JP2005086869A - Control unit of synchronous motor - Google Patents

Control unit of synchronous motor Download PDF

Info

Publication number
JP2005086869A
JP2005086869A JP2003314156A JP2003314156A JP2005086869A JP 2005086869 A JP2005086869 A JP 2005086869A JP 2003314156 A JP2003314156 A JP 2003314156A JP 2003314156 A JP2003314156 A JP 2003314156A JP 2005086869 A JP2005086869 A JP 2005086869A
Authority
JP
Japan
Prior art keywords
synchronous motor
command
current
converter
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003314156A
Other languages
Japanese (ja)
Other versions
JP4380271B2 (en
Inventor
Sukeatsu Inazumi
祐敦 稲積
Masaki Nakai
政樹 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2003314156A priority Critical patent/JP4380271B2/en
Publication of JP2005086869A publication Critical patent/JP2005086869A/en
Application granted granted Critical
Publication of JP4380271B2 publication Critical patent/JP4380271B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control unit capable of stabilizing the V/F constant control of a synchronous motor. <P>SOLUTION: The control unit variably controls a permanent magnet type synchronous motor with an AC power from an inverter circuit. It comprises an FV convertor 1 which issues a voltage command proportional to the frequency of a speed command; an integrator 4 which integrates the speed command to generate a position command; a current coordinate convertor 5 that converts coordinate from the stator current of the amount of at least two phases which is supplied to the synchronous motor into the current component which is parallel to the position command value under the position command value outputted from the integrator; and a means 6 which adds a voltage correction quantity generated on the basis of the current component which is advanced by 90° from the phase command which has been converted by the current coordinate convertor to the voltage which has been converted by the FV convertor. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、インバータ回路を用いて永久磁石形同期電動機を安定して速度制御するためのV/F一定方式による制御装置に関する。   The present invention relates to a control device using a constant V / F method for stably controlling the speed of a permanent magnet type synchronous motor using an inverter circuit.

従来、永久磁石形同期電動機に印加する電圧と周波数の比を一定に保って制御するV/F制御方式による駆動方法があるが、永久磁石同期電動機は誘導電動機と違って回転子に制動巻線を持たず、ダンピングファクターが0であるため、永久磁石形同期電動機のV/F制御方式での駆動はトルクリップルや脱調を起こしやすい。そのため、特許文献1に開示の「永久磁石形同期電動機の制御装置」には、V/F制御方式での駆動において、電圧ベクトル方向の電流成分を印加電圧の周波数指令に帰還させることによりトルクリップル等の乱調を防止する手段も提案されている。
特開2000−236694号公報(第3〜5頁、図1) 特開2000−324881号公報(第3〜5頁)
Conventionally, there is a driving method based on a V / F control method in which the ratio of the voltage and frequency applied to the permanent magnet type synchronous motor is controlled to be constant, but the permanent magnet synchronous motor is different from the induction motor in that the rotor is a braking winding. And the damping factor is 0, the driving of the permanent magnet type synchronous motor by the V / F control method is likely to cause torque ripple and step-out. Therefore, the “permanent magnet type synchronous motor control device” disclosed in Patent Document 1 has a torque ripple by feeding back the current component in the voltage vector direction to the frequency command of the applied voltage in the drive in the V / F control method. Means for preventing such irregularities have also been proposed.
JP 2000-236694 (pages 3 to 5, FIG. 1) JP 2000-324881 A (pages 3 to 5)

