JP2005085851A - Method for manufacturing nitride compound semiconductor light emitting device - Google Patents

Method for manufacturing nitride compound semiconductor light emitting device Download PDF

Info

Publication number
JP2005085851A
JP2005085851A JP2003313761A JP2003313761A JP2005085851A JP 2005085851 A JP2005085851 A JP 2005085851A JP 2003313761 A JP2003313761 A JP 2003313761A JP 2003313761 A JP2003313761 A JP 2003313761A JP 2005085851 A JP2005085851 A JP 2005085851A
Authority
JP
Japan
Prior art keywords
nitride
compound semiconductor
substrate
emitting device
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003313761A
Other languages
Japanese (ja)
Inventor
Kazuyuki Iizuka
和幸 飯塚
Tsuneaki Fujikura
序章 藤倉
Yuichi Oshima
祐一 大島
Masatomo Shibata
真佐知 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003313761A priority Critical patent/JP2005085851A/en
Publication of JP2005085851A publication Critical patent/JP2005085851A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a nitride compound semiconductor light emitting device whose electrode formation process is easy and that has high heat dissipation and high external quantum efficiency. <P>SOLUTION: An n-GaN layer 20 and a Ti film 30 are formed in order on a sapphire substrate 10, and they are heated to change the Ti film 30 into a mesh and to form cavities in the n-GaN layer 20. Then a light emitting device structure 40 made of nitride semiconductor is formed on the meshed Ti film 30, and a CuW substrate 50 is adhered to the surface of the light emitting device structure 40, and then the sapphire substrate 10 and the n-GaN layer 20 are peeled off from the light emitting device structure 40. An upper electrode 60 is provided on the peeling surface, and a bottom electrode 70 is provided on the bottom surface of the CuW substrate 50, resulting in a nitride compound semiconductor light emitting device. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、半導体発光素子の製造方法に関する。さらには、窒化物系化合物半導体からなる発光素子の製造工程において、第一の基板およびその上の第一の窒化物系化合物半導体層を発光素子構造から剥離することにより、電極形成プロセスが容易で、放熱性が高く、発光出力が高い窒化物系化合物半導体発光素子の製造方法に関する。   The present invention relates to a method for manufacturing a semiconductor light emitting device. Furthermore, in the manufacturing process of a light emitting device made of a nitride compound semiconductor, the electrode forming process is facilitated by peeling the first substrate and the first nitride compound semiconductor layer thereon from the light emitting device structure. The present invention relates to a method for manufacturing a nitride-based compound semiconductor light-emitting device having high heat dissipation and high light emission output.

半導体エピタキシャル成長において最も簡単な方法は、成長する半導体と同一材料からなる基板上にエピタキシャル成長させることである。しかしながら、窒化物系化合物半導体では単結晶基板を得ることが困難であったり、コストの面で産業的に用いられない等の理由により、サファイア、炭化珪素等の異種材料基板上へ成長せざるを得ない状況が続いている(特許文献1)。このため、基板と窒化物系化合物半導体層との格子定数差や熱膨張係数差に起因して、基板が反ってしまう等の問題があった。
特開平06−291367号公報
The simplest method in semiconductor epitaxial growth is to perform epitaxial growth on a substrate made of the same material as the semiconductor to be grown. However, it is difficult to obtain a single crystal substrate with a nitride-based compound semiconductor, or it must be grown on a dissimilar material substrate such as sapphire or silicon carbide because it is not industrially used in terms of cost. The situation which cannot be obtained continues (patent document 1). For this reason, there has been a problem that the substrate is warped due to a difference in lattice constant and a difference in thermal expansion coefficient between the substrate and the nitride-based compound semiconductor layer.
Japanese Patent Laid-Open No. 06-291367

特許文献1のように、サファイア基板上に窒化物系化合物半導体をエピタキシャル成長させたウエハーから作製した発光素子においては、当該サファイア基板が絶縁性の基板であるため、n側電極、p側電極のいずれもエピタキシャル成長面側に形成する必要がある。この両電極ともエピタキシャル成長面側に形成するので、発光素子作製のために多くのプロセス工程が必要となる。   As in Patent Document 1, in a light emitting device manufactured from a wafer in which a nitride compound semiconductor is epitaxially grown on a sapphire substrate, the sapphire substrate is an insulating substrate. Must be formed on the epitaxial growth surface side. Since both the electrodes are formed on the epitaxial growth surface side, many process steps are required for manufacturing the light emitting device.

そして、作製された発光素子において、電極から注入された電流を素子の横方向に流さざるを得ないため、抵抗値が大きくなってしまう。   And in the manufactured light emitting element, since the electric current injected from the electrode has to flow in the lateral direction of the element, the resistance value becomes large.

