JP2005087785A - Exhaust gas treatment material, gas filter and manufacturing method therefor, and exhaust gas treatment method - Google Patents

Exhaust gas treatment material, gas filter and manufacturing method therefor, and exhaust gas treatment method Download PDF

Info

Publication number
JP2005087785A
JP2005087785A JP2003321243A JP2003321243A JP2005087785A JP 2005087785 A JP2005087785 A JP 2005087785A JP 2003321243 A JP2003321243 A JP 2003321243A JP 2003321243 A JP2003321243 A JP 2003321243A JP 2005087785 A JP2005087785 A JP 2005087785A
Authority
JP
Japan
Prior art keywords
exhaust gas
gas treatment
treatment material
gas
acidic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003321243A
Other languages
Japanese (ja)
Inventor
Minoru Morioka
実 盛岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2003321243A priority Critical patent/JP2005087785A/en
Publication of JP2005087785A publication Critical patent/JP2005087785A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas treatment material excellent in the fixing capacity of an acidic gas such as chlorine gas, hydrogen chloride gas, sulfurous acid gas, a hyposulfurous acid gas and capable of fixing the acidic gas even in a high temperature region of about 1,000-1,300°C, a manufacturing method for a gas filter using the exhaust gas treatment material, and an exhaust gas treatment method. <P>SOLUTION: The exhaust gas treatment material contains a regenerated fine powder and is excellent in the fixing capacity of the acidic gas. The melting point of the exhaust gas treatment material in a state that the acidic gas is fixed on the exhaust gas treatment material is higher than that in a case using a conventional exhaust gas treatment material and the acidic gas can be fixed up at the high temperature region of about 1,300°C by the exhaust gas treatment material. Since this exhaust gas treatment material is excellent in the collection effect on the acidic gas causing environmental disruption, it is suitable for use in the gas filter for preventing the corrosion of incineration equipment and acidic rain and suppressing the production of dioxins. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高温酸性ガス固定化材、特にゴミ焼却等に使用される高温酸性ガス固定のための排ガス処理材、ガスフィルターとその製造方法、及び排ガスの処理方法に関する。本発明における部や%は特に規定しない限り質量基準で示す。   The present invention relates to a high-temperature acid gas fixing material, particularly an exhaust gas treatment material for fixing a high-temperature acid gas used for refuse incineration, a gas filter, a manufacturing method thereof, and an exhaust gas processing method. Unless otherwise specified, parts and% in the present invention are shown on a mass basis.

大気汚染等の環境問題が深刻化している。ゴミ焼却炉等により発生する酸性ガス、例えば、塩素ガス、塩化水素ガス、亜硫酸ガス、及び次亜硫酸ガス等の排ガスの大気中への放出は厳しく規制されている。酸性ガスは、ゴミ焼却炉等の設備の腐食を促進するばかりでなく、酸性雨やダイオキシン生成の原因となる。   Environmental problems such as air pollution are becoming more serious. The release of exhaust gases such as chlorine gas, hydrogen chloride gas, sulfurous acid gas and hyposulfite gas generated in a garbage incinerator or the like into the atmosphere is strictly regulated. Acid gas not only promotes corrosion of facilities such as garbage incinerators, but also causes acid rain and dioxin generation.

酸性ガスを捕集して低減する排ガスの処理材としては、水酸化カルシウムを用いる方法(特許文献1、2等参照)、ハイドロソーダライトを用いる方法が提案されている(特許文献3、4参照)。 As exhaust gas treatment materials that collect and reduce acid gas, methods using calcium hydroxide (see Patent Documents 1 and 2, etc.) and methods using hydrosodalite have been proposed (see Patent Documents 3 and 4). ).

ダイオキシン類の生成を抑制する観点から、ゴミ等の焼却は高温で処理する方向で進められており、従来の排ガス処理材では塩素ガス等の捕集が困難となってきている。 From the viewpoint of suppressing the production of dioxins, incineration of garbage and the like is proceeding in the direction of treating at high temperatures, and it has become difficult to collect chlorine gas and the like with conventional exhaust gas treatment materials.