図5は特許文献1の永久磁石形同期電動機の制御装置のブロック図である。
図5に示す制御装置においては、3相/2相変換手段108により検出電流iu、iwが2相電流iα、iβに変換され、座標変換手段109において電流id、iqに変換される。電圧ベクトルv* に平行な成分の電流iqはハイパスフィルタ110により直流分が除去され、比例増幅器111により比例ゲインを乗じて周波数補正量Δf* が求められる。この補正量Δf* は加算手段112によって元の周波数指令f* から減算されて、新たな周波数指令f1* を生成してPWM制御が行われる。
このように、点線ブロックで示した安定化制御手段121は電流フィードバックを構成して、電圧ベクトルv* に平行な電流成分iqの振動分だけを周波数指令f* に負帰還させるものである。更に、同期電動機の出力限界を超える重負荷がかかったり、負荷が大きく急変するような場合には周波数に回転速度が追従しなくなり脱調する虞があるので、特許文献2に開示の「永久磁石形同期電動機の制御装置」では、低速運転時や重負荷時に、新たに設けられた磁極位置検出センサーの検出値を用いて電流軸の角度を補正制御するように、制御の切換えを行って脱調防止が図られている。
FIG. 5 is a block diagram of the controller for the permanent magnet type synchronous motor disclosed in Patent Document 1. In FIG.
In the control device shown in FIG. 5, the detection currents iu and iw are converted into two-phase currents iα and iβ by the three-phase / two-phase conversion means 108, and the currents id and iq are converted by the coordinate conversion means 109. The current iq of the component parallel to the voltage vector v * is removed from the DC component by the high-pass filter 110 and multiplied by the proportional gain by the proportional amplifier 111 to obtain the frequency correction amount Δf * . This correction amount Δf * is subtracted from the original frequency command f * by the adding means 112 to generate a new frequency command f1 * and PWM control is performed.
As described above, the stabilization control means 121 indicated by the dotted line block constitutes current feedback, and negatively feeds back only the vibration component of the current component iq parallel to the voltage vector v * to the frequency command f * . Furthermore, when a heavy load exceeding the output limit of the synchronous motor is applied, or when the load changes drastically, the rotational speed does not follow the frequency, and there is a possibility of stepping out. In the synchronous motor control device, the control is switched and controlled so that the current axis angle is corrected and controlled using the detection value of the newly installed magnetic pole position detection sensor during low speed operation or heavy load. To prevent the tone.

しかしながら、特許文献1、2に記載の同期電動機は印加電圧の周波数指令と同期して駆動するため、周波数指令を調整して乱調を防止する手段では速度指令と実速度がずれ、目的の速度に収束できないという問題があった。
そこで、本発明はこのような問題点に鑑みてなされたものであり、永久磁石形同期電動機のV/F制御において速度精度を悪化させることなく、安定した運転を可能にする同期電動機の制御装置を提供することを目的とする。
However, since the synchronous motors described in Patent Documents 1 and 2 are driven in synchronism with the frequency command of the applied voltage, the speed command and the actual speed are shifted by means of adjusting the frequency command to prevent turbulence, and the target speed is achieved. There was a problem that it could not converge.
Therefore, the present invention has been made in view of such problems, and a synchronous motor control device that enables stable operation without deteriorating speed accuracy in V / F control of a permanent magnet type synchronous motor. The purpose is to provide.

上記問題を解決するため、請求項1に記載の発明は、インバータ回路からの交流電力により永久磁石形同期電動機を可変速制御する制御装置において、速度指令の周波数に比例した電圧指令を出すFV変換器と、速度指令を積分し位置指令を生成する積分器と、積分器から出力された位置指令値より、同期電動機に供給される少なくとも2相分のステータ電流を位置指令値より90度進んだ電流成分に座標変換する電流座標変換器と、前記電流座標変換器によって変換した位相指令より90度進んだ電流成分に基づいて生成した電圧補正量を前記FV変換器によって変換された電圧に加える手段を備えたことを特徴としている。
