JP2005088167A - Grinding method and grinding device - Google Patents
Grinding method and grinding device Download PDFInfo
- Publication number
- JP2005088167A JP2005088167A JP2003328086A JP2003328086A JP2005088167A JP 2005088167 A JP2005088167 A JP 2005088167A JP 2003328086 A JP2003328086 A JP 2003328086A JP 2003328086 A JP2003328086 A JP 2003328086A JP 2005088167 A JP2005088167 A JP 2005088167A
- Authority
- JP
- Japan
- Prior art keywords
- grinding
- workpiece
- outer peripheral
- value
- dimension
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
- Grinding Of Cylindrical And Plane Surfaces (AREA)
Abstract
Description
本発明は、略円環状のワークの外周部や内周部等の研削加工面を研削する研削加工方法および研削加工装置に関する。 The present invention relates to a grinding method and a grinding device for grinding a grinding surface such as an outer peripheral portion and an inner peripheral portion of a substantially annular workpiece.
従来より、略円環状のワークの研削加工面(例えば内周部)を研削する研削加工装置が広く知られている(例えば特許文献1参照)。なお、ここで円環状のワークとは、主に直径が軸長よりも大きいものを指すが、直径が軸長と同じでもよく、あるいは直径が軸長よりも小さい円筒状のものも含まれる。
また、略円環状のワークの研削加工面とは、例えば軸受を構成する外輪および内輪の内周面、外周面、あるいは外輪の外輪溝、内輪の内輪溝等を例示できる。
2. Description of the Related Art Conventionally, a grinding apparatus that grinds a grinding surface (for example, an inner periphery) of a substantially annular workpiece has been widely known (see, for example, Patent Document 1). In addition, although an annular | circular shaped workpiece | work mainly points out that a diameter is larger than an axial length here, a diameter may be the same as an axial length or a cylindrical thing whose diameter is smaller than an axial length is also contained.
Further, examples of the grinding surface of the substantially annular workpiece include an inner ring surface and an outer ring surface of the outer ring and inner ring constituting the bearing, an outer ring groove of the outer ring, an inner ring groove of the inner ring, and the like.
この研削加工装置は、ワークの研削加工面である内周面を研削するにあたって、例えば2ロール1シューや、あるいはマグネットチャックと複数のシューとによるシューセンタレス方式によりワークを支持するとともに回転駆動させ、かつ、回転砥石の周面をワークの内側に挿入して内周面に接触させるとともにワークの径方向に沿って回転砥石を切り込ませる。 In this grinding apparatus, when grinding the inner peripheral surface, which is a grinding surface of a workpiece, the workpiece is supported and rotated by, for example, a two-roll one shoe or a shoe centerless method using a magnet chuck and a plurality of shoes, And while inserting the surrounding surface of a rotating grindstone into the inner side of a workpiece | work and contacting an inner peripheral surface, a rotating grindstone is cut along the radial direction of a workpiece | work.
この研削加工装置は、ワークの内側に挿入したインプロセスゲージによりワークの研削加工面である内周面の内径寸法を直接測定しながら回転砥石を切り込ませる。
そして、研削加工を行う前の研削加工面の寸法がばらついている場合には、回転砥石を移動させる(切り込ませる)サーボモータ等の駆動手段に対してインプロセスゲージの測定値に基づく指令を行い、これにより研削加工後の内周面(研削加工面)の内径寸法がばらつかないようにしている。
If the dimensions of the ground surface before grinding are varied, a command based on the measured value of the in-process gauge is given to a drive means such as a servomotor that moves (cuts) the rotating grindstone. In this way, the inner diameter of the inner peripheral surface (grinding surface) after grinding is not varied.
しかしながら、前述した特許文献1では、研削加工面の内径寸法を直接測定するために、インプロセスゲージをワークの内側に挿入する必要があり、主軸周りが大型化,複雑化するという不都合がある。 However, in Patent Document 1 described above, in order to directly measure the inner diameter dimension of the ground surface, it is necessary to insert an in-process gauge inside the workpiece, which disadvantageously increases the size and complexity of the spindle.
このような不都合を解消するために、ワークの外周部寸法を基準として研削加工面である内周面を研削する方法が考えられる。この場合、内周面を研削する回転砥石のストップ位置は、外周部(例えば外周面,溝)からの位置が固定である。換言すれば、回転砥石の移動量(切込量)は一定である。
この方法では、外周部から研削加工後の研削加工面までの寸法が一定となるため、多数のワークを順次加工する場合、各ワークの基準となる外周部寸法が同じであれば、各ワークの加工後の研削加工面の内径寸法が同一となる。
In order to eliminate such an inconvenience, a method of grinding an inner peripheral surface which is a grinding surface based on the outer peripheral portion dimension of the work is considered. In this case, the stop position of the rotating grindstone that grinds the inner peripheral surface is fixed at the position from the outer peripheral portion (for example, the outer peripheral surface and the groove). In other words, the moving amount (cutting amount) of the rotating grindstone is constant.
In this method, since the dimension from the outer peripheral part to the ground surface after grinding is constant, when processing a large number of workpieces in succession, if the outer peripheral dimension used as a reference for each work is the same, The inner diameter of the ground surface after processing is the same.
しかしながら、外径部寸法を基準として内周面を研削する方法は、多数のワークを順次加工する場合、以下のような問題がある。
すなわち、この方法では、各ワークの基準となる外周部寸法がすべて同じ規定値であることを前提としているが、実際には各ワークの外周部寸法は規定値に対して許容誤差の範囲内でランダムに大径あるいは小径となっている。換言すれば、これらのワークは、外周部寸法があらかじめ規定値に対して許容誤差の範囲内で個々にばらついていることになる。
従って、これらのようなワークの外周部寸法を基準として回転砥石のストップ位置を固定として内周面を研削すると、外周部から加工後の内周面までの寸法が一定となるものの、外周部寸法のばらつきに影響されて加工後の研削加工面(内周面)の寸法が各ワーク毎にばらつくという問題がある。
However, the method of grinding the inner peripheral surface based on the outer diameter dimension has the following problems when a large number of workpieces are sequentially processed.
That is, in this method, it is assumed that the outer peripheral dimensions used as references for each workpiece are all the same specified value, but in reality, the outer peripheral dimensions of each workpiece are within the allowable error range with respect to the specified value. Randomly large or small diameter. In other words, these workpieces are individually dispersed in the range of the permissible error with respect to the predetermined value in the outer peripheral dimension.
Therefore, when the inner peripheral surface is ground with the stop position of the rotating grindstone fixed as a reference based on the outer peripheral portion dimensions of these workpieces, the dimension from the outer peripheral portion to the inner peripheral surface after processing is constant, but the outer peripheral portion dimensions There is a problem that the size of the ground surface (inner peripheral surface) after processing varies from workpiece to workpiece due to the variation of the workpiece.
また、略円環状のワークの加工前の外周部寸法を基準として外周部を研削する場合にも、回転砥石のストップ位置を固定とすれば、前述した問題が同様に生じる。 Further, when the outer peripheral portion is ground on the basis of the outer peripheral dimension before processing of the substantially annular workpiece, the above-described problem is similarly caused if the stop position of the rotating grindstone is fixed.
本発明は、前述した問題点に鑑みてなされたものであり、その目的は、略円環状のワークの研削加工面を研削するための主軸周りを小型化,簡略化できるとともに、ワークの外周部寸法を基準としてワークの研削加工面に研削加工を施しても、基準となる外周部寸法のばらつきの影響を少なくできる研削加工方法および研削加工装置を提供することである。 The present invention has been made in view of the above-described problems, and an object of the present invention is to reduce the size and simplification of the main shaft for grinding a grinding surface of a substantially annular workpiece, and to provide an outer peripheral portion of the workpiece. It is an object of the present invention to provide a grinding method and a grinding apparatus capable of reducing the influence of variation in the outer peripheral dimension serving as a reference even when the workpiece is ground on the basis of the dimension.
前述した目的を達成するために、本発明の研削加工方法は、略円環状のワークを回転させながら、前記ワークの研削加工面に当接させた研削手段を前記ワークの径方向に沿って切り込ませることにより、前記周面に研削加工を施す研削加工方法であって、前記ワークの基準となる外周部寸法と、あらかじめ設定したマスター値との差を測定手段により求め、前記測定手段の測定値に基づいて前記研削手段の切込量を補正することを特徴とする。 In order to achieve the above-described object, the grinding method of the present invention cuts the grinding means that is in contact with the grinding surface of the workpiece along the radial direction of the workpiece while rotating the substantially annular workpiece. A grinding method for grinding the peripheral surface by determining the difference between the outer peripheral dimension serving as a reference of the workpiece and a preset master value by the measuring means, and measuring the measuring means The cutting amount of the grinding means is corrected based on the value.
また、本発明の研削加工装置は、略円環状のワークを保持するとともに回転させる保持手段と、前記ワークの研削加工面に当接するとともに前記ワークの径方向に沿って切込可能な研削手段とを有する研削加工装置であって、前記ワークの基準となる外周部寸法を測定する測定手段を備え、前記測定手段の測定値と、あらかじめ設定したマスター値との差に基づいて前記研削手段の切込量を補正することを特徴とする。 Further, the grinding apparatus of the present invention includes a holding means for holding and rotating a substantially annular workpiece, and a grinding means that comes into contact with a grinding surface of the workpiece and can be cut along a radial direction of the workpiece. A grinding device having a measuring means for measuring a dimension of an outer peripheral portion serving as a reference of the workpiece, and cutting the grinding means based on a difference between a measured value of the measuring means and a preset master value. It is characterized by correcting the loading amount.
ここで、外周部寸法としては、円環状のワークにおける外周面の径寸法を採用してもよいが、例えば外周面の周方向に沿って形成された溝の底における径寸法を採用してもよく、要するにワークの研削加工面に加工を施す際に基準となるワークの外側の径寸法である。
一方、研削加工面としては、ワークの外周面、内周面や、外周面あるいは内周面の周方向に沿って形成された溝も含まれる。
すなわち、本願発明は、例えばワークが軸受の外輪や内輪である場合、あらかじめ旋盤等の工作機械によりワークの内周面あるいは外周面の周方向に沿って前加工された溝に研削加工を施す場合にも適用可能である。
Here, as the outer peripheral portion dimension, the diameter dimension of the outer peripheral surface of the annular workpiece may be employed, but for example, the diameter dimension at the bottom of the groove formed along the circumferential direction of the outer peripheral surface may be employed. In short, it is the diameter of the outside of the workpiece that serves as a reference when processing the ground surface of the workpiece.