環境問題は産業副産物の減容や有効利用の観点からも検討されている。特に有効利用が進んでいない産業廃棄物、例えば、再生骨材を製造する際にダストとして大量に発生する再生微粉末の用途を模索することは重要である。   Environmental issues are also being examined from the viewpoint of volume reduction and effective use of industrial byproducts. In particular, it is important to search for uses of industrial waste that has not been effectively used, for example, recycled fine powder that is generated in large quantities as dust when manufacturing recycled aggregate.

良質な再生骨材を得るためには、再生骨材からセメントペースト分をできるだけ取除くことが良質な再生骨材の製造に必要とされる。良質の再生骨材を大量に製造すれば、産業副産物として大量の再生微粉末が発生するため(非特許文献1等参照)、再生微粉末の有効な利用方法を見出し、再生微粉末の処理コスト削減が必要とされてきた。   In order to obtain a high-quality recycled aggregate, it is necessary to remove as much cement paste as possible from the recycled aggregate to produce a high-quality recycled aggregate. If a large amount of high-quality recycled aggregate is produced, a large amount of recycled fine powder is generated as an industrial by-product (see Non-Patent Document 1, etc.). Reductions have been needed.

再生微粉末の有効利用方法としては、セメント原料、土壌固化材、ALC原料等が検討されているが、再生微粉末を充分に再利用したとはいえず、新規用途を見出すことが必要とされている。 Cement raw materials, soil-solidifying materials, ALC raw materials, etc. have been studied as effective methods of using recycled fine powder, but it cannot be said that recycled fine powder has been sufficiently reused, and it is necessary to find new uses. ing.

特開平05-261244号公報Japanese Patent Laid-Open No. 05-261244 特開平06-108034号公報JP 06-108034 A 特開平10-216510号公報Japanese Patent Laid-Open No. 10-216510 特開平11-267446号公報Japanese Patent Laid-Open No. 11-267446 清水建設株式会社及び東京電力株式会社、"世界初の「コンクリート資源循環システム」を開発・実用化"、[online]、平成13年3月22日更新、[平成15年8月29日検索]、インターネット、<URL:http://www.shimz.co.jp/news_release2001/412_01.html>Shimizu Corporation and Tokyo Electric Power Co., Ltd., "Developing and commercializing the world's first" concrete resource circulation system "", [online], updated on March 22, 2001, [searched on August 29, 2003] , Internet, <URL: http://www.shimz.co.jp/news_release2001/412_01.html>

塩素ガス、塩化水素ガス、亜硫酸ガス、次亜硫酸ガス等の酸性ガスの固定化能力に優れ、1,000〜1,300℃程度の高い温度領域であっても酸性ガスを固定化することができる排ガス処理材、該排ガス処理材を用いたガスフィルターの製造方法、及び排ガスの処理方法を提供する。   An exhaust gas treatment material that has excellent ability to fix acidic gases such as chlorine gas, hydrogen chloride gas, sulfurous acid gas, and hyposulfite gas, and can fix acidic gas even in a high temperature range of about 1,000 to 1,300 ° C. A method for producing a gas filter using the exhaust gas treating material and a method for treating exhaust gas are provided.

本発明は、再生微粉末を含有する排ガス処理材であり、該排ガス処理材を成形してなるガスフィルターであり、該排ガス処理材及び/又は該ガスフィルターを用いることを特徴とする排ガスの処理方法である。   The present invention is an exhaust gas treatment material containing regenerated fine powder, a gas filter formed by molding the exhaust gas treatment material, and the exhaust gas treatment material characterized by using the exhaust gas treatment material and / or the gas filter Is the method.

本発明の排ガス処理材は、酸性ガスの固定化能力に優れ、排ガス処理材に酸性ガスが固定化された状態の融点が、従来の排ガス処理材を使用した場合よりも高く、1,300℃程度の高い温度領域まで酸性ガスを固定化することができるため、環境破壊の原因となる酸性ガスの捕集効果に優れるとともに、焼却設備の腐食防止、ダイオキシン生成の抑制等に有効である。  The exhaust gas treatment material of the present invention is excellent in the ability to fix acid gas, and the melting point of the state where the acid gas is fixed to the exhaust gas treatment material is higher than that in the case of using a conventional exhaust gas treatment material, which is about 1,300 ° C. Since acidic gas can be fixed up to a high temperature range, it is excellent in the effect of collecting acidic gas that causes environmental destruction, and is effective in preventing corrosion of incinerators and suppressing dioxin production.

再生微粉末とは、コンクリートガラを主体とする建設廃材等から、再生骨材を製造する際に発生するダストを総称するものである。再生骨材は品質によって、路盤材用、低品質再生骨材用、高品質再生骨材用等に大別され、それぞれ製造方法も異なっている。   Recycled fine powder is a general term for dust generated when manufacturing recycled aggregate from construction waste mainly composed of concrete glass. Recycled aggregates are roughly classified according to quality into roadbed materials, low-quality recycled aggregates, high-quality recycled aggregates, etc., and the production methods are also different.

路盤材用の再生骨材は、単にクラッシャ等でコンクリートガラを破砕して再生骨材を製造するために、得られる再生骨材にはセメントペースト分が付着しており、再生微粉末の発生量が少ないが、高品質再生骨材用では、加熱すりもみ法等によって再生骨材を製造するため、セメントペースト分の多くが取除かれ、良質な再生骨材が得られる。高品質再生骨材の製造工程からの再生微粉末の発生量は多くなる傾向にあり、加熱すりもみ法では、コンクリートガラの約40%にも達すると言われている。   Recycled aggregates for roadbed materials are produced by simply crushing concrete glass with a crusher or the like to produce recycled aggregates. However, for high-quality recycled aggregates, recycled aggregates are manufactured by the hot grinding method or the like, so that much of the cement paste is removed and high-quality recycled aggregates are obtained. The amount of recycled fine powder generated from the production process of high-quality recycled aggregates tends to increase, and it is said that it reaches about 40% of concrete glass by the hot grinding method.

再生微粉末は、いかなる方法で発生するものでも利用可能である。再生微粉末の化学成分は、再生骨材の製造方法や処理されるコンクリートガラの素性等によって千差万別である。化学成分は、例えば、CaO、SiO2、Fe2O3、Al2O3、MgO、TiO2、MnO、Na2O、K2O、S、強熱減量分、及び不溶解残分等が挙げられる。強熱減量分は水分と炭酸化合物に由来するものであり、不溶解残分は、CaO等と化合していない、骨材由来のSiO2分等を主体とするものである。 The regenerated fine powder can be generated by any method. The chemical composition of the recycled fine powder varies widely depending on the method of manufacturing the recycled aggregate and the nature of the concrete glass to be processed. Chemical components include, for example, CaO, SiO 2 , Fe 2 O 3 , Al 2 O 3 , MgO, TiO 2 , MnO, Na 2 O, K 2 O, S, loss on ignition, and insoluble residue. Can be mentioned. The ignition loss is derived from moisture and a carbonic acid compound, and the insoluble residue is mainly composed of aggregate-derived SiO 2 that is not combined with CaO or the like.

再生微粉末はCaOを含有することが望ましい。CaO含有量は30%以上が好ましく、35%以上がより好ましい。CaO分の一部は水酸化カルシウムや炭酸カルシウムとして存在する場合が多いが、これらの存在は、比較的低い温度での酸性ガス固定化能力を高める観点からむしろ好ましい面もあり、水酸化カルシウムや炭酸カルシウムの含有量は本発明の目的を実質的に阻害しない範囲であればよい。   The regenerated fine powder desirably contains CaO. The CaO content is preferably 30% or more, and more preferably 35% or more. A part of CaO content is often present as calcium hydroxide or calcium carbonate, but these presences are also preferable from the viewpoint of enhancing the ability to fix acid gas at relatively low temperatures. The content of calcium carbonate may be in a range that does not substantially inhibit the object of the present invention.

再生微粉末中のMgO、Al2O3、及びFe2O3は高温酸性ガスの吸収量や、一度吸収した酸性ガスを高温でも固定化する能力を高める観点から重要であり、再生微粉末中のMgO、Al2O3、及びFe2O3の成分の合計が5%以上であることが好ましく、10%以上であることがより好ましい。 MgO, Al 2 O 3 , and Fe 2 O 3 in the regenerated fine powder are important from the viewpoint of increasing the amount of high-temperature acid gas absorbed and the ability to fix once absorbed acid gas even at high temperatures. The total of MgO, Al 2 O 3 and Fe 2 O 3 components is preferably 5% or more, more preferably 10% or more.