また、請求項2に記載の発明は、インバータ回路からの交流電力により永久磁石形同期電動機を可変速制御する制御装置において、速度指令の周波数に比例した電圧指令を出すFV変換器と、速度指令を積分し位置指令を生成する積分器と、積分器から出力された位置指令値より、同期電動機に供給される少なくとも2相分のステータ電流を位置指令値より90度進んだ軸に座標変換する電流座標変換器と、前記電流座標変換器によって変換した位相指令より90度進んだ電流成分に基づいて生成した位相補正量で前記FV変換器によって変換された電圧を座標変換する手段を備えたことを特徴としている。
また、請求項3に記載の発明は、インバータ回路からの交流電力により永久磁石形同期電動機を可変速制御する制御装置において、速度指令の周波数に比例した電圧指令を出すFV変換器と、速度指令を積分し位置指令を生成する積分器と、積分器から出力された位置指令値に位相補正量を加えた補正位置指令により、同期電動機に供給される少なくとも2相分のステータ電流を補正位置指令値より90度進んだ軸に座標変換する電流座標変換器と、前記位相補正量を前記電流座標変換器によって変換した補正位相指令より、90度進んだ電流成分に基づいて生成する手段と、更に前記位相補正量で前記FV変換器によって変換された電圧を座標変換する手段を備えたことを特徴としている。
In order to solve the above problem, the invention according to claim 1 is an FV conversion that outputs a voltage command proportional to a frequency of a speed command in a control device that performs variable speed control of a permanent magnet synchronous motor using AC power from an inverter circuit. , The integrator that integrates the speed command to generate the position command, and the position command value output from the integrator, the stator current for at least two phases supplied to the synchronous motor is advanced 90 degrees from the position command value. Current coordinate converter for converting coordinates into current components, and means for adding a voltage correction amount generated based on a current component advanced by 90 degrees from the phase command converted by the current coordinate converter to the voltage converted by the FV converter It is characterized by having.
According to a second aspect of the present invention, there is provided a control device that performs variable speed control of a permanent magnet synchronous motor using AC power from an inverter circuit, an FV converter that issues a voltage command proportional to the frequency of the speed command, and a speed command And a position command value output from the integrator, and at least two phases of stator current supplied to the synchronous motor are coordinate-converted to an axis 90 degrees ahead of the position command value. A current coordinate converter; and means for coordinate-converting the voltage converted by the FV converter with a phase correction amount generated based on a current component advanced by 90 degrees from the phase command converted by the current coordinate converter. It is characterized by.
According to a third aspect of the present invention, there is provided a control device that performs variable speed control of a permanent magnet synchronous motor using AC power from an inverter circuit, an FV converter that issues a voltage command proportional to the frequency of the speed command, and a speed command And a position correction value obtained by adding a phase correction amount to the position command value output from the integrator, and a stator current for at least two phases supplied to the synchronous motor is corrected position command. A current coordinate converter for converting the coordinates to an axis advanced by 90 degrees from the value, a means for generating the phase correction amount based on a current component advanced by 90 degrees from the correction phase command converted by the current coordinate converter, and It is characterized by comprising means for coordinate-converting the voltage converted by the FV converter with the phase correction amount.

