JP2005087982A - Method for producing chlorine dioxide-containing solution - Google Patents

Method for producing chlorine dioxide-containing solution Download PDF

Info

Publication number
JP2005087982A
JP2005087982A JP2003362568A JP2003362568A JP2005087982A JP 2005087982 A JP2005087982 A JP 2005087982A JP 2003362568 A JP2003362568 A JP 2003362568A JP 2003362568 A JP2003362568 A JP 2003362568A JP 2005087982 A JP2005087982 A JP 2005087982A
Authority
JP
Japan
Prior art keywords
chlorine dioxide
electrolytic cell
containing solution
anode
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003362568A
Other languages
Japanese (ja)
Inventor
Masaki Suzuki
正喜 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Co Ltd
Original Assignee
Hokuetsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Co Ltd filed Critical Hokuetsu Co Ltd
Priority to JP2003362568A priority Critical patent/JP2005087982A/en
Publication of JP2005087982A publication Critical patent/JP2005087982A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for safely and easily utilizing chlorine dioxide having excellent property as a disinfectant at a low cost. <P>SOLUTION: This method is established by ascertaining generation of chloric acid when chlorine ion is electrolyzed above prescribed voltage in a nondiaphragm electrolytic cell and ascertaining generation of chlorine dioxide by the following reaction of chloric acid with hydrochloric acid which is supplied as a raw liquid or is secondarily produced by reaction of chlorine generated by electrolysis and water. 2HClO<SB>3</SB>+ HCl → 2ClO<SB>2</SB>+ HClO + H<SB>2</SB>O. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は二酸化塩素含有溶液の生成法に関するThe present invention relates to a method for producing a chlorine dioxide-containing solution.

二酸化塩素は強力な殺菌効果を持ち、その殺菌効果がpHの影響を受けず、有機物により失活しにくいこと、さらに有機物と接触した場合も有毒なトリハロメタンを生成しないなど、優れた性質を持っている。そのために、広く利用されてきた塩素による殺菌の代替物質として有望視され、欧米では既に広い利用がなされており、日本でも水の殺菌など徐々に広がりつつある。Chlorine dioxide has a strong bactericidal effect, its bactericidal effect is not affected by pH, it is hard to deactivate by organic matter, and it has excellent properties such as not producing toxic trihalomethane even when contacted with organic matter. Yes. For this reason, it is regarded as a promising alternative to chlorine, which has been widely used, and has already been widely used in Europe and the United States.

その生成方法は多数知られており、それらの内代表的なものを示す。特許文献1は、亜塩素酸、次亜塩素酸および鉱酸の反応を利用したもの、特許文献2は塩素酸イオンを過酸化水素で還元する方法に関するもの、特許文献3は塩素酸イオンを鉱酸で還元する方法、特許文献4は隔膜式電解槽で亜塩素酸ソーダを電解する方法、特許文献5は亜塩素酸イオンと酸の反応を利用する方法である。これらの他にも次のような生成反応が知られている。
2NaClO+Cl→ClO+2NaCl
2NaClO+HSO→2ClO+2NaHSO
There are many known generation methods, and typical ones are shown. Patent Document 1 uses a reaction of chlorous acid, hypochlorous acid, and mineral acid, Patent Document 2 relates to a method of reducing chlorate ions with hydrogen peroxide, and Patent Document 3 mineralizes chlorate ions. A method of reducing with an acid, Patent Document 4 is a method of electrolyzing sodium chlorite in a diaphragm type electrolytic cell, and Patent Document 5 is a method of utilizing a reaction between chlorite ions and an acid. In addition to these, the following production reaction is known.
2NaClO 2 + Cl 2 → ClO 2 + 2NaCl
2NaClO 3 + H 2 SO 4 → 2ClO 2 + 2NaHSO 4

しかし、これら従来法は特殊な化学物質を原料とし、複雑な反応制御、複雑で大規模な装置を必要とした。そのために原料物質の保管や生成反応に危険性を伴うことがあり、装置も大型でかつ高価なものが多かった。従って、安全手軽に、広範囲に二酸化塩素の優れた性質の恩恵を受けることは困難だった。
特開2000−185908 特開平10−259003 特開平10−194707 特開平9−279476 特開平9−268002
However, these conventional methods use special chemical substances as raw materials, and require complicated reaction control and complicated and large-scale equipment. For this reason, there are cases where the storage of raw materials and production reactions are accompanied by dangers, and the apparatus is often large and expensive. Therefore, it has been difficult to safely and easily benefit from the excellent properties of chlorine dioxide over a wide area.
JP 2000-185908 A JP-A-10-259003 JP-A-10-194707 JP-A-9-279476 JP-A-9-268002

本発明者が課題としたのは、殺菌剤として優れた性質を持つ、二酸化塩素を安全手軽にかつ安価に利用できる方法を提供することである。The inventor has sought to provide a method that can use chlorine dioxide safely and easily at low cost, which has excellent properties as a disinfectant.

本発明者は、殺菌剤として優れた性質を持つ、二酸化塩素を安全手軽にかつ安価に利用できる方法を提供するために鋭意研究を重ねる中で、塩素イオンを無隔膜電解槽で電解することにより、所定の電圧以上で電解すると二酸化塩素が生成されることに気付いた。そこで生成の機構を詳しく調査した結果、塩素イオンを好適な条件で電解することにより、塩素酸が発生することを確認し、該塩素酸と、原液として供給された塩酸もしくは電解により生成した塩素と水との反応で二次的に生成した塩酸と次の反応により二酸化塩素が生成されていることを確認しこの方法の妥当性を確信した。
2HClO+HCl→2ClO +HClO+H
さらに、効率よく二酸化塩素を発生させるために研究を重ねた結果、該無隔膜電解槽において、電極一対当たりの陽極と陰極間に印加する電圧は4V以上が望ましいこと、より望ましくは8V以上50V未満であること、より一層望ましくは10V以上50V未満であることも確認した。さらに、二酸化塩素の発生効率および電解操作には使用する塩素イオンの濃度も密接に関係し、望ましい濃度は、2.5モル濃度以下0.005モル濃度以上であること、より望ましくは1モル濃度以下0.005モル濃度以上、より一層望ましくは1モル濃度以下0.03モル濃度以上であることも確認した。さらに、塩素イオン溶液としては塩酸溶液もしくは食塩溶液もしくは塩酸と食塩の混合溶液であることが、電解中に電極面へのスケール付着を防止し、生成した二酸化塩素含有溶液に余分な種類のイオンや化合物を含有しないので好都合であることも確認した。さらに、本技術に使用される該無隔膜電解槽が、電解原液が槽の下から入り上に向かって流れるように構成された槽内に、陽極が下に、陰極が上になるように、電極が上下の位置に配置されていること、あるいは電解原液が槽の手前から奥に向かって流れるように構成された槽内に、陽極が手前に、陰極が奥になるように、電極が前後の位置に配置されていること、あるいはまた不透水、不電導の隔壁で陽極と陰極が隔てられており、途中で2に枝分かれし、1が陽極隔室、他の1が陰極隔室に接合された構造の原液の供給手段を具備し、陽極隔室と陰極隔室を出た電気分解液が最後に合一されるように構成された排出手段を具備していること等によって、陽極側で生成した塩素酸が、すぐに還元消失することもなく効率的に塩酸と反応することで、二酸化塩素の発生に望ましいことを確認した。さらにまた、該無隔膜電解槽が、電解槽内部に配置された複数の電極のうち、少なくとも1が、電源と直接結線されていない、いわゆる複極式電解槽であることも電解操作や電解水効率の点優れていることを確認した。これらの確認に基づき本発明者は本発明を完成した。
The present inventor conducted an electrolysis of chlorine ions in a diaphragm electrolyzer in the course of earnest research to provide a safe and convenient method for using chlorine dioxide with excellent properties as a disinfectant. He noticed that chlorine dioxide is produced when electrolysis is performed at a predetermined voltage or higher. As a result of detailed investigation of the mechanism of formation, it was confirmed that chloric acid was generated by electrolyzing chlorine ions under suitable conditions, and the chloric acid and hydrochloric acid supplied as a stock solution or chlorine produced by electrolysis It was confirmed that chlorine dioxide was produced by the next reaction with hydrochloric acid produced secondarily by the reaction with water, and the validity of this method was confirmed.
2HClO 3 + HCl → 2ClO 2 + HClO + H 2 O
Furthermore, as a result of repeated research to generate chlorine dioxide efficiently, the voltage applied between the anode and cathode per electrode pair is preferably 4 V or more, more preferably 8 V or more and less than 50 V in the diaphragm membrane electrolytic cell. It was also confirmed that it is more desirably 10V or more and less than 50V. Furthermore, the chlorine dioxide generation efficiency and the electrolysis operation are also closely related to the concentration of chlorine ions to be used. The desirable concentration is 2.5 mol concentration or less and 0.005 mol concentration or more, more desirably 1 mol concentration. It was also confirmed that the concentration was 0.005 molar concentration or higher, more desirably 1 molar concentration or lower and 0.03 molar concentration or higher. Furthermore, the chlorine ion solution should be a hydrochloric acid solution, a salt solution, or a mixed solution of hydrochloric acid and sodium salt to prevent the scale from adhering to the electrode surface during electrolysis. It was also confirmed that it is convenient because it does not contain a compound. Further, the diaphragm electrolyzer used in the present technology is configured such that the electrolytic stock solution enters from the bottom of the tank and flows upward, so that the anode is on the bottom and the cathode is on the top. In the tank where the electrode is placed in the upper and lower positions, or the electrolytic stock solution flows from the front of the tank toward the back, the electrode is moved back and forth so that the anode is at the front and the cathode is at the back. The anode and the cathode are separated by a water-impervious and non-conducting partition, branching into 2 in the middle, 1 is joined to the anode compartment, and the other is joined to the cathode compartment A supply means for the stock solution having the structure as described above, and a discharge means configured so that the electrolytic solution exiting from the anode compartment and the cathode compartment is finally united, etc. The chloric acid produced in step 1 reacts efficiently with hydrochloric acid without immediately reducing and disappearing In the, it was confirmed that the desirable to the generation of chlorine dioxide. Furthermore, the diaphragmless electrolytic cell is a so-called bipolar electrolytic cell in which at least one of the plurality of electrodes arranged inside the electrolytic cell is not directly connected to the power source. It was confirmed that the efficiency was excellent. Based on these confirmations, the present inventor has completed the present invention.

本発明の効果は、殺菌剤として優れた性質を持つ二酸化塩素を安全手軽にかつ安価に利用できる方法を提供することにより、pHに影響されず、有機物による殺菌力の低下も受けにくく、さらに有害なトリハロメタンの生成も抑えて効果的な殺菌を行うことを可能にすることにより、環境および人に対する影響を最小にした公衆衛生向上への寄与である。The effect of the present invention is that it is safe to use chlorine dioxide having excellent properties as a bactericidal agent at a low cost. This contributes to the improvement of public health by minimizing the impact on the environment and people by enabling effective sterilization while suppressing the production of trihalomethane.

本発明を実施するための最良の形態は、濃度が2.5モル濃度以下0.005モル濃度以上、より望ましくは1モル濃度以下0.005モル濃度以上、より一層望ましくは1モル濃度以下0.03モル濃度以上の濃度の塩素イオン溶液を、無隔膜電解槽で、電極一対当たりの陽極と陰極間に印加する電圧が4V以上で、より望ましくは8V以上50V未満で、より一層望ましくは10V以上50V未満の電圧で電解することである。さらに、該無隔膜電解槽が、電解原液が槽の下から入り上に向かって流れるように構成された槽内に、陽極が下に、陰極が上になるように、電極が上下の位置に配置されていることも最良の態様の一つである。さらにまた、該無隔膜電解槽が、電解原液が槽の手前から奥に向かって流れるように構成された槽内に、陽極が手前に、陰極が奥になるように、電極が前後の位置に配置されていることも最良の態様の一つである。さらにまた、該無隔膜電解槽が、不透水、不電導の隔壁で陽極と陰極が隔てられており、途中で2に枝分かれし、1が陽極隔室、他の1が陰極隔室に接合された構造の原液の供給手段を具備し、陽極隔室と陰極隔室を出た電気分解液が最後に合一されるように構成された排出手段を具備していることも最良の態様の一つである。さらにまた、該無隔膜電解槽が、電解槽内部に配置された複数の電極のうち、少なくとも1が、電源と直接結線されていない、いわゆる複極式電解槽であることも最良の態様の一つである。
次に本発明の理解をさらに深めるために、実施例を示して説明するが、これは本特許の範囲をこの実施例で限定する趣旨ではない。
The best mode for carrying out the present invention is that the concentration is 2.5 molar concentration or less 0.005 molar concentration or more, more desirably 1 molar concentration or less 0.005 molar concentration or more, and even more desirably 1 molar concentration or less 0. The voltage applied between the anode and the cathode per electrode pair in a non-diaphragm electrolytic cell is a chlorine ion solution having a concentration of 0.03 molar or higher, more preferably 8 V or more and less than 50 V, and even more preferably 10 V. The electrolysis is performed at a voltage lower than 50V. Further, the diaphragm membrane electrolytic cell is configured so that the electrolytic stock solution enters from the bottom of the cell and flows upward, and the electrodes are positioned at the upper and lower positions so that the anode is on the lower side and the cathode is on the upper side. Arrangement is also one of the best modes. Furthermore, the diaphragm membrane electrolytic cell is configured so that the electrolytic stock solution flows from the front side of the bath toward the back side, and the electrodes are arranged at the front and rear positions so that the anode is at the front side and the cathode is at the back side. Arrangement is also one of the best modes. Further, the non-membrane electrolytic cell has an anode and a cathode separated by a water-impervious and non-conducting partition wall, branching into 2 in the middle, 1 being joined to the anode compartment and the other being joined to the cathode compartment. It is also one of the best modes that it comprises a supply means for the stock solution having the structure described above, and a discharge means configured so that the electrolysis solution exiting from the anode compartment and the cathode compartment is finally united. One. Furthermore, it is also one of the best modes that the diaphragmless electrolytic cell is a so-called bipolar electrolytic cell in which at least one of the plurality of electrodes arranged inside the electrolytic cell is not directly connected to the power source. One.
Next, in order to further deepen the understanding of the present invention, examples will be shown and described. However, this is not intended to limit the scope of this patent.

生成装置の一つを図1にブロック図で示した。電解槽4は次のように構成されている。電極は30mm×150mmのチタン平板を白金および酸化イリジウムで被覆したもの3枚を、それぞれ10mm間隔で平行に配置し、両端の2枚のみをそれぞれ電源5の陽極または陰極に接続してある。中央の電極12は電源と接続されていない。また電極と電極の間には整流板11が配置してあり、電極間の溶液の流れを一部分離している。電解槽の下部には塩酸溶液の導入手段3が、また、上部には電解液排出手段6が配置されている。装置の動作は次の通りである。塩酸溶液貯留手段1から定量ポンプ2によって一定量の塩酸溶液を電解槽4に連続的に供給する。電解槽4の電極には電源5から直流電流が供給される。このとき供給される電流は電流測定手段8で測定され、信号として制御手段9に伝送される。制御手段9は、予め指定された電流値と電流測定手段8で測定された実際の電流値を比較し、実際の電流値が不足の場合は塩酸溶液の供給量を増やし、過剰の場合は減らすように定量ポンプを制御し、電流値を一定状態になるように制御し、而して電解状態を一定に保つように構成されている。この装置で、塩酸濃度を1%、各電極間の電圧が12Vになるように、電源から電解槽に24Vの直流を供給し、電解電流値を2Aに設定し、電解を行った結果、32ppmの二酸化塩素を含んだ溶液が、毎分450mlの割合で連続的に得られた。One of the generation devices is shown in a block diagram in FIG. The electrolytic cell 4 is configured as follows. Three electrodes, each of which is a 30 mm × 150 mm titanium plate coated with platinum and iridium oxide, are arranged in parallel at intervals of 10 mm, and only two at both ends are connected to the anode or cathode of the power source 5, respectively. The center electrode 12 is not connected to a power source. Further, a rectifying plate 11 is disposed between the electrodes, and a part of the solution flow between the electrodes is separated. A hydrochloric acid solution introducing means 3 is arranged at the lower part of the electrolytic cell, and an electrolytic solution discharging means 6 is arranged at the upper part. The operation of the device is as follows. A fixed amount of hydrochloric acid solution is continuously supplied from the hydrochloric acid solution storage means 1 to the electrolytic cell 4 by the metering pump 2. A direct current is supplied to the electrode of the electrolytic cell 4 from the power source 5. The current supplied at this time is measured by the current measuring means 8 and transmitted to the control means 9 as a signal. The control means 9 compares the current value designated in advance with the actual current value measured by the current measuring means 8, and if the actual current value is insufficient, the supply amount of the hydrochloric acid solution is increased, and if it is excessive, it is decreased. Thus, the metering pump is controlled to control the current value so as to be in a constant state, and thus the electrolytic state is kept constant. With this apparatus, a direct current of 24 V was supplied from the power source to the electrolytic cell so that the hydrochloric acid concentration was 1% and the voltage between the electrodes was 12 V, the electrolysis current value was set to 2 A, and electrolysis was performed. Of chlorine dioxide was continuously obtained at a rate of 450 ml per minute.

他の実施例を図2によって説明する。この実施例は電解槽および電解槽と電源との接続を除いて実施例1と同一の構成であるので図2には電源と電解槽のみを示した。電解槽の電極は30mm×200mmの電極板3枚を20mm間隔で平行に配置し、全部を端子棒で接続したものを1構成とし、2構成を上下の位置で、相互に長さ50mm分が、10mmの間隔で交互に平行に組み合わされるように配置し、下部の構成15が電源の陽極、上部の構成14が電源の陰極にそれぞれ接続されている。この装置で、塩酸濃度を1%、電極間に10Vの電圧を印可し、電解電流値を2Aに設定し、電解を行った結果、50ppmの二酸化塩素を含んだ溶液が、毎分450mlの割合で連続的に得られた。Another embodiment will be described with reference to FIG. Since this example has the same configuration as that of Example 1 except for the electrolytic cell and the connection between the electrolytic cell and the power source, only the power source and the electrolytic cell are shown in FIG. The electrodes of the electrolytic cell are arranged in parallel with three electrode plates of 30 mm × 200 mm at intervals of 20 mm, all connected by terminal rods as one configuration, and two configurations at the upper and lower positions, and a length of 50 mm. They are arranged so as to be alternately combined in parallel at intervals of 10 mm, and the lower configuration 15 is connected to the power source anode, and the upper configuration 14 is connected to the power source cathode. With this apparatus, the concentration of hydrochloric acid was 1%, the voltage of 10V was applied between the electrodes, the electrolysis current value was set to 2A, and electrolysis was performed. As a result, the solution containing 50 ppm of chlorine dioxide was 450 ml / min. Obtained continuously.

さらに他の実施例を図3によって説明する。この実施例は電解槽および電解槽と電源との接続を除いて実施例1と同一の構成であるので図3には電源と電解槽のみを示した。20は上面からの透視図、21は側面透視図である。陽極17、陰極16は、液の流れに対して平行にかつ上流下流にずらして設置してある。矢印18は液の流れの方を示している。この装置で、1モル食塩溶液を、電極間に15Vの電圧を印可し、電解電流値を1.5Aに設定し、電解を行った結果、20ppmの二酸化塩素を含んだ溶液が、毎分200mlの割合で連続的に得られた。Still another embodiment will be described with reference to FIG. Since this example has the same configuration as that of Example 1 except for the electrolytic cell and the connection between the electrolytic cell and the power source, only the power source and the electrolytic cell are shown in FIG. 20 is a perspective view from above, and 21 is a side perspective view. The anode 17 and the cathode 16 are disposed parallel to the liquid flow and shifted upstream and downstream. An arrow 18 indicates the direction of liquid flow. With this apparatus, a voltage of 15 V was applied between the electrodes, a 1 molar salt solution was applied, the electrolysis current value was set to 1.5 A, and electrolysis was performed. As a result, a solution containing 20 ppm of chlorine dioxide was 200 ml per minute. Continuously obtained at the rate of.

