JP2007300174A - Frequency temperature characteristic adjustment method of surface acoustic wave element chip, surface acoustic wave element chip, and surface acoustic wave device - Google Patents

Frequency temperature characteristic adjustment method of surface acoustic wave element chip, surface acoustic wave element chip, and surface acoustic wave device Download PDF

Info

Publication number
JP2007300174A
JP2007300174A JP2006123959A JP2006123959A JP2007300174A JP 2007300174 A JP2007300174 A JP 2007300174A JP 2006123959 A JP2006123959 A JP 2006123959A JP 2006123959 A JP2006123959 A JP 2006123959A JP 2007300174 A JP2007300174 A JP 2007300174A
Authority
JP
Japan
Prior art keywords
acoustic wave
surface acoustic
frequency
temperature
wave element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006123959A
Other languages
Japanese (ja)
Other versions
JP4968510B2 (en
Inventor
Keigo Iizawa
慶吾 飯澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miyazaki Epson Corp
Original Assignee
Miyazaki Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miyazaki Epson Corp filed Critical Miyazaki Epson Corp
Priority to JP2006123959A priority Critical patent/JP4968510B2/en
Publication of JP2007300174A publication Critical patent/JP2007300174A/en
Application granted granted Critical
Publication of JP4968510B2 publication Critical patent/JP4968510B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a temperature characteristic adjustment method of a surface acoustic wave device for improving the temperature characteristic by utilizing the effect caused by provision of a protection film. <P>SOLUTION: In the adjustment method of the frequency temperature characteristic of the surface acoustic wave element chip using an inplane rotation ST-cut crystal substrate on the condition that the cut angle is within (0°, 95°≤θ≤155°, 33°≤¾ψ¾≤46°) in the Euler's representation, a relationship between the temperature and the frequency in the surface acoustic wave element chip is obtained, a deviation between the obtained frequency and a reference frequency at a reference temperature is obtained, the obtained relationship between the deviation and the temperature is approximated by a linear expression, and the gradient of the linear expression for the approximation is made closer to zero by forming the protection film at an exciting electrode on the basis of the relationship obtained in advance between the thickness of the protection film formed on the exciting electrode and the gradient of the linear expression. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、面内回転STカット水晶基板を用いた弾性表面波素子片の周波数温度特性調整方法、及びこの方法を用いて周波数温度特性を調整された弾性表面波素子片、並びに前記弾性表面波素子片を搭載した弾性表面波デバイスに関する。   The present invention relates to a method for adjusting the frequency temperature characteristic of a surface acoustic wave element piece using an in-plane rotating ST-cut quartz substrate, a surface acoustic wave element piece whose frequency temperature characteristic is adjusted using this method, and the surface acoustic wave. The present invention relates to a surface acoustic wave device mounted with an element piece.

従来より、圧電デバイスの中でも、水晶基板によって構成される素子片を用いたものは、周波数温度特性(温度変化に対する周波数変動特性)が良好であることが知られている。そして、水晶振動片を用いた圧電デバイスの中でも、振動片として、ATカット水晶基板を用いたATカット水晶振動子は、特に周波数温度特性が良好であることも知られている。   Conventionally, it has been known that among piezoelectric devices, those using an element piece constituted by a quartz substrate have good frequency temperature characteristics (frequency fluctuation characteristics with respect to temperature changes). It is also known that among piezoelectric devices using a crystal resonator element, an AT-cut crystal resonator using an AT-cut crystal substrate as the resonator element has particularly good frequency temperature characteristics.

また、圧電デバイスの分野では、励起する振動の高周波数化が望まれており、これに対応して、高周波を励起可能な構成とした振動片としては、STカット水晶基板を採用した弾性表面波(SAW:surface acoustic wave)素子片を用いた弾性表面波デバイス(SAWデバイス)が知られている。しかしSAWデバイスは、ATカット水晶振動子に比べて周波数温度特性が悪い。このため、SAWデバイスの周波数温度特性を改善するための技術が種々提案されている。   Further, in the field of piezoelectric devices, it is desired to increase the frequency of vibration to be excited. Correspondingly, as a resonator element having a configuration capable of exciting a high frequency, a surface acoustic wave using an ST cut quartz substrate is adopted. A surface acoustic wave device (SAW device) using a (SAW: surface acoustic wave) element piece is known. However, SAW devices have poor frequency temperature characteristics compared to AT-cut quartz resonators. For this reason, various techniques for improving the frequency temperature characteristics of the SAW device have been proposed.

例えば、特許文献1には、STカット水晶基板に特定の面内回転角ψを与えることにより、SAW素子片(SAWデバイス)の周波数温度特性を改善することが提案されている。
特許第3622202号公報 特開2005−57666号公報
For example, Patent Document 1 proposes improving the frequency temperature characteristics of a SAW element piece (SAW device) by giving a specific in-plane rotation angle ψ to an ST-cut quartz crystal substrate.
Japanese Patent No. 3622202 JP 2005-57666 A

特許文献1に示されるように、STカット水晶基板によって構成されるSAW素子片の面内回転角ψを適正に変化させることによれば、確かにSAW素子片の周波数温度特性を改善することができると考えられる。   As shown in Patent Document 1, by appropriately changing the in-plane rotation angle ψ of the SAW element piece constituted by the ST cut quartz substrate, the frequency temperature characteristic of the SAW element piece can surely be improved. It is considered possible.

しかし、本願出願人が鋭意研究する中で、上述するように水晶基板の面内回転角を調整し、周波数温度特性を改善したSAW素子片であっても、共振周波数の調整、及び電極間における短絡防止等を目的として励振電極を構成するIDT(interdigital transducer)に保護膜を付与することにより、前記周波数温度特性に変化が生ずることが判明した。   However, while the applicant of the present application intensively researches, even with a SAW element piece in which the in-plane rotation angle of the quartz crystal substrate is adjusted and the frequency temperature characteristics are improved as described above, the resonance frequency is adjusted and It has been found that the frequency temperature characteristic is changed by applying a protective film to an IDT (interdigital transducer) constituting the excitation electrode for the purpose of preventing a short circuit or the like.

上記のように、励振電極に対して保護膜を付与することは特許文献2にも開示されているが、特許文献2を含む従来技術における保護膜の付与は、あくまでSAW素子片の共振周波数を調整することを目的としたものであり、温度特性に対する影響というものは考慮されていなかった。また一般に、STカット水晶基板を採用したSAW素子片の励振電極に対して保護膜を付与した際には、周波数温度特性への影響が殆ど無い。このため従来は、面内回転STカット水晶基板を用いたSAW素子片については、保護膜付与による影響は無いものと考えられていた。   As described above, the provision of a protective film to the excitation electrode is also disclosed in Patent Document 2, but the provision of the protective film in the prior art including Patent Document 2 only gives the resonance frequency of the SAW element piece. The purpose is to adjust, and the influence on the temperature characteristics was not considered. In general, when a protective film is applied to the excitation electrode of the SAW element piece employing the ST cut quartz substrate, there is almost no influence on the frequency temperature characteristics. For this reason, conventionally, it has been considered that the SAW element piece using the in-plane rotation ST-cut quartz substrate is not affected by the provision of the protective film.