この同期電動機の制御装置によれば、請求項1に記載の発明について、図2を参照して原理について説明すると、永久磁石形同期電動機における回転子の磁極方向をd軸とし、更にd軸から90度進んだ軸をq軸とした直交座標をd−q軸とする。また、本発明方式では位置検出器といった磁極位置を測定する手段を要しておらず、回転子の磁極位置、つまりd−q軸の検出は不可能なので、位相指令θ_ref上の軸をγ軸とし、更にγ軸から90度進んだ軸をδ軸とした直交座標系γ−δ軸を設定し、制御はγ−δ軸上で行なう。
V/F制御で駆動を開始すると、インバータ回路から電圧が供給され、永久磁石形同期電動機の固定子に電機子電流Iが発生する。その時の磁束の大きさをΦとし、電機子電流の大きさIとし、γ−δ軸上の電流ベクトル位相をθiとし、制御軸γ軸と磁極位置d軸との位相差をθeとすると、同期電動機には、
Φ*I*sin(θe+θi)
のトルクが発生し、同期電動機は回転する。ここで位相差θeが微小であると仮定すると、
Φ*I*sin(θe+θi)=Φ*Iδ
となり、磁束の大きさΦは同期電動機によって一定であるため、同期電動機のトルクはδ軸電流に比例している。つまり、トルクリップルやトルク変動はδ軸電流により判別が可能である。
本発明は上記のことを利用し、V/F制御駆動において、δ軸電流に応じて同期電動機に印加する電圧を調整することにより、電動機の動作を安定させることができる。
また、請求項2に記載の発明については、図2を参照して原理について説明すると、永久磁石形同期電動機における回転子の磁極方向をd軸とし、更にd軸から90度進んだ軸をq軸とした直交座標をd−q軸とする。また、本発明方式では位置検出器といった磁極位置を測定する手段を要しておらず、回転子の磁極位置、つまりd−q軸の検出は不可能なので、位相指令θ_ref上の軸をγ軸とし、更にγ軸から90度進んだ軸をδ軸とした直交座標系γ−δ軸を設定し、制御はγ−δ軸上で行なう。
V/F制御で駆動を開始すると、インバータ回路から電圧が供給され、同期電動機の固定子に電機子電流Iが発生する。同期電動の磁束の大きさをΦとし、極対数をPとし、電機子電流の大きさIとし、γ−δ軸上の電流ベクトル位相をθiとし、制御軸γ軸と磁極位置d軸との位相差をθeとすると、同期電動機にはP*Φ*I*sin(θe+θi)
のトルクが発生し、同期電動機は回転する。ここで位相差θeが微小であると仮定すると、略、
P*Φ*I*sin(θe+θi)=P*Φ*Iδ
となり、磁束の大きさΦと極対数Pは同期電動機によって一定であるため、同期電動機のトルクはδ軸電流に比例している。つまり、トルクリップルやトルク変動はδ軸電流により判別が可能である。上記のことを利用し、請求項2の発明はV/F制御駆動において、δ軸電流に応じて同期電動機に印加する電圧の位相を調整することにより、電動機の動作を安定させることができる。
また、請求項3に記載の発明については、V/F制御駆動において、δ軸電流に応じて電流変換同期電動機に印加する電圧の位相を調整し、かつ電流座標変換器で用いる位相を調節することにより、電動機の動作を安定させることができる。
According to this synchronous motor control device, the principle of the invention according to claim 1 will be described with reference to FIG. 2. The direction of the magnetic pole of the rotor in the permanent magnet type synchronous motor is d-axis, and further from the d-axis. An orthogonal coordinate with the axis advanced 90 degrees as the q axis is defined as a dq axis. Further, the method of the present invention does not require a means for measuring the magnetic pole position such as a position detector, and the magnetic pole position of the rotor, that is, the dq axis cannot be detected, so the axis on the phase command θ_ref is set to the γ axis. Further, an orthogonal coordinate system γ-δ axis is set with the axis advanced 90 degrees from the γ axis as the δ axis, and control is performed on the γ-δ axis.
When driving is started by V / F control, a voltage is supplied from the inverter circuit, and an armature current I is generated in the stator of the permanent magnet type synchronous motor. The magnitude of the magnetic flux at that time is Φ, the magnitude of the armature current is I, the current vector phase on the γ-δ axis is θi, and the phase difference between the control axis γ axis and the magnetic pole position d axis is θe. For synchronous motors,
Φ * I * sin (θe + θi)
Torque is generated and the synchronous motor rotates. Here, assuming that the phase difference θe is very small,
Φ * I * sin (θe + θi) = Φ * Iδ
Since the magnitude Φ of the magnetic flux is constant by the synchronous motor, the torque of the synchronous motor is proportional to the δ-axis current. That is, torque ripple and torque fluctuation can be determined by the δ-axis current.
The present invention utilizes the above, and in the V / F control drive, the operation of the motor can be stabilized by adjusting the voltage applied to the synchronous motor in accordance with the δ-axis current.
The principle of the invention according to claim 2 will be described with reference to FIG. 2. The direction of the magnetic pole of the rotor in the permanent magnet synchronous motor is d-axis, and the axis advanced 90 degrees from the d-axis is q. The orthogonal coordinates taken as axes are defined as dq axes. Further, the method of the present invention does not require a means for measuring the magnetic pole position such as a position detector, and the magnetic pole position of the rotor, that is, the dq axis cannot be detected, so the axis on the phase command θ_ref is set to the γ axis. Further, an orthogonal coordinate system γ-δ axis is set with the axis advanced 90 degrees from the γ axis as the δ axis, and control is performed on the γ-δ axis.
When driving is started by V / F control, a voltage is supplied from the inverter circuit, and an armature current I is generated in the stator of the synchronous motor. The magnitude of the synchronous motor magnetic flux is Φ, the number of pole pairs is P, the armature current magnitude is I, the current vector phase on the γ-δ axis is θi, and the control axis γ axis and the magnetic pole position d axis are If the phase difference is θe, the synchronous motor has P * Φ * I * sin (θe + θi)
Torque is generated and the synchronous motor rotates. Here, assuming that the phase difference θe is very small,
P * Φ * I * sin (θe + θi) = P * Φ * Iδ
Since the magnitude Φ of the magnetic flux and the number P of pole pairs are constant by the synchronous motor, the torque of the synchronous motor is proportional to the δ-axis current. That is, torque ripple and torque fluctuation can be determined by the δ-axis current. By utilizing the above, the invention of claim 2 can stabilize the operation of the motor by adjusting the phase of the voltage applied to the synchronous motor in accordance with the δ-axis current in the V / F control drive.
In the invention according to claim 3, in the V / F control drive, the phase of the voltage applied to the current conversion synchronous motor is adjusted according to the δ-axis current, and the phase used in the current coordinate converter is adjusted. As a result, the operation of the electric motor can be stabilized.