本発明の一実施例    One embodiment of the present invention 本発明の第2の実施例の電源部および電解槽    Power supply unit and electrolytic cell of second embodiment of the present invention 本発明の第3の実施例の電源部および電解槽    Power supply unit and electrolytic cell of third embodiment of the present invention

符号の説明Explanation of symbols

1 塩酸溶液貯留手段
2 定量ポンプ
3 塩酸溶液送液手段
4 電解槽
5 直流電源
6 電解液排出手段
7 電解液貯留手段
8 電流測定手段
9 制御手段
10 電源に接続された電極
11 整流板
12 電源に接続されない電極
13 電源
14 陰極構成
15 陽極構成
16 陰極
17 陽極
18 溶液の流れ
19 電源
20 電解槽上面からの透視図
21 電解槽側面からの透視図
DESCRIPTION OF SYMBOLS 1 Hydrochloric acid solution storage means 2 Metering pump 3 Hydrochloric acid solution delivery means 4 Electrolytic tank 5 DC power supply 6 Electrolyte discharge means 7 Electrolyte storage means 8 Current measurement means 9 Control means 10 Electrode 11 connected to power supply 11 Rectification plate 12 Unconnected electrode 13 Power source 14 Cathode configuration 15 Anode configuration 16 Cathode 17 Anode 18 Solution flow 19 Power source 20 Perspective view from the top of the electrolytic cell 21 Perspective view from the side of the electrolytic cell

Claims (7)

無隔膜電解槽を用い、直流電流を、一対の陽極と陰極間に4V以上、より望ましくは8V以上50V未満、より一層望ましくは10V以上50V未満の電圧を印加し、塩素イオン溶液を電気分解することを特徴とする二酸化塩素含有溶液生成法Using a non-diaphragm electrolytic cell, a direct current is applied between the pair of anode and cathode by applying a voltage of 4 V or more, more preferably 8 V or more and less than 50 V, and even more preferably 10 V or more and less than 50 V to electrolyze the chlorine ion solution. Of chlorine dioxide-containing solution 請求項1記載の二酸化塩素含有溶液の生成法において、使用する塩素イオンの濃度が2.5モル濃度以下0.005モル濃度以上であること、より望ましくは1モル濃度以下0.005モル濃度以上、より一層望ましくは1モル濃度以下0.03モル濃度以上であることを特徴とする請求項1記載の二酸化塩素含有溶液の生成法The method for producing a chlorine dioxide-containing solution according to claim 1, wherein the concentration of chlorine ions to be used is 2.5 mol concentration or less and 0.005 mol concentration or more, more preferably 1 mol concentration or less and 0.005 mol concentration or more. The method for producing a chlorine dioxide-containing solution according to claim 1, further desirably having a molar concentration of 1 mol or less and 0.03 mol or more. 請求項1記載の塩素イオン溶液が塩酸溶液もしくは食塩溶液もしくは塩酸と食塩の混合溶液であることを特徴とする請求項1記載の二酸化塩素含有溶液生成法The method for producing a chlorine dioxide-containing solution according to claim 1, wherein the chlorine ion solution according to claim 1 is a hydrochloric acid solution, a salt solution, or a mixed solution of hydrochloric acid and salt. 請求項1記載の無隔膜電解槽が、電解原液が槽の下から入り上に向かって流れるように構成された槽内に、陽極が下に、陰極が上になるように、電極が上下の位置に配置されていることを特徴とする請求項1記載の二酸化塩素含有溶液の生成法2. The diaphragm membrane electrolytic cell according to claim 1, wherein the electrolytic solution is entered from the bottom of the cell and flows upward, and the electrodes are arranged so that the anode is at the bottom and the cathode is at the top. The method for producing a chlorine dioxide-containing solution according to claim 1, wherein the chlorine dioxide-containing solution is disposed at a position 請求項1記載の無隔膜電解槽が、電解原液が槽の手前から奥に向かって流れるように構成された槽内に、陽極が手前に、陰極が奥になるように、電極が前後の位置に配置されていることを特徴とする請求項1記載の二酸化塩素含有溶液の生成法2. The diaphragm electrolyzer according to claim 1, wherein the electrode is disposed in the front and back positions so that the electrolytic stock solution flows from the front of the tank toward the back so that the anode is at the front and the cathode is at the back. The method for producing a chlorine dioxide-containing solution according to claim 1, wherein 請求項1記載の無隔膜電解槽が、不透水、不電導の隔壁で陽極と陰極が隔てられており、途中で2に枝分かれし、1が陽極隔室、他の1が陰極隔室に接合された構造の原液の供給手段を具備し、陽極隔室と陰極隔室を出た電気分解液が最後に合一されるように構成された排出手段を具備していることを特徴とする請求項1記載の二酸化塩素含有溶液の生成法The non-membrane electrolytic cell according to claim 1, wherein the anode and the cathode are separated by an impermeable and non-conducting partition wall, branching into 2 in the middle, 1 being joined to the anode compartment and the other being joined to the cathode compartment And a discharge means configured to finally combine the electrolytic solution exiting the anode compartment and the cathode compartment. Method for producing a chlorine dioxide-containing solution according to Item 1 請求項1記載の無隔膜電解槽が、電解槽内部に配置された複数の電極のうち、少なくとも1が、電源と直接結線されていない、いわゆる複極式電解槽であることを特徴とする請求項1記載の二酸化塩素含有溶液の生成法The non-diaphragm electrolytic cell according to claim 1 is a so-called bipolar electrolytic cell in which at least one of a plurality of electrodes arranged inside the electrolytic cell is not directly connected to a power source. Method for producing a chlorine dioxide-containing solution according to Item 1
JP2003362568A 2003-09-16 2003-09-16 Method for producing chlorine dioxide-containing solution Pending JP2005087982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003362568A JP2005087982A (en) 2003-09-16 2003-09-16 Method for producing chlorine dioxide-containing solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003362568A JP2005087982A (en) 2003-09-16 2003-09-16 Method for producing chlorine dioxide-containing solution

