JP2005088148A - Polishing method, die or optical element or optical scanning unit - Google Patents

Polishing method, die or optical element or optical scanning unit Download PDF

Info

Publication number
JP2005088148A
JP2005088148A JP2003327011A JP2003327011A JP2005088148A JP 2005088148 A JP2005088148 A JP 2005088148A JP 2003327011 A JP2003327011 A JP 2003327011A JP 2003327011 A JP2003327011 A JP 2003327011A JP 2005088148 A JP2005088148 A JP 2005088148A
Authority
JP
Japan
Prior art keywords
polishing
tool
shape
removal efficiency
control command
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003327011A
Other languages
Japanese (ja)
Other versions
JP4092276B2 (en
Inventor
Hidetoshi Sakae
英利 寒河江
Hiroyuki Endo
弘之 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2003327011A priority Critical patent/JP4092276B2/en
Publication of JP2005088148A publication Critical patent/JP2005088148A/en
Application granted granted Critical
Publication of JP4092276B2 publication Critical patent/JP4092276B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polishing method for polishing an optical element or a die for forming the optical element by correcting shape errors of the surface to be polished, and further to provide the die or the optical element or an optical scanning unit. <P>SOLUTION: A polishing apparatus 1 polishes a workpiece P so as to give a curved surface by controlling a polishing tool 2, which is attached to a spindle and has a specified radius of curvature, while applying a specified load to the workpiece according to a polishing control command and turning the tool at a specified peripheral speed. The polishing apparatus 1 acquires the removal efficiency variation of the polishing tool 2 for at least one of the polishing time or the moving distance of the polishing tool 2 from the polishing results in the preceding polishing process for the workpiece, the removal efficiency of the polishing tool 2 being defined as the removed depth of the workpiece P by the polishing tool 2 per a unit time. Then, the polishing apparatus 1 generates a polishing control command value in the following polishing process from the shape errors to be removed and the removal efficiency variation. As a result, the polishing process for giving a high shape accuracy is carried out at a reduced number of repetition. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、研磨方法、金型または光学素子あるいは走査光学ユニットに関し、詳細には、光学素子または光学素子成形用金型を、被加工面の形状誤差を修正して研磨加工する研磨方法、金型または光学素子あるいは走査光学ユニットに関する。   The present invention relates to a polishing method, a mold, an optical element, or a scanning optical unit, and more specifically, a polishing method, a mold for polishing an optical element or a mold for molding an optical element by correcting a shape error of a processing surface, and a mold The present invention relates to a mold, an optical element, or a scanning optical unit.

近年、複写機、レーザプリンタ等の電子写真方式の画像形成装置においては、レーザ走査の高密度化、カラー化に伴って、ビーム径がますます小さくなり、走査レンズの精度も非常に高く要求されてきている。   In recent years, in electrophotographic image forming apparatuses such as copying machines and laser printers, the beam diameter has become smaller and the scanning lens accuracy has become very high as laser scanning has become more dense and colored. It is coming.

そして、従来、自由曲面の光学素子を高精度に形状創成する加工方法としては、ダイヤモンド切削に代表される超精密切削、ダイヤモンド砥石やCBN砥石を主に用いる超精密研削が知られており、近年では、小径の研磨工具をほぼ点接触状態で作用させ、滞留時間の制御で形状創成を行ういわゆる形状創成研磨工法も多用されてきている。   Conventionally, as a processing method for creating an optical element having a free-form surface with high accuracy, ultra-precision cutting represented by diamond cutting, ultra-precision grinding mainly using a diamond grindstone or a CBN grindstone has been known. Then, a so-called shape creation polishing method in which a small diameter polishing tool is made to act in a substantially point contact state and shape creation is performed by controlling the residence time has been frequently used.

これらの工法においては、いずれも被加工面の面積に比べて、数百から数千分の一といった充分に小さい工具の接触領域を工面全面に走査することで、面形状を創成する。そして、これらの工法にあっては、工具の走査中に工具状態、例えば、工具切れ刃の形状や除去能率、が変化すると、直接的に形状誤差を発生させるため、サブμmレベルの高精度な形状加工の阻害要因となるという問題があった。   In these methods, the surface shape is created by scanning the entire contact surface of a sufficiently small tool contact area, such as several hundred to several thousandths, as compared with the area of the work surface. In these construction methods, when the tool state, for example, the shape of the tool cutting edge or the removal efficiency, changes during the scanning of the tool, a shape error is directly generated. There was a problem that it became an obstruction factor for shape processing.

そこで、従来、複数回加工における形状誤差を取得し、その平均成分を前回指令から減算することで、加工指令を補正するNC加工装置が提案されている(特許文献1参照)。   Therefore, conventionally, an NC machining apparatus has been proposed that corrects a machining command by obtaining a shape error in a plurality of machining operations and subtracting the average component from the previous command (see Patent Document 1).

この従来技術は、理想形状からの誤差成分を加算あるいは減算してNCデータに反映させて補正することは、複数回加工の誤差の平均という点を除けば、従来から一般に行われており、超精密研削や切削等の工具軌跡を転写させて形状創成する原理の工法においては、前加工に用いた工具軌跡を基準として、上記方法を用いると、相対的に精度を高めることができることは、従来から確認されている。   In this conventional technique, correction by adding or subtracting an error component from an ideal shape and reflecting it in the NC data is generally performed except for an average of errors of a plurality of machining operations. In the construction method of the principle of creating a shape by transferring the tool trajectory such as precision grinding or cutting, it is conventional that the accuracy can be relatively improved by using the above method based on the tool trajectory used in the pre-processing. It has been confirmed from.

ところが、理想形状からのズレ量を形状誤差として取り扱うことは、前加工面を基準とした圧力転写型の形状創成研磨においても同様であるが、切削や研磨で基準とした前加工での工具軌跡に相当するものが存在しないため、上記従来技術の方法では、充分な精度を得ることができない。   However, the amount of deviation from the ideal shape is treated as a shape error in the pressure transfer type shape creation polishing based on the pre-processed surface. Since there is no equivalent to the above method, sufficient accuracy cannot be obtained by the above-described prior art method.

すなわち、形状創成研磨はあくまで前回加工後の形状誤差から加工指令を生成する工法である。   That is, shape creation polishing is a method for generating a machining command from a shape error after the previous machining.

そして、このような条件下にある形状創成研磨での加工誤差抑制法としては、例えば、本出願人が先に提案した曲面研磨システムおよびレンズ金型研磨方法がある(特許文献2参照)。   As a processing error suppression method in shape creation polishing under such conditions, for example, there are a curved surface polishing system and a lens mold polishing method previously proposed by the present applicant (see Patent Document 2).

この従来技術は、研磨工具の除去能率の劣化をインプロセスで工具表面の色から判定し、除去能率変動分だけ研磨条件を補正するものである。   In this prior art, deterioration of the removal efficiency of the polishing tool is determined in-process from the color of the tool surface, and the polishing conditions are corrected by the amount of change in the removal efficiency.

特開平9−57621号公報JP-A-9-57621 特開2003−39296号公報JP 2003-39296 A

しかしながら、このような特許文献2記載の従来技術にあっては、研磨工具除去能率の変動が、加工時間のみならず、被加工面の曲率半径にも影響される場合、その影響も含めて除去能率推定のデータベースを用意する必要があり、このデータベースが不十分であると、十分な効果を得ることができないおそれがあり、改良の必要があった。   However, in the conventional technique described in Patent Document 2, when the fluctuation of the polishing tool removal efficiency is affected not only by the machining time but also by the curvature radius of the surface to be machined, the removal is also included. It is necessary to prepare a database for estimating the efficiency. If this database is insufficient, there is a possibility that a sufficient effect cannot be obtained, and improvement is necessary.

そこで、本発明は、前回の形状創成研磨加工の結果から、研磨工具の除去能率変動を正確に取得し、その除去能率変動を補正して、形状創成研磨の加工誤差を簡易な手法で大幅に低減する高精度な研磨方法、金型または光学素子あるいは走査光学ユニットを提供することを目的としている。   Therefore, the present invention accurately acquires the removal efficiency variation of the polishing tool from the result of the previous shape creation polishing process, corrects the removal efficiency variation, and greatly reduces the processing error of the shape creation polishing by a simple method. An object of the present invention is to provide a highly accurate polishing method, a mold, an optical element, or a scanning optical unit that can be reduced.

具体的には、請求項1記載の発明は、回転軸に取り付けられた所定の曲率半径の研磨工具を、研磨制御指令に応じて一定荷重をかけつつ回転軸周りに一定工具周速で回転させながら制御して、被加工物を曲面に研磨加工するに際して、研磨工具による単位時間当たりの被加工物の除去深さを当該研磨工具の除去能率とし、当該被加工物に対する前回の研磨結果から研磨時間あるいは当該研磨工具の走査距離のうち少なくとも一方に対する研磨工具の除去能率変動を取得し、除去すべき形状誤差量と当該除去能率変動値から次回の研磨加工における研磨制御指令値を生成することにより、少ない繰り返し加工数で、高い形状精度の研磨加工を行うことのできる形状創成研磨方法を提供することを目的としている。   Specifically, according to the first aspect of the present invention, a polishing tool having a predetermined radius of curvature attached to a rotating shaft is rotated at a constant tool peripheral speed around the rotating shaft while applying a constant load according to a polishing control command. However, when polishing the workpiece into a curved surface, the removal depth of the workpiece per unit time by the polishing tool is defined as the removal efficiency of the polishing tool, and polishing is performed from the previous polishing result for the workpiece. By obtaining the removal efficiency fluctuation of the polishing tool with respect to at least one of the time or the scanning distance of the grinding tool, and generating a polishing control command value in the next polishing process from the shape error amount to be removed and the removal efficiency fluctuation value An object of the present invention is to provide a shape creation polishing method capable of performing polishing processing with high shape accuracy with a small number of repeated processing.