このため、本願出願人の研究により、STカット水晶基板の面内回転角ψを設定された共振周波数下において周波数温度特性が使用温度範囲内で最適な値となるように設計をした場合であっても、製造の最終段階として励振電極に保護膜を付与することにより、前述した周波数温度特性が劣化するという現象が生じることが初めて明らかとなったのである。   For this reason, in the case where the design by the applicant of the present application is such that the frequency temperature characteristic becomes an optimum value within the operating temperature range under the resonance frequency at which the in-plane rotation angle ψ of the ST cut quartz substrate is set. However, it became clear for the first time that the above-described phenomenon that the frequency temperature characteristics deteriorate due to the application of the protective film to the excitation electrode as the final stage of production.

そこで本発明では、面内回転STカット水晶基板を用いた弾性表面波素子片に対する保護膜付与による影響を利用して温度特性を改善する弾性表面波素子片の周波数温度特性調整方法、及び弾性表面波素子片、並びに弾性表面波デバイスを提供することを目的とする。   Therefore, in the present invention, the frequency temperature characteristic adjusting method for a surface acoustic wave element piece that improves the temperature characteristic by using the effect of applying a protective film to the surface acoustic wave element piece using the in-plane rotating ST-cut quartz substrate, and the elastic surface An object is to provide a wave element piece and a surface acoustic wave device.

上記目的を達成するための本発明に係る弾性表面波素子片の周波数温度特性調整方法は、カット角がオイラー角表示で(0°,95°≦θ≦155°,33°≦|ψ|≦46°)の範囲内にある事を基本とする面内回転STカット水晶基板を用いた弾性表面波素子片の周波数温度特性の調整方法であって、前記弾性表面波素子片における温度と周波数との関係を求め、当該求めた周波数と基準温度における基準周波数との偏差を求め、求めた偏差と温度との関係を一次式で近似し、予め求めた励振電極に形成した保護膜の厚さと前記一次式の傾きとの関係に基づいて、励振電極に保護膜を形成して前記近似した一次式の傾きを0に近づけることを特徴とする。   In order to achieve the above object, the method for adjusting the frequency-temperature characteristics of a surface acoustic wave element according to the present invention has a cut angle represented by Euler angles (0 °, 95 ° ≦ θ ≦ 155 °, 33 ° ≦ | ψ | ≦ 46 °) is a method for adjusting the frequency-temperature characteristics of a surface acoustic wave element piece using an in-plane rotated ST-cut quartz crystal substrate, and the temperature and frequency in the surface acoustic wave element piece. The relationship between the obtained frequency and the reference frequency at the reference temperature is obtained, the relationship between the obtained deviation and the temperature is approximated by a linear expression, and the thickness of the protective film formed on the excitation electrode obtained in advance is A protective film is formed on the excitation electrode on the basis of the relationship with the slope of the linear expression so that the slope of the approximated primary expression approaches 0.

このように、保護膜の膜厚を調整することで、弾性表面波素子片における温度特性の変動量を変化させることができる。また、この変動量(傾き)を一次式で近似させた際、その傾きが0となることにより温度特性が最適な状態となる。このため、保護膜の膜厚調整により一次関数の傾きを0に近づけるようにすることで、弾性表面波素子片の周波数温度特性を改善することができる。   As described above, by adjusting the film thickness of the protective film, it is possible to change the variation amount of the temperature characteristic in the surface acoustic wave element piece. Further, when this fluctuation amount (slope) is approximated by a linear expression, the slope becomes 0, so that the temperature characteristics are optimal. For this reason, the frequency temperature characteristic of the surface acoustic wave element can be improved by adjusting the slope of the linear function to 0 by adjusting the thickness of the protective film.

また、上記目的を達成するための本発明に係る弾性表面波素子片の周波数温度特性調整方法は、カット角がオイラー角表示で(0°,113°≦θ≦135°,40°≦|ψ|≦49°)の範囲内にある事を基本とする面内回転STカット水晶基板を用い用いた弾性表面波素子片の周波数温度特性の調整方法であって、前記弾性表面波素子片における温度と周波数との関係を求め、当該求めた周波数と基準温度における基準周波数との偏差を求め、求めた偏差と温度との関係を一次式で近似し、予め求めた励振電極に形成した保護膜の厚さと前記一次式の傾きとの関係に基づいて、励振電極に保護膜を形成して前記近似した一次式の傾きを0に近づけることを特徴とするものであっても良い。   In order to achieve the above object, the method for adjusting the frequency temperature characteristics of the surface acoustic wave element according to the present invention has a cut angle represented by Euler angles (0 °, 113 ° ≦ θ ≦ 135 °, 40 ° ≦ | ψ | ≦ 49 °) is a method for adjusting the frequency-temperature characteristics of a surface acoustic wave element piece using an in-plane rotated ST-cut quartz crystal substrate, which is basically within the range of | The relationship between the obtained frequency and the reference frequency at the reference temperature is obtained, the relationship between the obtained deviation and the temperature is approximated by a linear expression, and the protective film formed on the excitation electrode obtained in advance is obtained. Based on the relationship between the thickness and the slope of the linear expression, a protective film may be formed on the excitation electrode so that the approximate slope of the primary expression approaches 0.

このようなカット各を有する面内回転STカット水晶基板を用いた弾性表面波素子片であっても、上記に示す特徴的な方法により、弾性表面波素子片の周波数温度特性を改善することができる。   Even in the case of a surface acoustic wave element piece using an in-plane rotating ST cut quartz substrate having such cuts, the frequency temperature characteristics of the surface acoustic wave element piece can be improved by the characteristic method described above. it can.

また、上記のような弾性表面波素子片の周波数温度特性調整方法では、前記励振電極はアルミ、またはアルミを主体とした合金から成り、前記保護膜は陽極酸化膜とすると良い。   In the method for adjusting the frequency temperature characteristics of the surface acoustic wave element as described above, the excitation electrode is preferably made of aluminum or an alloy mainly composed of aluminum, and the protective film is preferably an anodic oxide film.

