, and completely recycles the steelmaking dust generated from the steelmaking process such as reduction, dissolution, and scouring within the ironmaking process, thereby reducing zero emission of the steelmaking dust. It is an object of the present invention to provide an effective utilization method of steelmaking dust resources.
It is another object of the present invention to provide an effective utilization method of steelmaking dust resources that can minimize the required infrastructure scale by implementing an optimum dust treatment method according to the Zn content ratio among a plurality of steelworks.

本発明は、前記課題を解決するために鋭意検討の結果なされたものであり、製鉄プロセスにおいて発生するダストの特性に応じた最適な処理方法を選択することにより、製鉄ダストを製鉄工程内で完全に再生利用し、製鉄ダストのゼロ・エミッション化を実現でき、しかも、複数の製鉄所で必要とするインフラ規模をミニマイズできる製鉄ダストの資源化有効利用方法を提供するものであり、その要旨とするところは特許請求の範囲に記載した通りの下記内容である。
(1)還元・溶解・精練等の製鉄プロセスにて発生する製鉄ダストの資源化有効利用方法であって、Zn等の揮発性金属を0.1%以上含む製鉄ダストを溶銑の脱Siおよび脱P剤として使用し、前記脱Siおよび脱P時に発生する集塵ダストと、前記脱Siおよび脱P剤として使用できない余剰ダストとを還元用炭剤とともに混錬して塊成物とし、該塊成物を専用還元炉にて還元した還元鉄を製鋼原料として使用し、前記専用還元炉にて発生する集塵ダストを非鉄原料として使用することを特徴とする製鉄ダストの資源化有効利用方法。
(2)複数の製鉄所における還元・溶解・精練等の製鉄プロセスにて発生する製鉄ダストの資源化有効利用方法であって、特定の製鉄所にZn等の揮発性金属の混入源となるスクラップの使用規制を施したうえで、Zn等の揮発性金属の含有率が0.1%未満なる製鉄ダストを焼結および高炉原料として使用し、Zn等の揮発性金属を0.1%以上含む製鉄ダストを溶銑の脱Siおよび脱P剤として使用し、前記脱Siおよび脱P時に発生する集塵ダストと、焼結および高炉原料または脱Siおよび脱P剤として使用できない余剰ダストとを還元用炭剤ととともに混錬して塊成物とし、該塊成物を専用還元炉にて還元した還元鉄を製鋼原料として使用し、前記専用還元炉にて発生する集塵ダストを非鉄原料として使用することを特徴とする製鉄ダストの資源化有効利用方法。
(3)Zn等の揮発性金属の含有量の低い製鉄ダストを溶銑の脱Siおよび脱P剤として優先的に使用し、かつ、炭素含有量の高い製鉄ダストを専用還元炉にて優先的に還元して再利用すること特徴とする(1)または(2)に記載の製鉄ダストの資源化有効利用方法。
The present invention has been made as a result of intensive studies in order to solve the above-mentioned problems, and by selecting an optimal treatment method according to the characteristics of dust generated in the iron making process, the iron making dust is completely removed within the iron making process. It is possible to achieve zero emissions of steelmaking dust, and to provide an effective method for recycling steelmaking dust that can minimize the scale of infrastructure required by multiple steelworks. However, the following contents are as described in the claims.
(1) Effective utilization of steelmaking dust generated in steelmaking processes such as reduction, dissolution, and smelting, and ironmaking dust containing 0.1% or more of volatile metals such as Zn is used to remove molten iron and remove P And agglomerates by kneading together dust collecting dust generated during the de-Si and de-P and surplus dust that cannot be used as the de-Si and de-P agent together with a reducing charcoal. A method for effectively utilizing iron-making dust, characterized by using reduced iron reduced in a dedicated reduction furnace as a steelmaking raw material, and using dust collection dust generated in the dedicated reduction furnace as a non-ferrous raw material.
(2) Effective use of iron dust generated in steelmaking processes such as reduction, melting, and smelting at multiple steelworks, and scrap that becomes a mixed source of volatile metals such as Zn at specific steelworks The ironmaking dust containing less than 0.1% of volatile metals such as Zn is used as sintering and blast furnace raw material, and the ironmaking dust containing 0.1% or more of volatile metals such as Zn is used as hot metal. The dust collection dust generated at the time of the de-Si and the de-P, and the surplus dust that cannot be used as the sintering and blast furnace raw material or the de-Si and de-P agent, together with the reducing charcoal Kneaded into agglomerates, reduced iron obtained by reducing the agglomerates in a dedicated reduction furnace is used as a steelmaking raw material, and dust collection dust generated in the dedicated reduction furnace is used as a non-ferrous raw material. Recycling of steelmaking dust How to use.
(3) Preferentially use iron-making dust with low volatile metal content such as Zn as hot metal de-Si and P removal agent, and preferentially use iron-making dust with high carbon content in a dedicated reduction furnace The method for effectively recycling resources of iron-making dust according to (1) or (2), characterized in that it is reduced and reused.