請求項2記載の発明は、研磨制御指令値を、研磨工具の滞留時間、研磨荷重、工具周速のうち1つまたは2つ以上の組み合わせで構成されているものとすることにより、研磨工具の切れ味が経時的に劣化するときに、研磨制御指令値が滞留時間を増加させて加工時間を増大させてしまうことを、切れ味劣化を工具周速の増加によって、防止し、加工時間を犠牲にすることなく、研磨加工を高精度化し、滞留時間、研磨荷重、工具周速を適宜組み合わせて使用して、加工能率と高精度加工を両立させる形状創成研磨方法を提供することを目的としている。   The invention according to claim 2 is configured such that the polishing control command value is configured by one or a combination of two or more of the dwell time of the polishing tool, the polishing load, and the tool peripheral speed. When the sharpness deteriorates over time, the polishing control command value increases the residence time and increases the machining time, thereby preventing sharpness deterioration by increasing the tool peripheral speed and sacrificing the machining time. Therefore, it is an object of the present invention to provide a shape-generating polishing method that achieves both high processing efficiency and high-precision processing by using high-precision polishing processing and using an appropriate combination of dwell time, polishing load, and tool peripheral speed.

請求項3記載の発明は、研磨工具の除去能率変動を、研磨加工によって生じた被加工面の曲率変化をΔC_out、研磨制御指令としての曲率変化量をΔC_inとしたとき、式(1)で与えられる係数Mで示されるものとすることにより、測定データに深さ方向の基準を待たないものであっても、加工深さに相当する実加工量を取得して、特別な計測を実施することなく、データ処理の手順を付与するだけで高精度の加工を行うことのできる形状創成研磨方法を提供することを目的としている。   According to the third aspect of the present invention, the removal efficiency variation of the polishing tool is given by equation (1) when ΔC_out is the change in curvature of the surface to be processed caused by polishing and ΔC_in is the amount of change in curvature as the polishing control command. Even if the measurement data does not wait for a reference in the depth direction, the actual machining amount corresponding to the machining depth is acquired and special measurement is performed. It is another object of the present invention to provide a shape creation polishing method that can perform high-precision processing only by providing a data processing procedure.

請求項4記載の発明は、研磨工具の除去能率変動を、研磨加工によって生じた被加工面のうねり振幅の変化をΔW_out、研磨制御指令としてのうねり振幅をΔW_inとしたとき、式(2)で与えられる係数Lで示されるものとすることにより、測定データに深さ方向の基準を待たないものであっても、加工深さに相当する実加工量を取得して、特別な計測を実施することなく、データ処理の手順を付与するだけで高精度の加工を行うことのできる形状創成研磨方法を提供することを目的としている。   In the invention according to claim 4, when the fluctuation of the removal efficiency of the polishing tool is expressed by the equation (2) when ΔW_out is the change in the waviness amplitude of the work surface caused by the polishing, and ΔW_in is the waviness amplitude as the polishing control command. Even if the measurement data does not wait for a reference in the depth direction, the actual machining amount corresponding to the machining depth is acquired and special measurement is performed. Therefore, it is an object of the present invention to provide a shape creation polishing method capable of performing high-precision processing only by providing a data processing procedure.

請求項5記載の発明は、研磨工具の除去能率変動を、研磨加工によって生じた被加工面の除去深さをd_out、研磨制御指令の深さをd_inとしたとき、式(3)で与えられる係数Nで示されるものとすることにより、光学面の延長にコバ面のような高さ方向の基準をとれる場合に、研磨加工量を除去深さでとらえることで、確実にかつ高精度に除去能率変動を把握し、除去能率変化が研磨工具の走査方向にも影響を持つような高周波の変化をも把握して、研磨工具を主走査方向へトラバースする場合や正方形ワーク等に対して高精度の加工を行うことのできる形状創成研磨方法を提供することを目的としている。   According to the fifth aspect of the present invention, the removal efficiency variation of the polishing tool is given by equation (3), where d_out is the removal depth of the work surface generated by polishing and d_in is the depth of the polishing control command. By using the coefficient N, it is possible to reliably and accurately remove the polishing amount with the removal depth when the optical surface can be extended in the height direction like the edge surface. Grasping efficiency fluctuations, grasping high-frequency changes that change removal efficiency also affects the scanning direction of the polishing tool, and highly accurate when traversing the polishing tool in the main scanning direction, square workpieces, etc. An object of the present invention is to provide a shape creation polishing method capable of performing the above-described processing.

請求項6記載の発明は、被加工面の除去深さを、加工前と加工後の被加工面の面形状データをXYZ座標値で表現した際の点群で取得し、式(4)の直交多項式または移動平均法で、加工前後の被加工面における任意のXY座標点でのZ値の差分を求めて加工したときに生じた除去深さとすることにより、データ補間により形状測定のプローブ走査が粗くデータ点数が少ない場合であっても、正確な除去深さ評価を行い、直交多項式で任意の形状に任意の空間波長に自由に追従させて、高精度の加工を行うことのできる形状創成研磨方法を提供することを目的としている。   The invention according to claim 6 acquires the removal depth of the surface to be processed as a point cloud when the surface shape data of the surface to be processed before and after the processing is expressed by XYZ coordinate values. Probe scan for shape measurement by data interpolation by using the orthogonal polynomial or moving average method to determine the difference in Z value at any XY coordinate point on the work surface before and after machining and using it as the removal depth Even if the data is rough and the number of data points is small, accurate removal depth evaluation is performed, and a shape can be created with high accuracy by freely tracking an arbitrary shape to an arbitrary spatial wavelength with an orthogonal polynomial. The object is to provide a polishing method.

請求項7記載の発明は、形状創成研磨方法を、被加工面の研磨領域が長方形で表せ、当該長方形の短手方向に研磨工具を走査し、当該短手方向の走査を行うと、当該長方形の長手方向に微少量移動する動作を繰り返し行って研磨加工を実施し、除去能率変化の状態を、請求項3から請求項5のいずれかに記載の形状創成研磨方法で係数M、係数L、係数Nのいずれかの値として求め、長手方向の位置に対する変化状態が式(5)で与えられる関数g(x)とすることにより、除去能率劣化、加工誤差を直ちに組み合わせて研磨制御指令値の補正データを取得し、NCデータ作成をより簡易に行って、より一層簡単にかつ高精度の加工を行うことのできる形状創成研磨方法を提供することを目的としている。   The invention according to claim 7 is the shape creation polishing method, wherein the polishing area of the work surface can be represented by a rectangle, the polishing tool is scanned in the short direction of the rectangle, and the short direction is scanned. The operation of moving in a small amount in the longitudinal direction is repeated to perform polishing, and the state of removal efficiency change is determined by the coefficient M, the coefficient L, the shape creation polishing method according to any one of claims 3 to 5. By obtaining as a value of any one of the coefficients N and setting the change state with respect to the position in the longitudinal direction as the function g (x) given by the equation (5), the removal efficiency deterioration and the processing error are immediately combined to determine the polishing control command value. It is an object of the present invention to provide a shape creation polishing method capable of acquiring correction data and creating NC data more easily and performing machining more easily and with high accuracy.

請求項8記載の発明は、関数g(x)を、式(6)で示される多項式とし、その次数を、複数回の加工結果から再現性のある範囲で高い次数に設定することにより、除去能率の劣化を一次回帰(直線)成分のみならず、高次の項まで補正し、より少ない回数の研磨で、より高い形状精度の曲面加工を行うことのできる形状創成研磨方法を提供することを目的としている。   The invention according to claim 8 eliminates the function g (x) by setting the order to a high degree within a reproducible range from a plurality of machining results, with the function g (x) being a polynomial represented by the equation (6). To provide a shape creation polishing method that corrects not only the linear regression (linear) component but also higher-order terms for efficiency deterioration, and can perform curved surface processing with higher shape accuracy with fewer polishing. It is aimed.

請求項9記載の発明は、光学素子を成形する金型を、請求項1から請求項8のいずれかに記載の形状創成研磨方法で研磨されたものとし、光学素子を、請求項1から請求項8のいずれかに記載の形状創成研磨方法で研磨された金型を用いて成形されたものとすることにより、高能率で高精度な金型及び抵コストで高性能の光学素子を提供することを目的としている。   According to a ninth aspect of the present invention, a mold for molding an optical element is polished by the shape creation polishing method according to any one of the first to eighth aspects, and the optical element is defined by the first to the third aspects. A high-efficiency and high-precision mold and a high-performance optical element at low cost are provided by using a mold that has been polished by the shape creation polishing method according to any one of Items 8. The purpose is that.

請求項10記載の発明は、画像データで変調されレーザ光源から出射されたレーザを、複数の光学素子を使用して、一様に帯電された感光体に照射する走査光学ユニットの光学素子を、請求項1から請求項8のいずれかに記載の形状創成研磨方法で研磨された金型を用いて成形することにより、抵コストで高性能の走査光学ユニットを提供することを目的としている。   The invention according to claim 10 is an optical element of a scanning optical unit that irradiates a uniformly charged photoconductor using a plurality of optical elements with a laser beam modulated by image data and emitted from a laser light source. It is an object of the present invention to provide a high-performance scanning optical unit at low cost by molding using a mold polished by the shape creation polishing method according to any one of claims 1 to 8.

請求項1記載の発明の研磨方法は、回転軸に取り付けられた所定の曲率半径の研磨工具を、研磨制御指令に応じて一定荷重をかけつつ前記回転軸周りに一定工具周速で回転させながら制御して、被加工物を曲面に研磨加工する研磨方法において、前記研磨工具による単位時間当たりの前記被加工物の除去深さを当該研磨工具の除去能率とし、当該被加工物に対する前回の研磨結果から研磨時間あるいは当該研磨工具の走査距離のうち少なくとも一方に対する前記研磨工具の除去能率変動を取得し、除去すべき形状誤差量と当該除去能率変動値から次回の研磨加工における研磨制御指令値を生成することにより、上記目的を達成している。   The polishing method according to the first aspect of the present invention is to rotate a polishing tool having a predetermined radius of curvature attached to a rotating shaft around the rotating shaft at a constant tool peripheral speed while applying a constant load according to a polishing control command. In a polishing method for controlling and polishing a workpiece into a curved surface, the removal depth of the workpiece per unit time by the polishing tool is defined as the removal efficiency of the polishing tool, and the previous polishing for the workpiece is performed. From the result, the removal efficiency fluctuation of the polishing tool with respect to at least one of the polishing time or the scanning distance of the polishing tool is acquired, and the polishing control command value in the next polishing process is determined from the shape error amount to be removed and the removal efficiency fluctuation value. The above-mentioned purpose is achieved by generating.

この場合、例えば、請求項2に記載するように、前記研磨制御指令値は、前記研磨工具の滞留時間、研磨荷重、工具周速のうち1つまたは2つ以上の組み合わせで構成されていてもよい。   In this case, for example, as described in claim 2, the polishing control command value may be configured by one or a combination of two or more of the dwell time, polishing load, and tool peripheral speed of the polishing tool. Good.

また、例えば、請求項3に記載するように、前記研磨工具の除去能率変動は、前記研磨加工によって生じた前記被加工面の曲率変化をΔC_out、研磨制御指令としての曲率変化量をΔC_inとしたとき、上記式(1)で与えられる係数Mで示されものであってもよい。   For example, as described in claim 3, the removal efficiency variation of the polishing tool is defined as ΔC_out for a change in curvature of the surface to be processed caused by the polishing, and ΔC_in for a change in curvature as a polishing control command. Sometimes, it may be indicated by the coefficient M given by the above equation (1).

さらに、例えば、請求項4に記載するように、前記研磨工具の除去能率変動は、前記研磨加工によって生じた前記被加工面のうねり振幅の変化をΔW_out、研磨制御指令としてのうねり振幅をΔW_inとしたとき、上記式(2)で与えられる係数Lで示されるものであってもよい。   Further, for example, as described in claim 4, the removal efficiency fluctuation of the polishing tool is expressed as follows: ΔW_out is a change in the waviness amplitude of the surface to be processed caused by the polishing, and ΔW_in is a waviness amplitude as a polishing control command. Then, it may be indicated by the coefficient L given by the above equation (2).

また、例えば、請求項5に記載するように、前記研磨工具の除去能率変動は、前記研磨加工によって生じた前記被加工面の除去深さをd_out、研磨制御指令の深さをd_inとしたとき、上記式(3)で与えられる係数Nで示されるものであってもよい。   Further, for example, as described in claim 5, the removal efficiency fluctuation of the polishing tool is determined when d_out is a removal depth of the work surface generated by the polishing and d_in is a depth of a polishing control command. The coefficient N may be given by the above equation (3).

さらに、例えば、請求項6に記載するように、前記被加工面の除去深さは、加工前と加工後の前記被加工面の面形状データをXYZ座標値で表現した際の点群で取得し、上記式(4)の直交多項式または移動平均法で、加工前後の被加工面における任意のXY座標点でのZ値の差分を求めて加工したときに生じた除去深さであってもよい。   Furthermore, for example, as described in claim 6, the removal depth of the surface to be processed is acquired by a point cloud when surface shape data of the surface to be processed before and after processing is expressed by XYZ coordinate values. Even with the orthogonal polynomial or the moving average method of the above formula (4), even the removal depth generated when machining is performed by obtaining the difference of Z values at arbitrary XY coordinate points on the machining surface before and after machining. Good.

また、例えば、請求項7に記載するように、前記形状創成研磨方法は、前記被加工面の研磨領域が長方形で表せ、当該長方形の短手方向に前記研磨工具を走査し、当該短手方向の走査を行うと、当該長方形の長手方向に微少量移動する動作を繰り返し行って研磨加工を実施し、前記除去能率変化の状態を、前記請求項3から請求項5のいずれかに記載の形状創成研磨方法で係数M、係数L、係数Nのいずれかの値として求め、前記長手方向の位置に対する変化状態が上記式(5)で与えられる関数g(x)であってもよい。   Further, for example, as described in claim 7, in the shape creation polishing method, the polishing area of the work surface can be represented by a rectangle, the polishing tool is scanned in the short direction of the rectangle, and the short direction When the above scanning is performed, an operation of moving a small amount in the longitudinal direction of the rectangle is repeatedly performed to perform polishing, and the state of the removal efficiency change is the shape according to any one of claims 3 to 5. The function g (x) given by the above equation (5) may be obtained as a value of any one of the coefficient M, the coefficient L, and the coefficient N by the creative polishing method, and the change state with respect to the position in the longitudinal direction.

さらに、例えば、請求項8に記載するように、前記関数g(x)は、上記式(6)で示される多項式であり、その次数が、複数回の加工結果から再現性のある範囲で高い次数に設定されるものであってもよい。   Further, for example, as described in claim 8, the function g (x) is a polynomial represented by the above equation (6), and the degree thereof is high within a reproducible range from a plurality of machining results. The order may be set.

請求項9記載の発明の金型または光学素子は、光学素子を成形する金型または当該金型を用いて成形された光学素子であって、前記金型は、請求項1から請求項8のいずれかに記載の形状創成研磨方法で研磨され、前記光学素子は、請求項1から請求項8のいずれかに記載の形状創成研磨方法で研磨された金型を用いて成形されていることにより、上記目的を達成している。   A mold or an optical element according to a ninth aspect of the present invention is a mold for molding an optical element or an optical element molded using the mold, and the mold is as defined in any one of the first to eighth aspects. It is polished by the shape creation polishing method according to any one of the above, and the optical element is molded by using a mold polished by the shape creation polishing method according to any one of claims 1 to 8. Has achieved the above objectives.

請求項10記載の発明の走査光学ユニットは、画像データで変調されレーザ光源から出射されたレーザを、複数の光学素子を使用して、一様に帯電された感光体に照射する走査光学ユニットにおいて、前記光学素子は、請求項1から請求項8のいずれかに記載の形状創成研磨方法で研磨された金型を用いて成形されていることにより、上記目的を達成している。   According to a tenth aspect of the present invention, there is provided a scanning optical unit that irradiates a uniformly charged photosensitive member with a laser beam modulated by image data and emitted from a laser light source using a plurality of optical elements. The said optical element has achieved the said objective by shape | molding using the metal mold | die grind | polished by the shape creation grinding | polishing method in any one of Claim 1-8.

請求項1記載の発明の研磨方法によれば、回転軸に取り付けられた所定の曲率半径の研磨工具を、研磨制御指令に応じて一定荷重をかけつつ回転軸周りに一定工具周速で回転させながら制御して、被加工物を曲面に研磨加工するに際して、研磨工具による単位時間当たりの被加工物の除去深さを当該研磨工具の除去能率とし、当該被加工物に対する前回の研磨結果から研磨時間あるいは当該研磨工具の走査距離のうち少なくとも一方に対する研磨工具の除去能率変動を取得し、除去すべき形状誤差量と当該除去能率変動値から次回の研磨加工における研磨制御指令値を生成するので、少ない繰り返し加工数で、高い形状精度の研磨加工を行うことができる。   According to the polishing method of the first aspect of the present invention, the polishing tool having a predetermined radius of curvature attached to the rotating shaft is rotated around the rotating shaft at a constant tool peripheral speed while applying a constant load according to the polishing control command. However, when polishing the workpiece into a curved surface, the removal depth of the workpiece per unit time by the polishing tool is defined as the removal efficiency of the polishing tool, and polishing is performed from the previous polishing result for the workpiece. Since the removal efficiency variation of the polishing tool with respect to at least one of the time or the scanning distance of the polishing tool is acquired, and the polishing control command value in the next polishing process is generated from the shape error amount to be removed and the removal efficiency variation value, Polishing processing with high shape accuracy can be performed with a small number of repeated processing.

請求項2記載の発明の研磨方法によれば、研磨制御指令値を、研磨工具の滞留時間、研磨荷重、工具周速のうち1つまたは2つ以上の組み合わせで構成されているものとしているので、研磨工具の切れ味が経時的に劣化するときに、研磨制御指令値が滞留時間を増加させて加工時間を増大させてしまうことを、切れ味劣化を工具周速の増加によって、防止して、加工時間を犠牲にすることなく、研磨加工を高精度化することができ、滞留時間、研磨荷重、工具周速を適宜組み合わせて使用して、加工能率と高精度加工を両立させることができる。   According to the polishing method of the second aspect of the present invention, the polishing control command value is configured by one or a combination of two or more of the dwell time of the polishing tool, the polishing load, and the tool peripheral speed. When the sharpness of the polishing tool deteriorates over time, the grinding control command value prevents the sharpness deterioration by increasing the tool peripheral speed by increasing the residence time and increasing the processing time. Without sacrificing time, the polishing can be performed with high accuracy, and the dwell time, polishing load, and tool peripheral speed can be used in appropriate combination to achieve both processing efficiency and high accuracy processing.