本発明によれば、制御軸のδ軸成分の電流によって同期電動機の印加電圧、および位相を補正することによって、V/F制御時でも安定した駆動を実現することができる。   According to the present invention, by correcting the applied voltage and phase of the synchronous motor by the current of the δ-axis component of the control axis, stable driving can be realized even during V / F control.

〈第1の実施の形態〉
以下、本発明の第1の実施の形態について図に基づいて説明する。
図1は本発明の第1の実施の形態に係る同期電動機の制御装置のブロック線図である。図2は図1に示す同期電動機の制御軸を示すベクトル図である。
図1において、速度指令ω_refがFV変換器1に入力され、FV変換器1は電圧指令E_refを出力する。また、速度指令ω_refは積分器4に入力され、位置指令θ_refを出力する。
一方、同期電動機3の電機子電流Iu、Iwを電流座標変換器5によって位置指令θ_refから90度進んだ軸に座標変換して得られるδ軸電流Iδを入力として、電圧補正器6は比例制御を行い、電圧補正量ΔVを出力する。
この電圧補正量ΔVを加算器で前記電圧指令E_refに加え補正後の電圧指令V_refと前記位置指令θ_refをインバータ回路2に入力し、点弧が実施される。
このように、同期電動機3のトルクは、図2のベクトル図に示す、γ−δ軸のδ軸電流Iδに比例することから、δ軸電流Iδの変動分を電圧指令Erefに、電圧補正量ΔVとしてフィードバックすることにより、同期電動機3の動作は安定化される。
<First Embodiment>
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a block diagram of a control apparatus for a synchronous motor according to a first embodiment of the present invention. FIG. 2 is a vector diagram showing control axes of the synchronous motor shown in FIG.
In FIG. 1, a speed command ω_ref is input to the FV converter 1, and the FV converter 1 outputs a voltage command E_ref. Further, the speed command ω_ref is input to the integrator 4 and the position command θ_ref is output.
On the other hand, the voltage corrector 6 performs proportional control using the δ-axis current Iδ obtained by converting the armature currents Iu and Iw of the synchronous motor 3 to the axis advanced 90 degrees from the position command θ_ref by the current coordinate converter 5. To output the voltage correction amount ΔV.
The voltage correction amount ΔV is added to the voltage command E_ref by an adder, and the corrected voltage command V_ref and the position command θ_ref are input to the inverter circuit 2 to perform ignition.
Thus, since the torque of the synchronous motor 3 is proportional to the δ-axis current Iδ of the γ-δ axis shown in the vector diagram of FIG. 2, the fluctuation amount of the δ-axis current Iδ is set to the voltage command Eref, and the voltage correction amount. By feeding back as ΔV, the operation of the synchronous motor 3 is stabilized.

〈第2の実施の形態〉
次に、本発明の第2の実施の形態について図に基づいて説明する。
図3は本発明の第2の実施の形態に係る同期電動機の制御装置のブロック線図である。
図3において、図1に示した第1の実施の形態と異なる構成は、電圧補正器6に代えて電圧の位相補正量Δθを出力する位相補正器7を備え、電圧補正値Δvの加算器に代えて位相補正量Δθによって電圧指令Vrefを座標変換したVγref、Vδrefを出力する電流座標変換器5を備えた点である。
先ず、速度指令ω_refがFV変換器1に入力され、FV変換器1は電圧指令V_refを出力する。また、速度指令ω_refは積分器4に入力され、位置指令θ_refを出力する。
一方、同期電動機の電機子電流Iu、Iwを電流座標変換器5によって位置指令θ_refから90度進んだ軸に座標変換して得られるδ軸電流Iδを入力として、位相補正器7は比例制御を行い位相補正量Δθを出力する。
この位相補正量Δθによって前記電圧指令V_refを座標変換した電圧指令Vγ_refとVδ_refと前記位置指令θ_refをインバータ回路2に入力し、点弧が実施される。
<Second Embodiment>
Next, a second embodiment of the present invention will be described with reference to the drawings.
FIG. 3 is a block diagram of a control device for a synchronous motor according to a second embodiment of the present invention.
3, the configuration different from that of the first embodiment shown in FIG. 1 includes a phase corrector 7 that outputs a voltage phase correction amount Δθ instead of the voltage corrector 6, and an adder for the voltage correction value Δv. Instead of this, a current coordinate converter 5 that outputs Vγref and Vδref obtained by converting the voltage command Vref with the phase correction amount Δθ is provided.
First, the speed command ω_ref is input to the FV converter 1, and the FV converter 1 outputs the voltage command V_ref. Further, the speed command ω_ref is input to the integrator 4 and the position command θ_ref is output.
On the other hand, the phase corrector 7 performs proportional control by inputting the δ-axis current Iδ obtained by converting the armature currents Iu and Iw of the synchronous motor into the axis advanced 90 degrees from the position command θ_ref by the current coordinate converter 5. The phase correction amount Δθ is output.
The voltage commands Vγ_ref and Vδ_ref obtained by coordinate-transforming the voltage command V_ref by the phase correction amount Δθ and the position command θ_ref are input to the inverter circuit 2 and firing is performed.

〈第3の実施の形態〉
次に、本発明の第3の実施の形態について図に基づいて説明する。
図4は本発明の第3の実施の形態に係る同期電動機の制御装置のブロック線図である。
図4において、図3に示した第2の実施の形態と異なる構成は、位置指令θrefと位相補正器7からの位相補正量Δθとの加算器8を設けた点である。
先ず、速度指令ω_refがFV変換器1に入力され、FV変換器1は電圧指令V_refを出力する。また、速度指令ω_refは積分器4に入力され、位置指令θ_refを出力する。
一方、同期電動機の電機子電流Iu、Iwを電流座標変換器5によって位置指令θ_refと位相補正器6から出力された位相補正量Δθとの和を加算器8により求め、求めた補正位置指令θ’_refから90度進んだ軸に座標変換して得られるδ軸電流Iδを入力として、位相補正器7は比例制御を行い位相補正量Δθを出力する。この位相補正量Δθによって前記電圧指令V_refを座標変換した電圧指令Vγ_refとVδ_refと前記位置指令θ_refをインバータ回路2に入力し、点弧が実施される。
<Third Embodiment>
Next, a third embodiment of the present invention will be described with reference to the drawings.
FIG. 4 is a block diagram of a control apparatus for a synchronous motor according to a third embodiment of the present invention.
In FIG. 4, the configuration different from the second embodiment shown in FIG. 3 is that an adder 8 for the position command θref and the phase correction amount Δθ from the phase corrector 7 is provided.
First, the speed command ω_ref is input to the FV converter 1, and the FV converter 1 outputs the voltage command V_ref. Further, the speed command ω_ref is input to the integrator 4 and the position command θ_ref is output.
On the other hand, the sum of the position command θ_ref and the phase correction amount Δθ output from the phase corrector 6 is obtained by the current coordinate converter 5 with respect to the armature currents Iu and Iw of the synchronous motor, and the obtained corrected position command θ is obtained. The phase corrector 7 performs proportional control and outputs a phase correction amount Δθ by using as input the δ-axis current Iδ obtained by converting the coordinate to the axis advanced 90 degrees from _ref. The voltage commands Vγ_ref and Vδ_ref obtained by coordinate-transforming the voltage command V_ref by the phase correction amount Δθ and the position command θ_ref are input to the inverter circuit 2 and firing is performed.

本発明の第1の実施の形態に係る同期電動機の制御装置のブロック図である。It is a block diagram of the control apparatus of the synchronous motor which concerns on the 1st Embodiment of this invention. 図1に示す同期電動機の制御軸を示すベクトル図である。It is a vector diagram which shows the control axis | shaft of the synchronous motor shown in FIG. 本発明の第2の実施の形態に係る同期電動機の制御装置のブロック図である。It is a block diagram of the control apparatus of the synchronous motor which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施の形態に係る同期電動機の制御装置のブロック図である。It is a block diagram of the control apparatus of the synchronous motor which concerns on the 3rd Embodiment of this invention. 従来の永久磁石形同期電動機の制御装置のブロック図である。It is a block diagram of the control apparatus of the conventional permanent magnet type synchronous motor.

符号の説明Explanation of symbols

1 FV変換器
2 インバータ回路
3 同期電動機
4 積分器
5 電流座標変換器
6 電圧補正器
7 位相補正器
8 加算器
DESCRIPTION OF SYMBOLS 1 FV converter 2 Inverter circuit 3 Synchronous motor 4 Integrator 5 Current coordinate converter 6 Voltage corrector 7 Phase corrector 8 Adder

Claims (3)