陽極酸化膜は、励振電極を電解液に浸漬させて電圧を付加するという工程を得ることによって形成されるものであり、簡易に得ることができる。また、その膜厚は付加する電圧によって調整することができるため、膜厚の多寡によって温度特性の調整を行う際に有利となる。さらに陽極酸化膜は、SiO膜等に比べて膜厚を厚くすることが容易であることより、温度特性の調整幅を広げることができる。 The anodic oxide film is formed by obtaining a step of applying a voltage by immersing the excitation electrode in an electrolytic solution, and can be easily obtained. Further, since the film thickness can be adjusted by the applied voltage, it is advantageous when adjusting the temperature characteristics depending on the thickness of the film. Furthermore, since the anodic oxide film can be easily made thicker than the SiO 2 film or the like, the adjustment range of the temperature characteristic can be widened.

さらに、前記一次式における傾きをαとし、製造される弾性表面波装置の共振周波数をfとした場合、前記陽極酸化膜を形成する陽極酸化工程において前記励振電極に印加する陽極酸化電圧Vを
によって定め、当該定められた陽極酸化電圧によって得られる膜厚の陽極酸化膜を前記励振電極の表面に付与すると良い。
Furthermore, when the inclination in the linear expression is α and the resonance frequency of the manufactured surface acoustic wave device is f, an anodic oxidation voltage V applied to the excitation electrode in the anodizing step for forming the anodized film is
And an anodic oxide film having a film thickness obtained by the anodic oxidation voltage thus determined may be applied to the surface of the excitation electrode.

このようにして励振電極の表面に形成する陽極酸化膜の膜厚を定めることにより、形成する陽極酸化膜の膜厚を、前記傾きを0に近づけるための最適値とすることができる。   By determining the film thickness of the anodic oxide film formed on the surface of the excitation electrode in this way, the film thickness of the anodic oxide film to be formed can be set to an optimum value for bringing the inclination close to zero.

また、前記近似した一次式は、−10℃〜70℃の温度範囲における測定周波数に基づくものとすると良い。このような温度範囲であれば、温度特性を一次式に近似させることができるからである。   The approximated primary expression may be based on a measurement frequency in a temperature range of −10 ° C. to 70 ° C. This is because the temperature characteristic can be approximated to a linear expression within such a temperature range.

また、上記目的を達成するための本発明に係る弾性表面波素子片は、上記いずれかに記載の周波数温度特性調整方法によって周波数温度特性の調整を行ったことを特徴とする。   The surface acoustic wave element according to the present invention for achieving the above object is characterized in that the frequency temperature characteristic is adjusted by any one of the above-described frequency temperature characteristic adjusting methods.

さらに、本発明に係る弾性表面波デバイスは、上記弾性表面波素子片を搭載したことを特徴とする。   Furthermore, the surface acoustic wave device according to the present invention is characterized in that the surface acoustic wave element piece is mounted.

以下、本発明の弾性表面波素子片の周波数温度特性調整方法、及び弾性表面波素子片、並びに弾性表面波デバイスに係る実施の形態について、図面を参照しつつ詳細に説明する。なお、本発明はその主要部を変えない限度において種々の形態を有するものとする。   Hereinafter, embodiments of the method for adjusting the frequency temperature characteristics of a surface acoustic wave element piece, the surface acoustic wave element piece, and the surface acoustic wave device according to the present invention will be described in detail with reference to the drawings. In addition, this invention shall have a various form in the limit which does not change the principal part.

本実施形態では、水晶基板のカット角を説明する上で周知とされている、(φ,θ,ψ)というオイラー角表示を基準として水晶基板のカット角の説明を行うこととする。また、本実施形態におけるSAW素子片及びSAWデバイスは、ストップバンドの上限モードを利用するものとする。弾性表面波のストップバンドにおける上限モードは、下限モードに比べて、周波数温度特性における2次温度係数の絶対値が小さく、IDT電極の厚みを増加させたときの2次温度係数の絶対値の変化も小さいという特徴を持つ。また、弾性表面波のストップバンドにおける上限モードでは、下限モードに比べ、励振電極を構成するIDTの厚みを増加させた際の発振周波数の変化量が小さいという特徴も持つ。   In the present embodiment, the cut angle of the crystal substrate will be described with reference to the Euler angle display (φ, θ, ψ), which is well known in describing the cut angle of the crystal substrate. In addition, the SAW element piece and the SAW device in the present embodiment use the upper limit mode of the stop band. The upper limit mode in the stop band of the surface acoustic wave has a smaller absolute value of the secondary temperature coefficient in the frequency temperature characteristics than the lower limit mode, and the change in the absolute value of the secondary temperature coefficient when the thickness of the IDT electrode is increased. Is also small. Further, the upper limit mode in the stop band of the surface acoustic wave also has a feature that the change amount of the oscillation frequency when the thickness of the IDT constituting the excitation electrode is increased is smaller than that in the lower limit mode.

図1に、本発明に係るSAW素子片の構成を示す。なお、図1において図1(A)はSAW素子片の構成を示す平面図であり、図1(B)は同図(A)におけるA−A断面を示す図である。   FIG. 1 shows the configuration of a SAW element piece according to the present invention. 1A is a plan view showing the configuration of the SAW element piece, and FIG. 1B is a cross-sectional view taken along the line AA in FIG. 1A.

本実施形態のSAW素子片10は、圧電基板12と、この圧電基板12の一主面に形成された励振電極とより成ることを基本とする。前記圧電基板12は、構成材料を水晶とし、そのカット角及び弾性表面波の伝搬方向を、オイラー角表示で(0°,95°≦θ≦155°,33°≦|ψ|≦46°)の範囲内で示すものを基本とし、面内回転角ψについては、後述する励振電極の構成によって定まる共振周波数fや、前記励振電極本体18に付与する保護膜20の設定等により詳細を定めるものとする。   The SAW element piece 10 of this embodiment is basically composed of a piezoelectric substrate 12 and an excitation electrode formed on one main surface of the piezoelectric substrate 12. The piezoelectric substrate 12 is made of quartz, and its cut angle and surface acoustic wave propagation direction are expressed in Euler angles (0 °, 95 ° ≦ θ ≦ 155 °, 33 ° ≦ | ψ | ≦ 46 °). The in-plane rotation angle ψ is determined in detail by the resonance frequency f determined by the configuration of the excitation electrode described later, the setting of the protective film 20 applied to the excitation electrode body 18, and the like. And

前記励振電極本体18は、種々の導電性材料によって構成することができるが、本実施形態では、アルミ(Al)又はAlを主な原料とする合金を構成材料とした場合のものについて説明することとする。   The excitation electrode body 18 can be composed of various conductive materials. In the present embodiment, a case where aluminum (Al) or an alloy mainly composed of Al is used as a constituent material will be described. And

励振電極は、一対の櫛型電極から構成されるIDT14と、前記IDT14を挟み込むようにして配置された一対の反射器16とを基本とする。前記IDT14は、弾性表面波の伝搬方向に対して直交するように設けられた複数の電極指14aを、前記弾性表面波の伝搬方向に沿って配置されたバスバー14bによって接続して構成される2つの櫛型電極を組み合わせて構成される。2つの櫛型電極の配置関係は、2つのバスバー14bから伸びる電極指14aが、互い違いに噛合うように配置するというものである。前記反射器16は、前記櫛型電極の電極指14aと平行に配置された複数の導体ストリップ16aの両端部をバスバー16bに接続することにより構成される格子状を成す電極である。   The excitation electrode is basically composed of an IDT 14 composed of a pair of comb electrodes and a pair of reflectors 16 arranged so as to sandwich the IDT 14. The IDT 14 is configured by connecting a plurality of electrode fingers 14a provided so as to be orthogonal to the propagation direction of the surface acoustic wave by bus bars 14b arranged along the propagation direction of the surface acoustic wave. Composed of two comb electrodes. The arrangement relationship between the two comb-shaped electrodes is that the electrode fingers 14a extending from the two bus bars 14b are arranged so as to alternately engage with each other. The reflector 16 is a grid-like electrode configured by connecting both ends of a plurality of conductor strips 16a arranged in parallel with the electrode fingers 14a of the comb-shaped electrode to a bus bar 16b.

前記励振電極本体18に付与する保護膜20は、陽極酸化膜やSiO膜等、種々選択することが可能であるが、本実施形態では、保護膜として、Alを陽極酸化することにより得られる陽極酸化膜を例に挙げて説明する。陽極酸化は、電界液(例えばリン酸アンモニウム系)に、励振電極本体18を形成した圧電基板12を浸漬させて、電圧をかけることにより構成される。ここで、励振電極本体18に被覆(付与)される陽極酸化膜の膜厚は、浸漬時に励振電極本体18に負荷させる電圧(陽極酸化電圧)、及び電圧を負荷する時間(陽極酸化時間)等によって定めることができる。なお、電圧が一定である場合には、一定時間を越えた後における陽極酸化膜の膜厚は一定となる。また、励振電極本体に被覆される陽極酸化膜(保護膜20)の膜厚の最大値は、陽極酸化時間が十分にあれば、陽極酸化電圧に比例して増大する。 The protective film 20 applied to the excitation electrode body 18 can be variously selected such as an anodic oxide film or SiO 2 film. In this embodiment, the protective film 20 is obtained by anodizing Al as the protective film. A description will be given by taking an anodic oxide film as an example. Anodization is configured by applying a voltage by immersing the piezoelectric substrate 12 on which the excitation electrode body 18 is formed in an electric field solution (for example, ammonium phosphate). Here, the film thickness of the anodic oxide film coated (applied) to the excitation electrode body 18 is the voltage applied to the excitation electrode body 18 during an immersion (anodization voltage), the time during which the voltage is applied (anodization time), etc. Can be determined by. When the voltage is constant, the thickness of the anodic oxide film after a certain time is constant. In addition, the maximum value of the thickness of the anodized film (protective film 20) coated on the excitation electrode body increases in proportion to the anodizing voltage if the anodizing time is sufficient.

ここで、本願出願人は、面内回転STカット水晶基板を採用したSAW素子片の励振電極に陽極酸化膜(保護膜)を付与すると、製造されるSAW装置の周波数温度特性に変化が生じることを見出した。上述したように、このような保護膜の付与による周波数温度特性の変化という現象は、通常のSTカット水晶基板(例えばカット角をオイラー角表示で(0°,113°≦θ≦135°,0°)とした水晶基板)を用いたSAW装置では殆ど確認できないものであり、従来は生じ得ないと考えられていた。   Here, when the applicant of the present invention applies an anodic oxide film (protective film) to the excitation electrode of the SAW element piece using the in-plane rotating ST-cut quartz substrate, a change occurs in the frequency temperature characteristics of the manufactured SAW device. I found. As described above, the phenomenon of the change in the frequency temperature characteristic due to the application of such a protective film is caused by a normal ST-cut quartz substrate (for example, the cut angle is displayed in Euler angle (0 °, 113 ° ≦ θ ≦ 135 °, 0 It was almost impossible to confirm with a SAW device using a quartz substrate), and it was thought that this could not occur in the past.

保護膜付与による周波数温度特性の変化の特徴は、保護膜を付与することにより温度特性を示すライン(温度特性曲線)が、測定温度の基準点を中心として反時計回りに回転するような変化を示すというものである。これは、保護膜を付与していない状態のSAW素子片と保護膜を付与した後におけるSAW素子片における周波数温度特性を逐次計測することによって得られる傾向である。よって、本実施形態におけるSAW素子片10は、保護膜20を付与しない状態において、前記温度特性曲線が右下がりの状態を示すように設計すると良い。具体的には、保護膜20を付与しない状態において温度特性が最適となる圧電基板の設計値に対し、面内回転角ψを僅かに増加させて設定するようにすれば良い。参考として、面内回転角ψの増加範囲は、1°に満たない程度で良く、この範囲であれば、保護膜20の付与により、温度特性を最適値にまで改善することができる。   The characteristic of the change in frequency temperature characteristics by applying a protective film is that the line (temperature characteristic curve) showing the temperature characteristics by applying a protective film rotates counterclockwise around the reference point of the measured temperature. It is to show. This tends to be obtained by sequentially measuring the frequency temperature characteristics of the SAW element piece without the protective film and the SAW element piece after the protective film is provided. Therefore, the SAW element piece 10 in the present embodiment is preferably designed so that the temperature characteristic curve shows a state of lowering right in a state where the protective film 20 is not provided. Specifically, the in-plane rotation angle ψ may be set to be slightly increased with respect to the design value of the piezoelectric substrate in which the temperature characteristics are optimal when the protective film 20 is not provided. For reference, the increase range of the in-plane rotation angle ψ may be less than 1 °, and within this range, the temperature characteristics can be improved to the optimum value by applying the protective film 20.

また、本願出願人は、保護膜付与による温度特性曲線の変化量が、励振電極と保護膜の膜厚の相対的な関係によって定まるということも見出した。保護膜20として陽極酸化膜を採用する場合、当該陽極酸化膜の膜厚は、陽極酸化時に負荷する電圧と、IDT14の膜厚やピッチによって定められる共振周波数に依存する。また、電圧と膜厚との関係は比例関係にあり、膜厚と共振周波数との関係も比例関係にある。また、陽極酸化膜は、励振電極本体18を酸化しつつ膜厚を増す傾向にあるため、励振電極本体18の膜厚に対する陽極酸化膜の膜厚の比率は、相対的に変化することとなる。   The present applicant has also found that the amount of change in the temperature characteristic curve due to the provision of the protective film is determined by the relative relationship between the thickness of the excitation electrode and the protective film. When an anodic oxide film is employed as the protective film 20, the thickness of the anodic oxide film depends on the voltage applied during anodization and the resonance frequency determined by the film thickness and pitch of the IDT 14. The relationship between the voltage and the film thickness is proportional, and the relationship between the film thickness and the resonance frequency is also proportional. Further, since the anodic oxide film tends to increase the thickness while oxidizing the excitation electrode body 18, the ratio of the thickness of the anodic oxide film to the thickness of the excitation electrode body 18 changes relatively. .

図2には、励振電極に保護膜を付与する前におけるSAW装置と、励振電極に保護幕を付与した後におけるSAW素子片の使用温度範囲(本実施形態では−10℃〜70℃)における温度と周波数との関係、すなわち周波数温度特性をそれぞれ一次関数で近似して示している。具体的には、保護膜付与前のSAW素子片の温度特性を示す一次関数は、
であり、保護膜付与後のSAW素子片の温度特性を示す一次関数は、
である。ここで、図2に示すSAW素子片の共振周波数(基準周波数)は、314.85MHzである。また、基準温度(基準点)を35℃付近とした場合に、数式1に示した一次関数における一次係数(傾き)を0に近似させる(数式2で示す状態に近似させる)ために必要とされる陽極酸化膜厚は、60Vの陽極酸化電圧を励振電極に印加することによって得ることができる。
FIG. 2 shows the temperature in the operating temperature range (-10 ° C. to 70 ° C. in this embodiment) of the SAW device before applying the protective film to the excitation electrode and the SAW element piece after applying the protective curtain to the excitation electrode. And frequency, that is, frequency temperature characteristics are approximated by a linear function. Specifically, the linear function indicating the temperature characteristics of the SAW element piece before the protective film is applied is
And the linear function indicating the temperature characteristics of the SAW element piece after applying the protective film is
It is. Here, the resonance frequency (reference frequency) of the SAW element piece shown in FIG. 2 is 314.85 MHz. Further, when the reference temperature (reference point) is around 35 ° C., it is necessary to approximate the linear coefficient (gradient) in the linear function shown in Equation 1 to 0 (approximate to the state shown in Equation 2). The anodic oxidation film thickness can be obtained by applying an anodic oxidation voltage of 60 V to the excitation electrode.

上記のような関係は、以下に示すような数式で示すことができる。すなわち、保護膜付与前におけるSAW素子片の温度特性の変動量に近似させた一次式際の傾き(一次係数)をα(ppm/℃)、共振周波数をf(MHz)で示した場合、前記αを0に近似させるための陽極酸化膜厚を得るために必要とされる陽極酸化電圧V(V)は、
で示すことができる。
Such a relationship can be expressed by the following mathematical formula. That is, when the slope (primary coefficient) of the linear expression approximated to the variation amount of the temperature characteristic of the SAW element piece before the protective film is applied is expressed by α (ppm / ° C.) and the resonance frequency is expressed by f (MHz), The anodic oxidation voltage V (V) required to obtain the anodic oxide film thickness for approximating α to 0 is
Can be shown.

上述したように、陽極酸化電圧と陽極酸化膜厚とは比例関係にあり、陽極酸化電圧を定めることにより、得られる陽極酸化膜の膜厚の最大値が定まる。このため、数式3によって導き出される陽極酸化電圧Vによって得られる膜厚の陽極酸化膜を、温度特性の調整を必要とするSAW素子片の励振電極へ付与することにより、温度特性の変動量を0に近似させることができる。すなわちSAW素子片の温度特性を改善することができるのである。   As described above, the anodic oxidation voltage and the anodic oxidation film thickness are in a proportional relationship, and the maximum value of the obtained anodic oxide film thickness is determined by determining the anodic oxidation voltage. For this reason, by applying an anodic oxide film having a film thickness obtained by the anodic oxidation voltage V derived from Equation 3 to the excitation electrode of the SAW element piece that requires adjustment of the temperature characteristics, the variation amount of the temperature characteristics is reduced to 0. Can be approximated. That is, the temperature characteristics of the SAW element piece can be improved.

なお、特定の陽極酸化電圧によって定まる陽極酸化膜厚は、陽極酸化時に得られる陽極酸化膜の最大膜厚であることより、特定の陽極酸化電圧によって得られる陽極酸化膜の膜厚、及び当該特定の膜厚を得るために必要とする陽極酸化時間を予め求めておくことによれば、数式3によって導き出される陽極酸化電圧以上の電圧で陽極酸化を行っても良い。この場合は、陽極酸化膜の膜厚を陽極酸化時間によって制御し、前記特定の膜厚の陽極酸化膜を得るようにすれば良い。   Note that the anodic oxide film thickness determined by the specific anodic oxidation voltage is the maximum film thickness of the anodic oxide film obtained during anodic oxidation. If the anodic oxidation time required to obtain the film thickness is obtained in advance, the anodic oxidation may be performed at a voltage equal to or higher than the anodic oxidation voltage derived from Equation 3. In this case, the thickness of the anodic oxide film may be controlled by the anodic oxidation time to obtain the anodic oxide film having the specific thickness.

上記実施形態の説明は、オイラー角表示で(0°,95°≦θ≦155°,33°≦|ψ|≦46°)の範囲で得られるカット角の面内回転STカット水晶基板に基づいたものであった。しかし、本発明を適用することができるSAW素子片はこの構成に限られるものではなく、オイラー角表示で(0°,113°≦θ≦135°,40°≦|ψ|≦49°)の範囲で得られるカット角の面内回転STカット水晶基板を用いたものであっても良い。このような場合であっても、保護膜の付与により周波数温度特性が変化し、当該周波数温度特性の変化は同様の傾向を示すことを本願出願人が見出したからである。   The description of the above embodiment is based on an in-plane rotated ST-cut quartz substrate having a cut angle obtained in the range of Euler angle display (0 °, 95 ° ≦ θ ≦ 155 °, 33 ° ≦ | ψ | ≦ 46 °). It was. However, the SAW element piece to which the present invention can be applied is not limited to this configuration, and is expressed in Euler angles (0 °, 113 ° ≦ θ ≦ 135 °, 40 ° ≦ | ψ | ≦ 49 °). An in-plane rotated ST-cut quartz substrate having a cut angle obtained in a range may be used. This is because even in such a case, the applicant of the present application has found that the frequency temperature characteristic changes due to the application of the protective film, and the change in the frequency temperature characteristic shows the same tendency.

また、上記実施形態では、保護膜として、陽極酸化膜のみを挙げているが、SiO膜等、他の絶縁保護膜であっても、周波数温度特性の変化が生じる。よって、前記SiO膜等他の保護膜を施す場合であっても、その膜厚調整によりSAW装置の温度特性を改善することができる。 In the above embodiment, as the protective film, but mentions only the anodic oxide film, SiO 2 film or the like, be other insulating protective film, the change in frequency temperature characteristics. Therefore, even when another protective film such as the SiO 2 film is applied, the temperature characteristics of the SAW device can be improved by adjusting the film thickness.

次に、本発明のSAWデバイスに係る実施の形態について、図3を参照して説明する。なお、図3に示すSAWデバイスは、SAW発振器の一例を示すものであるが、本発明に係るSAWデバイスは、SAW共振子であっても良いし、SAWフィルタであっても良い。   Next, an embodiment of the SAW device of the present invention will be described with reference to FIG. The SAW device shown in FIG. 3 is an example of a SAW oscillator, but the SAW device according to the present invention may be a SAW resonator or a SAW filter.

図3に示すSAWデバイス30は、パッケージ36と、このパッケージに搭載されたSAW素子片10、及びIC40とを基本とする。本実施形態におけるパッケージ36は、前記SAW素子片10と前記ICとをそれぞれ収容するためのパッケージベース32と当該リッド34とより構成される。前記パッケージベース32は、前記SAW素子片を収容するための凹陥部と、前記ICを収容するための凹陥部とをそれぞれ備え、前記2つの凹陥部がそれぞれの底板を共有するような、いわゆるH型構造を有するものとすることができる。また、当該パッケージベースには、SAWデバイス30を電子機器等の基板へ実装するための実装端子38が備えられている。なお、前記実装端子は、パッケージベース32に設けた図示しない内部端子と電気的に接続されており、凹陥部に収容したSAW素子片10やIC40に対して電力を供給し、電気的信号を取り出すことを可能としている。   The SAW device 30 shown in FIG. 3 is based on a package 36, a SAW element piece 10 mounted on the package, and an IC 40. The package 36 according to this embodiment includes a package base 32 and the lid 34 for housing the SAW element piece 10 and the IC, respectively. The package base 32 includes a concave portion for accommodating the SAW element piece and a concave portion for accommodating the IC, and the two concave portions share the respective bottom plates. It can have a mold structure. The package base is provided with a mounting terminal 38 for mounting the SAW device 30 on a substrate such as an electronic device. The mounting terminal is electrically connected to an internal terminal (not shown) provided on the package base 32, and supplies power to the SAW element piece 10 and the IC 40 accommodated in the recessed portion to take out an electrical signal. Making it possible.

また、前記リッド34は、前記SAW素子片10を収容した凹陥部を封止するための蓋体である。なお、前記SAW素子片10を収容する凹陥部は内部を真空とすると良く、前記ICを収容する凹陥部は内部に樹脂を充填し、これをもって封止する構成としても良い。   The lid 34 is a lid for sealing the recessed portion that accommodates the SAW element piece 10. The concave portion for accommodating the SAW element piece 10 may be evacuated, and the concave portion for accommodating the IC may be filled with resin and sealed with this.

なお、上記のような構成を有するSAWデバイス30については上述したように、本発明に係るSAWデバイスの一部であり、特徴部分であるSAW素子片10以外の構成に、適宜変更を加えたとしても、本発明の一部とみなすことができることはいうまでもない。   Note that, as described above, the SAW device 30 having the above-described configuration is a part of the SAW device according to the present invention, and the configuration other than the SAW element piece 10 that is a characteristic portion is appropriately changed. However, it goes without saying that it can be regarded as a part of the present invention.

SAW素子片の構成を示す図である。It is a figure which shows the structure of a SAW element piece. 保護膜付与前の弾性表面波装置の温度特性と、保護膜付与後の弾性表面波装置の温度特性とをそれぞれ近似する一次関数で示した図である。It is the figure which showed by the linear function which approximates the temperature characteristic of the surface acoustic wave apparatus before provision of a protective film, and the temperature characteristic of the surface acoustic wave apparatus after provision of a protective film, respectively. 本発明に係るSAWデバイスの一例を示す図である。It is a figure which shows an example of the SAW device which concerns on this invention.

符号の説明Explanation of symbols

10………SAW素子片(弾性表面波素子片)、12………圧電基板、14………IDT、16………反射器、18………励振電極本体、20………保護膜。   DESCRIPTION OF SYMBOLS 10 ... SAW element piece (surface acoustic wave element piece), 12 ......... Piezoelectric substrate, 14 ... IDT, 16 ... Reflector, 18 ... Excitation electrode body, 20 ... Protection film.

Claims (7)

カット角がオイラー角表示で(0°,95°≦θ≦155°,33°≦|ψ|≦46°)の範囲内にある事を基本とする面内回転STカット水晶基板を用いた弾性表面波素子片の周波数温度特性の調整方法であって、
前記弾性表面波素子片における温度と周波数との関係を求め、
当該求めた周波数と基準温度における基準周波数との偏差を求め、
求めた偏差と温度との関係を一次式で近似し、
予め求めた励振電極に形成した保護膜の厚さと前記一次式の傾きとの関係に基づいて、励振電極に保護膜を形成して前記近似した一次式の傾きを0に近づけることを特徴とする弾性表面波素子片の周波数温度特性調整調整方法。
Elasticity using an in-plane rotated ST-cut quartz substrate whose cut angle is in the range of Euler angle display (0 °, 95 ° ≦ θ ≦ 155 °, 33 ° ≦ | ψ | ≦ 46 °) A method for adjusting the frequency temperature characteristics of a surface acoustic wave element piece,
Finding the relationship between temperature and frequency in the surface acoustic wave element piece,
Find the deviation between the calculated frequency and the reference frequency at the reference temperature,
Approximate the relationship between the calculated deviation and temperature with a linear equation,
Based on the relationship between the thickness of the protective film formed on the excitation electrode obtained in advance and the slope of the linear expression, a protective film is formed on the excitation electrode so that the slope of the approximated primary expression approaches 0. A method for adjusting frequency-temperature characteristics of a surface acoustic wave element.
カット角がオイラー角表示で(0°,113°≦θ≦135°,40°≦|ψ|≦49°)の範囲内にある事を基本とする面内回転STカット水晶基板を用い用いた弾性表面波素子片の周波数温度特性の調整方法であって、
前記弾性表面波素子片における温度と周波数との関係を求め、
当該求めた周波数と基準温度における基準周波数との偏差を求め、
求めた偏差と温度との関係を一次式で近似し、
予め求めた励振電極に形成した保護膜の厚さと前記一次式の傾きとの関係に基づいて、励振電極に保護膜を形成して前記近似した一次式の傾きを0に近づけることを特徴とする弾性表面波素子片の周波数温度特性調整調整方法。
An in-plane rotation ST-cut quartz substrate based on Euler angle display (0 °, 113 ° ≦ θ ≦ 135 °, 40 ° ≦ | ψ | ≦ 49 °) was used. A method for adjusting the frequency-temperature characteristics of a surface acoustic wave element,
Finding the relationship between temperature and frequency in the surface acoustic wave element piece,
Find the deviation between the calculated frequency and the reference frequency at the reference temperature,
Approximate the relationship between the calculated deviation and temperature with a linear equation,
Based on the relationship between the thickness of the protective film formed on the excitation electrode obtained in advance and the slope of the linear expression, a protective film is formed on the excitation electrode so that the slope of the approximated primary expression approaches 0. A method for adjusting frequency-temperature characteristics of a surface acoustic wave element.
前記励振電極はアルミ、またはアルミを主体とした合金から成り、前記保護膜は陽極酸化膜であることを特徴とする請求項1又は請求項2に記載の弾性表面波素子片の周波数温度特性調整方法。   3. The frequency temperature characteristic adjustment of a surface acoustic wave element according to claim 1, wherein the excitation electrode is made of aluminum or an alloy mainly composed of aluminum, and the protective film is an anodic oxide film. Method. 前記一次式における傾きをαとし、
製造される弾性表面波装置の共振周波数をfとした場合、
前記陽極酸化膜を形成する陽極酸化工程において前記励振電極に印加する陽極酸化電圧Vを
によって定め、
当該定められた陽極酸化電圧によって得られる膜厚の陽極酸化膜を前記励振電極の表面に付与することを特徴とする請求項3に記載の弾性表面波素子片の周波数温度特性調整方法。
The slope in the linear expression is α,
When the resonance frequency of the manufactured surface acoustic wave device is f,
An anodic oxidation voltage V applied to the excitation electrode in the anodic oxidation process for forming the anodic oxide film is
Determined by
4. The method for adjusting the frequency temperature characteristics of a surface acoustic wave element according to claim 3, wherein an anodic oxide film having a film thickness obtained by the predetermined anodic oxidation voltage is applied to the surface of the excitation electrode.
近似した一次式は、−10℃〜70℃の温度範囲における測定周波数に基づくことを特徴とする請求項1乃至請求項4のいずれかに記載の弾性表面波素子片の周波数温度特性調整方法。   5. The method of adjusting the frequency-temperature characteristics of a surface acoustic wave element according to claim 1, wherein the approximated primary expression is based on a measurement frequency in a temperature range of −10 ° C. to 70 ° C. 6. 請求項1乃至請求項5のいずれかに記載の周波数温度特性調整方法によって周波数温度特性の調整を行ったことを特徴とする弾性表面波素子片。   A surface acoustic wave element piece, wherein the frequency temperature characteristic is adjusted by the frequency temperature characteristic adjusting method according to any one of claims 1 to 5. 請求項6に記載の弾性表面波素子片を搭載したことを特徴とする弾性表面波デバイス。   A surface acoustic wave device comprising the surface acoustic wave element according to claim 6.
JP2006123959A 2006-04-27 2006-04-27 Method for adjusting frequency-temperature characteristics of surface acoustic wave element piece, surface acoustic wave element piece, and surface acoustic wave device Active JP4968510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006123959A JP4968510B2 (en) 2006-04-27 2006-04-27 Method for adjusting frequency-temperature characteristics of surface acoustic wave element piece, surface acoustic wave element piece, and surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006123959A JP4968510B2 (en) 2006-04-27 2006-04-27 Method for adjusting frequency-temperature characteristics of surface acoustic wave element piece, surface acoustic wave element piece, and surface acoustic wave device

Publications (2)

Publication Number Publication Date
JP2007300174A true JP2007300174A (en) 2007-11-15
JP4968510B2 JP4968510B2 (en) 2012-07-04

Family

ID=38769331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006123959A Active JP4968510B2 (en) 2006-04-27 2006-04-27 Method for adjusting frequency-temperature characteristics of surface acoustic wave element piece, surface acoustic wave element piece, and surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP4968510B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101820265A (en) * 2009-02-27 2010-09-01 爱普生拓优科梦株式会社 Surface acoustic wave resonator and surface acoustic wave oscillator
WO2010098139A1 (en) * 2009-02-27 2010-09-02 エプソントヨコム株式会社 Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device
US8063534B2 (en) 2008-02-20 2011-11-22 Seiko Epson Corporation Surface acoustic wave device and surface acoustic wave oscillator
CN102386879A (en) * 2010-08-26 2012-03-21 精工爱普生株式会社 Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
CN102386880A (en) * 2010-08-26 2012-03-21 精工爱普生株式会社 Surface acoustic wave device, surface acoustic wave oscillator, and electronic apparatus
CN102403978A (en) * 2010-09-09 2012-04-04 精工爱普生株式会社 Surface acoustic wave device, electronic apparatus, and sensor apparatus
US8476984B2 (en) 2010-12-07 2013-07-02 Seiko Epson Corporation Vibration device, oscillator, and electronic apparatus
US8598766B2 (en) 2010-12-03 2013-12-03 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8692439B2 (en) 2010-08-26 2014-04-08 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device
US9048806B2 (en) 2010-09-09 2015-06-02 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
US9088263B2 (en) 2010-06-17 2015-07-21 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
CN112964384A (en) * 2021-03-16 2021-06-15 山东深思智能科技有限公司 Resonator type wireless passive temperature sensor and working method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076820A (en) * 2000-08-29 2002-03-15 Seiko Epson Corp Saw resonator chip and its manufacturing method
JP2003152487A (en) * 2001-08-29 2003-05-23 Seiko Epson Corp Surface acoustic wave device and method for adjusting temperature property thereof
JP2004080260A (en) * 2002-08-14 2004-03-11 Seiko Epson Corp Surface acoustic wave element piece, its manufacturing method, surface acoustic wave filter, and communication apparatus
JP2005057666A (en) * 2003-08-07 2005-03-03 Seiko Epson Corp Method for manufacturing surface acoustic wave chip, surface acoustic wave chip manufactured by the manufacturing method and surface acoustic wave device
JP2005065042A (en) * 2003-08-18 2005-03-10 Seiko Epson Corp Manufacturing method of saw chip, saw chip manufactured by same and saw device
JP2005086233A (en) * 2003-09-04 2005-03-31 Seiko Epson Corp Surface acoustic wave device and method of adjusting frequency temperature characteristic thereof
JP2005229566A (en) * 2004-01-15 2005-08-25 Seiko Epson Corp Surface acoustic wave device and manufacturing method thereof
JP2005348070A (en) * 2004-06-02 2005-12-15 Seiko Epson Corp Manufacturing method of surface acoustic wave element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002076820A (en) * 2000-08-29 2002-03-15 Seiko Epson Corp Saw resonator chip and its manufacturing method
JP2003152487A (en) * 2001-08-29 2003-05-23 Seiko Epson Corp Surface acoustic wave device and method for adjusting temperature property thereof
JP2004080260A (en) * 2002-08-14 2004-03-11 Seiko Epson Corp Surface acoustic wave element piece, its manufacturing method, surface acoustic wave filter, and communication apparatus
JP2005057666A (en) * 2003-08-07 2005-03-03 Seiko Epson Corp Method for manufacturing surface acoustic wave chip, surface acoustic wave chip manufactured by the manufacturing method and surface acoustic wave device
JP2005065042A (en) * 2003-08-18 2005-03-10 Seiko Epson Corp Manufacturing method of saw chip, saw chip manufactured by same and saw device
JP2005086233A (en) * 2003-09-04 2005-03-31 Seiko Epson Corp Surface acoustic wave device and method of adjusting frequency temperature characteristic thereof
JP2005229566A (en) * 2004-01-15 2005-08-25 Seiko Epson Corp Surface acoustic wave device and manufacturing method thereof
JP2005348070A (en) * 2004-06-02 2005-12-15 Seiko Epson Corp Manufacturing method of surface acoustic wave element

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8084918B2 (en) 2008-02-20 2011-12-27 Seiko Epson Corporation Surface acoustic wave device and surface acoustic wave oscillator
US8237326B2 (en) 2008-02-20 2012-08-07 Seiko Epson Corporation Surface acoustic wave device and surface acoustic wave oscillator
US8063534B2 (en) 2008-02-20 2011-11-22 Seiko Epson Corporation Surface acoustic wave device and surface acoustic wave oscillator
US8952596B2 (en) 2009-02-27 2015-02-10 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument
US9762207B2 (en) 2009-02-27 2017-09-12 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument
WO2010098139A1 (en) * 2009-02-27 2010-09-02 エプソントヨコム株式会社 Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device
US8305162B2 (en) 2009-02-27 2012-11-06 Seiko Epson Corporation Surface acoustic wave resonator and surface acoustic wave oscillator
CN101820265A (en) * 2009-02-27 2010-09-01 爱普生拓优科梦株式会社 Surface acoustic wave resonator and surface acoustic wave oscillator
US8933612B2 (en) 2009-02-27 2015-01-13 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic instrument
JP2013138495A (en) * 2009-02-27 2013-07-11 Seiko Epson Corp Surface acoustic wave resonator, surface acoustic wave oscillator and electronic apparatus
CN103219966A (en) * 2009-02-27 2013-07-24 精工爱普生株式会社 Surface acoustic wave resonator and surface acoustic wave oscillator
US8502625B2 (en) 2009-02-27 2013-08-06 Seiko Epson Corporation Surface acoustic wave resonator and surface acoustic wave oscillator
JP5257799B2 (en) * 2009-02-27 2013-08-07 セイコーエプソン株式会社 Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device
US9537464B2 (en) 2010-06-17 2017-01-03 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US9088263B2 (en) 2010-06-17 2015-07-21 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8928432B2 (en) 2010-08-26 2015-01-06 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8692439B2 (en) 2010-08-26 2014-04-08 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device
US8471434B2 (en) 2010-08-26 2013-06-25 Seiko Epson Corporation Surface acoustic wave device, surface acoustic wave oscillator, and electronic apparatus
CN102386880A (en) * 2010-08-26 2012-03-21 精工爱普生株式会社 Surface acoustic wave device, surface acoustic wave oscillator, and electronic apparatus
CN102386879A (en) * 2010-08-26 2012-03-21 精工爱普生株式会社 Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US9048806B2 (en) 2010-09-09 2015-06-02 Seiko Epson Corporation Surface acoustic wave device, electronic apparatus, and sensor apparatus
CN102403978A (en) * 2010-09-09 2012-04-04 精工爱普生株式会社 Surface acoustic wave device, electronic apparatus, and sensor apparatus
US8791621B2 (en) 2010-12-03 2014-07-29 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8598766B2 (en) 2010-12-03 2013-12-03 Seiko Epson Corporation Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic apparatus
US8476984B2 (en) 2010-12-07 2013-07-02 Seiko Epson Corporation Vibration device, oscillator, and electronic apparatus
CN112964384A (en) * 2021-03-16 2021-06-15 山东深思智能科技有限公司 Resonator type wireless passive temperature sensor and working method
CN112964384B (en) * 2021-03-16 2022-08-30 山东深思智能科技有限公司 Resonator type wireless passive temperature sensor and working method

Also Published As

Publication number Publication date
JP4968510B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP4968510B2 (en) Method for adjusting frequency-temperature characteristics of surface acoustic wave element piece, surface acoustic wave element piece, and surface acoustic wave device
JP5141856B2 (en) Method for manufacturing surface acoustic wave device and surface acoustic wave device
JP4591800B2 (en) Surface acoustic wave device and surface acoustic wave oscillator
EP3016282B1 (en) Elastic wave device
JPWO2020100949A1 (en) Elastic wave device, duplexer and communication device
US8907548B2 (en) Resonator element having a mass portion
JP2007300287A (en) Surface acoustic wave element, surface acoustic wave device, and electronic apparatus
JP5648908B2 (en) Vibration device, oscillator, and electronic device
JP4569447B2 (en) Surface acoustic wave element and surface acoustic wave device
US10873315B2 (en) Piezoelectric vibrating piece and piezoelectric device
JP4858730B2 (en) Surface acoustic wave device and surface acoustic wave oscillator
JP2010233203A (en) Surface acoustic wave resonator and surface acoustic wave oscillator
US8692439B2 (en) Surface acoustic wave resonator, surface acoustic wave oscillator, and electronic device
JP3885785B2 (en) Surface acoustic wave device, manufacturing method thereof, and electronic apparatus
JPWO2008114715A1 (en) Lamb wave type elastic wave device
JP2004289285A (en) Piezoelectric vibration chip, piezoelectric vibrator, and piezoelectric device
JP4465464B2 (en) Lamb wave type elastic wave device
CN202261188U (en) Surface acoustic wave device, surface acoustic wave oscillator and electric device
JP5943160B2 (en) SC-cut quartz substrate, vibration element, electronic device, oscillator, and electronic equipment
JP5887968B2 (en) SC-cut quartz substrate, vibration element, electronic device, oscillator, and electronic equipment
US8212458B2 (en) Flexural-mode tuning-fork type quartz crystal resonator
JP5737490B2 (en) Transversal surface acoustic wave device, surface acoustic wave oscillator and electronic equipment
RU2246791C1 (en) Piezoelectric resonator
JPH04348606A (en) Torsional crystal vibrator
CN114079436A (en) Elastic wave element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090420

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110729

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120308

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120321

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4968510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350