請求項3記載の発明の研磨方法によれば、研磨工具の除去能率変動を、研磨加工によって生じた被加工面の曲率変化をΔC_out、研磨制御指令としての曲率変化量をΔC_inとしたとき、式(1)で与えられる係数Mで示されるものとしているので、測定データに深さ方向の基準を待たないものであっても、加工深さに相当する実加工量を取得することができ、特別な計測を実施することなく、データ処理の手順を付与するだけで高精度の加工を行うことができる。   According to the polishing method of the third aspect of the present invention, when the removal efficiency variation of the polishing tool is expressed as ΔC_out for the change in curvature of the work surface caused by the polishing, and ΔC_in for the amount of change in curvature as the polishing control command, Since it is assumed to be indicated by the coefficient M given in (1), even if the measurement data does not wait for the reference in the depth direction, the actual machining amount corresponding to the machining depth can be acquired. High-precision processing can be performed only by providing a data processing procedure without performing a simple measurement.

請求項4記載の発明の研磨方法によれば、研磨工具の除去能率変動を、研磨加工によって生じた被加工面のうねり振幅の変化をΔW_out、研磨制御指令としてのうねり振幅をΔW_inとしたとき、式(2)で与えられる係数Lで示されるものとしているので、測定データに深さ方向の基準を待たないものであっても、加工深さに相当する実加工量を取得することができ、特別な計測を実施することなく、データ処理の手順を付与するだけで高精度の加工を行うことができる。   According to the polishing method of claim 4, when the removal efficiency variation of the polishing tool is ΔW_out for the change in the waviness amplitude of the work surface caused by the polishing, and the waviness amplitude as the polishing control command is ΔW_in, Since it is assumed to be indicated by the coefficient L given by the equation (2), even if the measurement data does not wait for the reference in the depth direction, the actual machining amount corresponding to the machining depth can be acquired, High-precision processing can be performed only by providing a data processing procedure without performing special measurement.

請求項5記載の発明の研磨方法によれば、研磨工具の除去能率変動を、研磨加工によって生じた被加工面の除去深さをd_out、研磨制御指令の深さをd_inとしたとき、式(3)で与えられる係数Nで示されるものとしているので、光学面の延長にコバ面のような高さ方向の基準をとれる場合に、研磨加工量を除去深さでとらえることで、確実にかつ高精度に除去能率変動を把握することができ、除去能率変化が研磨工具の走査方向にも影響を持つような高周波の変化をも把握して、研磨工具を主走査方向へトラバースする場合や正方形ワーク等に対して高精度の加工を行うことができる。   According to the polishing method of the fifth aspect of the present invention, when the removal efficiency variation of the polishing tool is defined as d_out as the removal depth of the work surface generated by the polishing and d_in as the depth of the polishing control command, Since it is assumed to be expressed by the coefficient N given in 3), when the reference in the height direction such as the edge surface can be taken for the extension of the optical surface, it is possible to reliably and accurately grasp the polishing amount by the removal depth. It is possible to grasp fluctuations in removal efficiency with high accuracy, and to grasp changes in high frequency such that the change in removal efficiency has an effect on the scanning direction of the polishing tool, and when the polishing tool is traversed in the main scanning direction or square High-precision machining can be performed on workpieces and the like.

請求項6記載の発明の研磨方法によれば、被加工面の除去深さを、加工前と加工後の被加工面の面形状データをXYZ座標値で表現した際の点群で取得し、式(4)の直交多項式または移動平均法で、加工前後の被加工面における任意のXY座標点でのZ値の差分を求めて加工したときに生じた除去深さとしているので、データ補間により形状測定のプローブ走査が粗くデータ点数が少ない場合であっても、正確な除去深さ評価を行うことができ、直交多項式で任意の形状に任意の空間波長に自由に追従させて、高精度の加工を行うことができる。   According to the polishing method of the invention described in claim 6, the removal depth of the work surface is acquired by a point cloud when the surface shape data of the work surface before and after the processing is expressed by XYZ coordinate values, The removal depth generated when machining is performed by obtaining the Z value difference at an arbitrary XY coordinate point on the work surface before and after machining by the orthogonal polynomial or moving average method of equation (4). Even if the shape measurement probe scan is rough and the number of data points is small, accurate removal depth evaluation can be performed, and any shape can be freely followed by any spatial wavelength with an orthogonal polynomial to achieve high accuracy. Processing can be performed.

請求項7記載の発明の研磨方法によれば、形状創成研磨方法を、被加工面の研磨領域が長方形で表せ、当該長方形の短手方向に研磨工具を走査し、当該短手方向の走査を行うと、当該長方形の長手方向に微少量移動する動作を繰り返し行って研磨加工を実施し、除去能率変化の状態を、請求項3から請求項5のいずれかに記載の形状創成研磨方法で係数M、係数L、係数Nのいずれかの値として求め、長手方向の位置に対する変化状態が式(5)で与えられる関数g(x)としているので、除去能率劣化、加工誤差を直ちに組み合わせて研磨制御指令値の補正データを取得することができ、NCデータ作成をより簡易に行って、より一層簡単にかつ高精度の加工を行うことができる。   According to the polishing method of the invention described in claim 7, the shape creation polishing method is such that the polishing area of the work surface can be represented by a rectangle, the polishing tool is scanned in the short direction of the rectangle, and the short direction is scanned. If it carries out, the operation | movement which moves a small amount in the longitudinal direction of the said rectangle will be performed repeatedly, polishing processing will be implemented, and the state of a removal efficiency change will be a coefficient with the shape creation polishing method in any one of Claim 3-5 Since it is obtained as a value of any one of M, coefficient L, and coefficient N and the change state with respect to the position in the longitudinal direction is a function g (x) given by equation (5), polishing is performed by immediately combining removal efficiency deterioration and processing error. Correction data for the control command value can be acquired, NC data can be created more easily, and machining can be performed more easily and with high accuracy.

請求項8記載の発明の研磨方法によれば、関数g(x)を、式(6)で示される多項式とし、その次数を、複数回の加工結果から再現性のある範囲で高い次数に設定するので、除去能率の劣化を一次回帰(直線)成分のみならず、高次の項まで補正することができ、より少ない回数の研磨で、より高い形状精度の曲面加工を行うことができる。   According to the polishing method of the invention described in claim 8, the function g (x) is set to a polynomial represented by the equation (6), and the order is set to a high order within a reproducible range from a plurality of processing results. Therefore, the deterioration of the removal efficiency can be corrected not only to the linear regression (linear) component but also to higher-order terms, and curved surface processing with higher shape accuracy can be performed with fewer times of polishing.

請求項9記載の発明の金型または光学素子によれば、光学素子を成形する金型を、請求項1から請求項8のいずれかに記載の形状創成研磨方法で研磨されたものとし、光学素子を、請求項1から請求項8のいずれかに記載の形状創成研磨方法で研磨された金型を用いて成形されたものとしているので、高能率で高精度な金型及び抵コストで高性能の光学素子を提供することができる。   According to the mold or the optical element of the invention described in claim 9, the mold for molding the optical element is polished by the shape creation polishing method according to any one of claims 1 to 8, and optical Since the element is formed by using a mold polished by the shape creation polishing method according to any one of claims 1 to 8, a high-efficiency and high-precision mold and a low cost are high. A performance optical element can be provided.

請求項10記載の発明の走査光学ユニットによれば、画像データで変調されレーザ光源から出射されたレーザを、複数の光学素子を使用して、一様に帯電された感光体に照射する走査光学ユニットの光学素子を、請求項1から請求項8のいずれかに記載の形状創成研磨方法で研磨された金型を用いて成形しているので、抵コストで高性能の走査光学ユニットを提供することができる。   According to the scanning optical unit of the invention described in claim 10, scanning optics for irradiating a uniformly charged photosensitive member with a laser beam modulated by image data and emitted from a laser light source using a plurality of optical elements. Since the optical element of the unit is formed using the mold polished by the shape creation polishing method according to any one of claims 1 to 8, a high-performance scanning optical unit is provided at low cost. be able to.

以下、本発明の好適な実施例を添付図面に基づいて詳細に説明する。なお、以下に述べる実施例は、本発明の好適な実施例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, since the Example described below is a suitable Example of this invention, various technically preferable restrictions are attached | subjected, However, The scope of the present invention limits this invention especially in the following description. As long as there is no description of the effect, it is not restricted to these aspects.

図1及び図12は、本発明の研磨方法、金型または光学素子あるいは走査光学ユニットの第1実施例を示す図であり、図1は、本発明の研磨方法、金型または光学素子あるいは走査光学ユニットの第1実施例を適用した研磨装置1の要部正面図である。   FIGS. 1 and 12 are views showing a first embodiment of a polishing method, mold or optical element or scanning optical unit of the present invention, and FIG. 1 shows a polishing method, mold or optical element or scanning of the present invention. It is a principal part front view of polish device 1 to which the 1st example of an optical unit is applied.

図1において、研磨装置1は、X軸、Y軸、Z軸方向に移動制御される図示しない主軸ヘッドの先端に図示しないスピンドル(回転軸)が固定されており、当該スピンドルの先端に、研磨工具2が取り付けられている。研磨工具2は、略タイヤ形状または球形状に形成されており、スピンドルにより所定回転速度(一定工具周速)で、図1の時計方向に回転駆動される。研磨装置1は、スピンドルにより研磨工具2を回転させながら、被加工物(ワーク)Pの加工面に沿って、研磨工具2を移動させて被加工物Pを研磨加工する。   In FIG. 1, a polishing apparatus 1 has a spindle (rotation shaft) (not shown) fixed to the tip of a spindle head (not shown) that is controlled to move in the X-axis, Y-axis, and Z-axis directions. Tool 2 is attached. The polishing tool 2 is formed in a substantially tire shape or a spherical shape, and is driven to rotate clockwise in FIG. 1 at a predetermined rotational speed (a constant tool peripheral speed) by a spindle. The polishing apparatus 1 polishes the workpiece P by moving the polishing tool 2 along the processing surface of the workpiece (workpiece) P while rotating the polishing tool 2 by the spindle.

被加工物Pは、一般的に、研磨装置1のX軸、Y軸及びZ軸方向に移動可能なテーブル(図示略)上に載置されており、被加工物Pは、例えば、レーザプリンタの走査光学系に用いられる光学素子、例えば、プラスチックレンズの金型となるものである。   The workpiece P is generally placed on a table (not shown) that is movable in the X-axis, Y-axis, and Z-axis directions of the polishing apparatus 1, and the workpiece P is, for example, a laser printer. The optical element used in the scanning optical system, for example, a plastic lens mold.

いま、略四角形のレンズ金型である被加工物Pの長手方向を、主走査方向、短手方向を、副走査方向とし、図1のように、レンズ金型である被加工物Pは、主走査方向がX軸、副走査方向がY軸と平行となるような姿勢で、研磨装置1のテーブルにクランプされている。   Now, let the longitudinal direction of the workpiece P, which is a substantially rectangular lens mold, be the main scanning direction, the short direction is the sub-scanning direction, and the workpiece P, which is a lens mold, as shown in FIG. It is clamped on the table of the polishing apparatus 1 in such a posture that the main scanning direction is parallel to the X axis and the sub scanning direction is parallel to the Y axis.

すなわち、研磨工具2は、円弧断面を有するタイヤ形状または球形状の工具であり、XY平面と平行な工具スピンドルによって回転駆動され、さらに切り込み方向であるZ軸方向に一定荷重(図1に矢印で示す研磨加重)で光学成形面Paに押しつけられる。   That is, the polishing tool 2 is a tire-shaped or spherical-shaped tool having an arc cross section, is rotationally driven by a tool spindle parallel to the XY plane, and further has a constant load in the Z-axis direction that is the cutting direction (indicated by an arrow in FIG. 1). Is pressed against the optical molding surface Pa.

レンズ金型である被加工物Pは、ステンレス鋼であり、光学成形面Paは、無電解Niメッキで構成されている。   The workpiece P that is a lens mold is stainless steel, and the optical molding surface Pa is constituted by electroless Ni plating.

研磨工具2には、クリーニングブラシ(洗浄手段)3の先端部が押しつけられており、クリーニングブラシ3は、ブラシ保持部4にブラシ毛5が植え込まれている。   The tip of a cleaning brush (cleaning means) 3 is pressed against the polishing tool 2, and the brush bristles 5 are implanted in the brush holding part 4 of the cleaning brush 3.

クリーニングブラシ3は、図1に示すように、研磨工具2の回転方向(図1の時計方向)に対して、研磨工具2の最頂部よりも略45度回転方向に位置ずれした位置で研磨工具2に接触する状態で配設されている。クリーニングブラシ4は、研磨加工粉の堆積によって研磨工具2の表面が変質することを抑制させるためのものである。   As shown in FIG. 1, the cleaning brush 3 is located at a position displaced in the rotational direction of about 45 degrees from the topmost part of the polishing tool 2 with respect to the rotational direction of the polishing tool 2 (clockwise in FIG. 1). 2 is in contact with 2. The cleaning brush 4 is for suppressing the quality of the surface of the polishing tool 2 from being altered by the accumulation of polishing powder.

研磨装置1は、液補給チューブ6から適宜滴下状態で潤滑液としての加工油7を供給して、長時間研磨における研磨工具2の磨耗の抑制を行っている。   The polishing apparatus 1 suppresses wear of the polishing tool 2 during long-time polishing by supplying processing oil 7 as a lubricating liquid in a properly dropped state from a liquid supply tube 6.

研磨工具2は、ウレタン樹脂と木粉を混練した材料であり、研磨工具2自体は砥粒を有していない。そこで、研磨装置1では、研磨工具2で被加工物Pを研磨加工する際に、予め光学成形面Paの全面にダイヤモンドペースト8を塗布し、研磨工具2の走査とともに巻き込んで砥粒が供給される形態となっている。   The polishing tool 2 is a material obtained by kneading urethane resin and wood powder, and the polishing tool 2 itself does not have abrasive grains. Therefore, in the polishing apparatus 1, when the workpiece P is polished with the polishing tool 2, the diamond paste 8 is applied to the entire surface of the optical molding surface Pa in advance, and the abrasive particles are supplied by being rolled together with the scanning of the polishing tool 2. It has become a form.

研磨装置1は、研磨工具2の走査に滞留時間制御を行っている。この滞留時間制御は、修正加工量の高さ分布データを、プレストンの式である次式(7)に基づいて、工具滞留時間に変換している。   The polishing apparatus 1 performs residence time control for scanning the polishing tool 2. In this dwell time control, the height distribution data of the corrected machining amount is converted into the tool dwell time based on the following equation (7) which is a Preston equation.

h=k・P・V・T・・・(7)
なお、式(7)において、hは、研磨除去深さ、kは、比例定数、Pは、研磨圧力、Vは、工具速度及びTは、工具滞留時間である。
h = k · P · V · T (7)
In Equation (7), h is the polishing removal depth, k is a proportional constant, P is the polishing pressure, V is the tool speed, and T is the tool residence time.

次に、本実施例の作用を説明する。本実施例の研磨装置1は、スピンドルに取り付けられ回転されながら被加工物Pの光学成形面Paに沿って、移動されて被加工物Pを研磨加工するが、前回の形状創成研磨加工の結果から研磨工具2の切れ味変動を正確に把握し、研磨工具2の切れ味変動を補正して形状創成研磨の加工誤差を簡単かつ大幅に低減する。   Next, the operation of this embodiment will be described. The polishing apparatus 1 of the present embodiment is moved along the optical molding surface Pa of the workpiece P while being attached to the spindle and rotated to polish the workpiece P. As a result of the previous shape creation polishing processing Therefore, the sharpness variation of the polishing tool 2 is accurately grasped, and the sharpness variation of the polishing tool 2 is corrected to easily and greatly reduce the processing error of the shape creation polishing.

研磨装置1は、研磨圧力Pと工具周速Vを一定とし、押しつけ力一定の定荷重制御であるが、研磨量を除去体積として考えると、一定圧力として扱っても問題はない。   The polishing apparatus 1 is a constant load control in which the polishing pressure P and the tool peripheral speed V are constant and the pressing force is constant. However, when the polishing amount is considered as a removal volume, there is no problem even if it is handled as a constant pressure.

そして、研磨装置1では、図1に示すツールパス10のように、Y方向走査とX方向走査の微小移動の繰り返しで研磨を行い、研磨荷重の方向と加工点での法線ベクトルが常に一致するように、XYZABの同時4軸制御を付与する。   Then, in the polishing apparatus 1, as shown in the tool path 10 shown in FIG. 1, the polishing is performed by repeating the fine movement of the Y direction scanning and the X direction scanning, and the direction of the polishing load and the normal vector at the processing point always match. As described above, simultaneous 4-axis control of XYZAB is given.

いま、研磨装置1は、図2に示すように、研磨工具2をY方向走査及びX方向走査の順に走査する場合、光学成形面Pa上で、光学的有効域Pgaと研磨領域Phaは、図2に示すような関係になり、研磨工具2の切り返し動作部は不完全な研磨領域となるため、切り返し動作が光学的有効域Pgaの外側になるように、研磨領域Phaが一回り大きくなっている。   Now, as shown in FIG. 2, when the polishing apparatus 1 scans the polishing tool 2 in the order of Y-direction scanning and X-direction scanning, the optical effective area Pga and the polishing area Pha on the optical molding surface Pa are as shown in FIG. 2 and the turning operation portion of the polishing tool 2 becomes an incomplete polishing region. Therefore, the polishing region Pha is slightly increased so that the turning operation is outside the optically effective region Pga. Yes.

また、研磨装置1では、工具回転軸であるスピンドルは、Y軸(副走査方向)と平行ではなく、特定の傾きを持たせているが、これは、主走査方向(X方向)の切削痕の除去効果を高めるためである。研磨工具2は、Y方向に走査した後、X方向に微小量移動(ピックフィード)して、再びY方向の走査を繰り返すツールパス10となっている。   In the polishing apparatus 1, the spindle that is the tool rotation axis is not parallel to the Y axis (sub-scanning direction) and has a specific inclination. This is due to the cutting trace in the main scanning direction (X direction). This is to increase the removal effect. The polishing tool 2 is a tool path 10 that scans in the Y direction, then moves (pick feeds) a small amount in the X direction, and repeats scanning in the Y direction again.

そして、被加工物Pの光学成形面Paは、図3に示すように、主走査方向断面曲線Ptと副走査方向断面曲線Qtで示され、図4に示すような奇数次までを含む非球面式で表現される。図3及び図4において、光学成形面Paの曲線に接する副走査方向断面曲線Qtの曲率半径Rsが主走査方向にどのように変化するかを定義することで、曲面を定義している。   As shown in FIG. 3, the optical molding surface Pa of the workpiece P is represented by a main scanning direction sectional curve Pt and a sub-scanning direction sectional curve Qt, and includes an aspherical surface including even odd-numbered orders as shown in FIG. Expressed as an expression. 3 and 4, the curved surface is defined by defining how the radius of curvature Rs of the sub-scanning direction sectional curve Qt in contact with the curve of the optical molding surface Pa changes in the main scanning direction.

この主走査方向断面曲線Ptの中央を、X=0としたとき、曲率半径RsのX方向分布は、次式(8)で与えられ、曲率半径Rsの逆数である曲率Csを求めるものである。   When the center of the cross section curve Pt in the main scanning direction is X = 0, the X direction distribution of the radius of curvature Rs is given by the following equation (8), and the curvature Cs that is the reciprocal of the radius of curvature Rs is obtained. .

Figure 2005088148
Figure 2005088148

ここで、式(8)で与えられた金型設計形状通りに効率的にかつ高精度に形状修正する手順について、以下説明する。   Here, the procedure for correcting the shape efficiently and with high accuracy according to the mold design shape given by Expression (8) will be described below.

いま、研磨前の被加工物Pの加工面である光学成形面Paとして、光学成形面Paは、ダイヤモンド切削による形状創成加工によって仕上げられているものとし、副走査断面形状の評価は、図3に示したように、形状計測によって複数の副走査断面曲線Qtを取得し、それぞれの副走査断面曲線Qtについて近似円弧を求めて、その近似円弧の曲率を実際の加工面である光学成形面Paの曲率Csとする。この実際の加工面の曲率Csと設計値の曲率Csとの差分である副走査曲率誤差ΔCs(ΔCs=実際の加工面の曲率Cs−設計値の曲率Cs)を求める。この副走査曲率誤差ΔCsは、計測した副走査断面曲線Qtの数だけ得られる。   Now, as an optical molding surface Pa that is a processed surface of the workpiece P before polishing, the optical molding surface Pa is finished by shape creation processing by diamond cutting, and the evaluation of the sub-scanning cross-sectional shape is shown in FIG. As shown in FIG. 5, a plurality of sub-scanning cross-sectional curves Qt are obtained by shape measurement, an approximate arc is obtained for each sub-scanning cross-sectional curve Qt, and the curvature of the approximate arc is the optical processing surface Pa, which is the actual machining surface. Of curvature Cs. A sub-scanning curvature error ΔCs (ΔCs = actual machining surface curvature Cs−design value curvature Cs), which is the difference between the actual machining surface curvature Cs and the design value curvature Cs, is obtained. This sub-scanning curvature error ΔCs is obtained by the number of measured sub-scanning sectional curves Qt.

そして、図5において、研磨前の副走査曲率誤差ΔCsのX方向分布L1と第1回研磨後の副走査曲率誤差ΔCsのX方向分布L2は、図示のようになり、研磨前の副走査曲率誤差ΔCsのX方向分布L1を修正するために、この研磨前の副走査曲率誤差ΔCsのX方向分布L1を研磨工具2の滞留時間分布に変換して、第1回の修正研磨を行い、この第1回修正研磨の結果が、第1回研磨後の副走査曲率誤差ΔCsのX方向分布L2である。   In FIG. 5, the X-direction distribution L1 of the sub-scanning curvature error ΔCs before polishing and the X-direction distribution L2 of the sub-scanning curvature error ΔCs after the first polishing are as shown in the figure. In order to correct the X-direction distribution L1 of the error ΔCs, the X-direction distribution L1 of the sub-scanning curvature error ΔCs before polishing is converted into a residence time distribution of the polishing tool 2, and the first correction polishing is performed. The result of the first corrected polishing is the X-direction distribution L2 of the sub-scanning curvature error ΔCs after the first polishing.

なお、従来の研磨方法では、第1回研磨後の副走査曲率誤差ΔCsのX方向分布L2に基づいて第2回の研磨を行い、その残差に基づいて第3階の研磨を行うという研磨加工操作を繰り返し行って、加工誤差を徐々に小さくすることが行われている。   In the conventional polishing method, the second polishing is performed based on the X-direction distribution L2 of the sub-scanning curvature error ΔCs after the first polishing, and the third floor is polished based on the residual. The machining operation is repeatedly performed to gradually reduce the machining error.

ところが、誤差発生原因の調査を行ったところ、研磨加工法において研磨が差が生じるのは、研磨工具2の除去能率が径時的に変動することが主原因であることが判明した。   However, as a result of investigating the cause of the error, it has been found that the difference in polishing in the polishing method is mainly due to fluctuations in the removal efficiency of the polishing tool 2 over time.

そして、この研磨工具2の除去能率は、上記式(7)のプレストンの式の比例定数Kに相当するものである。   The removal efficiency of the polishing tool 2 corresponds to the proportionality constant K of the Preston equation of the above equation (7).

そこで、本実施例の研磨装置1は、実際の研磨加工で生じた比例定数Kの変動を評価し、次回の研磨制御指令をこの比例定数Kの変動効果を補正して、少ない回数で、正確な形状修正を行っている。   Therefore, the polishing apparatus 1 of the present embodiment evaluates the fluctuation of the proportional constant K that has occurred in the actual polishing process, and corrects the fluctuation effect of the proportional constant K in the next polishing control command so that it can be accurately performed in a small number of times. Correct shape correction.

この比例定数Kの変化率Mは、図6の曲線Mのように示され、上記式(1)に示したように、研磨で実際に得られた光学成形面Paの曲率変化量ΔC_outと研磨制御指令値としての曲率修正量ΔC_inとの比を取ったものである。   The change rate M of the proportionality constant K is shown as a curve M in FIG. 6 and, as shown in the above formula (1), the curvature change amount ΔC_out of the optical molding surface Pa actually obtained by polishing and the polishing. This is a ratio with the curvature correction amount ΔC_in as the control command value.

そして、研磨制御指令値としての曲率修正量ΔC_inは、研磨前の副走査曲率誤差ΔCsのX方向分布L1に相当し、研磨で実際に得られて曲率変化量ΔC_outは、研磨前の副走査曲率誤差ΔCsのX方向分布L1と第1回研磨後の副走査曲率ΔCsのX方向分布L2の差分に相当する。   The curvature correction amount ΔC_in as the polishing control command value corresponds to the X-direction distribution L1 of the sub-scanning curvature error ΔCs before polishing, and the curvature change amount ΔC_out actually obtained by polishing is the sub-scanning curvature before polishing. This corresponds to the difference between the X-direction distribution L1 of the error ΔCs and the X-direction distribution L2 of the sub-scanning curvature ΔCs after the first polishing.

そして、研磨制御指令通りに加工が進行したとき、比例定数Kの変化率Mは、1.0となり、削りすぎると、変化率Mが、1.0を越え、加工が足りないときには、変化率Mが、1.0未満の値を取るため、変化率Mが、1.0で変動しない状態が理想である。   When the machining progresses according to the polishing control command, the change rate M of the proportional constant K becomes 1.0. If the machining is excessive, the change rate M exceeds 1.0, and if the machining is insufficient, the change rate M Since M takes a value less than 1.0, it is ideal that the rate of change M does not vary at 1.0.

そして、研磨加工は、X軸のマイナス側からプラス側に行っており、加工初期において、X=−100近傍でも、曲線Mが1.0と一致しないのは、10%程度の比例定数Kの見込み違いが生じているためである。   The polishing process is performed from the minus side of the X axis to the plus side. In the initial stage of the process, the curve M does not match 1.0 even in the vicinity of X = −100 because of the proportionality constant K of about 10%. This is because a misunderstanding has occurred.

また、図6において、曲線Mは、緩やかな減少傾向とともに、うねりを有しており、比例定数Kの変化として、うねり振幅の再現までは、期待できないため、一次回帰による直線近似を行って、図6に直線Mtで示す補正情報M_line(x)としている。   In FIG. 6, the curve M has a undulation with a gradual decrease trend, and as a change of the proportionality constant K, it cannot be expected until the undulation amplitude is reproduced. In FIG. 6, correction information M_line (x) indicated by a straight line Mt is used.

この補正情報M_line(x)で主走査位置Xで除去能率劣化を求め、その補正を付与すると、図7に示す補正された研磨指令L21となり、この研磨補正指令L21は、図5の第1回研磨後の副走査曲率誤差ΔCsのX方向分布L2の値を、補正情報M_line(x)で得られた値で除算したものである。なお、図7において、補正指令L3は、図5の従来の第2回研磨指令である。   When the correction information M_line (x) is used to determine the removal efficiency deterioration at the main scanning position X and the correction is given, the corrected polishing command L21 shown in FIG. 7 is obtained. This polishing correction command L21 is the first in FIG. The value of the X-direction distribution L2 of the sub-scanning curvature error ΔCs after polishing is divided by the value obtained from the correction information M_line (x). In FIG. 7, the correction command L3 is the conventional second polishing command of FIG.

この研磨指令L21に基づいて第2回研磨を行った結果は、図8のように示され、副走査曲率誤差ΔCsは、加工面である光学成形面Paの前面において、±1.0e−5以内に納まっており、続いて他の被加工物Pを加工する場合において、形状や寸法が同様の被加工物Pであると、補正情報M_line(x)を用いた研磨制御指令値の補正を、初回の研磨から実施することができる。   The result of performing the second polishing based on this polishing command L21 is shown in FIG. 8, and the sub-scanning curvature error ΔCs is ± 1.0e-5 on the front surface of the optical molding surface Pa, which is the processing surface. If the workpiece P has the same shape and dimensions when the other workpiece P is subsequently processed, the polishing control command value is corrected using the correction information M_line (x). The first polishing can be carried out.

また、研磨による実加工量と研磨制御指令値を副走査断面曲線のうねり振幅で評価する場合には、図9に示すように、研磨前のうねり振幅をΔW_inとすると、研磨によって生じたうねり振幅の減少量は、図10にΔW_outで示すようになる。   Further, when the actual processing amount by polishing and the polishing control command value are evaluated by the waviness amplitude of the sub-scanning sectional curve, as shown in FIG. 9, if the waviness amplitude before polishing is ΔW_in, the waviness amplitude generated by the polishing The amount of decrease is as indicated by ΔW_out in FIG.

そして、この場合、上記式(2)で示される係数Lを、研磨工具2の切れ味変動とする。   In this case, the coefficient L indicated by the above formula (2) is defined as the sharpness variation of the polishing tool 2.

なお、この場合、断面曲線の両端は、振幅評価のバラツキが大となるため除外している。   In this case, both ends of the cross-section curve are excluded because of large variations in amplitude evaluation.

さらに、研磨による実加工量と指令値を直接除去深さで評価する場合には、図11及び図11の円内の拡大図である図12に示すように、研磨によって生じた被加工物Pの光学成形面Paの除去深さをd_outとし、研磨制御指令の深さをd_inとすると、上記式(3)で示される係数Nを研磨工具2の切れ味変動とする。   Further, when the actual processing amount and the command value by polishing are directly evaluated by the removal depth, as shown in FIG. 12 which is an enlarged view in the circle of FIGS. 11 and 11, the workpiece P generated by polishing is shown. If the removal depth of the optical molding surface Pa is d_out and the depth of the polishing control command is d_in, the coefficient N shown in the above equation (3) is defined as the sharpness variation of the polishing tool 2.

なお、この場合、被加工物Pの未加工研磨域のような深さ評価の基準Hpが得られないときには、図11に示す被加工物Pの高さ、すなわち、金型高さhを、正確に評価することで、研磨によって生じた除去深さd_outを取得することができる。   In this case, when the reference Hp for depth evaluation such as the unprocessed polished area of the workpiece P cannot be obtained, the height of the workpiece P shown in FIG. By accurately evaluating, the removal depth d_out generated by polishing can be acquired.

また、上記研磨によって生じた被加工物Pの光学成形面Paの除去深さをd_outは、加工前と加工後の被加工物Pの光学成形面Paの面形状データをXYZ座標値表現の点群で取得し、上記式(4)で示す直交多項式または移動平均法によって、加工前後の面において任意のXY座標点でのZ値の差分を求めることで、取得する。   Further, the removal depth of the optical molding surface Pa of the workpiece P generated by the polishing is d_out, and the surface shape data of the optical molding surface Pa of the workpiece P before and after the processing is expressed in XYZ coordinate values. Acquired by a group, and by obtaining the difference of Z values at arbitrary XY coordinate points on the surface before and after processing by the orthogonal polynomial or moving average method shown by the above equation (4).

さらに、被加工物Pの光学成形面Paの研磨領域が長方形で表されるときには、短手方向に研磨工具2で走査し、長手方向に微少量移動する動作を繰り返し行って加工を実施し、切れ味変化の状態を上記式(3)〜式(5)の値として求め、長手位置に対する変化状態が上記式(5)のいずれかの式で示される。   Furthermore, when the polishing area of the optical molding surface Pa of the workpiece P is represented by a rectangle, scanning is performed with the polishing tool 2 in the short direction, and the operation is performed by repeatedly performing a slight movement in the longitudinal direction, The state of sharpness change is obtained as the value of the above formulas (3) to (5), and the change state with respect to the longitudinal position is represented by any one of the above formulas (5).

また、この関するg(x)は、上記式(6)の多項式で示され、その次数は、複数回の加工結果から再現性のある範囲で高い次数に設定される。   In addition, g (x) relating to this is expressed by the polynomial in the above formula (6), and the order is set to a high order within a reproducible range from a plurality of processing results.

したがって、研磨装置1を小型化することができるとともに、金型等の加工物を高精度に研磨加工することができる。   Therefore, the polishing apparatus 1 can be reduced in size, and a workpiece such as a mold can be polished with high accuracy.

このようにして研磨加工された金型を用いて、レーザプリンタの走査光学系に用いられる光学素子としてのプラスチックレンズを成形すると、高精度な光学素子としてのプラスチックレンズを成形することができる。   When a plastic lens as an optical element used in a scanning optical system of a laser printer is molded using the mold thus polished, a plastic lens as a highly accurate optical element can be molded.

また、このようにして成形されたプラスチックレンズを用いて走査光学ユニットを製造することで、高品質の走査光学ユニットを構成して、高品質な画像を形成するレーザプリンタを製造することができる。   In addition, by manufacturing the scanning optical unit using the plastic lens thus molded, a high-quality scanning optical unit can be configured, and a laser printer that forms a high-quality image can be manufactured.

以上、本発明者によってなされた発明を好適な実施例に基づき具体的に説明したが、本発明は上記のものに限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。   The invention made by the present inventor has been specifically described based on the preferred embodiments. However, the present invention is not limited to the above, and various modifications can be made without departing from the scope of the invention. Needless to say.

レーザプリンタ、デジタル複写装置のfθレンズ等の金型等の研磨方法、金型または光学素子あるいは走査光学ユニットに適用することができる。   The present invention can be applied to a polishing method for a mold such as an fθ lens of a laser printer or a digital copying apparatus, a mold, an optical element, or a scanning optical unit.

本発明の研磨方法、光学素子用金型、光学素子及び走査光学ユニットの一実施の形態を適用した研磨装置の要部斜視図。BRIEF DESCRIPTION OF THE DRAWINGS The principal part perspective view of the grinding | polishing apparatus to which one Embodiment of the grinding | polishing method of this invention, the metal mold | die for optical elements, an optical element, and a scanning optical unit is applied. 図1の被加工物の光学成形面上での光学的有効域と研磨領域の関係を示す図。The figure which shows the relationship between the optical effective area | region and polishing area | region on the optical molding surface of the to-be-processed object of FIG. 被加工物の光学成形面の形状の詳細を主走査方向断面曲線と副走査方向断面曲線で示す図。The figure which shows the detail of the shape of the optical shaping | molding surface of a to-be-processed object with the main scanning direction cross section curve and the subscanning direction cross section curve. 図3の主走査方向断面曲線と副走査方向断面曲線及び副走査方向断面曲線の曲率半径の詳細図。FIG. 4 is a detailed view of the radius of curvature of the main scanning direction sectional curve, the sub-scanning direction sectional curve, and the sub-scanning direction sectional curve of FIG. 3. 研磨前の副走査曲率誤差のX方向分布と第1回研磨後の副走査曲率誤差のX方向分布を示す図。The figure which shows the X direction distribution of the subscanning curvature error before grinding | polishing, and the X direction distribution of the subscanning curvature error after the 1st grinding | polishing. プレストンの式の比例定数の変化率を示す図。The figure which shows the rate of change of the proportionality constant of Preston's formula. 図5の第1回研磨後の副走査曲率誤差のX方向分布の値を図6の補正情報で補正した研磨指令を示す図。6 is a diagram illustrating a polishing command in which the X-direction distribution value of the sub-scanning curvature error after the first polishing in FIG. 5 is corrected with the correction information in FIG. 6. 図7の研磨指令に基づいて第2回研磨を行った副走査曲率誤差を示す図。The figure which shows the sub-scanning curvature error which performed 2nd grinding | polishing based on the grinding | polishing command of FIG. 研磨による実加工量と指令値を副走査断面曲線のうねり振幅で評価する場合の研磨前のうねり振幅を示す図。The figure which shows the waviness amplitude before grinding | polishing in the case of evaluating the actual process amount and command value by grinding | polishing by the waviness amplitude of a subscanning cross-section curve. 図9の研磨前のうねり振幅を研磨したときの振幅の減少量を示す図。The figure which shows the amount of reduction | decrease of an amplitude when waviness amplitude before grinding | polishing of FIG. 9 is grind | polished. 研磨による実加工量と指令値を直接除去深さで評価する場合の被加工物とその加工面を示す図。The figure which shows the to-be-processed object and its processed surface in the case of evaluating the actual processing amount and command value by grinding | polishing directly by the removal depth. 図11の円内の拡大図。The enlarged view in the circle of FIG.

符号の説明Explanation of symbols

1 研磨装置
2 研磨工具
3 クリーニングブラシ
4 ブラシ保持部
5 ブラシ毛
6 液補給チューブ
7 加工油
8 ダイヤモンドペースト
P 被加工物
Pa 光学成形面
DESCRIPTION OF SYMBOLS 1 Polishing apparatus 2 Polishing tool 3 Cleaning brush 4 Brush holding part 5 Brush hair 6 Liquid supply tube 7 Processing oil 8 Diamond paste P Workpiece Pa Optical molding surface

Claims (10)

回転軸に取り付けられた所定の曲率半径の研磨工具を、研磨制御指令に応じて一定荷重をかけつつ前記回転軸周りに一定工具周速で回転させながら制御して、被加工物を曲面に研磨加工する研磨方法において、前記研磨工具による単位時間当たりの前記被加工物の除去深さを当該研磨工具の除去能率とし、当該被加工物に対する前回の研磨結果から研磨時間あるいは当該研磨工具の走査距離のうち少なくとも一方に対する前記研磨工具の除去能率変動を取得し、除去すべき形状誤差量と当該除去能率変動値から次回の研磨加工における研磨制御指令値を生成すること特徴とする形状創成研磨方法。   A polishing tool with a predetermined radius of curvature attached to a rotating shaft is controlled while rotating at a constant tool peripheral speed around the rotating shaft while applying a constant load in accordance with a polishing control command, thereby polishing the workpiece into a curved surface. In the polishing method to be processed, the removal depth of the workpiece per unit time by the polishing tool is defined as the removal efficiency of the polishing tool, and the polishing time or the scanning distance of the polishing tool from the previous polishing result for the workpiece A shape generating polishing method characterized in that a removal efficiency fluctuation of the polishing tool for at least one of the two is acquired, and a polishing control command value in a next polishing process is generated from a shape error amount to be removed and the removal efficiency fluctuation value. 前記研磨制御指令値は、前記研磨工具の滞留時間、研磨荷重、工具周速のうち1つまたは2つ以上の組み合わせで構成されていることを特徴とする請求項1記載の形状創成研磨方法。   2. The shape generating polishing method according to claim 1, wherein the polishing control command value is configured by one or a combination of two or more of a residence time, a polishing load, and a tool peripheral speed of the polishing tool. 前記研磨工具の除去能率変動は、前記研磨加工によって生じた前記被加工面の曲率変化をΔC_out、研磨制御指令としての曲率変化量をΔC_inとしたとき、次式(1)で与えられる係数M
M=ΔC_out/ΔC_in・・・(1)
で示されることを特徴とする請求項1記載の形状創成研磨方法。
The removal efficiency variation of the polishing tool is a coefficient M given by the following equation (1), where ΔC_out is a change in curvature of the work surface caused by the polishing and ΔC_in is a change in curvature as a polishing control command.
M = ΔC_out / ΔC_in (1)
The shape creation polishing method according to claim 1, wherein
前記研磨工具の除去能率変動は、前記研磨加工によって生じた前記被加工面のうねり振幅の変化をΔW_out、研磨制御指令としてのうねり振幅をΔW_inとしたとき、次式(2)で与えられる係数L
L=ΔW_out/ΔW_in・・・(2)
で示されることを特徴とする請求項1記載の形状創成研磨方法。
The removal efficiency variation of the polishing tool is a coefficient L given by the following equation (2), where ΔW_out is a change in the waviness amplitude of the work surface caused by the polishing and ΔW_in is a waviness amplitude as a polishing control command.
L = ΔW_out / ΔW_in (2)
The shape creation polishing method according to claim 1, wherein
前記研磨工具の除去能率変動は、前記研磨加工によって生じた前記被加工面の除去深さをd_out、研磨制御指令の深さをd_inとしたとき、次式(3)で与えられる係数N
N=d_out/d_in・・・(3)
で示されることを特徴とする請求項1記載の形状創成研磨方法。
The removal efficiency variation of the polishing tool is a coefficient N given by the following equation (3), where d_out is the removal depth of the work surface generated by the polishing and d_in is the depth of the polishing control command.
N = d_out / d_in (3)
The shape creation polishing method according to claim 1, wherein
前記被加工面の除去深さは、加工前と加工後の前記被加工面の面形状データをXYZ座標値で表現した際の点群で取得し、次式(4)の直交多項式
Figure 2005088148
または移動平均法で、加工前後の被加工面における任意のXY座標点でのZ値の差分を求めて加工したときに生じた除去深さであることを特徴とする請求項5記載の形状創成研磨方法。
The removal depth of the surface to be processed is obtained as a point cloud when the surface shape data of the surface to be processed before and after processing is expressed by XYZ coordinate values, and is an orthogonal polynomial of the following equation (4)
Figure 2005088148
6. The shape creation according to claim 5, which is a removal depth generated when machining is performed by obtaining a difference of Z values at arbitrary XY coordinate points on a machining surface before and after machining by a moving average method. Polishing method.
前記形状創成研磨方法は、前記被加工面の研磨領域が長方形で表せ、当該長方形の短手方向に前記研磨工具を走査し、当該短手方向の走査を行うと、当該長方形の長手方向に微少量移動する動作を繰り返し行って研磨加工を実施し、前記除去能率変化の状態を、前記請求項3から請求項5のいずれかに記載の形状創成研磨方法で係数M、係数L、係数Nのいずれかの値として求め、前記長手方向の位置に対する変化状態が次式(5)で与えられる関数g(x)
MまたはLまたはN=g(x)・・・(5)
であることを特徴とする形状創成研磨方法。
In the shape creation polishing method, the polishing area of the surface to be processed can be represented by a rectangle, the polishing tool is scanned in the short direction of the rectangle, and the scan in the short direction is performed. The operation of moving a small amount is repeatedly performed to perform polishing, and the state of the removal efficiency change is determined by the shape creation polishing method according to any one of claims 3 to 5 with a coefficient M, a coefficient L, and a coefficient N. A function g (x) which is obtained as any value and the change state with respect to the position in the longitudinal direction is given by the following equation (5)
M or L or N = g (x) (5)
A shape creation polishing method, characterized by:
前記関数g(x)は、次式(6)で示される多項式
Figure 2005088148
であり、その次数が、複数回の加工結果から再現性のある範囲で高い次数に設定されることを特徴とする請求項7記載の形状創成研磨方法。
The function g (x) is a polynomial represented by the following equation (6).
Figure 2005088148
The shape creation polishing method according to claim 7, wherein the order is set to a high order within a reproducible range from a plurality of processing results.
光学素子を成形する金型または当該金型を用いて成形された光学素子であって、前記金型は、請求項1から請求項8のいずれかに記載の形状創成研磨方法で研磨され、前記光学素子は、請求項1から請求項8のいずれかに記載の形状創成研磨方法で研磨された金型を用いて成形されていることを特徴とする金型または光学素子。   A mold for molding an optical element or an optical element molded using the mold, wherein the mold is polished by the shape creation polishing method according to any one of claims 1 to 8, 9. A mold or an optical element, wherein the optical element is molded using a mold polished by the shape creation polishing method according to any one of claims 1 to 8. 画像データで変調されレーザ光源から出射されたレーザを、複数の光学素子を使用して、一様に帯電された感光体に照射する走査光学ユニットにおいて、前記光学素子は、請求項1から請求項8のいずれかに記載の形状創成研磨方法で研磨された金型を用いて成形されていることを特徴とする走査光学ユニット。
A scanning optical unit that irradiates a uniformly charged photoconductor using a plurality of optical elements with a laser beam modulated by image data and emitted from a laser light source. A scanning optical unit, which is molded using a mold polished by the shape creation polishing method according to claim 8.
JP2003327011A 2003-09-19 2003-09-19 Shape creation polishing method Expired - Fee Related JP4092276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003327011A JP4092276B2 (en) 2003-09-19 2003-09-19 Shape creation polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003327011A JP4092276B2 (en) 2003-09-19 2003-09-19 Shape creation polishing method

Publications (2)

Publication Number Publication Date
JP2005088148A true JP2005088148A (en) 2005-04-07
JP4092276B2 JP4092276B2 (en) 2008-05-28

Family

ID=34456997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003327011A Expired - Fee Related JP4092276B2 (en) 2003-09-19 2003-09-19 Shape creation polishing method

Country Status (1)

Country Link
JP (1) JP4092276B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018192561A (en) * 2017-05-17 2018-12-06 ファナック株式会社 Mirror-finishing method, and manufacturing method of mirror-finishing tool
KR20210005911A (en) * 2018-05-15 2021-01-15 시바우라 기카이 가부시키가이샤 Processing method of workpiece and processing machine of workpiece

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018192561A (en) * 2017-05-17 2018-12-06 ファナック株式会社 Mirror-finishing method, and manufacturing method of mirror-finishing tool
US10717170B2 (en) 2017-05-17 2020-07-21 Fanuc Corporation Mirror finishing method and production method of mirror finishing tool
US11524388B2 (en) 2017-05-17 2022-12-13 Fanuc Corporation Mirror finishing method and production method of mirror finishing tool
KR20210005911A (en) * 2018-05-15 2021-01-15 시바우라 기카이 가부시키가이샤 Processing method of workpiece and processing machine of workpiece
KR102444158B1 (en) * 2018-05-15 2022-09-19 시바우라 기카이 가부시키가이샤 The processing method of the workpiece and the processing machine of the workpiece
KR20220130829A (en) * 2018-05-15 2022-09-27 시바우라 기카이 가부시키가이샤 Method for processing workpiece and machine for processing workpiece
KR102481650B1 (en) 2018-05-15 2022-12-28 시바우라 기카이 가부시키가이샤 Method for processing workpiece and machine for processing workpiece

Also Published As

Publication number Publication date
JP4092276B2 (en) 2008-05-28

Similar Documents

Publication Publication Date Title
CN109968204B (en) Numerical control grinding shape error self-adaptive compensation method for mutual abrasion of grinding wheel workpieces
US6537138B2 (en) Method of grinding an axially asymmetric aspherical mirror
US20110009031A1 (en) Method and device for machining workpieces
EP2527085A2 (en) Method of manufacturing workpiece
JP7004262B2 (en) Grinding wheel feedback dressing system and method
JP3927484B2 (en) Curved surface processing method and curved surface processing apparatus
JP2007118100A (en) Method and apparatus for working curved surface symmetric with respect to rotation axis
JP4092276B2 (en) Shape creation polishing method
JP4662018B2 (en) Curved surface processing apparatus and parallel link mechanism calibration method
EP3476363A1 (en) Processing method for making dental devices
US6889112B2 (en) Method for processing surface and apparatus for processing same
JP2007276034A (en) Dress gear, and manufacturing method and apparatus therefor
JP4125894B2 (en) Polishing apparatus and method
JP2011020241A (en) Polishing method
JP4403662B2 (en) Curved surface correction polishing system, NC polishing apparatus, NC program generation method for optical component polishing, NC program generation method for polishing, two-dimensional coordinate point group file generation method for NC program, NC program generation method
JP2007083359A (en) Grinding method
JP4170204B2 (en) Polishing method
JP2004141983A (en) Working method of molding die, molding die, and optical element
JP2003175459A (en) Polishing method and polishing device
JPH11114800A (en) Method for specular-polishing cylindrical body
JP4485849B2 (en) Optical element molding die polishing method
JP2007144568A (en) Axisymmetric aspheric surface polishing method
JP2003039296A (en) Curved-face polishing system and lens mold polishing method
JP2007136623A (en) Axisymmetric aspheric surface polishing method
JP2003062751A (en) Waviness removing method, polishing device, workpiece, mold for molding optical element, optical element and printing processor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051130

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080303

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110307

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120307

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130307

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140307

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees