KR20110091162A - Removal of toxic material in municipal solid waste incineration bottom ash using ultrasonication - Google Patents

Removal of toxic material in municipal solid waste incineration bottom ash using ultrasonication Download PDF

Info

Publication number
KR20110091162A
KR20110091162A KR20100010871A KR20100010871A KR20110091162A KR 20110091162 A KR20110091162 A KR 20110091162A KR 20100010871 A KR20100010871 A KR 20100010871A KR 20100010871 A KR20100010871 A KR 20100010871A KR 20110091162 A KR20110091162 A KR 20110091162A
Authority
KR
South Korea
Prior art keywords
bottom ash
incineration bottom
incineration
waste incineration
dioxins
Prior art date
Application number
KR20100010871A
Other languages
Korean (ko)
Inventor
한기천
안지환
유광석
계상범
김형순
Original Assignee
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국지질자원연구원 filed Critical 한국지질자원연구원
Priority to KR20100010871A priority Critical patent/KR20110091162A/en
Publication of KR20110091162A publication Critical patent/KR20110091162A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE NOT OTHERWISE PROVIDED FOR
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B18/00Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B18/04Waste materials; Refuse
    • C04B18/06Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
    • C04B18/10Burned or pyrolised refuse
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B7/00Hydraulic cements
    • C04B7/24Cements from oil shales, residues or waste other than slag
    • C04B7/26Cements from oil shales, residues or waste other than slag from raw materials containing flue dust, i.e. fly ash
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/10Production of cement, e.g. improving or optimising the production methods; Cement grinding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Civil Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

PURPOSE: A method for eliminating toxic materials from the incineration bottom ash of municipal solid wastes is provided to effectively eliminate dioxins and chlorides from the incineration bottom ash through a mechanical-chemical processing process, a washing process, and a carbonating process. CONSTITUTION: The incineration bottom ash of municipal solid wastes is dried. Granulated blast-furnace slag is added to the dried incineration bottom ash. The incineration bottom ash with the granulated blast-furnace slag is activation-pulverized in order to eliminate dioxins. The incineration bottom ash without the dioxins is stirred with distilled water in which the pH thereof is between 5 and 7 in order to eliminate soluble chlorides. Carbon dioxide gas is injected into the incineration bottom ash without the soluble chlorides in order to carbonate the non-soluble chlorides, and the carbonated non-soluble chlorides are eliminated.

Description

생활폐기물 소각 바닥재에서 유해물질을 제거하는 방법{Removal of Toxic Material in Municipal Solid Waste Incineration Bottom Ash Using Ultrasonication}Removal of Toxic Material in Municipal Solid Waste Incineration Bottom Ash Using Ultrasonication

본 발명은 생활폐기물 소각 바닥재에서 유해물질을 제거하는 방법에 관한 것으로, 더욱 자세하게는 생활폐기물의 소각바닥재에 고로수재슬래그를 첨가하여 기계적 화학처리하고, 수세 및 탄산화공정을 수행하여, 소각 바닥재에 포함된 다이옥신과 염화물을 제거하는 방법에 관한 것이다.
The present invention relates to a method for removing toxic substances from municipal waste incineration flooring, and more particularly, by adding blast furnace slag to incineration flooring of domestic waste, performing mechanical chemical treatment, washing and carbonizing process, and included in the incineration flooring. A method for removing dioxins and chlorides.

생활 폐기물 처리 분야에 있어서, 국내에는 약 50여개의 소각로가 설치되어 운전되고 있으며, 향후 100여개의 소각로가 추가 설치될 예정으로, 폐기물 분야 중, 도시쓰레기 처리에는 괄목할 만한 성장을 보일 것으로 추정되나, 이에 따른 2차오염물의 발생은 또다른 사회문제로 대두되고 있는 실정이다. 생활쓰레기 처리시 소각로에서 발생하는 2차오염 물질 중, 특히 문제가 되는 것은 소각재이다. In the field of household waste treatment, about 50 incinerators are installed and operated in Korea, and 100 more incinerators are planned to be installed in the future. As a result, the generation of secondary pollutants is another social problem. Among secondary pollutants generated in incinerators during household waste treatment, incinerators are particularly problematic.

일반적으로, 쓰레기 소각로에서 발생되는 소각재는 쓰레기 소각량의 10∼15%정도가 배출되고 있으며, 특히, 많은 중금속 및 다이옥신 같은 유해물질이 농축되어 있는, 바닥재와 비산재 두가지 종류가 있는데, 이중 대부분(80∼85%)은 바닥재이다. 바닥재는, 주로 30∼40%의 산화규소(SiO2)와 12∼17%의 산화칼슘(CaO)과 6∼10%의 산화알루미늄(Al2O3),1∼5%의 철(Fe)과 3∼7%의 산화나트륨(Na2O)과 2∼3%의 미연소분, 미량의 다이옥신 등으로 이루어지며, 특히, 이러한 바닥재에는, 크롬(Cr), 주석(Sn), 구리(Cu), 납(Pb) 등의 중금속산화물이 다량 함유되어 있을 뿐 아니라, 소각바닥재에는 약 10∼20%의 금속성분이 포함되어 있다.In general, incinerators from waste incinerators emit about 10-15% of the waste incineration, and there are two kinds of flooring and fly ash, in which many heavy metals and dioxins are concentrated. 85%) is flooring. The flooring is mainly composed of 30-40% silicon oxide (SiO2), 12-17% calcium oxide (CaO), 6-10% aluminum oxide (Al2O3), 1-5% iron (Fe) and 3-7. % Sodium oxide (Na2O), 2-3% unburned fraction, trace amounts of dioxins, and the like, and in particular, such flooring materials include chromium (Cr), tin (Sn), copper (Cu), lead (Pb), and the like. In addition to containing a large amount of heavy metal oxides, incineration floorings contain about 10 to 20% of the metal components.

이러한 소각바닥재는 전량 별다른 후처리없이 매립되고 있으나, 매립시, 분진이 발생되는 문제점과, 침출에 의해 잔존하는 대량의 다이옥신 및 중금속이 용해되는 문제점 등이 있다. Such incineration flooring material is entirely buried without any post-treatment, but there are problems in that dust is generated, and a large amount of dioxins and heavy metals remaining by leaching are dissolved.

한편, 이러한 문제점을 해결하기 위하여, 최근에는 부피를 줄이고 유해성분을 제거하는 방법으로, 소각바닥재를 고형화하는 방법과, 용융하는 방법, 약제처리방법, 산 및 기타용매에 의한 안정화하는 방법 등이 채용되고 있다.On the other hand, in order to solve such a problem, recently, as a method of reducing the volume and removing harmful components, a method of solidifying an incineration bottom material, a melting method, a chemical treatment method, a method of stabilizing by acid and other solvents, etc. are employed. It is becoming.

또한, 고형화, 약제 처리나 산, 기타 용매에 의한 안정화 하는 방법은 다이옥신을 분해시키지 못하는 안정화 방법이라는 문제가 있다.In addition, there is a problem that the method of solidification, drug treatment or stabilization by acid or other solvent is a stabilization method that does not decompose dioxins.

이중, 고형화하는 방법으로는, 시멘트로 소각바닥재를 고형화하여 처리하는 방법이 있는데, 고형화하면서 부피가 증가되어, 소각에 의한 쓰레기 감량효과가 줄어들고, 다이옥신 등의 유해성분이 용출되는 단점이 있어, 채용에 많은 문제가 있다.Among them, the solidification method includes a method of solidifying an incineration bottom material with cement, which increases the volume while solidifying, reducing the waste reduction effect due to incineration, and releasing harmful substances such as dioxins. There are many problems.

또한, 부피를 최소화하는 방법 중의 하나로는, 소각바닥재를, 고온로에서 용융하여 소각재의 부피를 최소화하고, 다이옥신 등을 분해하는 방법이 있는데, 이 방법은 용융설비가 고가이며, 에너지가 많이 소모되고, 2차 용융분진 등이 발생하는등의 문제점이 있다.In addition, one of the methods for minimizing the volume is to melt the incineration bottom ash in a high temperature furnace to minimize the volume of the incineration ash and to decompose dioxins. This method is expensive in melting facilities and consumes a lot of energy. , Secondary melt dust, and so on.

한편, 소각바닥재의 성상은 쓰레기질, 소각로 형식 등에 따라 다르며, 특히, 스토카식로의 경우는, 재분중 90%가 바닥재로 배출된다.On the other hand, the characteristics of incineration flooring materials vary depending on the type of waste material, incinerators, and the like. In particular, in the case of a stoker type furnace, 90% of the ash is discharged to the flooring material.

또한, 일반적으로 배가스 처리용 알카리제는 비산 분진의 양의 2배정도가 되기 때문에, 바닥재와 비산재의 발생비율은 3∼4 : 1 정도이다. 유동상의 경우, 소각재 중에 약 30∼40%가 소각바닥재이고, 나머지 비산재중 약 30%가 냉각탑 하부에서, 70%가 집진장치에서 포집된다.Moreover, since the alkali agent for flue-gas treatment generally becomes about twice the quantity of scattering dust, the generation ratio of a flooring material and a fly ash is about 3-4: 1. In the fluidized bed, about 30-40% of the ash is incinerated bottom ash, about 30% of the remaining fly ash is collected at the bottom of the cooling tower and 70% is collected in the dust collector.

한편, 일반적으로 용선(pig iron)을 생산하기 위하여, 용선의 원료가 되는 철광석, 코크스, 석회석 등을 고로에 투입하면, 철광석은 환원및 용해 과정에서 부산물로, 고로슬래그가 생성된다.On the other hand, in order to produce pig iron (pig iron) in general, when iron ore, coke, limestone, etc., which are raw materials of molten iron, are put into the blast furnace, iron ore is a by-product during the reduction and melting process, and blast furnace slag is produced.

고로에서 배출된 고로슬래그는 그 처리공정에 따라 서냉(괴재)슬래그와 급냉(수재)슬래그로 구분된다.Blast furnace slag discharged from blast furnace is classified into slow cooling (lumped) slag and quenching (water) slag according to the treatment process.

생성되는 수재슬래그는 수재화 설비에서 가압수 분사시점과 수재화온도에 따라, 그 특성이 변화되는데, 수재화 온도가 1200℃이상이고, 용융슬래그내에 질소가 증가되면, 팽창되어 거품구조를 갖는 소립의 백색 또는 황백색을 띄는 연질수재 슬래그가 생성되고, 수재화온도가 낮으면, 흑갈색의 입자의 경질 수재슬래그가 생성된다. 국내에서는 연질 수재슬래그만이 생산되고 있을 뿐이다. 급냉한 고로슬래그는 알칼리 등에 의해 자극되어 잠재 수경성을 발현하는 수경성재료로 사용되고 있고, 특히, 최근에는 분해 및 분급기술의 진보에 의해 고분말도 제품의 제조가 가능함에 따라 고강도 콘크리트와 고유동화 콘크리트 등에 새로운 응용분야로 발생되고 있으며, 콘크리트 혼합재료로서 유화성이 확인되어 미분말이 많이 사용되고 있다. 또한, 국내에서는 수재 슬래그를 이용한 차수재(공개번호 특 1999-0053898), 수재슬래그를 이용한 철로강화노반재(등록 10-0237331)와 본 발명자에 의한 수재슬래그를 이용한 마찰재 제조방법(공개번호 10-1998-002198) 등이 있을 뿐이다. 따라서 본 발명자는 수재슬래그의 연구를 하던 중, 소각재 처리에 수재슬래그의 잠재적 수경성이 절대적으로 필요한 점에 착안하여 이를 고안하게 되었다.The generated slag is changed according to the time of pressurized water injection and the regeneration temperature in the regeneration plant. When the regeneration temperature is 1200 ° C or higher and nitrogen in the molten slag is increased, the slag is expanded and has a foam structure. White or yellowish-white softwood slag is produced, and when the rehydration temperature is low, hardwood slag of dark brown particles is produced. Only soft wood slag is produced in Korea. Rapidly cooled blast furnace slag is used as a hydraulic material that is stimulated by alkali and expresses latent hydraulic properties.In particular, as a result of the development of high-molecular-weight products due to the advancement of decomposition and classification techniques, new blast furnace slag is newly developed. It is generated as an application field, and fine powder is widely used because of emulsification as concrete mixed material. In addition, in Korea, a method of manufacturing a friction material using a reinforcement material (published number 1999-0053898) using reinforcement slag, a reinforcing steel reinforcement material using registration reinforcement slag (registered 10-0237331) and a reinforcement slag by the present inventors (publication number 10- 1998-002198). Therefore, the inventors of the present invention have devised the present invention while paying attention to the fact that the potential hydraulic properties of the ash slag are absolutely necessary for incineration ash treatment.

또한, 바닥재에는 소각폐기물의 종류에 따라 차이는 있지만, 염소성분이 1 내지 3 중량%로 포함되어 있어, 바닥재를 일부 재활용 용도로 사용하는데 장애가 된다. 예컨데, 바닥재를 시멘트 원료로 재활용할 경우 바닥재의 성분이 시멘트와 동일하여야 하나, 바닥재에 다량으로 함유되어 있는 염소로 인하여 조성이 달라져 재활용이 불가능하다. In addition, the flooring material is different depending on the type of incineration waste, but contains 1 to 3% by weight of chlorine components, which makes it difficult to use the flooring material for some recycling purposes. For example, when the flooring material is recycled as a cement raw material, the material of the flooring material should be the same as cement, but the composition of the flooring material is different due to the chlorine contained in the flooring material.

따라서, 바닥재로부터 염소성분을 제거하여 적정 염소이온 농도인 1,000mg/kg 이하로 처리하는 것이 필요하다. 이를 위하여, 일부 처리업체에서는 바닥재를 야적한 후 상부에서 물을 살수하는 방법을 사용하고 있으나, 처리용량이 한정되어 있고, 효율이 낮아 경제성이 떨어지고, 환경적으로도 문제점을 지니고 있는 실정이다.Therefore, it is necessary to remove the chlorine component from the flooring material and to treat it at an appropriate concentration of chlorine ion of 1,000 mg / kg or less. To this end, some treatment companies are using a method of spraying water from the top after depositing the flooring, but the treatment capacity is limited, the efficiency is low, the economy is low, and the environment has problems.

따라서, 본 발명자는 샐활쓰레기 소각 바닥재를 고로수재 슬래그를 첨가한 기계적화학방법으로 처리하고, 수세 및 탄산화공정을 수행하는 경우, 다이옥신과 염화물을 효과적으로 제거할 수 있다는 것을 확인하고, 본 발명을 완성하게 되었다.
Accordingly, the present inventors have found that when the sludge waste incineration bottom ash is treated by a mechanical chemical method including blast furnace slag and washed with water and carbonated, dioxins and chlorides can be effectively removed, thereby completing the present invention. It became.

본 발명의 목적은 소각폐기물의 바닥재에서 다이옥신과 염화물을 효율적으로 제거하는 방법을 제공하는데 있다.
An object of the present invention is to provide a method for efficiently removing dioxins and chlorides from the bottom ash of incineration waste.

상기 목적을 달성하기 위하여, 본 발명은 (a) 생활폐기물 소각바닥재를 건조하는 단계; (b) 고로수재슬래그를 첨가한 후, 활성화 분쇄하여 다이옥신을 제거하는 단계; (c) 상기 다이옥신이 제거된 소각바닥재를 pH 5~7의 증류수와 섞어 교반시켜 가용성 염화물을 제거하는 수세처리단계: 및 (d) 수세처리된 바닥재에 CO2 가스를 주입하여 난용성 염화물을 탄산화시키는 단계를 포함하는 생활폐기물 소각 바닥재의 유해물질을 제거하는 방법을 제공한다.
In order to achieve the above object, the present invention comprises the steps of (a) drying the domestic waste incineration bottom ash; (b) adding blast furnace slag and then activating and grinding to remove dioxins; (c) a washing step of removing the soluble chloride by mixing the incinerated bottom material from which the dioxins have been removed with distilled water of pH 5 to 7; and (d) injecting CO 2 gas into the washed floor material to carbonate the poorly soluble chloride. It provides a method for removing harmful substances in domestic waste incineration flooring, including the step of igniting.

본 발명에 따르면, 생활폐기물의 바닥소각재에 포함된 유해물질을 효과적으로 제거할 수 있어, 바닥소각재를 시멘트 원료나 도로기층제 등으로 원활하게 재활용할 수 있다.
According to the present invention, it is possible to effectively remove the harmful substances contained in the floor incineration ash of domestic waste, it is possible to smoothly recycle the floor incinerator as a raw material of cement or road substrate.

도 1은 본 발명에 따른 소각 바닥재의 유해물질을 제거하는 공정을 나타낸 공정도이다.1 is a process chart showing a process for removing harmful substances in the incineration bottom ash according to the present invention.

본 발명은 (a) 생활폐기물 소각바닥재를 건조하는 단계; (b) 고로수재슬래그를 첨가한 후, 활성화 분쇄하여 다이옥신을 제거하는 단계; (c) 상기 다이옥신이 제거된 소각바닥재를 pH 5~7의 증류수와 섞어 교반시켜 가용성 염화물을 제거하는 수세처리단계: 및 (d) 수세처리된 바닥재에 CO2 가스를 주입하여 난용성 염화물을 탄산화시키는 단계를 포함하는 생활폐기물 소각 바닥재의 유해물질을 제거하는 방법에 관한 것이다.The present invention comprises the steps of (a) drying the domestic waste incineration bottom ash; (b) adding blast furnace slag and then activating and grinding to remove dioxins; (c) a washing step of removing the soluble chloride by mixing the incinerated bottom material from which the dioxins have been removed with distilled water of pH 5 to 7; and (d) injecting CO 2 gas into the washed floor material to carbonate the poorly soluble chloride. The present invention relates to a method for removing toxic substances from municipal waste incineration flooring comprising the step of igniting.

본 발명에 있어서, (a) 단계의 생활폐기물 소각 바닥재는 금속이 제거된 것임을 특징으로 할 수 있으며, 금속을 제거하는 방법으로는 자력선별기를 이용하여 제거하는 것이 바람직하다.In the present invention, the municipal waste incineration bottom ash of step (a) may be characterized in that the metal is removed, it is preferable to remove the metal using a magnetic separator.

본 발명의 특징은, 생활 쓰레기 소각바닥재를 분쇄할 때, 메카노케미스트리법에 의해 분쇄하고, 분쇄시 발생되는 염소(Cl)이온을 CaO를 함유하고 있는 물질인 제철 부산물인 고로수재슬래그를 투입하여 안정화ㅇ분쇄하는 단계에 도입하는 것이며, 특히, 쓰레기 생활바닥재의 경우, 분쇄공정에서 에너지를 부여하여 활성화할 경우, 기계적화학법의 활성화를 위해, 진동밀, 진동원심력 밀이나 유성밀을 사용하는 것을 특징으로 하고 있다.A feature of the present invention is that when crushing household waste incineration bottom ash, the crushing by the mechanochemistry method, chlorine (Cl) ions generated during the crushing by inputting the blast furnace slag which is a by-product of steelmaking which is a material containing CaO It is introduced at the stabilization and grinding stage. In particular, in the case of waste living flooring material, it is recommended to use a vibration mill, a vibration centrifugal mill, or a planetary mill to activate the mechanical chemical method when energizing and activating in the grinding process. It features.

특히, 상기의 메카노케미컬 기술을 이용한 난처리 유해화합물 처리에서 유해화합물로부터 벗어나 활성상태가 된 염소와 반응하여 이것을 안전한 물질로 만들고, 또한 무해화 처리 후의 모든 물질에 유효한 사용방도를 개척하기 위해서는 CaO성분이 불가결하다. 따라서, 본 발명자는 실용적 관점에서 하기와 같은 특성을 가진 제철 슬래그 중 수재슬래그를 사용하는 편이 보다 효율적이라 생각하였다. Particularly, in order to make a safe substance by reacting with chlorine which becomes free from harmful compounds and reacts with active chlorine in the treatment of untreated harmful compounds using the above mechanochemical technology, in order to pioneer the effective use method for all substances after detoxification treatment, CaO Ingredients are indispensable. Therefore, the inventors of the present invention considered that it is more efficient to use wood slag among steel slag having the following characteristics from the practical point of view.

특히, 일반적으로 메카노케미컬 기술에서의 탈염소 반응에는 화합물에서 이탈한 활성 염소(염소래디칼 C1)를 안정하게 만드는 활성 칼슘(칼슘래디칼Ca)과 활성 산화칼슘(CaO)이 필요하다. 그러나 생석회(CaO단체)는 강고한 Ca=O결합으로된 비결정성 물질이며, 이것을 활성화시키는 에너지가 많음에 비해, 고로수재슬래그 속의 Ca는 -Ca-Si-와 -Ca-O-Si 등의 결합으로 구성되어, 파쇄 등에 의해 활성화시키는 에너지는 낮고, -Si-O 네트웍 속에, Ca원자가 존재하여 물리적 에너지에 의해 얻을 수 있는 파면이 생성, 활성적인 칼슘면이 표출되기 쉽고, 수재슬래그는 흡습능력이 있기는 하지만, CaO성분은 SiO2와 네트워크 결합되어 있어 단순히 CaO가 수분을 흡수하여 Ca(OH)2 가 되는 것은 아니기 때문에, 발열이 적고 운반이나 보관이 용이하여 실용적이라는 점에 착안하였다.In particular, dechlorination reactions in mechanochemical techniques generally require activated calcium (calcium radicals Ca) and activated calcium oxide (CaO) to stabilize active chlorine (chlorine radicals C1) released from the compound. However, quicklime (CaO group) is an amorphous material with strong Ca = O bonds, whereas Ca in the blast furnace slag is -Ca-Si- and -Ca-O-Si The energy to activate by crushing is low, and in -Si-O network, Ca atom exists, so that the wave surface which can be obtained by physical energy is generated, and the active calcium surface is easy to be expressed. Although CaO component is network-linked with SiO2, CaO is not simply absorbing moisture and becoming Ca (OH) 2. Therefore, the CaO component has low heat generation and is easy to transport and store.

본 발명에서, 수세처리단계에 사용되는 물은 pH 5~7인 것이 바람직하고, 더욱 바람직하게는 pH 5.8~6.3의 증류수를 사용하는 것이 바람직하다. In the present invention, the water used in the water washing step is preferably pH 5-7, more preferably using distilled water of pH 5.8 ~ 6.3.

본 발명에서는 생활폐기물 소각 바닥재의 염화물 제거를 위한 방법으로 수세(Washing)와 탄산화(Carbonation) 처리를 선택하였다.In the present invention, the washing and carbonation treatment were selected as a method for removing chlorides from municipal waste incineration bottom ash.

본 발명은 생활폐기물 소각 바닥재에 함유되어 있는 염화물을 효과적으로 제공하기 위하여, 도 1에 나타난 바와 같이, 건조 소삭바닥재를 입도별로 분리한 다음, 가용성 염화물을 제거하는 수세공정을 거친후, 난용성 염화물을 제거하는 탄산화 공정을 거치는 것을 특징으로 한다.In order to effectively provide the chloride contained in the municipal waste incineration bottom ash, as shown in FIG. 1, after separating the dry calcined bottom ash by particle size, and then washing with water to remove soluble chloride, poorly soluble chloride is removed. It is characterized by passing through a carbonation process to remove.

본 발명은 일 양태에서, 함수율이 약 30-50%인 생활폐기물 소각 바닥재를 100℃의 온도로 가열하여 함수율의 감소량이 0.1%미만이 될 때까지 건조하고 자력선별기를 이용하여 바닥재 내의 철 금속 들을 제거하고 표준체를 이용하여 입도별로 분류하는 입도분리하고, pH 5.8~6.3의 증류수를 삼각플라스크에 넣고 고액비(L/S)를 5로 하여 측정 대상인 바닥재와 섞어 교반시키는 수세처리단계; 인위적으로 CO2를 주입하여 난용성 염화물인 friedel 염을 제거시키는 탄산화단계로 구성된다. In one aspect, the present invention is to heat the municipal waste incineration bottom ash having a water content of about 30-50% to a temperature of 100 ℃ to dry until the decrease in water content is less than 0.1% and using a magnetic separator to remove the iron metal in the floor Particle size separation to remove and classify by particle size using a standard body, distilled water of pH 5.8 ~ 6.3 into the Erlenmeyer flask and the solid-liquid ratio (L / S) to 5 and mixed with the flooring material to be measured and stirred; It is composed of carbonation step by artificially injecting CO 2 to remove friedel salt which is poorly soluble chloride.

본 발명에서 탄산화 공정을 통한 소각 바닥재의 난용성 염화물의 제거는 아래와 같은 반응에 의해 일어나는 것으로 판단된다:In the present invention, the removal of poorly soluble chloride in the incineration bottom ash through the carbonation process is considered to occur by the following reaction:

3CaO·Al2O·CaCl·10H2O+3CO3 2- → 3CaCO3+Al2O3+CaCl2+10H2O (1).
3CaO · Al 2 O · CaCl · 10H 2 O + 3CO 3 2- → 3CaCO 3 + Al 2 O 3 + CaCl 2 + 10H 2 O (1).

본 발명에 따른 수세처리 과정을 통하여, 바닥 소각재에 포함된 전체 염화물 중 KCl과 NaCl의 형태로 약 80%를 차지하는 가용성 염을 효과적으로 제거할 수 있었으며 수세처리로 제거되지 않는 나머지 20%의 난용성 염(Friedel salt)의 경우, 탄산화 처리를 통해 최종 처리 가능함을 확인하였다. Through the washing process according to the present invention, it was possible to effectively remove about 80% of the soluble salts in the form of KCl and NaCl out of the total chloride contained in the bottom incineration ash, the remaining 20% of poorly soluble salt not removed by washing In the case of (Friedel salt), it was confirmed that the final treatment through the carbonation treatment.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are intended to illustrate the present invention more specifically, but the scope of the present invention is not limited to these examples.

실시예Example

함수율이 약 30-50%인 생활폐기물 소각 바닥재를 오븐기에 넣고 100℃의 온도로 가열하여 함수율의 감소량이 0.1% 미만이 될 때까지 건조(약 1일)하였다. 건조된 바닥재는 자력선별기를 이용하여 바닥재에 함유되어 있는 철 금속들을 제거하였다. The municipal waste incineration bottom ash having a water content of about 30-50% was placed in an oven and heated to a temperature of 100 ° C., and dried (about 1 day) until the decrease in water content was less than 0.1%. The dried flooring material was removed by using a magnetic separator to remove the ferrous metals contained in the flooring material.

본 실시예에 사용된 수재슬래그는 수화반응을 방지하기 위해 200℃에서 약 5시간 건조 후에 사용하였다. 이들 2개의 소각재 시료는 시료의 균일도를 유지하기 위하여 다음 방법에 따라 채취, 혼합되어 완전한 하나의 시료로 사용하였다. 시료채취를 위해 크레인으로 적재된 0.1㎥ 의 바닥재를 4등분하고, 다시 이들 중 한부분을 선택하여 혼합후, 다시 4등분하며, 시료가 약 0.5ℓ가 될 때까지 같은 방식으로 혼합하고 나누었다. The reclaimed slag used in this example was used after drying for about 5 hours at 200 ° C. to prevent hydration. These two types of incineration ash samples were collected and mixed according to the following method in order to maintain the uniformity of the sample was used as a complete sample. For sampling, the floor of 0.1m 3 loaded with a crane was divided into four parts, one of them was selected, mixed, and then divided into four parts again, and mixed and divided in the same manner until the sample became about 0.5 l.

기계적 화학법에 이용되고 있는 원심진동밀을 이용하여, 대규모 소각장으로부터 입수한 2종류의 바닥재를 각각 수재슬래그와 중량비로 1 : 1의 비율로 혼합하여 각각 처리시간(1시간, 2시간, 4시간, 8시간, 16시간, 20시간)에 따른 다이옥신 분해율을 조사하였다.Using centrifugal vibration mills used in the mechanical chemistry method, two types of flooring materials obtained from large-scale incinerators were mixed at a ratio of 1: 1 in weight ratio with hand slag, respectively, and the treatment time (1 hour, 2 hours, 4 hours, respectively). , 8 hours, 16 hours, 20 hours) was investigated.

따라서, 본 실시예에서 처리한 소각바닥재의 다이옥신 분해화 실험으로부터 얻어진 시료의 다이옥신 함량을 조사하였고, 다이옥신/퓨란(PCDD/F)은 VDI 3499 Sheet 1에 따라 GC/MS을 사용하여 동위원소회석법에 의해 분석되었다. 시료의 정제과정전에 첨가하는 내부표준물질은 다이옥신류 중 13C12-2.3.7.8-T4CDD/F이 사용되었고, 이 내부 표준액은 GC/MS 분석전에 추출과 정제과정동안 발생하는 손실에 대해 보정하여 정량화하는데 사용되었다. 그 결과, 다이옥신은 처리 2시간 째에 20%이하로 잔류하고, 8시간째에는 거의 잔류하지 않는 것으로 나타났다.Therefore, the dioxin content of the sample obtained from the dioxin decomposition experiment of the incinerated bottom material treated in this example was investigated, and dioxin / furan (PCDD / F) isotope lime method using GC / MS according to VDI 3499 Sheet 1 Analyzed by. 13C12-2.3.7.8-T4CDD / F of dioxins was used as the internal standard added before the purification process of the sample, and this internal standard was quantified by correcting the loss occurring during the extraction and purification process before GC / MS analysis. Was used. As a result, dioxins remained less than 20% at 2 hours after treatment, and hardly remained at 8 hours.

철 금속이 제거된 바닥재에서 가용성 염화물을 제거하기 위하여, 수세처리(washing process)를 실시하였다. 수세처리방법은 pH 5.8-6.3의 증류수 200mL을 500mL의 삼각플라스크에 넣고 고액비(L/S)를 5로 하여 측정대상인 바닥재(40g)와 섞어 200rpm에서 20시간 동안 교반하였다. 교반이 끝난 시료와 침출액을 마이크로필터를 이용하여 서로 분리하였으며, 시료로부터 분리된 침출액에 대해 K, Na, Ca 그리고 Cl의 농도를 X 선 회절장치를 이용하여 측정하였다. In order to remove the soluble chlorides from the bottom ash with the iron metal removed, a washing process was performed. In the washing method, 200 mL of distilled water having a pH of 5.8-6.3 was placed in a 500 mL Erlenmeyer flask, and the solid solution ratio (L / S) was set at 5, mixed with the bottom ash (40 g) to be measured, and stirred at 200 rpm for 20 hours. After the stirring sample and the leaching solution were separated from each other using a micro filter, the concentration of K, Na, Ca and Cl for the leaching solution separated from the sample was measured using an X-ray diffractometer.

그 결과, 수세처리 약 30분 후 80.1%의 염화물이 제거되었고 30분 이후에는 제거율의 변화가 일어나지 않았다. As a result, 80.1% of chloride was removed after about 30 minutes of washing, and there was no change in removal rate after 30 minutes.

-0.15mm 입도를 가진 바닥재의 수세 처리 전과 후의 XRD 분석결과, 수세처리 전의 바닥재에서는 가용성 화합물인 KCl, NaCl과 난용성 염화물인 Friedel 염(3CaO·Al2O·CaCl·10H2O)의 피크가 나타났다. 반면 수세처리 된 바닥재의 XRD에서는 KCl과 NaCl의 피크는 나타나지 않았지만 Friedel 염의 피크는 남아있었다. XRD after the washing treatment of the bottom ash with a particle size before and -0.15mm analysis result, the floor before the water washing treatment soluble compound, KCl, NaCl, and I is the peak of the soluble chlorides of Friedel salt (3CaO · Al 2 O · CaCl · 10H 2 O) appear. On the other hand, the XRD of the flushed floor showed no peaks of KCl and NaCl but remained of Friedel salts.

상기 결과에 의하여 수세처리를 실시하면 가용성 염은 제거되지만, 난용성 염은 제거되지 않음을 확인하였으며, 가용성 염은 대부분 KCl과 NaCl의 형태이고, 난용성 염은 Friedel 염의 형태로 존재한다는 것을 알 수 있었다. Based on the above results, it was confirmed that the soluble salts were removed but the poorly soluble salts were not removed. The soluble salts were mostly in the form of KCl and NaCl, and the poorly soluble salts were in the form of Friedel salt. there was.

또한, 소각바닥재 안에 함유되어 있는 Cl 화합물의 약 80%가 가용성 염화물이며, 약 20%는 난용성 염화물임을 예측 할 수 있었다.In addition, about 80% of the Cl compounds contained in the incineration bottom ash were soluble chlorides, and about 20% were poorly soluble chlorides.

가용성 염이 제거된 바닥재에서, 난용성 염화물을 제거하기위하여, 물과 소각 바닥재의 고액비(L/S)를 10으로 하여, 가스관을 이용하여 CO2를 30분간 인위적으로 불어 넣어 주어 탄산화를 실시한 후 X선 회절장치를 이용하여 염화물의 농도를 측정하였다. In order to remove poorly soluble chloride from the soluble salt-free flooring material, the solid-liquid ratio (L / S) of water and incineration flooring material was set to 10, and CO 2 was artificially blown by using a gas pipe to carry out carbonation. After that, the concentration of chloride was measured using an X-ray diffractometer .

그 결과, 생활폐기물 소각 바닥재에 존재하는 난용성 염(Friedel salt)은 탄산화에 의해 분해 가능함을 확인 하였고 이러한 결과는 아래와 같은 반응에 의해 일어나는 것으로 판단된다.  As a result, it was confirmed that the soluble salts present in the municipal waste incineration bottom ash could be decomposed by carbonation. These results are considered to be caused by the following reaction.

3CaO·Al2O·CaCl·10H2O+3CO3 → 3CaCO3+Al2O3+CaCl2+10H2O (1)
3CaO · Al 2 O · CaCl · 10H 2 O + 3CO 3 → 3CaCO 3 + Al 2 O 3 + CaCl 2 + 10H 2 O (1)

이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
Having described the specific part of the present invention in detail, it is obvious to those skilled in the art that such a specific description is only a preferred embodiment, thereby not limiting the scope of the present invention. something to do. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (2)

다음 단계를 포함하는 생활폐기물 소각 바닥재의 유해물질을 제거하는 방법:
(a) 생활폐기물 소각바닥재를 건조하는 단계;
(b) 고로수재슬래그를 첨가한 후, 활성화 분쇄하여 다이옥신을 제거하는 단계;
(c) 상기 다이옥신이 제거된 소각바닥재를 pH 5~7의 증류수와 섞어 교반시켜 가용성 염화물을 제거하는 수세처리단계: 및
(d) 수세처리된 바닥재에 CO2 가스를 주입하여 난용성 염화물을 탄산화시키는 단계.
How to remove hazardous substances from municipal waste incineration flooring, including the following steps:
(a) drying the domestic waste incineration bottom ash;
(b) adding blast furnace slag and then activating and grinding to remove dioxins;
(c) a washing step of removing the soluble chloride by mixing and stirring the incinerated bottom material from which the dioxin has been removed with distilled water of pH 5-7; and
(d) injecting CO 2 gas into the washed bottom ash to carbonize the poorly soluble chloride.
제1항에 있어서, (a) 단계의 생활폐기물 소각 바닥재는 금속이 제거된 것임을 특징으로 하는 방법.
The method of claim 1, wherein the waste incineration bottom ash of step (a) is characterized in that the metal is removed.
KR20100010871A 2010-02-05 2010-02-05 Removal of toxic material in municipal solid waste incineration bottom ash using ultrasonication KR20110091162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20100010871A KR20110091162A (en) 2010-02-05 2010-02-05 Removal of toxic material in municipal solid waste incineration bottom ash using ultrasonication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20100010871A KR20110091162A (en) 2010-02-05 2010-02-05 Removal of toxic material in municipal solid waste incineration bottom ash using ultrasonication

Publications (1)

Publication Number Publication Date
KR20110091162A true KR20110091162A (en) 2011-08-11

Family

ID=44928643

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20100010871A KR20110091162A (en) 2010-02-05 2010-02-05 Removal of toxic material in municipal solid waste incineration bottom ash using ultrasonication

Country Status (1)

Country Link
KR (1) KR20110091162A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105753389A (en) * 2016-03-15 2016-07-13 北京建筑材料科学研究总院有限公司 Baking-free bricks produced by waste bottom slag and production method of baking-free bricks
CN113735468A (en) * 2021-09-18 2021-12-03 江苏梵坤环保科技发展股份有限公司 Waste incineration fly ash recycling treatment system and method coupled with waste incineration

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105753389A (en) * 2016-03-15 2016-07-13 北京建筑材料科学研究总院有限公司 Baking-free bricks produced by waste bottom slag and production method of baking-free bricks
CN113735468A (en) * 2021-09-18 2021-12-03 江苏梵坤环保科技发展股份有限公司 Waste incineration fly ash recycling treatment system and method coupled with waste incineration

Similar Documents

Publication Publication Date Title
Jiang et al. Disposal technology and new progress for dioxins and heavy metals in fly ash from municipal solid waste incineration: A critical review
JP5697334B2 (en) Heavy metal insolubilizer and method for insolubilizing heavy metal
He et al. Synergistic solidification/stabilization of electrolytic manganese residue and carbide slag
US20150144038A1 (en) Removal device for radioactive cesium
CN107413816A (en) A kind of method that garbage flying ash cooperates with recycling treatment with metallurgical dust
Ajorloo et al. Heavy metals removal/stabilization from municipal solid waste incineration fly ash: a review and recent trends
Zhan et al. Co-stabilization/solidification of heavy metals in municipal solid waste incineration fly ash and electrolytic manganese residue based on self-bonding characteristics
Liang et al. The resource utilization and environmental assessment of MSWI fly ash with solidification and stabilization: A review
Chen et al. Release of soluble ions and heavy metal during fly ash washing by deionized water and sodium carbonate solution
Ren et al. Bio-treatment of municipal solid waste incineration fly ash: A sustainable path for recyclability
JP2017145294A (en) Agent and method for inhibiting the elution of harmful material
CN101481221B (en) Method for treating silicate slag from wastewater treatment
KR101131481B1 (en) Method for fixing carbon dioxide and removal of toxic material in municipal solid waste incineration bottom ash
WO2002049780A1 (en) Method and apparatus for treatment of decomposing atoms in incineration ash by diffusion to detoxify them
KR20110091162A (en) Removal of toxic material in municipal solid waste incineration bottom ash using ultrasonication
Zhang et al. Reuse of waste sulfur from biogas desulfurization for potentially toxic metals stabilization in MSWI fly ash towards zero-waste in venous industry park
JP2000037676A (en) Stabilization treatment of waste containing heavy metal
JP2022166073A (en) Manufacturing method for inorganic system industrial waste reproduced product
JP4209224B2 (en) Method for producing calcium sulfide heavy metal fixing agent
JP5913675B1 (en) Hazardous substance insolubilizing agent and method for insolubilizing hazardous substances
JP4712290B2 (en) Hazardous material collecting material and method of treating sewage and soil using the same
CN114367514A (en) Process for co-processing waste incineration fly ash by using iron and steel dust and mud
Teng et al. Analysis of composition characteristics and treatment techniques of municipal solid waste incineration fly ash in China
Nomura et al. Lead immobilization in mechanochemical fly ash recycling
Zhang et al. Highly efficient carbonation and dechlorination using flue gas micro-nano bubble for municipal solid waste incineration fly ash pretreatment and its applicability to sulfoaluminate cementitious materials

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment