JP2005086233A - Surface acoustic wave device and method of adjusting frequency temperature characteristic thereof - Google Patents

Surface acoustic wave device and method of adjusting frequency temperature characteristic thereof Download PDF

Info

Publication number
JP2005086233A
JP2005086233A JP2003312570A JP2003312570A JP2005086233A JP 2005086233 A JP2005086233 A JP 2005086233A JP 2003312570 A JP2003312570 A JP 2003312570A JP 2003312570 A JP2003312570 A JP 2003312570A JP 2005086233 A JP2005086233 A JP 2005086233A
Authority
JP
Japan
Prior art keywords
quartz substrate
frequency
temperature
frequency temperature
surface acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003312570A
Other languages
Japanese (ja)
Inventor
Takashi Yamazaki
隆 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003312570A priority Critical patent/JP2005086233A/en
Publication of JP2005086233A publication Critical patent/JP2005086233A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of adjusting frequency temperature characteristic of a surface acoustic wave device in which a thin film is formed on a crystal substrate. <P>SOLUTION: A surface acoustic wave device 10 provided with a crystal substrate 12, a thin film 20 formed on the crystal substrate 12, and an interdigital electrode 14 formed between the crystal substrate 12 and the thin film 20. In the method of adjusting frequency temperature characteristic of the device, any one of ratios of an electrode pitch P to the cut angle of the crystal substrate 12, to the film thickness of the interdigital electrode 14, and to the electrode width L of the interdigital electrode 14 or the arbitrarily combined value of these is varied to adjust the frequency temperature characteristic. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、水晶基板上に圧電薄膜を形成した弾性表面波装置の周波数温度特性調整方法および弾性表面波装置に関するものである。   The present invention relates to a method for adjusting a frequency temperature characteristic of a surface acoustic wave device in which a piezoelectric thin film is formed on a quartz substrate and a surface acoustic wave device.

弾性表面波(Surface Acoustic Wave:以下、SAWという)を利用したSAWデバイスとして、例えばSAW共振子、SAW発振器およびSAWフィルタ等が挙げられる。これらのSAWデバイスは電子機器の基準周波数源や、伝送回路における周波数選択機等として応用されている。このSAWデバイスを構成するSAW装置は、圧電効果を生じる材料からなる圧電基板の表面上にすだれ状電極(Interdigital Transducer:以下、IDTという)を形成するとともに、このIDTの両端に反射器を設けたものが主な構成である。そしてSAW装置には、IDTおよび反射器上に保護膜を形成したもの、または圧電基板の温度補償を目的として薄膜を形成したものがある。   Examples of SAW devices that use surface acoustic waves (hereinafter referred to as SAWs) include SAW resonators, SAW oscillators, and SAW filters. These SAW devices are applied as reference frequency sources for electronic equipment, frequency selectors in transmission circuits, and the like. In the SAW device constituting the SAW device, interdigital electrodes (hereinafter referred to as IDT) are formed on the surface of a piezoelectric substrate made of a material that generates a piezoelectric effect, and reflectors are provided at both ends of the IDT. Things are the main structure. In some SAW devices, a protective film is formed on the IDT and the reflector, or a thin film is formed for the purpose of temperature compensation of the piezoelectric substrate.

前記保護膜について記載された発明として特許文献1が挙げられる。この特許文献1の発明は、タンタル酸リチウム(LiTaO3)基板上にIDTおよび反射器が形成されたSAW装置であって、保護膜となる酸化シリコン(SiO2)膜を、IDTと反射器の上面および側面に形成するとともに、IDTと反射器が形成されていないLiTaO3基板上に形成した構成である。この構成により、IDT上に落下した導電材によりIDTが短絡するのを防止し、汚染物からIDTや反射器を保護することが記載されている。 Patent document 1 is mentioned as invention described about the said protective film. The invention of Patent Document 1 is a SAW device in which an IDT and a reflector are formed on a lithium tantalate (LiTaO 3 ) substrate, and a silicon oxide (SiO 2 ) film serving as a protective film is formed between the IDT and the reflector. The structure is formed on the LiTaO 3 substrate on which the IDT and the reflector are not formed while being formed on the upper surface and the side surface. It is described that this configuration prevents the IDT from being short-circuited by the conductive material dropped on the IDT and protects the IDT and the reflector from contaminants.

また圧電基板の温度補償を目的として薄膜を形成した発明として特許文献2の発明が挙げられる。この特許文献2の発明は、ニオブ酸リチウム(LiNbO3)基板やLiTaO3基板上に、これらの圧電基板と逆の周波数温度特性をもつSiO2膜を形成し、圧電基板とSiO2膜の間にIDTや反射器等を形成した構成である。この構成により、広帯域、低挿入損失、かつ温度安定性に優れたSAWデバイスが得られると記載されている。 The invention of Patent Document 2 is an invention in which a thin film is formed for the purpose of temperature compensation of a piezoelectric substrate. In the invention of Patent Document 2, an SiO 2 film having a frequency temperature characteristic opposite to that of these piezoelectric substrates is formed on a lithium niobate (LiNbO 3 ) substrate or LiTaO 3 substrate, and the piezoelectric substrate and the SiO 2 film are interposed between them. In this configuration, an IDT, a reflector, and the like are formed. This configuration describes that a SAW device having a wide band, low insertion loss, and excellent temperature stability can be obtained.

特開平9−186542号公報JP-A-9-186542 特開平7−15274号公報Japanese Patent Laid-Open No. 7-15274

ところで、LiNbO3やLiTaO3は一次温度係数にマイナスの値を持つので周波数温度特性が悪い。このため、これらの圧電基板上に一次温度係数がプラスの値を持つ薄膜を形成して、圧電基板の温度補償を行っているのである。これに対して、水晶が持つ元々の一次温度係数の値は零なので周波数温度特性が良い。 By the way, LiNbO 3 and LiTaO 3 have a negative value in the primary temperature coefficient, and therefore the frequency temperature characteristics are poor. For this reason, a thin film having a positive primary temperature coefficient is formed on these piezoelectric substrates to compensate for the temperature of the piezoelectric substrate. On the other hand, since the original primary temperature coefficient value of the crystal is zero, the frequency temperature characteristic is good.

図7に周波数偏差と温度の関係を示す。同図(a)は水晶基板上にIDTと反射器をアルミニウム(Al)で形成したSAW装置の周波数温度特性であり、同図(b)は圧電薄膜となるSiO2膜の周波数温度特性であり、同図(c)はAlによりIDTと反射器を形成した水晶基板の上に、SiO2膜を形成したときの周波数温度特性である。ここで、水晶基板はオイラー角表示で(0°、123°、43.1°)であり、Alの膜厚と波長の比は0.0368であり、SiO2の膜厚と波長の比は0.0016である。またSiO2膜の周波数温度特性は一次関数で表され、SiO2の膜厚によって周波数温度特性の傾きが変化する。図7(a)では、温度が−40℃から+85℃の範囲において周波数偏差が0ppmから−55ppmの範囲であるのに対して、同図(c)では、周波数偏差が0ppmから−80ppmの範囲となっている。この結果より、水晶基板上に圧電薄膜であるSiO2膜を形成すると、前記SiO2の一次温度係数によって水晶基板の周波数温度特性がずれてしまう問題点がある。すなわち、周波数温度特性の良い水晶基板上にSiO2膜を形成すると周波数温度特性が悪くなる。なお水晶基板上に圧電薄膜(SiO2膜)を形成した際の温度特性の補正に関する報告はない。 FIG. 7 shows the relationship between frequency deviation and temperature. (A) shows the frequency temperature characteristics of the SAW device in which the IDT and the reflector are made of aluminum (Al) on the quartz substrate, and (b) shows the frequency temperature characteristics of the SiO 2 film that becomes the piezoelectric thin film. FIG. 6C shows frequency temperature characteristics when an SiO 2 film is formed on a quartz substrate on which an IDT and a reflector are formed of Al. Here, the quartz substrate is expressed in Euler angles (0 °, 123 °, 43.1 °), the ratio of the Al film thickness to the wavelength is 0.0368, and the ratio of the SiO 2 film thickness to the wavelength is 0.0016. The frequency temperature characteristic of the SiO 2 film is expressed by a linear function, and the slope of the frequency temperature characteristic changes depending on the film thickness of SiO 2 . 7A, the frequency deviation is in the range of 0 ppm to −55 ppm in the temperature range of −40 ° C. to + 85 ° C., whereas in FIG. 7C, the frequency deviation is in the range of 0 ppm to −80 ppm. It has become. As a result, when the SiO 2 film, which is a piezoelectric thin film, is formed on the quartz substrate, the frequency temperature characteristic of the quartz substrate is shifted due to the primary temperature coefficient of the SiO 2 . That is, if a SiO 2 film is formed on a quartz substrate having good frequency temperature characteristics, the frequency temperature characteristics are deteriorated. There is no report on correction of temperature characteristics when a piezoelectric thin film (SiO 2 film) is formed on a quartz substrate.

またSAW共振子やSAW発振器には様々な要因を合わせて±数10ppm以下の精度が要求されるため、これらのSAWデバイスに用いられるSAW装置には極めて一定の周波数で共振することが要求される。このため、圧電基板上にSiO2膜を形成すると、このSiO2膜の周波数温度特性よって所望の共振周波数を得ることができず、前記精度を達成できない問題点が生じる。 Further, since SAW resonators and SAW oscillators are required to have accuracy of ± several tens of ppm or less by combining various factors, SAW devices used in these SAW devices are required to resonate at a very constant frequency. . For this reason, when the SiO 2 film is formed on the piezoelectric substrate, a desired resonance frequency cannot be obtained due to the frequency-temperature characteristics of the SiO 2 film, resulting in a problem that the accuracy cannot be achieved.

本発明は上記問題点を解決するためになされたもので、すだれ状電極を設けた水晶基板上に圧電薄膜を形成しても、所望の周波数温度特性が得られる弾性表面波装置の周波数温度特性調整方法および弾性表面波装置を提供することを目的とする。   The present invention has been made to solve the above-described problems. Frequency temperature characteristics of a surface acoustic wave device that can obtain desired frequency temperature characteristics even when a piezoelectric thin film is formed on a quartz substrate provided with interdigital electrodes. An object is to provide an adjustment method and a surface acoustic wave device.

上記目的を達成するために、本発明に係る弾性表面波装置の周波数温度特性調整方法は、水晶基板と、前記水晶基板上に形成した圧電薄膜と、前記水晶基板と前記圧電薄膜との間に形成したすだれ状電極とを備えた弾性表面波装置の温度特性調整方法であって、前記水晶基板のカット角、前記すだれ状電極の膜厚、すだれ状電極の電極幅と電極ピッチとの比のいずれかまたは任意の組み合わせの値を変化させて温度特性を調整することを特徴としている。この場合、前記水晶基板は、オイラー角が(0°、113°〜135°、±(40°〜49°))または(0°、113°〜135°、0°)とできる。また前記圧電薄膜は酸化シリコン膜とできる。   In order to achieve the above object, a method for adjusting frequency temperature characteristics of a surface acoustic wave device according to the present invention includes a quartz substrate, a piezoelectric thin film formed on the quartz substrate, and the quartz substrate and the piezoelectric thin film. A method of adjusting temperature characteristics of a surface acoustic wave device including a formed interdigital electrode, wherein the ratio of the cut angle of the quartz substrate, the film thickness of the interdigital electrode, the electrode width and the electrode pitch of the interdigital electrode It is characterized in that the temperature characteristic is adjusted by changing the value of any one or any combination. In this case, the crystal substrate can have an Euler angle of (0 °, 113 ° to 135 °, ± (40 ° to 49 °)) or (0 °, 113 ° to 135 °, 0 °). The piezoelectric thin film can be a silicon oxide film.

弾性表面波装置の周波数温度特性は、圧電薄膜自体の周波数温度特性とすだれ状電極が設けられた水晶基板の周波数温度特性の合成である。すなわち、すだれ状電極が設けられた水晶基板に圧電薄膜を形成すると、周波数温度特性が変化する。このため、圧電薄膜を形成することにより変化する周波数温度特性の変化量分を予め調整してすだれ状電極と水晶基板を形成すれば、圧電薄膜が形成された後の周波数温度特性を所望の周波数温度特性にすることができる。そして、すだれ状電極と水晶基板を形成して周波数温度特性を調整するには、水晶基板のカット角や、すだれ状電極の膜厚、すなわちすだれ状電極の膜厚Hと波長λの比(H/λ)や、すだれ状電極の電極幅Lと電極ピッチPの比(L/P)のいずれかまたは任意の組み合わせにおけるそれぞれの値を変化させて行えばよい。そして、オイラー角が(0°、113°〜135°、±(40°〜49°))で表される面内回転STカット水晶基板、(0°、113°〜135°、0°)で表されるSTカット水晶基板を用いる弾性表面波装置において、上述した調整を行うことができる。また圧電薄膜として酸化シリコン膜を用いる場合にも、上述した調整を行うことができる。   The frequency temperature characteristic of the surface acoustic wave device is a combination of the frequency temperature characteristic of the piezoelectric thin film itself and the frequency temperature characteristic of the quartz crystal substrate provided with the interdigital electrode. That is, when a piezoelectric thin film is formed on a quartz substrate provided with interdigital electrodes, the frequency temperature characteristics change. For this reason, if the interdigital electrode and the quartz substrate are formed by adjusting in advance the amount of change in the frequency temperature characteristic that changes due to the formation of the piezoelectric thin film, the frequency temperature characteristic after the piezoelectric thin film is formed can be obtained as a desired frequency. Temperature characteristics can be obtained. In order to adjust the frequency temperature characteristics by forming the interdigital electrode and the quartz substrate, the cut angle of the quartz substrate, the thickness of the interdigital electrode, that is, the ratio of the interdigital electrode thickness H to the wavelength λ (H / Λ), the ratio (L / P) of the electrode width L to the electrode pitch P (L / P) of the interdigital electrodes, or any value in any combination may be changed. An in-plane rotated ST-cut quartz substrate whose Euler angles are represented by (0 °, 113 ° to 135 °, ± (40 ° to 49 °)), (0 °, 113 ° to 135 °, 0 °) The above-described adjustment can be performed in the surface acoustic wave device using the ST cut quartz crystal substrate. The above-described adjustment can also be performed when a silicon oxide film is used as the piezoelectric thin film.

また水晶基板のカット角を変化させて周波数温度特性を調整するには、オイラー角(φ、θ、ψ)のうちψを変化させて周波数温度特性を調整することを特徴としている。面内回転角ψを変化させることにより、容易に周波数温度特性を調整することができる。この調整は、オイラー角が(0°、113°〜135°、±(40°〜49°))の水晶基板を調整するときに特に有効である。   Further, in order to adjust the frequency temperature characteristic by changing the cut angle of the quartz substrate, the frequency temperature characteristic is adjusted by changing ψ among Euler angles (φ, θ, ψ). The frequency temperature characteristic can be easily adjusted by changing the in-plane rotation angle ψ. This adjustment is particularly effective when adjusting a quartz substrate having Euler angles (0 °, 113 ° to 135 °, ± (40 ° to 49 °)).

また本発明に係る弾性表面波装置は、上述した弾性表面波の温度調整方法を用いて製造したことを特徴としている。すだれ状電極が設けられた水晶基板上に圧電薄膜を形成しても、所望の周波数温度特性を有する弾性表面波装置を得ることができる。   The surface acoustic wave device according to the present invention is characterized by being manufactured using the surface acoustic wave temperature adjusting method described above. Even when a piezoelectric thin film is formed on a quartz substrate provided with interdigital electrodes, a surface acoustic wave device having desired frequency-temperature characteristics can be obtained.

以下に、本発明に係る弾性表面波装置の周波数温度特性調整方法および弾性表面波装置ついて説明する。なお、以下に記載するものは本発明の実施の一形態にすぎず、本発明はこれに限定されるものでない。図1に水晶基板のカット角の説明図を示す。水晶の結晶軸はX軸(電気軸)、Y軸(機械軸)およびZ軸(光軸)で定義される。そして弾性表面波(SAW)装置10には、オイラー角(φ、θ、ψ)が(0°、113°〜135°、0°)で表されるSTカット水晶基板と、(0°、113°〜135°、±(40〜49°))で表される面内回転STカット水晶基板が主に用いられている。STカット水晶基板は、オイラー角(φ、θ、ψ)が(0°、0°、0°)で表される水晶Z板2をX軸まわりにθ=113°〜135°回転させて得られる面に沿って切り出される水晶基板3である。なおY軸およびZ軸もX軸周りにθ回転させて得られる軸を、それぞれY’軸およびZ’軸と定義する。また面内回転STカット基板は、前記STカット水晶基板をXY’面内で回転させて、すなわちZ’軸周りにψ=±(40°〜49°)回転させて得られる水晶基板である。   Hereinafter, a method for adjusting a frequency temperature characteristic of a surface acoustic wave device and a surface acoustic wave device according to the present invention will be described. In addition, what is described below is only one embodiment of the present invention, and the present invention is not limited to this. FIG. 1 is an explanatory diagram of the cut angle of the quartz substrate. The crystal axis of quartz is defined by the X axis (electric axis), the Y axis (mechanical axis), and the Z axis (optical axis). The surface acoustic wave (SAW) device 10 includes an ST-cut quartz substrate whose Euler angles (φ, θ, ψ) are represented by (0 °, 113 ° to 135 °, 0 °), and (0 °, 113). An in-plane rotated ST-cut quartz substrate represented by ° to 135 ° and ± (40 to 49 °) is mainly used. The ST-cut quartz substrate is obtained by rotating a quartz crystal Z plate 2 whose Euler angles (φ, θ, ψ) are (0 °, 0 °, 0 °) around the X axis by θ = 113 ° to 135 °. A quartz substrate 3 cut out along the surface to be cut. The axes obtained by rotating the Y axis and the Z axis by θ around the X axis are defined as the Y ′ axis and the Z ′ axis, respectively. The in-plane rotated ST-cut substrate is a quartz substrate obtained by rotating the ST-cut quartz substrate in the XY ′ plane, that is, rotating ψ = ± (40 ° to 49 °) around the Z ′ axis.

これらの水晶基板の周波数温度特性は、STカット水晶基板が二次関数で表され、面内回転STカット水晶基板が三次関数で表される。ところで、面内回転STカット水晶基板の変曲点温度は通常の使用温度範囲(例えば−40℃〜+85℃)よりも高い110℃近辺に位置している。このため使用温度範囲内では周波数温度特性曲線に極大値を有し、この極大値が頂点温度となる。   The frequency-temperature characteristics of these quartz substrates are expressed by a quadratic function for the ST-cut quartz substrate and a cubic function for the in-plane rotated ST-cut quartz substrate. By the way, the inflection point temperature of the in-plane rotation ST-cut quartz substrate is located around 110 ° C. which is higher than the normal use temperature range (for example, −40 ° C. to + 85 ° C.). For this reason, the frequency temperature characteristic curve has a maximum value within the operating temperature range, and this maximum value becomes the apex temperature.

図2にSAW装置の説明図を示す。図2(a)はSAW装置の平面図であり、図2(b)はSAW装置の断面を拡大した図である。SAW装置10は、上述した水晶基板12上に一対のすだれ状電極14(IDT14)が形成され、弾性表面波の伝搬方向に沿うIDT14の両端に反射器16が形成された構成である。また水晶基板12上にはボンディングパッド19が形成され、このボンディングパッド19とIDT14が引出し電極18を介して導通する構成である。さらに、前記水晶基板12、IDT14および反射器16上に圧電薄膜20となる酸化シリコン(SiO2)膜20が形成された構成である。なお圧電薄膜20はSiO2膜20に限定されることはない。 FIG. 2 is an explanatory diagram of the SAW device. FIG. 2A is a plan view of the SAW device, and FIG. 2B is an enlarged view of the cross section of the SAW device. The SAW device 10 has a configuration in which a pair of interdigital electrodes 14 (IDT 14) is formed on the above-described quartz substrate 12, and reflectors 16 are formed at both ends of the IDT 14 along the propagation direction of the surface acoustic wave. In addition, a bonding pad 19 is formed on the quartz substrate 12, and the bonding pad 19 and the IDT 14 are electrically connected via the extraction electrode 18. Further, a silicon oxide (SiO 2 ) film 20 to be the piezoelectric thin film 20 is formed on the quartz substrate 12, the IDT 14 and the reflector 16. The piezoelectric thin film 20 is not limited to the SiO 2 film 20.

次に、このSAW装置10が所望の周波数温度特性を得るための調整方法について説明する。この調整方法では、まずSiO2膜20の膜厚が決定される。このSiO2膜20は、IDT14等の保護に必要な厚さまたは周波数温度特性の補正に必要な厚さが適宜設計された後に、化学気相成長法、スパッタ法または蒸着法等により形成される。このSiO2膜20の膜厚によって、SiO2膜20の一次関数で表される周波数温度特性が決定される。そしてSAW装置10の所望の周波数温度特性を得るために、SiO2膜20の周波数温度特性によって、IDT14等が設けられた水晶基板12の周波数温度特性は一意的に決定される。すなわち、SAW装置10の所望の周波数温度特性は、IDT14等が設けられた水晶基板12の周波数温度特性とSiO2膜20の周波数温度特性の合成であるので、IDT14等が設けられた水晶基板12の周波数温度特性はSiO2膜20を形成することによる周波数温度特性変化量分を調整した値とすればよい。 Next, an adjustment method for the SAW device 10 to obtain a desired frequency temperature characteristic will be described. In this adjustment method, the thickness of the SiO 2 film 20 is first determined. The SiO 2 film 20 is formed by a chemical vapor deposition method, a sputtering method, a vapor deposition method, or the like after the thickness necessary for protecting the IDT 14 or the like or the thickness necessary for correcting the frequency temperature characteristic is appropriately designed. . The thickness of the SiO 2 film 20, the frequency temperature characteristic represented by a linear function of the SiO 2 film 20 is determined. In order to obtain a desired frequency temperature characteristic of the SAW device 10, the frequency temperature characteristic of the quartz substrate 12 provided with the IDT 14 and the like is uniquely determined by the frequency temperature characteristic of the SiO 2 film 20. That is, since the desired frequency temperature characteristic of the SAW device 10 is a combination of the frequency temperature characteristic of the quartz substrate 12 provided with the IDT 14 and the like and the frequency temperature characteristic of the SiO 2 film 20, the quartz substrate 12 provided with the IDT 14 and the like. The frequency temperature characteristic may be a value obtained by adjusting the amount of change in the frequency temperature characteristic due to the formation of the SiO 2 film 20.

IDT14等が設けられた水晶基板12上にSiO2膜20を形成しないSAW装置10では、周波数温度特性の頂点温度が使用温度範囲(例えば−40℃〜+85℃)のほぼ中央の温度(25℃)に位置するよう調整されている。しかし本実施の形態では、IDT14等が設けられた水晶基板12上にSiO2膜20を形成するので、SiO2膜20の周波数温度特性に応じて前記頂点温度を低温側または高温側に移動させる必要がある。 In the SAW device 10 in which the SiO 2 film 20 is not formed on the quartz substrate 12 provided with the IDT 14 or the like, the apex temperature of the frequency temperature characteristic is approximately the middle temperature (25 ° C. to −40 ° C. to + 85 ° C.). ). However, in this embodiment, since the SiO 2 film 20 is formed on the quartz substrate 12 provided with the IDT 14 and the like, the vertex temperature is moved to the low temperature side or the high temperature side according to the frequency temperature characteristics of the SiO 2 film 20. There is a need.

面内回転STカット水晶基板は三次関数の周波数温度特性であるから、周波数温度特性曲線を変曲点まわりに回転させることにより、頂点温度を移動させたときと同様の結果を得ることができる。このため頂点温度を移動させるには、第1にZ’軸まわりの面内回転量を調整することによって行われる。すなわち、面内回転角ψを調整することにより行われる。図3に面内回転角ψを変化させたときの周波数偏差と温度の関係を示す。図3において、IDT14の膜厚Hと波長λの比(H/λ)を0.0368とし、IDT14の電極幅Lと電極ピッチPの比(η)を0.5とし、水晶基板12のカット角(φ、θ、ψ)を(0°、123°、ψ)としている。図3より、面内回転角ψを42.4°から43.2°までの範囲で変化させると、面内回転角ψが大きい場合には頂点温度が低温側へ移動し、面内回転角ψが小さい場合には頂点温度が高温側へ移動しているのがわかる。これにより、面内回転角度ψを変化させれば頂点温度が移動するので、SiO2膜20の周波数温度特性に応じて水晶基板12の面内回転角ψを適宜調整すれば、所望の周波数温度特性のSAW装置10を作製できる。 Since the in-plane rotation ST-cut quartz substrate has a frequency temperature characteristic of a cubic function, the same result as when the vertex temperature is moved can be obtained by rotating the frequency temperature characteristic curve around the inflection point. For this reason, the vertex temperature is moved by first adjusting the amount of in-plane rotation around the Z ′ axis. That is, it is performed by adjusting the in-plane rotation angle ψ. FIG. 3 shows the relationship between the frequency deviation and the temperature when the in-plane rotation angle ψ is changed. In FIG. 3, the ratio (H / λ) between the film thickness H of the IDT 14 and the wavelength λ (H / λ) is 0.0368, the ratio (η) between the electrode width L and the electrode pitch P of the IDT 14 is 0.5, and the crystal substrate 12 is cut. The angles (φ, θ, ψ) are (0 °, 123 °, ψ). From FIG. 3, when the in-plane rotation angle ψ is changed in the range from 42.4 ° to 43.2 °, the vertex temperature moves to the low temperature side when the in-plane rotation angle ψ is large, and the in-plane rotation angle When ψ is small, it can be seen that the vertex temperature moves to the high temperature side. Thereby, if the in-plane rotation angle ψ is changed, the vertex temperature moves. Therefore, if the in-plane rotation angle ψ of the quartz substrate 12 is appropriately adjusted according to the frequency temperature characteristic of the SiO 2 film 20, a desired frequency temperature can be obtained. The SAW device 10 having the characteristics can be manufactured.

このカット角の調整について次に説明する。まずSTカット水晶ウエハを作製し、前記水晶ウエハに設けられたオリエンテーションフラットを利用して面内回転角ψを与える。そして、この面内回転角ψに沿う方向(図1のX’軸に沿う方向)に弾性表面波が伝搬するよう各SAW装置10領域にIDT14や反射器16等を形成するのである。これにより面内回転角ψを有するIDT14等を形成した水晶基板12、すなわち面内回転STカット水晶基板を形成することができる。   The adjustment of the cut angle will be described next. First, an ST-cut quartz wafer is prepared, and an in-plane rotation angle ψ is given using an orientation flat provided on the quartz wafer. Then, the IDT 14, the reflector 16, and the like are formed in each SAW device 10 region so that the surface acoustic wave propagates in a direction along the in-plane rotation angle ψ (direction along the X ′ axis in FIG. 1). Thereby, the quartz substrate 12 on which the IDT 14 and the like having the in-plane rotation angle ψ are formed, that is, the in-plane rotation ST-cut quartz substrate can be formed.

また第2に、H/λの値を調整することにより頂点温度の移動が行われる。すなわち、IDT14の膜厚を変化させて頂点温度を移動させる。図4にH/λの値を変化させたときの周波数偏差と温度の関係を示す。図4において、ηを0.5とし、水晶基板12のカット角(φ、θ、ψ)を(0°、123°、43°)としている。図4より、H/λの値を0.25から0.45までの範囲で変化させると、H/λの値が大きい場合に頂点温度が低温側へ移動し、H/λの値が小さい場合に頂点温度が高温側へ移動しているのがわかる。これにより、H/λの値を変化させれば頂点温度が移動するので、SiO2膜20の周波数温度特性に応じてH/λの値、すなわちIDT14の膜厚を適宜調整すれば、所望の周波数温度特性のSAW装置10を作製できる。 Second, the vertex temperature is moved by adjusting the value of H / λ. That is, the vertex temperature is moved by changing the film thickness of the IDT 14. FIG. 4 shows the relationship between the frequency deviation and temperature when the value of H / λ is changed. In FIG. 4, η is 0.5, and the cut angles (φ, θ, ψ) of the quartz substrate 12 are (0 °, 123 °, 43 °). As shown in FIG. 4, when the value of H / λ is changed in the range from 0.25 to 0.45, the vertex temperature moves to the low temperature side when the value of H / λ is large, and the value of H / λ is small. It can be seen that the apex temperature moves to the high temperature side. Accordingly, if the value of H / λ is changed, the vertex temperature moves. Therefore, if the value of H / λ, that is, the film thickness of the IDT 14 is appropriately adjusted according to the frequency temperature characteristic of the SiO 2 film 20, a desired value can be obtained. The SAW device 10 having frequency temperature characteristics can be manufactured.

また第3に、ηの値を調整することにより頂点温度の移動が行われる。図5にηの値を変化させたときの周波数偏差と温度の関係を示す。図5において、H/λを0.0368とし、水晶基板12のカット角(φ、θ、ψ)を(0°、123°、43°)としている。図5よりηの値を0.3から0.7までの範囲で変化させると、ηの値が大きい場合には頂点温度が低温側へ移動し、ηの値が小さい場合には頂点温度が高温側へ移動しているのがわかる。これにより、ηの値を変化させれば頂点温度が移動するので、SiO2膜20の周波数温度特性に応じてηの値、すなわちIDT14の電極幅Lと電極ピッチPの比を適宜調整すれば、所望の周波数温度特性のSAW装置10を作製できる。 Third, the vertex temperature is moved by adjusting the value of η. FIG. 5 shows the relationship between the frequency deviation and temperature when the value of η is changed. In FIG. 5, H / λ is 0.0368, and the cut angles (φ, θ, ψ) of the quartz substrate 12 are (0 °, 123 °, 43 °). From FIG. 5, when the value of η is changed in the range from 0.3 to 0.7, the vertex temperature moves to the low temperature side when the value of η is large, and the vertex temperature is changed when the value of η is small. It can be seen that it has moved to the high temperature side. Accordingly, if the value of η is changed, the vertex temperature moves. Therefore, if the value of η, that is, the ratio between the electrode width L and the electrode pitch P of the IDT 14 is appropriately adjusted according to the frequency temperature characteristics of the SiO 2 film 20. The SAW device 10 having a desired frequency temperature characteristic can be manufactured.

また上述した第1から第3の調整方法を任意に組み合わせ、周波数温度特性を調整するそれぞれの値を変化させて、頂点温度を移動させることもできる。
次に、STカット水晶基板を用いる場合、オイラー角(φ、θ、ψ)のいずれかの角を調整して頂点温度を移動させ、周波数温度特性の調整を行うことができる。しかしSTカット水晶基板はオイラー角(0°、113°〜135°、0°)であり、作製し易い水晶基板であるので、オイラー角(φ、θ、ψ)のいずれかの角を調整する方法は好ましくない。このため、STカット水晶基板を用いる場合は、H/λの値を調整して頂点温度を移動させ、周波数温度特性を調整する方法が好ましい。この場合、H/λの値が大きい場合に頂点温度が低温側へ移動し、H/λの値が小さい場合に頂点温度が高温側へ移動する。これは面内回転STカットの場合と同じ傾向を示す。これにより、H/λの値を変化させれば頂点温度が移動するので、SiO2膜20の周波数温度特性に応じてH/λの値、すなわちIDTの膜厚を適宜調整すれば、所望の周波数温度特性のSAW装置10を作製できる。またSTカット水晶基板上に形成されるIDT14の電極幅Lと電極ピッチPの比を調整して頂点温度を移動させ、周波数温度特性の調整を行うこともできる。
Further, the first to third adjustment methods described above can be arbitrarily combined, and the vertex temperature can be moved by changing the respective values for adjusting the frequency temperature characteristics.
Next, when the ST cut quartz substrate is used, the frequency temperature characteristics can be adjusted by adjusting any one of the Euler angles (φ, θ, ψ) to move the vertex temperature. However, since the ST-cut quartz substrate has Euler angles (0 °, 113 ° to 135 °, 0 °) and is easy to manufacture, any one of Euler angles (φ, θ, ψ) is adjusted. The method is not preferred. For this reason, when using an ST cut quartz substrate, it is preferable to adjust the frequency temperature characteristic by adjusting the value of H / λ to move the apex temperature. In this case, when the value of H / λ is large, the vertex temperature moves to the low temperature side, and when the value of H / λ is small, the vertex temperature moves to the high temperature side. This shows the same tendency as in the case of the in-plane rotation ST cut. Accordingly, if the value of H / λ is changed, the vertex temperature moves. Therefore, if the value of H / λ, that is, the thickness of the IDT is appropriately adjusted according to the frequency temperature characteristics of the SiO 2 film 20, a desired value can be obtained. The SAW device 10 having frequency temperature characteristics can be manufactured. It is also possible to adjust the frequency temperature characteristic by adjusting the ratio of the electrode width L and the electrode pitch P of the IDT 14 formed on the ST cut quartz substrate to move the vertex temperature.

このように、面内回転STカット水晶基板やSTカット水晶基板上にIDT14等を形成し、これらの上にSiO2膜20を形成したので、導電材がIDT14や反射器16上に落下しても短絡を防止することができる。また汚染物がIDT14や反射器16上に落下しても、SiO2膜20によりIDT14や反射器16を保護することができる。 As described above, since the IDT 14 and the like are formed on the in-plane rotated ST-cut quartz substrate and the ST-cut quartz substrate and the SiO 2 film 20 is formed thereon, the conductive material falls on the IDT 14 and the reflector 16. Can also prevent short circuit. Even if contaminants fall on the IDT 14 or the reflector 16, the IDT 14 or the reflector 16 can be protected by the SiO 2 film 20.

またIDT14等が設けられた水晶基板12上にSiO2膜20を形成したので、SAW装置10の周波数温度特性が悪くなる。しかしSiO2膜20の周波数温度特性に応じて水晶基板12の周波数温度特性を調整できるので、SAW装置10の所望の周波数温度特性を得ることができる。そして、水晶基板12の周波数温度特性の調整を、水晶基板12のオイラー角(φ、θ、ψ)のうち面内回転角ψを変化させて行うことができる。またIDT14の膜厚と波長の比を変化させても行うことができ、さらにIDT14の電極幅Lと電極ピッチPの比を変化させても行うことができる。 Further, since the SiO 2 film 20 is formed on the quartz substrate 12 provided with the IDT 14 and the like, the frequency temperature characteristics of the SAW device 10 are deteriorated. However, since the frequency temperature characteristic of the quartz crystal substrate 12 can be adjusted according to the frequency temperature characteristic of the SiO 2 film 20, the desired frequency temperature characteristic of the SAW device 10 can be obtained. The frequency temperature characteristics of the quartz substrate 12 can be adjusted by changing the in-plane rotation angle ψ among the Euler angles (φ, θ, ψ) of the quartz substrate 12. It can also be performed by changing the ratio between the film thickness and the wavelength of the IDT 14, and can also be performed by changing the ratio between the electrode width L and the electrode pitch P of the IDT 14.

また周波数温度特性の補正の目的で面内回転STカット水晶基板やSTカット水晶基板上にSiO2膜20を形成しても、水晶基板12を上述したように調整すると、所望の周波数温度特性を持つSAW装置10を得ることができる。 Further, even if the SiO 2 film 20 is formed on the in-plane rotated ST-cut quartz substrate or the ST-cut quartz substrate for the purpose of correcting the frequency temperature characteristic, if the quartz substrate 12 is adjusted as described above, the desired frequency-temperature characteristic can be obtained. The SAW device 10 can be obtained.

次に、実施例について説明する。本実施例では、面内回転角ψを変化させてIDT等が設けられた水晶基板の周波数温度特性を調整したときの例を示す。まず水晶基板上に形成されるSiO2膜のH/λは0.0016であり、このSiO2膜の周波数温度特性は図7(b)に示されている。このSiO2膜の周波数温度特性により、IDT等が設けられた水晶基板の周波数温度特性は一意的に決まる。すなわち、SAW装置の周波数温度特性は通常使用温度である25℃を中心として、使用温度範囲(−40℃〜+85℃)において周波数の変動量が最小になるように調整している。このためIDT等が設けられた水晶基板の周波数温度特性は、SiO2膜を形成した後に変化する周波数温度特性の変化量分を調整した値となる。この値は計算によって算出されるとともに、この値を満たすように水晶基板上にIDT等が形成される。 Next, examples will be described. In this embodiment, an example is shown in which the in-plane rotation angle ψ is changed to adjust the frequency temperature characteristics of a quartz substrate provided with an IDT or the like. First, H / λ of the SiO 2 film formed on the quartz substrate is 0.0016, and the frequency-temperature characteristics of this SiO 2 film are shown in FIG. The frequency temperature characteristic of the quartz substrate provided with IDT or the like is uniquely determined by the frequency temperature characteristic of the SiO 2 film. That is, the frequency temperature characteristics of the SAW device are adjusted so that the frequency fluctuation amount is minimized in the operating temperature range (−40 ° C. to + 85 ° C.) centering on the normal operating temperature of 25 ° C. For this reason, the frequency temperature characteristic of the quartz substrate provided with IDT or the like is a value obtained by adjusting the amount of change in the frequency temperature characteristic that changes after the SiO 2 film is formed. This value is calculated, and an IDT or the like is formed on the quartz substrate so as to satisfy this value.

図6に本実施例に係る周波数偏差と温度の関係を示す。図6(a)はIDT等が設けられた水晶基板の周波数温度特性の変化量分を調整した周波数温度特性であり、図6(b)はIDT等が設けられた水晶基板上にSiO2膜を形成したSAW装置の周波数温度特性である。周波数温度特性の変化量分を算出した値は、水晶基板のオイラー角が(0°、123°、43.27°)となり、この値を満たすように水晶基板上にIDT等が形成される。なおIDTの膜厚はH/λ=0.0368である。このIDT等が設けられた水晶基板の周波数温度特性は、頂点温度が低温側に移動した状態となる(図6(a)参照)。そしてこの水晶基板上に前述したSiO2膜を形成すると、使用温度範囲で周波数の変動量が最小になるSAW装置が形成される(図6(b)参照)。これにより、SiO2膜の周波数温度特性に応じて水晶基板の周波数温度特性を調整し、SAW装置の所望の周波数温度特性を得ることができることがわかる。 FIG. 6 shows the relationship between the frequency deviation and the temperature according to this example. FIG. 6A shows frequency temperature characteristics obtained by adjusting the amount of change in frequency temperature characteristics of the quartz substrate provided with IDT and the like, and FIG. 6B shows the SiO 2 film on the quartz substrate provided with IDT and the like. It is the frequency temperature characteristic of the SAW device which formed. The value obtained by calculating the amount of change in the frequency temperature characteristic is that the Euler angles of the quartz substrate are (0 °, 123 °, 43.27 °), and an IDT or the like is formed on the quartz substrate so as to satisfy this value. The film thickness of IDT is H / λ = 0.0368. The frequency temperature characteristic of the quartz substrate provided with the IDT or the like is in a state where the vertex temperature has moved to the low temperature side (see FIG. 6A). Then, when the above-described SiO 2 film is formed on this quartz substrate, a SAW device in which the amount of frequency fluctuation is minimized within the operating temperature range is formed (see FIG. 6B). Thus, it can be seen that the frequency temperature characteristic of the quartz substrate can be adjusted according to the frequency temperature characteristic of the SiO 2 film to obtain the desired frequency temperature characteristic of the SAW device.

水晶基板のカット角の説明図である。It is explanatory drawing of the cut angle of a quartz substrate. 本実施の形態に係る弾性表面波装置の説明図である。It is explanatory drawing of the surface acoustic wave apparatus which concerns on this Embodiment. 面内回転角ψを変化させたときの周波数偏差と温度の関係を示す図である。It is a figure which shows the relationship between a frequency deviation and temperature when changing in-plane rotation angle (psi). すだれ状電極の膜厚を変化させたときの周波数偏差と温度の関係を示す図である。It is a figure which shows the relationship between a frequency deviation when changing the film thickness of a comb-shaped electrode, and temperature. すだれ状電極の電極幅と電極ピッチの比を変化させたときの周波数偏差と温度の関係を示す図である。It is a figure which shows the relationship between a frequency deviation and temperature when changing the ratio of the electrode width of an interdigital electrode, and an electrode pitch. 本実施例に係る周波数偏差と温度の関係を示す周波数温度特性である。It is a frequency temperature characteristic which shows the relationship between the frequency deviation and temperature which concern on a present Example. 周波数偏差と温度の関係を示す周波数温度特性である。It is the frequency temperature characteristic which shows the relationship between a frequency deviation and temperature.

符号の説明Explanation of symbols

10………弾性表面波(SAW)装置、12………水晶基板、14………IDT(すだれ状電極)、16………反射器、18………引出し電極、20………酸化シリコン膜(圧電薄膜)。

DESCRIPTION OF SYMBOLS 10 ......... Surface acoustic wave (SAW) apparatus, 12 ......... Quartz substrate, 14 ......... IDT (interdigital electrode), 16 ......... Reflector, 18 ...... Extraction electrode, 20 ...... Silicon oxide Film (piezoelectric thin film).

Claims (5)

水晶基板と、前記水晶基板上に形成した圧電薄膜と、前記水晶基板と前記圧電薄膜との間に形成したすだれ状電極とを備えた弾性表面波装置の周波数温度特性調整方法であって、前記水晶基板のカット角、前記すだれ状電極の膜厚、すだれ状電極の電極幅と電極ピッチとの比のいずれかまたは任意の組み合わせの値を変化させて温度特性を調整することを特徴とした弾性表面波装置の周波数温度特性調整方法。   A method for adjusting a frequency temperature characteristic of a surface acoustic wave device comprising a quartz substrate, a piezoelectric thin film formed on the quartz substrate, and an interdigital electrode formed between the quartz substrate and the piezoelectric thin film, Elasticity characterized by adjusting the temperature characteristics by changing the value of any one or any combination of the cut angle of the quartz substrate, the film thickness of the interdigital electrode, the ratio of the electrode width and electrode pitch of the interdigital electrode Method for adjusting frequency temperature characteristics of surface wave device. 前記水晶基板は、オイラー角が(0°、113°〜135°、±(40°〜49°))または(0°、113°〜135°、0°)であることを特徴とした請求項1に記載の弾性表面波装置の周波数温度調整方法。   The Euler angle of the quartz substrate is (0 °, 113 ° to 135 °, ± (40 ° to 49 °)) or (0 °, 113 ° to 135 °, 0 °). 2. A frequency temperature adjusting method for a surface acoustic wave device according to 1. 前記水晶基板のカット角を変化させて温度特性を調整するには、オイラー角(φ、θ、ψ)のうちψを変化させて温度特性を調整することを特徴とした請求項1または2に記載の弾性表面波装置の周波数温度調整方法。   The temperature characteristic is adjusted by changing ψ among Euler angles (φ, θ, ψ) in order to adjust the temperature characteristic by changing the cut angle of the quartz crystal substrate. The frequency temperature adjustment method of the surface acoustic wave apparatus of description. 前記圧電薄膜は酸化シリコン膜であることを特徴とした請求項1ないし3のいずれかに記載の弾性表面波装置の周波数温度調整方法。   4. A method of adjusting a temperature of a frequency of a surface acoustic wave device according to claim 1, wherein the piezoelectric thin film is a silicon oxide film. 請求項1ないし4のいずれかに記載の弾性表面波の周波数温度調整方法を用いて製造したことを特徴とした弾性表面波装置。

A surface acoustic wave device manufactured using the surface acoustic wave frequency temperature adjusting method according to claim 1.

JP2003312570A 2003-09-04 2003-09-04 Surface acoustic wave device and method of adjusting frequency temperature characteristic thereof Withdrawn JP2005086233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003312570A JP2005086233A (en) 2003-09-04 2003-09-04 Surface acoustic wave device and method of adjusting frequency temperature characteristic thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003312570A JP2005086233A (en) 2003-09-04 2003-09-04 Surface acoustic wave device and method of adjusting frequency temperature characteristic thereof

Publications (1)

Publication Number Publication Date
JP2005086233A true JP2005086233A (en) 2005-03-31

Family

ID=34413786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003312570A Withdrawn JP2005086233A (en) 2003-09-04 2003-09-04 Surface acoustic wave device and method of adjusting frequency temperature characteristic thereof

Country Status (1)

Country Link
JP (1) JP2005086233A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1816744A1 (en) * 2006-02-06 2007-08-08 Seiko Epson Corporation Surface acoustic wave device and electronic apparatus
JP2007281701A (en) * 2006-04-04 2007-10-25 Epson Toyocom Corp Method of manufacturing surface acoustic wave device and surface acoustic wave device
JP2007300174A (en) * 2006-04-27 2007-11-15 Epson Toyocom Corp Frequency temperature characteristic adjustment method of surface acoustic wave element chip, surface acoustic wave element chip, and surface acoustic wave device
JP2009540640A (en) * 2006-06-08 2009-11-19 ヴェクトロン インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Oscillator circuit with acoustic surface wave single-gate resonator
WO2010047114A1 (en) * 2008-10-24 2010-04-29 エプソントヨコム株式会社 Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave modular device
JP2015029358A (en) * 2014-10-29 2015-02-12 セイコーエプソン株式会社 Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device
US9537464B2 (en) 2010-06-17 2017-01-03 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US9762207B2 (en) 2009-02-27 2017-09-12 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1816744A1 (en) * 2006-02-06 2007-08-08 Seiko Epson Corporation Surface acoustic wave device and electronic apparatus
US7696675B2 (en) 2006-02-06 2010-04-13 Seiko Epson Corporation Surface acoustic wave device and electronic apparatus
JP2007281701A (en) * 2006-04-04 2007-10-25 Epson Toyocom Corp Method of manufacturing surface acoustic wave device and surface acoustic wave device
JP2007300174A (en) * 2006-04-27 2007-11-15 Epson Toyocom Corp Frequency temperature characteristic adjustment method of surface acoustic wave element chip, surface acoustic wave element chip, and surface acoustic wave device
JP2009540640A (en) * 2006-06-08 2009-11-19 ヴェクトロン インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Oscillator circuit with acoustic surface wave single-gate resonator
WO2010047114A1 (en) * 2008-10-24 2010-04-29 エプソントヨコム株式会社 Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave modular device
JP5177230B2 (en) * 2008-10-24 2013-04-03 セイコーエプソン株式会社 Surface acoustic wave resonator, surface acoustic wave oscillator, and surface acoustic wave module device
US9762207B2 (en) 2009-02-27 2017-09-12 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument
US9537464B2 (en) 2010-06-17 2017-01-03 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
JP2015029358A (en) * 2014-10-29 2015-02-12 セイコーエプソン株式会社 Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device

Similar Documents

Publication Publication Date Title
US10938371B2 (en) Acoustic wave resonator, filter, and multiplexer
US10270424B2 (en) Acoustic wave resonator, filter, multiplexer, and method of fabricating acoustic wave resonator
US20210099158A1 (en) Guided acoustic wave device
US11611324B2 (en) Acoustic wave device, high frequency front end circuit, and communication apparatus
JP3622202B2 (en) Method for adjusting temperature characteristics of surface acoustic wave device
CN109075770B (en) Composite substrate and elastic wave device using same
US20220014175A1 (en) Acoustic wave device
JP2006203408A (en) Surface acoustic wave device
KR20040031633A (en) Elastic surface wave device and temperature characteristics adjusting method thereof
JPWO2006137464A1 (en) Surface acoustic wave device, module, and oscillator
JP4158650B2 (en) Surface acoustic wave device and manufacturing method thereof
US11463068B2 (en) Acoustic wave device, high frequency front end circuit, and communication apparatus
JP2007028664A (en) Surface acoustic wave element chip and surface acoustic wave device
US20210408999A1 (en) Elastic wave device, splitter, and communication apparatus
JP2006295311A (en) Surface acoustic wave element chip and surface acoustic wave device
TW202044757A (en) High-order mode surface acoustic wave device
JPWO2020209190A1 (en) Elastic wave device and multiplexer
JPWO2017111170A1 (en) Elastic wave device and communication device
EP0810725A2 (en) Wafer and surface acoustic wave device
JP2005086233A (en) Surface acoustic wave device and method of adjusting frequency temperature characteristic thereof
JP2020182130A (en) Filter and multiplexer
JP2000188521A (en) Surface acoustic wave device and two port surface acoustic wave resonator
JP4148220B2 (en) Surface acoustic wave device, composite device, oscillation circuit and module
JP7433873B2 (en) Acoustic wave resonators, filters, and multiplexers
JP2010177819A (en) Surface acoustic wave element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050525

A761 Written withdrawal of application

Effective date: 20061205

Free format text: JAPANESE INTERMEDIATE CODE: A761