Publications (1)

Publication Number Publication Date
JP2005087982A true JP2005087982A (en) 2005-04-07

Family

ID=34463535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003362568A Pending JP2005087982A (en) 2003-09-16 2003-09-16 Method for producing chlorine dioxide-containing solution

Country Status (1)

Country Link
JP (1) JP2005087982A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101909963B1 (en) * 2017-04-04 2018-10-19 주식회사 프레시즘 Apparatus for producing chlorine dioxide in system for producing sterilized water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101909963B1 (en) * 2017-04-04 2018-10-19 주식회사 프레시즘 Apparatus for producing chlorine dioxide in system for producing sterilized water

Similar Documents

Publication Publication Date Title
CN110366608B (en) Pulsed power supply for a sustainable redox agent supply with hydrogen reduction during electrochemical hypochlorite generation
KR100575036B1 (en) Electrolysis cell for generating chlorine dioxide
US8262872B2 (en) Cleansing agent generator and dispenser
JP2627100B2 (en) Method and apparatus for producing sterilized water
US20060163085A1 (en) Process for producing mixed electrolytic water
JP2002336856A (en) Electrolytic water making apparatus and method of making electrolytic water
KR20160093650A (en) Electrolytic cell equipped with concentric electrode pairs
JPH09253650A (en) Sterilized water making apparatus
GB2445940A (en) An electrochlorinator
JPH0673675B2 (en) Method for producing sterilized water containing hypochlorous acid by electrolysis
JP2010084225A (en) Electrolysis method with inclined electrode and apparatus therefor
JP2005087982A (en) Method for producing chlorine dioxide-containing solution
EP1721868A1 (en) Additive solution for use in the production of electrolyzed hypochlorous acid-containing sterilizing water
JP3746932B2 (en) Electrolyzed water generator
JPH11319839A (en) Electrolytic cell of electrolytic neutral water forming machine
JP2627101B2 (en) Additive chemicals for the production of electrolytic hypochlorous acid sterilized water
JP2017119282A (en) Method for generating slightly acidic hypochlorous acid water, bipolar electrolytic tank and generation device
JP4181170B2 (en) Drinking electrolyzed water and method for producing the same
JP2017047362A (en) Generation apparatus and generation method of weak-acidic hypochlorous acid solution
JP2892120B2 (en) Method for producing sterile water containing hypochlorous acid by electrolysis
JP2008086886A (en) Electrolytic water generator
JP2007051318A (en) Apparatus for electrolyzing saline solution
KR100523982B1 (en) Electrolytic disinfectants generator
KR100956872B1 (en) High Efficient method for manufacturing of aqueous chlorine dioxide using un-divided electrochemical cell
JP2892121B2 (en) Method for producing sterile water containing hypochlorous acid by electrolysis

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20051021

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20051108

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20060314

Free format text: JAPANESE INTERMEDIATE CODE: A02