インバータ回路からの交流電力により永久磁石形同期電動機を可変速制御する制御装置において、速度指令の周波数に比例した電圧指令を出すFV変換器と、前記速度指令を積分し位置指令を生成する積分器と、前記積分器から出力された位置指令値より、同期電動機に供給される少なくとも2相分のステータ電流を位置指令値より90度進んだ電流成分に座標変換する電流座標変換器と、前記電流座標変換器によって変換した位相指令より90度進んだ電流成分に基づいて生成した電圧補正量を前記FV変換器によって変換された電圧に加える手段を備えたことを特徴とする永久磁石同期電動機の制御装置 In a control device for variable speed control of a permanent magnet type synchronous motor by AC power from an inverter circuit, an FV converter that outputs a voltage command proportional to a frequency of a speed command, and an integrator that integrates the speed command and generates a position command A current coordinate converter that converts the stator current for at least two phases supplied to the synchronous motor from the position command value output from the integrator into a current component advanced by 90 degrees from the position command value; and the current Control of a permanent magnet synchronous motor comprising means for adding a voltage correction amount generated based on a current component advanced by 90 degrees from a phase command converted by a coordinate converter to the voltage converted by the FV converter apparatus インバータ回路からの交流電力により永久磁石形同期電動機を可変速制御する制御装置において、速度指令の周波数に比例した電圧指令を出すFV変換器と、前記速度指令を積分し位置指令を生成する積分器と、前記積分器から出力された位置指令値より、同期電動機に供給される少なくとも2相分のステータ電流を位置指令値より90度進んだ軸に座標変換する電流座標変換器と、前記電流座標変換器によって変換した位相指令より90度進んだ電流成分に基づいて生成した位相補正量で前記FV変換器によって変換された電圧を座標変換する手段を備えたことを特徴とする永久磁石形同期電動機の制御装置。 In a control device for variable speed control of a permanent magnet type synchronous motor by AC power from an inverter circuit, an FV converter that outputs a voltage command proportional to a frequency of a speed command, and an integrator that integrates the speed command and generates a position command A current coordinate converter that converts the stator current for at least two phases supplied to the synchronous motor from the position command value output from the integrator to an axis advanced 90 degrees from the position command value; and the current coordinate A permanent magnet synchronous motor comprising means for coordinate-converting the voltage converted by the FV converter with a phase correction amount generated based on a current component advanced by 90 degrees from the phase command converted by the converter Control device. インバータ回路からの交流電力により永久磁石形同期電動機を可変速制御する制御装置において、速度指令の周波数に比例した電圧指令を出すFV変換器と、前記速度指令を積分し位置指令を生成する積分器と、前記積分器から出力された位置指令値に位相補正量を加えた補正位置指令により、同期電動機に供給される少なくとも2相分のステータ電流を補正位置指令値より90度進んだ軸に座標変換する電流座標変換器と、前記位相補正量を前記電流座標変換器によって変換した補正位相指令より、90度進んだ電流成分に基づいて生成する手段と、更に前記位相補正量で前記FV変換器によって変換された電圧を座標変換する手段を備えたことを特徴とする永久磁石形同期電動機の制御装置。 In a control device for variable speed control of a permanent magnet type synchronous motor by AC power from an inverter circuit, an FV converter that outputs a voltage command proportional to a frequency of a speed command, and an integrator that integrates the speed command and generates a position command And a corrected position command obtained by adding a phase correction amount to the position command value output from the integrator, and the stator current for at least two phases supplied to the synchronous motor is coordinated to an axis advanced 90 degrees from the corrected position command value. A current coordinate converter for conversion, a means for generating the phase correction amount based on a current component advanced by 90 degrees from a correction phase command obtained by converting the phase correction amount by the current coordinate converter, and the FV converter with the phase correction amount. A control device for a permanent magnet type synchronous motor, characterized in that it comprises means for coordinate-converting the voltage converted by the above.
JP2003314156A 2003-09-05 2003-09-05 Control device for synchronous motor Expired - Lifetime JP4380271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003314156A JP4380271B2 (en) 2003-09-05 2003-09-05 Control device for synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003314156A JP4380271B2 (en) 2003-09-05 2003-09-05 Control device for synchronous motor

Publications (2)

Publication Number Publication Date
JP2005086869A true JP2005086869A (en) 2005-03-31
JP4380271B2 JP4380271B2 (en) 2009-12-09

Family

ID=34414857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003314156A Expired - Lifetime JP4380271B2 (en) 2003-09-05 2003-09-05 Control device for synchronous motor

Country Status (1)

Country Link
JP (1) JP4380271B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007097183A1 (en) * 2006-02-24 2007-08-30 Kabushiki Kaisha Yaskawa Denki Electric motor control apparatus
JP2009124871A (en) * 2007-11-15 2009-06-04 Meidensha Corp V/f control system of synchronous electric motor
EP2104222A1 (en) * 2008-03-20 2009-09-23 Electrolux Home Products Corporation N.V. Method and device for controlling a brushless AC motor
CN103701385A (en) * 2013-12-17 2014-04-02 中冶南方(武汉)自动化有限公司 Method for restraining V/F (Voltage/Frequency) open-loop controlled oscillation of induction motor
US9048769B2 (en) 2012-07-23 2015-06-02 Kabushiki Kaisha Toshiba Motor driving circuit and motor driving system
JP2015220884A (en) * 2014-05-19 2015-12-07 株式会社デンソー Controller of rotary machine
CN105322855A (en) * 2014-07-25 2016-02-10 株式会社电装 Apparatus for controlling rotary machine

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9419553B2 (en) * 2014-07-25 2016-08-16 Denso Corporation Apparatus for controlling rotary machine

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4671181B2 (en) * 2006-02-24 2011-04-13 株式会社安川電機 Electric motor control device
JPWO2007097183A1 (en) * 2006-02-24 2009-07-09 株式会社安川電機 Electric motor control device
WO2007097183A1 (en) * 2006-02-24 2007-08-30 Kabushiki Kaisha Yaskawa Denki Electric motor control apparatus
US7977901B2 (en) 2006-02-24 2011-07-12 Kabushiki Kaisha Yaskawa Denki Electromechanical machine control system
JP2009124871A (en) * 2007-11-15 2009-06-04 Meidensha Corp V/f control system of synchronous electric motor
EP2104222A1 (en) * 2008-03-20 2009-09-23 Electrolux Home Products Corporation N.V. Method and device for controlling a brushless AC motor
WO2009115330A1 (en) * 2008-03-20 2009-09-24 Electrolux Home Products Corporation N.V. Method and device for controlling a brushless ac motor
US9048769B2 (en) 2012-07-23 2015-06-02 Kabushiki Kaisha Toshiba Motor driving circuit and motor driving system
CN103701385A (en) * 2013-12-17 2014-04-02 中冶南方(武汉)自动化有限公司 Method for restraining V/F (Voltage/Frequency) open-loop controlled oscillation of induction motor
CN103701385B (en) * 2013-12-17 2016-06-08 中冶南方(武汉)自动化有限公司 The suppressing method of induction machine V/F opened loop control vibration
JP2015220884A (en) * 2014-05-19 2015-12-07 株式会社デンソー Controller of rotary machine
CN105322855A (en) * 2014-07-25 2016-02-10 株式会社电装 Apparatus for controlling rotary machine
JP2016032310A (en) * 2014-07-25 2016-03-07 株式会社デンソー Controller of dynamo-electric machine
CN105322855B (en) * 2014-07-25 2018-09-28 株式会社电装 Device for controlling whirler

Also Published As

Publication number Publication date
JP4380271B2 (en) 2009-12-09

Similar Documents

Publication Publication Date Title
EP1774646B1 (en) Apparatus and method to control torque and voltage of an ac machine
US6768280B2 (en) Motor control apparatus
JP4067949B2 (en) Motor control device
JP2007189766A (en) Motor drive controller and motor drive system
JP3674741B2 (en) Control device for permanent magnet synchronous motor
KR102597884B1 (en) Methods, devices and controls for determining angles
JP2010063208A (en) Drive system for synchronous motor, and controller used for this
JP2000236694A (en) Controller for permanent-magnet synchronous motor
JP2008043058A (en) Synchronous motor control unit and control method thereof
JP4380271B2 (en) Control device for synchronous motor
JPH08275599A (en) Control method for permanent magnet synchronous motor
JP2011024276A (en) Controller for winding field type synchronous machine
JP4639832B2 (en) AC motor drive device
JP4404193B2 (en) Control device for synchronous motor
JP2010206946A (en) Sensorless controller of synchronous motor
JPH08266099A (en) Controller for permanent-magnet synchronous motor
WO2007063766A1 (en) Motor controller
JP4219362B2 (en) Rotating machine control device
JPWO2007097183A1 (en) Electric motor control device
JP5034888B2 (en) Synchronous motor V / f control device
JP5862691B2 (en) Control device for motor drive device and motor drive system
JP2000262089A (en) Controller for permanent magnet-type synchronous motor
JP3944659B2 (en) Induction motor control device
JP3576509B2 (en) Motor control device
JP3124019B2 (en) Induction motor control device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060325

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060817

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090324

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090521

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090901

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4380271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141002

Year of fee payment: 5

EXPY Cancellation because of completion of term