On the other hand, the grinding surface includes an outer peripheral surface, an inner peripheral surface, and a groove formed along the circumferential direction of the outer peripheral surface or the inner peripheral surface.
That is, in the present invention, for example, when the workpiece is an outer ring or an inner ring of a bearing, a groove is preliminarily processed by a machine tool such as a lathe along the circumferential direction of the inner circumferential surface or outer circumferential surface of the workpiece. It is also applicable to.
これらのように構成された研削加工方法および研削加工装置においては、ワークの基準となる外周部寸法と、マスター値との差に基づいて研削手段の切込量を補正するため、例えば多数のワークの外周部寸法が個々にばらついている場合でも、従来のように研削加工面の寸法に影響しないことになる。
また、これらのような研削加工方法および研削加工装置においては、従来のようにインプロセスゲージをワークの内側に挿入する必要がないため、主軸周りを小型化,簡略化できることになる。
In the grinding method and the grinding machine configured as described above, in order to correct the cutting amount of the grinding means based on the difference between the outer peripheral dimension serving as a workpiece reference and the master value, for example, a large number of workpieces. Even in the case where the outer peripheral part dimensions vary individually, the dimensions of the ground surface are not affected as in the prior art.
Further, in the grinding method and the grinding device as described above, it is not necessary to insert an in-process gauge inside the workpiece as in the prior art, so that the size around the main shaft can be reduced and simplified.
次に、本発明の研削加工方法は、前記ワークを2ロール1シューにより保持するとともに、前記2ロールのうちの位置が固定していない方の移動量を前記測定手段により測定することを特徴とする。
また、本発明の研削加工装置は、前記保持手段が2ロール1シューであるとともに、前記測定手段が前記2ロールのうちの位置が固定していない方の移動量を測定することを特徴とする。
Next, the grinding method of the present invention is characterized in that the workpiece is held by two rolls and one shoe, and the moving amount of the two rolls whose position is not fixed is measured by the measuring means. To do.
In the grinding apparatus of the present invention, the holding means is a two-roll one shoe, and the measuring means measures a movement amount of the two rolls whose position is not fixed. .
本発明によれば、インプロセスゲージをワークの内側に挿入する必要がないため、主軸周りを小型化,簡略化できる。
また、本発明によれば、ワークの基準となる外周部寸法と、あらかじめ設定したマスター値との差に基づいて研削手段の切込量を補正するため、ワークの外周部寸法がばらついていても、ワークの研削加工を行った後の研削加工面(内径面、外周面)の径寸法に対してワークの外周部寸法のばらつきの影響を少なくできる。
According to the present invention, since there is no need to insert an in-process gauge inside the workpiece, the periphery of the main shaft can be reduced in size and simplified.
Further, according to the present invention, since the cutting amount of the grinding means is corrected based on the difference between the outer peripheral dimension serving as a reference of the workpiece and a preset master value, the outer peripheral dimension of the workpiece varies. The influence of the variation in the outer peripheral dimension of the workpiece can be reduced with respect to the radial dimension of the ground surface (inner diameter surface, outer peripheral surface) after the workpiece is ground.
以下、本発明に係る実施形態を図面に基づいて詳細に説明する。
図1に示すように、本発明に係る第1実施形態である研削加工装置は、略円環状のワークWにおける研削加工面を研削するために、ワークWの外周面に接触する上ロール2a,下ロール2bおよびシュー3を備える2ロール1シュー構造を持つシューセンタレス方式を採用している。
位置が固定していない方の上ロール2aは、上ロール2aの中心と下ロール2bの中心とを通る線に対して角度αずれた径方向に移動することにより、下ロール2bおよびシュー3に対して近接離反可能となっている。
Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, the grinding device according to the first embodiment of the present invention includes an
The
ワークWは、上ロール2aにより外周面が下ロール2bおよびシュー3に押し付けられた状態で位置が固定され、かつ、下ロール2bを駆動させることにより回転される。
なお、ワークWとしては、主に直径が軸長よりも大きいものを指すが、直径が軸長と同じでもよく、あるいは直径が軸長よりも小さい円筒状のものも含まれる。
また、ワークWの研削加工面とは、例えばワークが軸受を構成する外輪および内輪である場合、外輪および内輪の内周面、外周面、あるいは外輪の外輪溝、内輪の内輪溝等を例示できる。
The position of the work W is fixed in a state where the outer peripheral surface is pressed against the
The workpiece W mainly refers to a workpiece having a diameter larger than the axial length, but also includes a cylindrical workpiece having a diameter that is the same as the axial length or a diameter that is smaller than the axial length.
Further, the grinding surface of the workpiece W can be exemplified by, for example, when the workpiece is an outer ring and an inner ring constituting a bearing, an inner ring surface and an outer ring surface of the outer ring and the inner ring, an outer ring groove of the outer ring, an inner ring groove of the inner ring, and the like. .
研削加工装置は、上ロール2a,下ロール2bおよびシュー3によりワークWを支持するとともに回転駆動させながら、ワークWの研削加工面である内周面に当接させた研削手段である回転砥石(図示せず)をワークWの径方向に沿って所定のストップ位置まで切り込ませることにより、研削加工面である内周面に研削加工を施すものである。
なお、この第1実施形態では、研削加工面として内周面を例示しているが、本願発明における研削加工面としては、あらかじめ旋盤等の工作機械によりワークWの内周面の周方向に沿って前加工された溝も適用可能である。
The grinding apparatus supports a work W by an
In addition, in this 1st Embodiment, although the internal peripheral surface is illustrated as a grinding surface, as a grinding surface in this invention, along the circumferential direction of the internal peripheral surface of the workpiece | work W with a machine tool, such as a lathe, previously. A pre-processed groove is also applicable.
ここで、この第1実施形態では、例えば上ロール2aの移動を案内する案内部材に当接するように電気マイクロメータ等の測定器(測定手段)4が設置されている。
測定器4は、上ロール2aの移動方向に沿って移動距離を測定する。
Here, in the first embodiment, for example, a measuring instrument (measuring means) 4 such as an electric micrometer is installed so as to contact a guide member that guides the movement of the
The measuring device 4 measures the moving distance along the moving direction of the
そして、研削加工装置は、上ロール2a,下ロール2bおよびシュー3によりワークWが支持された状態において、測定器4によりワークWの外周部寸法と、あらかじめ設定したマスター値との差を算出する。
ここで、第1実施形態における外周部寸法としては、例えばワークWおける外周面の径寸法を採用してもよいが、例えば外周面の周方向に沿って形成された溝(内輪溝)の底における径寸法を採用してもよく、要するにワークWの研削加工面(内周面)に加工を施す際に基準となるワークの外側の径寸法である。
これによりあらかじめ設定したマスター値に対するワークWの外周部寸法の総誤差のばらつき量もしくは近似値が算出される。
Then, the grinding device calculates a difference between the outer peripheral dimension of the workpiece W and a preset master value by the measuring device 4 in a state where the workpiece W is supported by the
Here, as the outer peripheral portion dimension in the first embodiment, for example, the diameter dimension of the outer peripheral surface of the workpiece W may be adopted, but for example, the bottom of a groove (inner ring groove) formed along the circumferential direction of the outer peripheral surface. In other words, it is a diameter dimension on the outer side of the workpiece that serves as a reference when the grinding surface (inner peripheral surface) of the workpiece W is processed.
As a result, the variation amount or approximate value of the total error of the outer peripheral dimension of the workpiece W with respect to the preset master value is calculated.
なお、具体的なマスター値の設定方法や、ワークWの外周部寸法の総誤差のばらつき量もしくは近似値の算出方法としては、以下のようなものが考えられる。
例えば、図2に示すように、あらかじめ所望の外周部寸法に誤差なく加工されたマスターワークMWを研削加工装置に装着し、上ロール2aをマスターワークMWの外周部に接触させた状態で測定器4(図示せず)に0設定を行い、次いでマスターワークMWを研削加工装置から取り外した後、実際に研削加工面(内周面)を研削加工すべきワークWを研削加工装置に装着して、その外周部に上ロール2aを接触させれば、研削加工面(内周面)を研削加工すべきワークWの外周部寸法がマスター値に対して大径あるいは小径であると、マスター値との差がプラスの値、あるいはマイナスの値として測定器4により求められる。
そして、研削手段である回転砥石を移動させる(切り込ませる)サーボモータ等の駆動手段に対して、前述したプラスの値、あるいはマイナスの値から算出した補正値に基づく指令を行うことにより、所定のストップ位置まで切り込ませる制御を行えばよい。
In addition, the following can be considered as a specific method for setting a master value and a method for calculating a variation amount or an approximate value of the total error of the outer peripheral dimension of the workpiece W.
For example, as shown in FIG. 2, a measuring instrument is mounted in a state in which a master work MW that has been machined to a desired outer peripheral dimension without error is mounted on a grinding apparatus and the
Then, a command based on a correction value calculated from the positive value or the negative value described above is given to a driving means such as a servomotor that moves (cuts) the rotating grindstone as a grinding means. Control may be performed to cut to the stop position.
なお、例えばマスター値よりも外周部寸法が大径のワークWを測定器4により測定した結果、マスター値との差がプラスの値となるか、あるいはマイナスの値となるかは、測定器4の設置形態(場所・向き等)により異なる。
このため、測定器4の設置形態は任意に選択すればよい。
For example, as a result of measuring the workpiece W having a diameter larger than the master value with the measuring device 4, whether the difference from the master value is a positive value or a negative value is determined by the measuring device 4 It depends on the installation form (location, orientation, etc.).
For this reason, what is necessary is just to select the installation form of the measuring device 4 arbitrarily.
また、ワークWの外周部寸法の総誤差のばらつき量もしくは近似値の他の算出方法としては、多数のワークの研削加工面(内周面)を次々に研削加工する場合、1個目のワークからn個目(例えば10個目)のワークまで、それぞれのワークにおける外周部寸法を測定し、それらの平均値をマスター値とし、n+1個目のワークから以降は、このマスター値と外周部寸法との差に応じて算出した補正値に基づいて研削加工面(内周面)に研削加工を施してもよい。 In addition, as another method of calculating the variation amount or approximate value of the total error of the outer peripheral portion dimension of the workpiece W, when grinding the grinding surfaces (inner circumferential surfaces) of many workpieces one after another, the first workpiece From the n + 1th workpiece to the nth workpiece (for example, the 10th workpiece), the average value of the outer circumference is measured as the master value. Grinding may be applied to the ground surface (inner peripheral surface) based on the correction value calculated according to the difference between the two.
さらに、研削加工すべきn個目のワークから以前に遡った、すなわち既に研削加工済みの複数個(例えば10個の場合、n-10個目からn−1個目までのワーク)のワークの外周部寸法の平均値をマスター値として、ワークの研削加工面(内周面)に研削加工を施してもよい。この場合、マスター値は一定ではなく、流動的である。
この方法では、研削加工装置自身の温度や周囲の気温,湿度等に対して柔軟に対応できるという効果がある。
Further, a plurality of workpieces that have been previously ground from the n-th workpiece to be ground, that is, in the case of 10 workpieces (for example, the n-10th workpiece to the (n-1) th workpiece). You may grind to the grinding surface (inner peripheral surface) of a workpiece | work by making the average value of an outer peripheral part dimension into a master value. In this case, the master value is not constant but fluid.
This method has an effect that it can flexibly cope with the temperature of the grinding apparatus itself, the ambient temperature, humidity and the like.
測定器4による測定値はそのままワークWの外周部寸法のばらつき量もしくは近似値を示し、研削手段の移動量に対する補正値は例えば|k×測定値|(k:補正係数)で求めることができる。
以上のように算出された総誤差のばらつき量もしくは近似値に従って、研削手段の移動量(切込量)を補正する補正値を求め、この補正値を研削手段の移動機構の駆動回路に出力する。これにより、各ワークWの外周部寸法が個々にばらついていても、これらのばらつきに応じて研削手段の移動量(切込量)、換言すれば切り込み終了点(ストップ位置)が個々に設定される。
The measurement value obtained by the measuring instrument 4 directly shows the variation amount or approximate value of the outer peripheral dimension of the workpiece W, and the correction value for the movement amount of the grinding means can be obtained by, for example, | k × measurement value | (k: correction coefficient). .
In accordance with the variation amount or approximate value of the total error calculated as described above, a correction value for correcting the movement amount (cutting amount) of the grinding means is obtained, and this correction value is output to the drive circuit of the moving mechanism of the grinding means. . Thereby, even if the outer peripheral dimension of each workpiece W varies individually, the movement amount (cutting amount) of the grinding means, in other words, the cutting end point (stop position) is individually set according to these variations. The
具体的には、ワークWの外周部寸法がマスター値よりも大径である場合には研削手段の移動量(切込量)が小さく設定される。従って、基準となる外周部から研削加工面(内周面)までの寸法は大きくなるものの、所望値に極めて近い研削加工面の寸法が得られる。
一方、ワークWの外周部寸法がマスター値よりも小径である場合には研削手段の移動量(切込量)が大きく設定される。従って、基準となる外周部から研削加工面(内周面)までの寸法は小さくなるものの、所望値に極めて近い研削加工面の寸法が得られる。
Specifically, when the outer peripheral dimension of the workpiece W is larger than the master value, the moving amount (cutting amount) of the grinding means is set small. Accordingly, although the dimension from the outer peripheral portion serving as a reference to the ground surface (inner peripheral surface) is increased, the size of the ground surface that is extremely close to a desired value can be obtained.
On the other hand, when the outer peripheral dimension of the workpiece W is smaller than the master value, the movement amount (cutting amount) of the grinding means is set to be large. Therefore, although the dimension from the outer peripheral portion serving as a reference to the ground surface (inner peripheral surface) becomes small, the size of the ground surface that is extremely close to the desired value can be obtained.
前述した研削加工装置によれば、測定器4によりワークWの基準である外周部寸法と、あらかじめ設定したマスター値との差に基づいて研削手段の移動量(切込量)を補正して研削加工面(内周面)に研削加工を施すので、従来のようにインプロセスゲージをワークWの内側に挿入する必要がなく、これにより主軸周りが大型化,複雑化するという不都合を解消できる。 According to the above-described grinding apparatus, the measuring device 4 performs grinding by correcting the movement amount (cutting amount) of the grinding means based on the difference between the outer peripheral dimension which is the reference of the workpiece W and a preset master value. Since the machined surface (inner peripheral surface) is ground, it is not necessary to insert an in-process gauge inside the workpiece W as in the prior art, thereby eliminating the inconvenience of increasing the size and complexity of the spindle.
また、この研削加工装置は、測定器4によりマスター値に対するワークWの外周部寸法の総誤差のばらつき量もしくは近似値に基づいて算出された補正値により、研削加工面すなわちワークWの内周面あるいは外周面に研削加工を施すための研削手段の移動機構を制御する。
従って、ワークWにおける基準である外周部寸法にばらつきが生じている場合でも、このばらつきに応じて研削手段の移動量(切込量)、換言すれば切り込み終了点(ストップ位置)が個々に設定され、これにより基準となる外周部寸法に生じているばらつきが研削加工面(内周面)の寸法に影響する可能性を少なくできる。
In addition, this grinding apparatus uses the measuring device 4 to calculate the grinding surface, that is, the inner peripheral surface of the workpiece W based on the correction value calculated based on the variation amount or approximate value of the total error of the outer peripheral portion dimension of the workpiece W with respect to the master value. Alternatively, the moving mechanism of the grinding means for grinding the outer peripheral surface is controlled.
Therefore, even when there is variation in the outer peripheral dimension that is the reference for the workpiece W, the movement amount (cutting amount) of the grinding means, in other words, the cutting end point (stop position) is individually set according to this variation. Thus, it is possible to reduce the possibility that the variation occurring in the outer peripheral dimension serving as a reference affects the dimension of the ground surface (inner peripheral surface).
(実施例)
次に、図1の研削加工装置を用い、100個の円環状のワークWに対して、外周部寸法を基準として回転砥石により研削加工面である内周面を研削した場合、本願発明の補正の有無により研削加工面(内周面)に生じたばらつき幅の相違について比較例および実施例を説明する。
すなわち、比較例は、本願発明の補正を行わない、すなわち回転砥石の移動量(切込量)を一定とし、切込終了位置(ストップ位置)を固定として内周面の研削加工を完了した。その結果を図7に示す。
一方、実施例は、本願発明の補正を行う、すなわち外周部寸法に基づいて回転砥石の移動量(切込量)を個々に設定して内周面の研削加工を完了した。その結果を図8に示す。
(Example)
Next, when the grinding device of FIG. 1 is used to grind the inner circumferential surface, which is a grinding surface, with a rotating grindstone on the basis of the outer circumferential portion dimensions for 100 annular workpieces W, the correction of the present invention is performed. A comparative example and an example will be described with respect to the difference in variation width generated on the ground surface (inner peripheral surface) depending on whether or not there is.
That is, in the comparative example, the correction of the present invention was not performed, that is, the moving amount (cutting amount) of the rotating grindstone was made constant, and the grinding process of the inner peripheral surface was completed with the cutting end position (stop position) fixed. The result is shown in FIG.
On the other hand, in the embodiment, the correction of the present invention was performed, that is, the movement amount (cutting amount) of the rotating grindstone was individually set based on the outer peripheral portion dimension, and the grinding of the inner peripheral surface was completed. The result is shown in FIG.
なお、ここで言うばらつきとは、研削加工面である内周面の内径寸法の最大値から最小値までの振幅であり、ねらい寸法(設計上の所望値)とは直接関係ない。 The variation referred to here is the amplitude from the maximum value to the minimum value of the inner diameter of the inner peripheral surface, which is a grinding surface, and is not directly related to the target size (desired value in design).
図7および図8から明らかなように、本願発明の補正を行わない図7の比較例に比較して、本願発明の補正を行った図8の実施例はばらつきが大幅に少なく、かつ、安定していることが判る。 As is apparent from FIGS. 7 and 8, the embodiment of FIG. 8 in which the correction of the present invention is corrected is significantly less varied and stable than the comparative example of FIG. 7 in which the correction of the present invention is not performed. You can see that
なお、本発明の研削加工装置は、前述した実施形態に限定されるものではなく、適宜な変形、改良が可能である。 The grinding apparatus of the present invention is not limited to the above-described embodiment, and appropriate modifications and improvements can be made.
図3および図4を参照して、本発明に係る第2および第3の実施形態である研削加工装置を説明する。
なお、以下に説明する各実施形態において、既に図1において説明した部材等については、図中に同一符号あるいは相当符号を付すことにより説明を簡略化あるいは省略する。
With reference to FIG. 3 and FIG. 4, the grinding apparatus which is the 2nd and 3rd embodiment which concerns on this invention is demonstrated.
In each embodiment described below, members and the like already described in FIG. 1 are given the same or corresponding reference numerals in the drawing to simplify or omit the description.
図3に示すように、本発明に係る第2実施形態である研削加工装置は、上ロール2aがアーム5に旋回可能に支持されてアーム5の中間部を支点O1として上ロール2aが旋回運動する場合の例である。
この場合、測定器4は、アーム5における支点O1を間に挟んで上ロール2aの反対側に設置されている。
そして、上ロール2aによりワークWを上ロール2a,シュー3に押し付けた状態でワークWの基準である外周部寸法を測定器4により測定し、あらかじめ設定したマスター値と測定器4の測定値との差に基づいて研削手段である回転砥石の移動量(切込量)を補正する。
As shown in FIG. 3, grinding apparatus according to a second embodiment of the present invention, the
In this case, the measuring instrument 4 is installed on the opposite side of the
And the outer peripheral part dimension which is the reference | standard of the workpiece | work W is measured with the measuring device 4 in the state which pressed the workpiece | work W against the
この第2実施形態では、上ロール2aの径Daに比べてワークWの径Dbは十分に小さく、また、あらかじめ設定されたマスター値に対するワークWの研削加工面の内径寸法のプラス誤差あるいはマイナス誤差は上ロール2aの径Daに比べて十分に小さいため、支点O1−上ロール2aの中心間距離L1と支点O1−測定器4の測定点間距離L2との比から研削手段の移動量に対する補正値=|(L1/L2)×測定値×k|を求めることができる。
なお、作用効果については、第1実施形態と略同様であるため説明を省略する。
In the second embodiment, the diameter Db of the workpiece W is sufficiently smaller than the diameter Da of the
In addition, about an effect, since it is substantially the same as 1st Embodiment, description is abbreviate | omitted.
図4に示すように、本発明に係る第3実施形態である研削加工装置は、上ロール2aがアーム6に旋回可能に支持されて該アーム6の支点O2を中心として上ロール2aが旋回運動し、かつ、アーム6の支点O2から若干上ロール2a側に寄った位置でアーム6の下側面から下方に計測点用アーム7が突設された場合の例である。
As shown in FIG. 4, in the grinding apparatus according to the third embodiment of the present invention, the
この場合、測定器4は、計測点用アーム7の下端の下ロール2bから離反する側の面に設置されている。
そして、ワークWが下ロール2b,シュー3に押し付けられた状態でワークWの基準となる外周部寸法を測定器4により測定し、あらかじめ設定したマスター値と測定器4の測定値との差に基づいて研削手段である回転砥石の移動量を補正する。
In this case, the measuring instrument 4 is installed on the surface on the side away from the
Then, with the workpiece W pressed against the
この第3実施形態の場合も、前述した第2実施形態と同様に、上ロール2aの径Daに比べてワークWの径Dbは十分に小さく、また、加工後のワークWの径のマスター値からの誤差寸法は、上ロール2aの径Daに比べて十分に小さいため、支点O2−ワークWの中心間距離L3と支点O2−計測点間距離L4と支点O2−計測点間距離L5のと比から補正値=|L3/{(L4)2+(L5)2}-1/2×測定値×k|で求められる。
Also in the case of the third embodiment, the diameter Db of the workpiece W is sufficiently smaller than the diameter Da of the
また、L5がL4より十分長い場合はもっと簡単に、sinθ(θ:アーム7の回転角)=測定値/L5、補正値=|sinθ×L3×k|=|(L3/L5)×測定値×k|のように近似することができる。測定器4の位置,向き等により補正値は、プラスの値あるいはマイナスの値となる。
なお、作用効果については、第1実施形態と略同様であるため説明を省略する。
Further, when L 5 is sufficiently longer than L 4 , sin θ (θ: rotation angle of arm 7) = measured value / L 5 , correction value = | sin θ × L 3 × k | = | (L 3 / L 5 ) × measured value × k | can be approximated. The correction value is a positive value or a negative value depending on the position and orientation of the measuring device 4.
In addition, about an effect, since it is substantially the same as 1st Embodiment, description is abbreviate | omitted.
なお、図5は、例えばマグネットチャックと複数のシュー3とを用いたシューセンタレス方式の内面研削盤において、基準となるワークWの外周部寸法を接触式もしくは非接触式の測定器4で測定し、この測定値をあらかじめ設定したマスター値と比較して補正値を求め、研削手段である回転砥石10の移動量を補正する。
測定器4による測定値はそのままワークWの外周部寸法のばらつきを示し、研削手段の回転砥石10の移動量に対する補正値は|k×測定値|で求めることができる。
Note that FIG. 5 is a shoe centerless type internal grinding machine using a magnet chuck and a plurality of
The measurement value obtained by the measuring instrument 4 shows the variation in the outer peripheral part size of the workpiece W as it is, and the correction value for the movement amount of the
また、図6は、マグネットチャックと複数のシュー3とを用いたシューセンタレス方式の外面研削盤において、基準となるワークWの外周部寸法を接触式もしくは非接触式の測定器4で測定し、この測定値をあらかじめ設定したマスター値と比較して補正値を求め、研削手段である回転砥石10の移動量を補正して研削加工面である外周面を研削する。
この場合も測定器4による測定値はそのままワークWの外周部寸法のばらつきを示し、研削手段の砥石11の移動量に対する補正値は|k×測定値|で求めることができる。
FIG. 6 is a shoe centerless type outer surface grinding machine using a magnet chuck and a plurality of
Also in this case, the measurement value obtained by the measuring instrument 4 shows the variation in the outer peripheral portion dimension of the workpiece W as it is, and the correction value for the movement amount of the
なお、本発明は、2ロール1シュー構造を持つシューセンタレス方式により、軸受を構成する内輪の外周面に沿って形成された溝(内輪溝)に研削加工を施す場合にも適用可能である。
その他、前述した各実施形態において例示した回転軸、一対のロール、ワーク、研削手段、測定手段、シュー等の材質、形状、寸法、形態、数、配置箇所等は本発明を達成できるものであれば任意であり、限定されない。
The present invention can also be applied to a case where a groove (inner ring groove) formed along the outer peripheral surface of the inner ring constituting the bearing is ground by a shoe centerless system having a two-roll one-shoe structure.
In addition, the materials, shapes, dimensions, forms, numbers, placement locations, etc. of the rotating shaft, the pair of rolls, the workpiece, the grinding means, the measuring means, the shoe, etc., exemplified in the above-described embodiments can achieve the present invention. It is arbitrary and is not limited.
2a 上ロール
2b 下ロール
3 シュー
4 計測器(測定手段)
W ワーク
W Work
Claims (4)
前記ワークの基準となる外周部寸法と、あらかじめ設定したマスター値との差を測定手段により求め、前記測定手段の測定値に基づいて前記研削手段の切込量を補正することを特徴とする研削加工方法。 A grinding method for grinding a grinding surface by rotating a substantially annular workpiece while cutting a grinding means in contact with the grinding surface of the workpiece along a radial direction of the workpiece. Because
Grinding characterized in that a difference between an outer peripheral dimension serving as a reference of the workpiece and a preset master value is obtained by a measuring means, and a cutting amount of the grinding means is corrected based on a measured value of the measuring means. Processing method.
前記ワークの基準となる外周部寸法を測定する測定手段を備え、前記測定手段の測定値と、あらかじめ設定したマスター値との差に基づいて前記研削手段の切込量を補正することを特徴とする研削加工装置。 A grinding apparatus having a holding means for holding and rotating a substantially annular workpiece, and a grinding means that comes into contact with a grinding surface of the workpiece and can be cut along a radial direction of the workpiece,
A measuring means for measuring an outer peripheral dimension serving as a reference of the workpiece; and correcting a cutting amount of the grinding means based on a difference between a measured value of the measuring means and a preset master value. To grind.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003328086A JP2005088167A (en) | 2003-09-19 | 2003-09-19 | Grinding method and grinding device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003328086A JP2005088167A (en) | 2003-09-19 | 2003-09-19 | Grinding method and grinding device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005088167A true JP2005088167A (en) | 2005-04-07 |
Family
ID=34457774
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003328086A Withdrawn JP2005088167A (en) | 2003-09-19 | 2003-09-19 | Grinding method and grinding device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005088167A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014199927A1 (en) * | 2013-06-11 | 2014-12-18 | 日本精工株式会社 | Grinding machine |
CN108356614A (en) * | 2018-04-25 | 2018-08-03 | 三门峡中测量仪有限公司 | A kind of excircle of workpiece grinds contactless monitoring device and method |
-
2003
- 2003-09-19 JP JP2003328086A patent/JP2005088167A/en not_active Withdrawn
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014199927A1 (en) * | 2013-06-11 | 2014-12-18 | 日本精工株式会社 | Grinding machine |
JP2014240094A (en) * | 2013-06-11 | 2014-12-25 | 日本精工株式会社 | Grinding machine |
US9999961B2 (en) | 2013-06-11 | 2018-06-19 | Nsk Ltd. | Grinding machine |
CN108356614A (en) * | 2018-04-25 | 2018-08-03 | 三门峡中测量仪有限公司 | A kind of excircle of workpiece grinds contactless monitoring device and method |
CN108356614B (en) * | 2018-04-25 | 2024-04-26 | 三门峡中测量仪有限公司 | Non-contact type monitoring device and method for workpiece cylindrical grinding |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6986702B2 (en) | Centerless grinding apparatus and centerless grinding method | |
US9446499B2 (en) | Grinding wheel truing method and grinding machine | |
JPH0258060B2 (en) | ||
JP2013521141A (en) | Automatic calibration | |
JP2010194623A (en) | Thread grinding machine and thread groove grinding method | |
JP2005088167A (en) | Grinding method and grinding device | |
JP4940904B2 (en) | Bulk quantity measuring device | |
JP5395570B2 (en) | Cylindrical grinding method and apparatus | |
JP5251429B2 (en) | Grinder | |
JP4427750B2 (en) | Fine recess processing apparatus and fine recess processing method | |
JP4964550B2 (en) | Compound grinding method | |
JPH1015800A (en) | Grinding method | |
JP2023077946A (en) | Grinder | |
JPH01246072A (en) | Grinding surface dressing method for grinding stone | |
JP5700264B2 (en) | Wafer edge processing apparatus and edge processing method thereof | |
JP5262437B2 (en) | Truing method and grinding method for grinding wheel | |
JP2007301695A (en) | Method and device for chamfering of spectacle lens | |
JP2008161959A (en) | Working method and working device | |
KR102574589B1 (en) | Apparatus of grinding for works and control method thereof | |
JPS63306878A (en) | Machining method for tapered roller bearing inner ring | |
JP2024004925A (en) | Measuring apparatus and measuring method | |
JP2023079530A (en) | Grinder | |
JP2024046938A (en) | Grinding method by centerless shoe | |
JP6135288B2 (en) | Grinder | |
JP2022051602A (en) | Center hole forming device of shaft member and center hole forming method of shaft member |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20060325 |
|
A621 | Written request for application examination |
Effective date: 20060828 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
RD04 | Notification of resignation of power of attorney |
Effective date: 20071128 Free format text: JAPANESE INTERMEDIATE CODE: A7424 |
|
A761 | Written withdrawal of application |
Free format text: JAPANESE INTERMEDIATE CODE: A761 Effective date: 20081007 |