本発明によれば、還元・溶解・精練等の製鉄プロセスより発生する製鉄ダストを製鉄工程内で完全に再生利用し、製鉄ダストのゼロ・エミッション化を実現する製鉄ダストの資源化有効利用方法を提供することができる。
また、複数の製鉄所間でZn含有率に応じた最適なダスト処理法を実施することで必要とするインフラ規模をミニマイズできる製鉄ダストの資源化有効利用方法を提供することができる。
国内での鉄鋼製品の蓄積は、将来にわたって、建築構造物、自動車・家電製品等の消費材がスクラップ・ダウンされるにあたって鉄スクラップの多量発生、蓄積が想定される。
According to the present invention, there is provided a method for effectively utilizing steelmaking dust resources, in which ironmaking dust generated from ironmaking processes such as reduction, dissolution, and smelting is completely recycled within the ironmaking process, and zero-emission of ironmaking dust is realized. Can be provided.
In addition, it is possible to provide an effective utilization method of steelmaking dust that can minimize the required infrastructure scale by implementing an optimum dust treatment method according to the Zn content rate between a plurality of steelworks.
As for the accumulation of steel products in Japan, it is assumed that a large amount of iron scrap will be generated and accumulated when consumer materials such as building structures, automobiles and home appliances are scrapped down in the future.

一方これまで進められてきた建築構造物、自動車・家電製品等の高機能化、高付加価値化は、素材構成を複雑化させ、スクラップ中には鉄以外にZn等の揮発性非鉄金属の混入を回避することができなくなっている。 従ってこれらのスクラップを鉄鋼各社がリサイクル使用するにあたっては、Zn等の揮発性非鉄金属を以下に効率的に製鉄所系外へ排出、資源化するかが必須となる。
また製鉄ダストそのものも従来はセメント業界で有効利用されていたが、国内セメント需要の減退から利用先のない廃棄物として扱われはじめた。
本発明は、係る環境変化の中で鉄鋼各社が将来的に遭遇する前期課題を解決する有効な手段であり、産業上有用な著しい効果を奏する。
On the other hand, high-function and high-value-added building structures, automobiles and home appliances, etc., that have been promoted so far, complicate the material composition, and scrap contains volatile non-ferrous metals such as Zn in addition to iron. Can no longer be avoided. Therefore, when steel companies recycle and use these scraps, it is essential to discharge volatile non-ferrous metals such as Zn outside the steelworks system and make them resources.
In addition, iron dust itself has been used effectively in the cement industry, but it has begun to be treated as waste with no use due to a decline in domestic cement demand.
INDUSTRIAL APPLICABILITY The present invention is an effective means for solving the problems in the previous period that steel companies will encounter in the future in such environmental changes, and has a remarkable industrially useful effect.

本発明を実施するための最良の形態について実施例1および実施例2により詳細に説明する。   BEST MODE FOR CARRYING OUT THE INVENTION The best mode for carrying out the present invention will be described in detail with reference to Example 1 and Example 2.

図1は、溶銑処理設備およびダスト専用還元炉を有する月産粗鋼生産量 40万t規模の高炉一貫製鉄所に本発明を適用する場合の実施例を示す図である。
図1において、原料ヤード1から供給される製鉄原料は、原料処理設備2にて焼結・ペレット等に加工されて、高炉3にて還元・溶解された後、溶銑処理工程4により脱Si,脱Pされ、転炉5にて精錬されて鋼材が製造され、発生する製鉄ダストは必要に応じて専用還元炉6で処理される。
本発明は、この還元・溶解・精練等の製鉄プロセスにて、それぞれ発生する製鉄ダストを資源化し有効利用する方法を提供するものである。
表1乃至表3は、図1に示す一貫高炉製鉄所に従来のダスト処理方法を適用した比較例を示し、表4は本発明の製鉄ダストの資源化有効利用方法 を適用した例を示す。
FIG. 1 is a diagram showing an embodiment in which the present invention is applied to a blast furnace integrated steelworks having a hot metal treatment facility and a dust reduction furnace for monthly crude steel production of 400,000 tons.
In FIG. 1, the ironmaking raw material supplied from the raw material yard 1 is processed into sintered pellets or the like in the raw material processing facility 2, reduced and melted in the blast furnace 3, and then removed by the hot metal treatment process 4. The P is removed and refined in the converter 5 to produce steel, and the generated iron-making dust is processed in the dedicated reduction furnace 6 as necessary.
The present invention provides a method for reusing and effectively utilizing each iron-making dust generated in the iron-making processes such as reduction, dissolution, and scouring.
Tables 1 to 3 show comparative examples in which the conventional dust treatment method is applied to the integrated blast furnace steelworks shown in FIG. 1, and Table 4 shows an example in which the steelmaking dust resource utilization method of the present invention is applied.

高炉一貫製鉄所で発生する製鉄ダストには、Zn等揮発性金属を含まないあるいは含有量の少ないダストには焼結およびペレット工場等の原料系ダストと高炉一次灰、高炉集塵ダストがあり、これらは焼結およびペレット原料として再利用が可能である。
また、Zn等の揮発性金属を含む高炉二次灰や転炉ダストについては、資源化・減容化することができる。
まず、高炉一貫製鉄所で発生する製鉄ダストに特公平2-8002号公報、特開平9-25504号公報、特開平8-333612号公報にて提案されている技術を適用した場合を表1(ケース1)に示す。
The ironmaking dust generated at the blast furnace integrated steelworks includes raw material dust such as sintering and pellet mills, blast furnace primary ash, and blast furnace dust collection dust that do not contain Zn or other volatile metals such as Zn. These can be reused as sintered and pellet raw materials.
In addition, blast furnace secondary ash and converter dust containing volatile metals such as Zn can be resource-reduced and volume-reduced.
First, Table 1 shows the case where the technology proposed in Japanese Patent Publication No. 2-8002, Japanese Patent Laid-Open No. 9-25504, Japanese Patent Laid-Open No. 8-333612 is applied to iron-making dust generated at a blast furnace integrated steelworks. Shown in Case 1).

この比較例にあっては、Zn含有量が0.1%未満の原料系ダストおよび高炉ダストを焼結・ペレット原料として使用し、Zn含有量が0.1%以上の転炉細粒ダストと転炉集塵ダストを溶銑処理に使用した。
しかし、溶銑の脱Si剤あるいは脱P剤として使用可能量は熱的な制約により限界があり、仮に同使用可能量が20kg/t の場合、 16.5kg/t ものダストが製鉄所内での利用先のない廃棄物となる。
In this comparative example, raw material dust and blast furnace dust with a Zn content of less than 0.1% are used as sintering and pellet raw materials, and fine converter dust and converter dust collection with a Zn content of 0.1% or more. Dust was used for hot metal treatment.
However, the amount that can be used as a hot metal de-Si agent or P agent is limited due to thermal restrictions. If the same amount is 20 kg / t, 16.5 kg / t of dust can be used in steelworks. Waste without any waste.

次に、高炉一貫製鉄所で発生する製鉄ダストに特開平11-92812号公報 にて提案されている技術を適用した場合を表2(ケース2)に示す。
この比較例にあっては、Zn含有量が0.1%未満の原料系ダストおよび高炉ダストを焼結・ペレット原料として使用し、Zn含有量が0.1%以上のダストを溶銑処理および転炉に2回繰り返して使用した。
その結果、溶銑の脱Si剤あるいは脱P剤と転炉での繰り返し使用によりZn等揮発性金属を含む溶銑予備処理ダストおよび転炉ダスト中のZn含有量はUPし、一部では非鉄精錬原料として外販可能となるが、Znの濃化進行はダスト発生量の増大にも繋がり、結果現実的な2回までの繰り返し使用では5kg/t のダストが製鉄所内での利用先のない廃棄物となった。
Next, Table 2 (Case 2) shows the case where the technique proposed in Japanese Patent Laid-Open No. 11-92812 is applied to steelmaking dust generated at the blast furnace integrated steelworks.
In this comparative example, raw material dust with a Zn content of less than 0.1% and blast furnace dust are used as sintering and pellet raw materials, and dust with a Zn content of 0.1% or more is used twice for hot metal treatment and converters. Used repeatedly.
As a result, the Zn content in the hot metal pretreatment dust and converter dust containing volatile metals such as Zn has been increased by repeated use in the converter with the desiliconizing agent or dephosphorizing agent of the hot metal, and in some cases non-ferrous refining raw materials However, the progress of Zn concentration also leads to an increase in the amount of dust generated, and as a result, when it is used repeatedly up to two times in reality, 5 kg / t of dust is treated as waste that is not used in steelworks. became.