本発明では、再生微粉末と共に酸化カルシウム、水酸化カルシウム、炭酸カルシウムの1種又は2種以上(以下、「酸化カルシウム等」という)を併用することができる。酸化カルシウム等を併用することにより、高温酸性ガスの吸蔵量を多くすることができ、吸蔵温度範囲を広くすることが可能である。再生微粉末は1,000℃を超えるような高温での酸性ガス吸蔵特性に優れる一方で、500℃以下の比較的低い温度領域における酸性ガスの吸蔵特性が乏しいが、酸化カルシウム等を併用することにより、500℃以下の温度領域から1,300℃程度の非常に高い温度領域にわたって酸性ガスを吸蔵して固定化することが可能となる。酸性ガスとの反応性の観点や、比較的低い温度領域での酸性ガス固定化の観点から、水酸化カルシウムや酸化カルシウムを選定することが好ましく、水酸化カルシウムがより好ましい。   In the present invention, one or more of calcium oxide, calcium hydroxide and calcium carbonate (hereinafter referred to as “calcium oxide etc.”) can be used in combination with the regenerated fine powder. By using calcium oxide or the like in combination, the occlusion amount of the high-temperature acidic gas can be increased, and the occlusion temperature range can be widened. While the regenerated fine powder has excellent acid gas storage characteristics at high temperatures exceeding 1,000 ° C, it has poor acid gas storage characteristics in a relatively low temperature range of 500 ° C or less, but by using calcium oxide etc. in combination, The acidic gas can be occluded and fixed over a temperature range of 500 ° C. or lower to a very high temperature range of about 1,300 ° C. From the viewpoint of reactivity with acidic gas and from the viewpoint of fixing acidic gas in a relatively low temperature region, it is preferable to select calcium hydroxide or calcium oxide, and calcium hydroxide is more preferable.

再生微粉末と酸化カルシウム等の使用割合は、再生微粉末中に含まれる化学成分値とも関連するので、一義的に決定されるものではなく、特に限定されるものではないが、再生微粉末と酸化カルシウム等を含有する排ガス処理材100部中、再生微粉末50〜100部が好ましく、60〜90部がより好ましい。酸化カルシウム等が過剰の場合には、800℃以上の高温領域での酸性ガス吸蔵効果が低下したり、排ガス処理材が溶融して焼却設備内に散在して設備を腐食させることがある。   The use ratio of the regenerated fine powder and calcium oxide is related to the chemical component value contained in the regenerated fine powder, and is not uniquely determined and is not particularly limited. Of 100 parts of the exhaust gas treatment material containing calcium oxide or the like, 50 to 100 parts of regenerated fine powder is preferable, and 60 to 90 parts is more preferable. When calcium oxide or the like is excessive, the acid gas storage effect in a high temperature region of 800 ° C. or higher may be reduced, or the exhaust gas treatment material may be melted and scattered in the incineration facility to corrode the facility.

再生微粉末に酸化カルシウム等を併用することにより、幅広い温度領域において、優れた酸性ガス固定化能力を発揮する排ガス処理材が得られるため、好ましい。   It is preferable to use calcium oxide or the like in combination with the regenerated fine powder because an exhaust gas treatment material that exhibits excellent acid gas fixing ability in a wide temperature range can be obtained.

本発明では排ガス処理材料として、例えば、カルシウムアルミネート類、カルシウムアルミノフェライト類、カルシウムフェライト類、カルシウムアルミノシリケート類、各種ポルトランドセメント、石灰石粉末等を混合したフィラーセメント、都市ゴミ焼却灰や下水汚泥焼却灰を原料として製造された環境調和型セメント(エコセメント)、高炉水砕スラグ、高炉徐冷スラグ、フライアッシュ、転炉スラグ、溶銑予備処理スラグ、精錬スラグ、電気炉酸化期スラグ、電気炉還元期スラグ等の電気炉スラグ、パルプスラッジ焼却灰、下水汚泥焼却灰、溶融スラグ粉末、都市ゴミ焼却灰、及び溶融スラグ粉末や、これらの粉末に含まれる水硬性物質や潜在水硬性物質やポゾラン物質から生成するあらゆる水和物類、アパタイト類、ゼオライト類、酸化マグネシウムや水酸化マグネシウムやドロマイトやハイドロタルサイト類等のマグネシウム化合物、活性炭等の炭素質物質、廃ガラス粉末、並びに生コンスラッジ等のうちの1種又は2種以上を、本発明の目的を実質的に阻害しない範囲で併用可能である。   In the present invention, as an exhaust gas treatment material, for example, calcium aluminate, calcium aluminoferrite, calcium ferrite, calcium aluminosilicate, various portland cement, filler cement mixed with limestone powder, municipal waste incineration ash and sewage sludge incineration Environmentally friendly cement (eco-cement), blast furnace granulated slag, blast furnace slow-cooled slag, fly ash, converter slag, hot metal pretreatment slag, refining slag, electric furnace oxidation period slag, electric furnace reduction Slag, etc., electric furnace slag, pulp sludge incineration ash, sewage sludge incineration ash, molten slag powder, municipal waste incineration ash, and molten slag powder, and hydraulic, latent hydraulic and pozzolanic substances contained in these powders Hydrates, apatites, zeolites produced from One or more of magnesium compounds such as magnesium oxide, magnesium hydroxide, dolomite and hydrotalcite, carbonaceous materials such as activated carbon, waste glass powder, and raw conslag are substantially used for the purpose of the present invention. Can be used as long as they are not hindered.

上記の排ガス処理材料は本発明の排ガス処理材と併用しても良いし、別々に使用しても何ら差し支えない。例えば、融点が高い本発明の排ガス処理材をガス温度の高い場所(例えば、ガス温度800〜1,200℃程度の場所)に設置し、水酸化カルシウム等の公知の排ガス処理材をガス温度の低い場所(例えば、ガス温度300〜600℃程度の場所)に設置して併用することも可能である。このように複数の酸性ガス固定化方法を併用することは、酸性ガス捕集効果等の観点から好ましい。   The above exhaust gas treatment material may be used in combination with the exhaust gas treatment material of the present invention, or may be used separately. For example, the exhaust gas treatment material of the present invention having a high melting point is installed in a place where the gas temperature is high (for example, a place where the gas temperature is about 800 to 1,200 ° C.), and a known exhaust gas treatment material such as calcium hydroxide is placed in a place where the gas temperature is low It is also possible to install it in combination (for example, at a gas temperature of about 300 to 600 ° C.). The combined use of a plurality of acid gas immobilization methods in this way is preferable from the viewpoint of the acid gas collection effect and the like.

再生微粉末の粒度は、ブレーン比表面積値で3,000cm2/g以上が好ましく、4,000〜9,000cm2/gがより好ましい。一般的に発生する再生微粉末は、4,000〜6,000cm2/g程度のものが多い。粒度が粗いと高温酸性ガスの吸収効果が低下することがあり、必要以上に細かく粉砕すると、コスト増加の原因となる。 The particle size of the fine reproduction fines, preferably 3,000 cm 2 / g or more in Blaine specific surface area value, 4,000~9,000cm 2 / g is more preferable. In general, most of the regenerated fine powder generated is about 4,000 to 6,000 cm 2 / g. If the particle size is coarse, the effect of absorbing the high-temperature acidic gas may be reduced, and if it is pulverized more finely than necessary, it causes an increase in cost.

本発明の排ガス処理材は、ガスフィルターとして利用しても良いし、焼却物と共に焼却して使用しても良いが、ガスフィルターで用いる方法は、排ガス処理材の回収が容易であり、焼却灰の減容やガスフィルターの再利用という観点から好ましい。   The exhaust gas treatment material of the present invention may be used as a gas filter, or may be used after incineration with an incinerated product. However, the method used in the gas filter facilitates recovery of the exhaust gas treatment material, and incineration ash. This is preferable from the viewpoint of volume reduction and reuse of a gas filter.

ガスフィルターの製造方法としては、本発明の排ガス処理材を加圧成形する方法や水硬性材料とともに水で混練して、水和硬化させて成形する方法等が挙げられる。   Examples of the method for producing a gas filter include a method for pressure-molding the exhaust gas treating material of the present invention, a method for kneading with water together with a hydraulic material, hydrating and curing, and the like.

排ガス処理材やガスフィルターの用途は、都市ゴミ焼却時に発生する排ガスの処理に限定されるものではなく、塩素やイオウを含有する廃棄物、汚泥、スラッジ等の焼却の際に発生する排ガスの処理等にも広範に利用可能である。具体例としては、下水汚泥、生コンスラッジ、パルプスラッジの焼却により生じる排ガスの処理等が挙られる。   The use of exhaust gas treatment materials and gas filters is not limited to the treatment of exhaust gas generated during incineration of municipal waste, but the treatment of exhaust gas generated during the incineration of waste, sludge, sludge, etc. containing chlorine and sulfur It can be used widely. Specific examples include treatment of exhaust gas generated by incineration of sewage sludge, raw consludge, pulp sludge, and the like.

各種の再生微粉末と酸化カルシウム等のカルシウム化合物を表1に示す割合で配合して排ガス処理材とし、この排ガス処理材を加圧成形してペレット化した。このペレット20kgをガスフィルターとして用い、小型焼却炉の排ガス通路の温度が1,100℃±100℃となる位置に配設した。塩素含有量が約1%の都市ゴミ1トンを焼却し、排ガスの総排出塩素量を定量した。結果を表1に示す。比較例として、水酸化カルシウムのみを用いた場合や、ハイドロソーダライトを用いた場合、排ガス処理材を用いなかった場合の結果も表1に併記した。   Various regenerated fine powders and calcium compounds such as calcium oxide were blended at a ratio shown in Table 1 to obtain an exhaust gas treatment material, and the exhaust gas treatment material was pressure-molded and pelletized. Using 20 kg of the pellets as a gas filter, the pellets were disposed at a position where the temperature of the exhaust gas passage of the small incinerator was 1,100 ° C. ± 100 ° C. One ton of municipal waste with a chlorine content of about 1% was incinerated, and the total amount of chlorine discharged from exhaust gas was quantified. The results are shown in Table 1. As a comparative example, the results when only calcium hydroxide is used, when hydrosodalite is used, and when no exhaust gas treatment material is used are also shown in Table 1.

<使用材料>
再生微粉末 :SiO2含有量6.0%、Fe2O3含有量3.8%、Al2O3含有量4.1%、CaO含有量20.5%、MgO含有量2.7%、SO3含有量0.6%、Na2O含有量0.3、K2O含有量0.2、強熱減量8.5%、不溶解残分52.8%。ブレーン比表面積3,000cm2/g。
炭酸カルシウム :試薬1級
水酸化カルシウム :試薬1級
酸化カルシウム :試薬1級
ハイドロソーダライト:カオリンと水酸化ナトリウム水溶液を3対10のモル比で混合し、加熱機に入れ、100℃で10時間熱処理した後、固液分離、洗浄、乾燥して合成した。
<Materials used>
Recycled fine powder: SiO 2 content 6.0%, Fe 2 O 3 content 3.8%, Al 2 O 3 content 4.1%, CaO content 20.5%, MgO content 2.7%, SO 3 content 0.6%, Na 2 O content 0.3, K 2 O content 0.2, loss on ignition 8.5%, insoluble residue 52.8%. Blaine specific surface area 3,000 cm 2 / g.
Calcium carbonate: Reagent primary calcium hydroxide: Reagent primary calcium oxide: Reagent primary hydrosodalite: Mix kaolin and sodium hydroxide aqueous solution in a molar ratio of 3 to 10, put in a heater, and heat at 100 ° C for 10 hours After heat treatment, it was synthesized by solid-liquid separation, washing and drying.

<測定方法>
排ガスの総排出塩素量:排ガスを水酸化ナトリウム水溶液へ通じさせて中和し、塩化水素ガスを塩素イオンに変換した後、この溶液中に溶け込んだ塩素イオンの量をイオンクロマトグラフィーにより定量した。塩素固定化率は以下の式で算出した。
<Measurement method>
Total amount of exhausted chlorine in exhaust gas: The exhaust gas was neutralized by passing it through an aqueous sodium hydroxide solution, and hydrogen chloride gas was converted into chlorine ions. Then, the amount of chlorine ions dissolved in the solution was quantified by ion chromatography. The chlorine immobilization rate was calculated by the following formula.

Figure 2005087785
Figure 2005087785

Figure 2005087785


注:実験No.1-11、1-12、1-13の総排出塩素量欄の*印はガスフィルターが溶融・散在。
Figure 2005087785


Note: Gas filters are melted and scattered in the * mark in the total discharge chlorine column of Experiment Nos. 1-11, 1-12, and 1-13.

再生微粉末の粒度を表2に示すように変えたこと以外は実施例1と同様に行った。結果を表2に併記した。   The same procedure as in Example 1 was performed except that the particle size of the regenerated fine powder was changed as shown in Table 2. The results are shown in Table 2.

Figure 2005087785
Figure 2005087785

排ガス処理材の酸性ガス固定化能力を検討した。表3に示す排ガス処理材を使用し、実施例1と同様の方法で塩化水素ガスを吸蔵させた。小型焼却炉の排ガス通路の温度が650〜750℃となる位置に配設した。排ガス処理後のガスフィルターを回収し、1,300℃で30分熱処理した。熱処理前と熱処理後の塩素含有量の差から塩素固定化率を求めた。結果を表3に示した。比較例として、水酸化カルシウムのみを用いた場合や、ハイドロソーダライトを用いた場合の結果も表3に併記した。
ガスフィルターの塩素量:JIS R 5202に準じて定量。
The ability of the exhaust gas treatment material to fix acid gas was examined. The exhaust gas treating material shown in Table 3 was used, and hydrogen chloride gas was occluded in the same manner as in Example 1. The exhaust gas passage of the small incinerator was placed at a position where the temperature was 650-750 ° C. The gas filter after exhaust gas treatment was collected and heat treated at 1,300 ° C. for 30 minutes. The chlorine immobilization rate was determined from the difference in chlorine content before and after heat treatment. The results are shown in Table 3. As a comparative example, the results when only calcium hydroxide is used or when hydrosodalite is used are also shown in Table 3.
Chlorine content of gas filter: Quantified according to JIS R 5202.

Figure 2005087785
Figure 2005087785

本発明の排ガス処理材は、酸性ガスの固定化能力に優れ、排ガス処理材に酸性ガスが固定化された状態の融点が従来の排ガス処理材を使用した場合よりも高く、1,300℃程度の高い温度領域まで酸性ガスを固定化することができ、環境破壊の原因となる酸性ガスの捕集効果に優れるため、焼却設備の腐食防止、酸性雨の防止、ダイオキシン生成の抑制等に用いられるガスフィルター用途に適する。
The exhaust gas treatment material of the present invention is excellent in the ability to fix acid gas, and the melting point of the state in which the acid gas is immobilized on the exhaust gas treatment material is higher than that in the case of using a conventional exhaust gas treatment material, which is as high as about 1,300 ° C. Gas filters used to prevent corrosion of incineration equipment, acid rain, and dioxin generation because acid gas can be fixed up to the temperature range and has an excellent effect of collecting acid gas that causes environmental destruction. Suitable for use.

Claims (8)

再生微粉末を含有する排ガス処理材。 An exhaust gas treatment material containing regenerated fine powder. ブレーン比表面積が3,000cm2/g以上であることを特徴とする請求項1記載の排ガス処理材。 The exhaust gas treating material according to claim 1, wherein the specific surface area of the brain is 3,000 cm 2 / g or more. CaO含有量が20%以上であることを特徴とする請求項1又は請求項2記載の排ガス処理材。 The exhaust gas treatment material according to claim 1 or 2, wherein the CaO content is 20% or more. 再生微粉末中のMgO、Al2O3、及びFe2O3の含有量の合計が10%以上であることを特徴とする請求項1〜3のうちの1項に記載の排ガス処理材。 The exhaust gas treatment material according to claim 1, wherein the total content of MgO, Al 2 O 3 , and Fe 2 O 3 in the recycled fine powder is 10% or more. 水酸化カルシウム、酸化カルシウム、炭酸カルシウムから選ばれる1種又は2種以上を含有する請求項1〜4のうちの1項に記載の排ガス処理材。 The exhaust gas treatment material according to one of claims 1 to 4, comprising one or more selected from calcium hydroxide, calcium oxide, and calcium carbonate. 請求項1〜5のうちの1項に記載の排ガス処理材を成形してなるガスフィルター。 A gas filter formed by molding the exhaust gas treatment material according to claim 1. 請求項1〜5のうちの1項に記載の排ガス処理材を用いることを特徴とする排ガスの処理方法。 An exhaust gas treatment method using the exhaust gas treatment material according to claim 1. 請求項6記載のガスフィルターを用いることを特徴とする排ガスの処理方法。

An exhaust gas treatment method using the gas filter according to claim 6.

JP2003321243A 2003-09-12 2003-09-12 Exhaust gas treatment material, gas filter and manufacturing method therefor, and exhaust gas treatment method Pending JP2005087785A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003321243A JP2005087785A (en) 2003-09-12 2003-09-12 Exhaust gas treatment material, gas filter and manufacturing method therefor, and exhaust gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003321243A JP2005087785A (en) 2003-09-12 2003-09-12 Exhaust gas treatment material, gas filter and manufacturing method therefor, and exhaust gas treatment method

Publications (1)

Publication Number Publication Date
JP2005087785A true JP2005087785A (en) 2005-04-07

Family

ID=34452984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003321243A Pending JP2005087785A (en) 2003-09-12 2003-09-12 Exhaust gas treatment material, gas filter and manufacturing method therefor, and exhaust gas treatment method

Country Status (1)

Country Link
JP (1) JP2005087785A (en)

Similar Documents

Publication Publication Date Title
JP3368372B2 (en) Method for converting incinerated ash into cement raw material
Gianoncelli et al. Fly ash pollutants, treatment and recycling
WO1999044961A1 (en) Cement manufacturing apparatus
JP3598832B2 (en) Stabilization of waste containing heavy metals
JP4255114B2 (en) CFC decomposition method
JP2004526555A (en) Method for inactivating ash, artificial pozzolan obtained by the method
JP2005087785A (en) Exhaust gas treatment material, gas filter and manufacturing method therefor, and exhaust gas treatment method
JP4071693B2 (en) Exhaust gas treatment material, gas filter, and exhaust gas treatment method
JP2002348153A (en) Manufacturing method of high purity cement from incinerator ash
JP4441225B2 (en) Exhaust gas treatment material, gas filter, and exhaust gas treatment method
JP4615829B2 (en) Exhaust gas treatment material, gas filter, and exhaust gas treatment method using them
JP2007160223A (en) Exhaust gas neutralizer using molten slag
JP2009226237A (en) Treatment method of treating waste
Lin et al. Behaviour of heavy metals immobilized by co-melting treatment of sewage sludge ash and municipal solid waste incinerator fly ash
JP4428614B2 (en) Exhaust gas treatment material, gas filter, and exhaust gas treatment method using them
KR20110091162A (en) Removal of toxic material in municipal solid waste incineration bottom ash using ultrasonication
KR102565271B1 (en) Concrete Composite for Ground Solidifying Agent Having Polysilicon Sludge
JP4428613B2 (en) Exhaust gas treatment material, gas filter, and exhaust gas treatment method using them
JP4030110B2 (en) CFC decomposition method
JP4036298B2 (en) CFC decomposition method
KR20110091169A (en) Method for manufactruing cement using fly ash and water sludge
KR20050076555A (en) Mechanochemical treatment method of bottom ash from municipal waste incinerator with steelmaking slags.
JP2005225742A (en) Manufacturing method for calcium sulfide, manufacturing method for foundation improving material, and treating method for object to be treated
JP2007209831A (en) Treatment method of asbestos
JP4097573B2 (en) Waste gas treatment furnace waste gas treatment method and treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071214

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080206

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080327

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080425