次に、高炉一貫製鉄所で発生する製鉄ダストに特開2000-45012号公報にて提案されている技術を適用した場合を表3(ケース3)に示す。
この比較例にあっては、Zn含有量が0.1%未満の原料系ダストおよび高炉ダストを焼結・ペレット原料として使用し、Zn含有量が0.1%以上のダストを専用還元炉にて処理し資源として再利用した結果、Zn等揮発性金属を含む製鉄ダストの全てを専用還元炉にて還元し、還元鉄を製鉄原料に利用し、同還元炉集塵ダストも非鉄精錬原料として外販可能となり、結果製鉄所内発生ダストのゼロエミッション化が可能となる。
ここで、焼結・ペレット原料として使用するダスト中のZn含有量を0.1%未満とするのは、0.1%以上Znを含むダストを使用して製造した焼結・ペレットを高炉に装入すると、亜鉛量が多いために高炉内の炉壁に酸化亜鉛が堆積して原料の円滑な下降を阻害する危険性があるからである。
Next, Table 3 (Case 3) shows the case where the technique proposed in Japanese Patent Application Laid-Open No. 2000-45012 is applied to steelmaking dust generated at the blast furnace integrated steelworks.
In this comparative example, raw material dust with a Zn content of less than 0.1% and blast furnace dust are used as sintering / pellet raw materials, and dust with a Zn content of 0.1% or more is processed in a dedicated reduction furnace. As a result, all of the ironmaking dust containing volatile metals such as Zn is reduced in a dedicated reduction furnace, and the reduced iron is used as a raw material for ironmaking. As a result, zero emission of dust generated in steel works can be achieved.
Here, the Zn content in the dust used as a sintering / pellet raw material is less than 0.1% because the sintering / pellet produced using dust containing 0.1% or more of Zn is charged into a blast furnace. This is because there is a risk that zinc oxide is deposited on the furnace wall in the blast furnace and the smooth lowering of the raw material is hindered due to the large amount of zinc.

しかしながら、このケース3における専用還元炉の必要処理能力は、144kt/M (=36.1k/t ×400kt/M) なる規模となり、設備費用が高くつくという問題点があった。
一方、本発明にて提案している技術を適用した場合を表4(ケース4)に示す。この本発明例にあっては、Zn含有量が0.1%未満の原料系ダストおよび高炉ダストを焼結・ペレット原料として使用し、Zn含有量が0.1%以上のダストを一旦溶銑の脱Si剤あるいは脱P剤として使用することでダストそのもの減容化を図り、その上で溶銑の脱Si剤あるいは脱P剤に充当できない余剰ダストとを専用還元炉にて還元した。
その結果、製鉄所内発生ダストのゼロエミッション化が可能となるばかりでなく、専用還元炉の必要処理能力は66kt/M (=16.5k/t ×400kt/M) となりケース3に対して設備規模を半減以下に抑えることができた。
However, the necessary processing capacity of the dedicated reduction furnace in this case 3 is 144 kt / M (= 36.1 k / t x 400 kt / M), and there is a problem that the equipment cost is high.
On the other hand, Table 4 (Case 4) shows a case where the technique proposed in the present invention is applied. In this example of the present invention, raw material dust having a Zn content of less than 0.1% and blast furnace dust are used as sintering / pellet raw materials, and the dust having a Zn content of 0.1% or more is once removed from the hot metal. By using it as a de-P agent, the volume of dust itself was reduced, and on that basis, excess dust that could not be applied to the hot metal de-Si agent or P agent was reduced in a dedicated reduction furnace.
As a result, not only can the dust generated in the steelworks be reduced to zero emissions, but the required processing capacity of the dedicated reduction furnace is 66 kt / M (= 16.5 k / t × 400 kt / M), which means that the scale of the facility is larger than that of Case 3. It was possible to suppress it to half or less.

図2は、月産粗鋼生産量 40万t規模の高炉一貫製鉄所 2箇所と月産粗鋼生産量 5万t規模の電気炉製鉄所 1箇所、計3箇所に発明を適用する場合の実施例を示す図であり、そのダスト処理方法を表5に示す。
A製鉄所なる高炉一貫製鉄所では溶銑処理設備のみを有し、B製鉄所なる高炉一貫製鉄所では専用還元炉のみを有するものとする。ここでA製鉄所ではZn等揮発性金属の混入源となるスクラップについては、Zn入量規制を施すことによりZn等揮発性金属を含む製鉄ダストは、溶銑予備処理ダストを除いては高炉二次灰と転炉集塵ダストのみに集約することができる。
一方、B製鉄所およびC製鉄所では、A製鉄所にて規制をしているZn等揮発性金属を含むスクラップを集中的に消費する。
Figure 2 shows an example in which the invention is applied to a total of three locations: two blast furnace integrated steelworks with a monthly crude steel production of 400,000 tons and one electric furnace with a monthly crude steel production of 50,000 tons Table 5 shows the dust treatment method.
The blast furnace integrated steelworks, which is A Steel Works, has only hot metal treatment equipment, and the blast furnace integrated steelworks, which is B Steel Works, has only a dedicated reduction furnace. Here, at steelworks A, the scrap that becomes the source of contamination of volatile metals such as Zn is controlled by the amount of Zn, and iron dust containing volatile metals such as Zn is secondary to the blast furnace except for hot metal pretreatment dust. Only ash and converter dust collection can be collected.
On the other hand, at the B and C steelworks, scraps containing volatile metals such as Zn, which are regulated at the A steelworks, are concentrated.

この本発明例における具体的なダスト処理方法を表5に示す。
まず、A製鉄所においては、Zn含有量が0.1%未満の原料系ダストおよび高炉ダストをA製鉄所の焼結・ペレット原料として使用し、Zn含有量が0.1%以上の転炉集塵ダストをA製鉄所の溶銑処理に使用し、高炉二次灰をB製鉄所の専用還元炉にて処理した。
次に、B製鉄所においては、Zn含有量が0.1%未満の原料系ダストおよび高炉ダストをB製鉄所の焼結・ペレット原料として使用し、Zn含有量が0.1%以上の転炉集塵ダストをA製鉄所の溶銑処理に使用し、高炉二次灰をB製鉄所の専用還元炉にて処理し、転炉細粒ダストについてはA製鉄所の溶銑処理とB製鉄所の専用還元炉で分担した。
Table 5 shows specific dust treatment methods in this example of the present invention.
First, at A Works, raw material dust and blast furnace dust with Zn content of less than 0.1% are used as sintering and pellet raw materials at A Works, and converter dust collection dust with Zn content of 0.1% or more is used. It was used for hot metal treatment at the A steelworks, and the secondary ash of the blast furnace was treated in the special reduction furnace at the B steelworks.
Next, at B Steel Works, raw material dust and blast furnace dust with Zn content of less than 0.1% are used as sintering and pellet raw materials at B Steel Works, and converter dust collection dust with Zn content of 0.1% or more. Is used for the hot metal treatment at the A Works, and the secondary ash of the blast furnace is treated in the dedicated reduction furnace at the B Works, and the fine dust from the converter is treated with the hot metal treatment at the A Works and the dedicated reduction furnace at the B Works. It was shared.

また、C製鉄所における電気炉集塵ダストは、A製鉄所の溶銑処理に使用した。
以上のように、3箇所間でZn等揮発性金属を含むスクラップ使用を配分した上で、Zn等揮発性金属含有率が0.1%未満なる製鉄ダストを焼結および高炉原料として使用し、Zn等揮発性金属を0.1%以上含む製鉄ダストを溶銑の脱Siおよび脱P剤として使用する。この脱Siおよび脱P時に発生する集塵ダストと焼結および高炉原料及び脱Siおよび脱P剤に充当できない余剰ダストとを還元用炭剤とともに混錬して塊成化し、専用還元炉にて還元し、還元鉄を製鋼原料に使用し、還元炉集塵ダストは非鉄精錬原料として外販することができる。
ここで、Zn等揮発性金属を0.1%以上含む製鉄ダストのうち、Zn含有量の低い製鉄ダストから優先して溶銑の脱Siおよび脱P剤として使用することによってダスト減容化効果は一層発揮する。 またZn等揮発性金属を0.1%以上含む製鉄ダストのうち、C含有量の高い製鉄ダストから優先して専用還元炉ヘ使用することで還元の際に必要とする炭材使用量を抑制することができる。
In addition, the electric furnace dust collection dust at C Steel Works was used for hot metal treatment at A Steel Works.
As described above, after allocating scrap use containing volatile metals such as Zn among three locations, use iron-making dust with a volatile metal content such as Zn less than 0.1% as sintering and blast furnace raw materials, Zn etc. Steelmaking dust containing 0.1% or more of volatile metal is used as a hot metal de-Si and P-removing agent. This dust collection dust generated at the time of de-Si and de-P and the surplus dust that cannot be applied to sintering and blast furnace raw material and de-Si and de-P agent are kneaded together with a reducing charcoal and agglomerated and agglomerated in a dedicated reduction furnace Reduced, reduced iron is used as a raw material for steelmaking, and the dust collected in the reduction furnace can be sold outside as a non-ferrous refining raw material.
Here, among iron-making dusts containing 0.1% or more of volatile metals such as Zn, the effect of reducing the volume of dust is further demonstrated by using it as a de-Si and de-P agent for hot metal in preference to iron-making dust with a low Zn content. To do. In addition, among the steelmaking dust containing 0.1% or more of volatile metals such as Zn, the amount of carbonaceous material required for reduction is suppressed by using it in the dedicated reduction furnace in preference to the steelmaking dust with a high C content. Can do.

以上の結果、3箇所より発生する製鉄ダストの全てを製鉄原料ないしは非鉄精錬原料として活用し、3箇所の製鉄所内発生ダストのゼロエミッション化が可能となるばかりでなく、Zn等揮発性金属を0.1%以上含む製鉄ダストの減容化処理にて利用する溶銑予備処理設備、 Zn等揮発性金属を0.1%以上含む製鉄ダストを製鉄原料および非鉄原料とに資源化する専用還元炉の必要処理能力、 装備力を最小化することができる。

Figure 2005089794
Figure 2005089794
Figure 2005089794
Figure 2005089794
Figure 2005089794
As a result of the above, all of the ironmaking dust generated from the three locations can be used as a raw material for steelmaking or non-ferrous refining. Hot metal pretreatment equipment used in volume reduction processing of steelmaking dust containing more than 10%, necessary processing capacity of dedicated reduction furnace that recycles steelmaking dust containing 0.1% or more of volatile metals such as Zn into ironmaking raw materials and non-ferrous raw materials, Equipment power can be minimized.
Figure 2005089794
Figure 2005089794
Figure 2005089794
Figure 2005089794
Figure 2005089794

溶銑処理設備およびダスト専用還元炉を有する月産粗鋼生産量 40万t規模の高炉一貫製鉄所に本発明を適用する場合の実施例を示す図である。It is a figure which shows the Example at the time of applying this invention to the blast furnace integrated steelworks of the monthly crude steel production amount of 400,000 tons scale which has a hot metal processing equipment and a reduction furnace only for dust. 月産粗鋼生産量 40万t規模の高炉一貫製鉄所 2箇所と月産粗鋼生産量 5万t規模の電気炉製鉄所 1箇所、計3箇所に発明を適用する場合の実施例を示す図である。The figure shows an example in which the invention is applied to a total of three locations: two blast furnace integrated steelworks with a monthly production capacity of 400,000 tons and one electric furnace steelworks with a monthly production capacity of 50,000 tons. is there.

符号の説明Explanation of symbols

1 原料ヤード
2 原料処理設備(焼結・ペレット)
3 高炉
4 溶銑処理
5 転炉
6 専用還元炉(回転炉床式還元炉)
7 電気炉
1 Raw material yard 2 Raw material processing equipment (sintering / pellet)
3 Blast furnace 4 Hot metal treatment 5 Converter 6 Dedicated reduction furnace (rotary hearth type reduction furnace)
7 Electric furnace

Claims (3)

還元・溶解・精練等の製鉄プロセスにて発生する製鉄ダストの資源化有効利用方法であって、Zn等の揮発性金属を0.1%以上含む製鉄ダストを溶銑の脱Siおよび脱P剤として使用し、前記脱Siおよび脱P時に発生する集塵ダストと、前記脱Siおよび脱P剤として使用できない余剰ダストとを還元用炭剤とともに混錬して塊成物とし、該塊成物を専用還元炉にて還元した還元鉄を製鋼原料として使用し、前記専用還元炉にて発生する集塵ダストを非鉄原料として使用することを特徴とする製鉄ダストの資源化有効利用方法。   This is a method for effectively utilizing ironmaking dust generated in ironmaking processes such as reduction, dissolution, and smelting, and uses ironmaking dust containing 0.1% or more of volatile metals such as Zn as a hot metal removal Si and P removal agent. The dust collection dust generated at the time of de-Si and P removal and the surplus dust that cannot be used as the de-Si and P-removing agent are kneaded together with a reducing charcoal to form an agglomerate, and the agglomerate is exclusively reduced. A method for effectively utilizing iron-making dust, characterized by using reduced iron reduced in a furnace as a steelmaking raw material, and using dust collection dust generated in the dedicated reduction furnace as a non-ferrous raw material. 複数の製鉄所における還元・溶解・精練等の製鉄プロセスにて発生する製鉄ダストの資源化有効利用方法であって、特定の製鉄所にZn等の揮発性金属の混入源となるスクラップの使用規制を施したうえで、Zn等の揮発性金属の含有率が0.1%未満なる製鉄ダストを焼結および高炉原料として使用し、Zn等の揮発性金属を0.1%以上含む製鉄ダストを溶銑の脱Siおよび脱P剤として使用し、前記脱Siおよび脱P時に発生する集塵ダストと、焼結および高炉原料または脱Siおよび脱P剤として使用できない余剰ダストとを還元用炭剤ととともに混錬して塊成物とし、該塊成物を専用還元炉にて還元した還元鉄を製鋼原料として使用し、前記専用還元炉にて発生する集塵ダストを非鉄原料として使用することを特徴とする製鉄ダストの資源化有効利用方法。   This is a method for effectively using steelmaking dust generated in steelmaking processes such as reduction, melting, and smelting at multiple steelworks, and regulations on the use of scrap that is a source of volatile metals such as Zn in certain steelworks In addition, iron-making dust with a volatile metal content such as Zn of less than 0.1% is used as a sintering and blast furnace raw material, and iron-making dust containing 0.1% or more of volatile metal such as Zn is removed from the hot metal. Used as a P-removing agent, and kneading dust collecting dust generated during de-Si and P-removing and surplus dust that cannot be used as sintering and blast furnace raw material or de-Si and P-removing agent together with a reducing carbonization agent. Using the reduced iron obtained by reducing the agglomerate in a dedicated reduction furnace as a steelmaking raw material, and using dust collection dust generated in the dedicated reduction furnace as a non-ferrous raw material. Effective use of dust resources Law. Zn等の揮発性金属の含有量の低い製鉄ダストを溶銑の脱Siおよび脱P剤として優先的に使用し、かつ、炭素含有量の高い製鉄ダストを専用還元炉にて優先的に還元して再利用すること特徴とする請求項1または請求項2に記載の製鉄ダストの資源化有効利用方法。   Preferentially use iron-making dust with low content of volatile metals such as Zn as hot metal de-Si and de-P agent, and preferentially reduce iron-making dust with high carbon content in a dedicated reduction furnace. The method of effectively using resources of ironmaking dust according to claim 1 or 2, wherein the steelmaking dust is reused.
JP2003322436A 2003-09-16 2003-09-16 Method for effectively utilizing iron-making dust as resource Withdrawn JP2005089794A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003322436A JP2005089794A (en) 2003-09-16 2003-09-16 Method for effectively utilizing iron-making dust as resource

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003322436A JP2005089794A (en) 2003-09-16 2003-09-16 Method for effectively utilizing iron-making dust as resource

Publications (1)

Publication Number Publication Date
JP2005089794A true JP2005089794A (en) 2005-04-07

Family

ID=34453786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003322436A Withdrawn JP2005089794A (en) 2003-09-16 2003-09-16 Method for effectively utilizing iron-making dust as resource

Country Status (1)

Country Link
JP (1) JP2005089794A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007009240A (en) * 2005-06-28 2007-01-18 Kobe Steel Ltd Method for reusing converter dust
WO2009145348A1 (en) * 2008-05-30 2009-12-03 Jfeスチール株式会社 Method for manufacturing pig iron
JP2012500902A (en) * 2008-08-30 2012-01-12 タータ スチール リミテッド A method of separating iron from iron ore containing high-concentration zinc and extracting iron and valuable materials
JP2012017521A (en) * 2010-06-07 2012-01-26 Kobe Steel Ltd Dephosphorization method of molten iron using dust
US8372309B2 (en) 2005-02-25 2013-02-12 Mitsubishi Chemical Corporation Phosphor and manufacturing method therefore, and light emission device using the phosphor
CN111471832A (en) * 2020-03-30 2020-07-31 钢铁研究总院 Deep sulfur and phosphorus removing method for less-slag steel making

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8372309B2 (en) 2005-02-25 2013-02-12 Mitsubishi Chemical Corporation Phosphor and manufacturing method therefore, and light emission device using the phosphor
JP2007009240A (en) * 2005-06-28 2007-01-18 Kobe Steel Ltd Method for reusing converter dust
WO2009145348A1 (en) * 2008-05-30 2009-12-03 Jfeスチール株式会社 Method for manufacturing pig iron
JP2010007180A (en) * 2008-05-30 2010-01-14 Jfe Steel Corp Method for producing pig iron by using iron ore with high content of zinc
CN102046817A (en) * 2008-05-30 2011-05-04 杰富意钢铁株式会社 Method for manufacturing pig iron
US8298316B2 (en) 2008-05-30 2012-10-30 Jfe Steel Corporation Method for producing pig iron
JP2012500902A (en) * 2008-08-30 2012-01-12 タータ スチール リミテッド A method of separating iron from iron ore containing high-concentration zinc and extracting iron and valuable materials
KR101619169B1 (en) 2008-08-30 2016-05-18 타타 스틸 리미티드 Method for sepatation of zinc and extraction of iron values from iron ores with high concentration of zinc
JP2012017521A (en) * 2010-06-07 2012-01-26 Kobe Steel Ltd Dephosphorization method of molten iron using dust
CN111471832A (en) * 2020-03-30 2020-07-31 钢铁研究总院 Deep sulfur and phosphorus removing method for less-slag steel making
CN111471832B (en) * 2020-03-30 2021-03-09 钢铁研究总院 Deep sulfur and phosphorus removing method for less-slag steel making

Similar Documents

Publication Publication Date Title
CN105695735B (en) The autoreduction of a kind of steel rolling oily sludge and blast furnace dust utilizes technique
CN100507013C (en) Method for directly producing ferrochromium from chrome ore powder and coal
CN101717843B (en) Method for utilizing sulfur-containing refining waste residue for refining slag
CN109022644B (en) Method for recovering slag desulfurization and dephosphorization in cooperation with ferrite in full-three-removal process
CN104726715B (en) Recycling method for vanadium-chromium waste residues
CN102031361B (en) Comprehensive treatment and utilization method of iron and steel dust and mud
JP2009079303A (en) Manufacturing method of stainless steel by reutilizing waste in stainless steel manufacturing process
CN112063834B (en) Method for returning stainless steel pickling sludge to rotary kiln-submerged arc furnace process for utilization
CN103451355B (en) Production technology of composite slagging agent for steelmaking
CN1718554A (en) Treatment method of vanadium containing converter steel slag
CN1101077A (en) Process for utilising iron-containing wastes or residues
CN102851427A (en) Method for online production of sponge iron by using steel residue waste heat
JP2005089794A (en) Method for effectively utilizing iron-making dust as resource
CN111575492B (en) Comprehensive treatment method for zinc-containing dust and steel slag
CN102046817A (en) Method for manufacturing pig iron
JP2005111394A (en) Disposal method for organic waste
WO2023193714A1 (en) Method and system for coupling copper slag recycling with co2 mineralization based on industrial solid waste
CN100529110C (en) Ironmaking and steelmaking
CN101818264B (en) Method for treating zinc-containing and iron-containing dust and mud
JP2013044029A (en) Method for recovering iron and phosphorus from steelmaking slag
CN1041328C (en) Method of direct steel-smelting of cooled agglomerated pellet
CN103343179B (en) Converter steelmaking synthetic slag former
JPH09316512A (en) Method for melting steel using iron oxide briquette as auxiliary raw material
JP5712747B2 (en) Method for recovering iron and phosphorus from steelmaking slag
CN112029949B (en) Method for treating zinc-containing waste steel by adopting converter full-three-step smelting process

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061205