さらに、サファイア基板の熱伝導率が低いため、発光素子の放熱性も低く、結局、発光素子にサファイア基板が設けられていること自体が、当該発光素子の発光特性および寿命を低下させる要因となっていた。   Furthermore, since the thermal conductivity of the sapphire substrate is low, the heat dissipation of the light emitting element is also low, and the fact that the light emitting element is provided with the sapphire substrate itself is a factor that decreases the light emitting characteristics and lifetime of the light emitting element. It was.

さらに加えて、サファイア基板上にAlGaN層をエピタキシャル成長させた場合の結晶欠陥は、同基板にGaNを成長させた場合より多い。そこで窒化物系化合物半導体発光素子の製造工程においては、サファイア基板上に、まず高品質のGaN層をエピタキシャル成長させ、その上にAlGaN層を含む発光素子構造を成長させる。ここで、化合物半導体発光素子の発光波長が380nm程度以下となると、サファイア基板上のGaN層での光の吸収が増加し、外部量子効率が大きく低下するという課題があった。   In addition, there are more crystal defects when an AlGaN layer is epitaxially grown on a sapphire substrate than when GaN is grown on the same substrate. Therefore, in the manufacturing process of a nitride-based compound semiconductor light emitting device, a high quality GaN layer is first epitaxially grown on a sapphire substrate, and a light emitting device structure including an AlGaN layer is grown thereon. Here, when the emission wavelength of the compound semiconductor light emitting device is about 380 nm or less, there is a problem that the absorption of light in the GaN layer on the sapphire substrate increases, and the external quantum efficiency is greatly reduced.

そこで、本発明が解決しようとする課題は、容易な電極形成プロセス、高い放熱性、高い外部量子効率を有し発光出力の高い窒化物系化合物半導体発光素子を得ることの出来る製造方法を提供することである。   Therefore, the problem to be solved by the present invention is to provide a manufacturing method capable of obtaining a nitride compound semiconductor light emitting device having an easy electrode formation process, high heat dissipation, high external quantum efficiency, and high light emission output. That is.

上述の課題を解決するための第1の手段は、窒化物系化合物半導体発光素子の製造方法であって、
(a)第一の基板上に、第一の窒化物系化合物半導体層を積層させる工程と、
(b)前記第一の窒化物系化合物半導体層上に、金属膜を形成する工程と、
(c)前記金属膜を表面に形成した第一の窒化物系化合物半導体層を熱処理することによって、前記金属膜を網目状とし、前記窒化物系化合物半導体層中に空隙を形成する工程と、
(d)前記網目状となった金属膜上に、第二の窒化物系化合物半導体層を含む発光素子構造を形成する工程と、
(e)前記発光素子構造上に、第二の基板を貼付する工程と、
(f)前記第一の基板と第一の窒化物系化合物半導体からなる層を、前記発光素子構造から剥離する工程と、
を備えることを特徴とした窒化物系化合物半導体発光素子の製造方法である。
A first means for solving the above-described problem is a method for manufacturing a nitride-based compound semiconductor light-emitting element,
(A) laminating a first nitride-based compound semiconductor layer on a first substrate;
(B) forming a metal film on the first nitride-based compound semiconductor layer;
(C) forming a void in the nitride compound semiconductor layer by heat-treating the first nitride compound semiconductor layer having the metal film formed on a surface thereof to form a network; and
(D) forming a light emitting element structure including a second nitride-based compound semiconductor layer on the network-like metal film;
(E) attaching a second substrate on the light emitting element structure;
(F) peeling off the layer made of the first substrate and the first nitride-based compound semiconductor from the light-emitting element structure;
It is a manufacturing method of the nitride type compound semiconductor light-emitting device characterized by including this.

第2の手段は、第1の手段に記載の窒化物系化合物半導体発光素子の製造方法であって、
前記第一の窒化物系化合物半導体層の厚さを1000nm以下とすることを特徴とする窒化物系化合物半導体発光素子の製造方法である。
A second means is a method for manufacturing the nitride-based compound semiconductor light-emitting element according to the first means,
A thickness of the first nitride compound semiconductor layer is set to 1000 nm or less.

第3の手段は、第1または第2の手段に記載の窒化物系化合物半導体発光素子の製造方法であって、
前記第二の基板として、その熱伝導率が、前記第一の基板の熱伝導率より大きいものを用いることを特徴とする窒化物系化合物半導体発光素子の製造方法である。
A third means is a method for manufacturing the nitride-based compound semiconductor light-emitting element according to the first or second means,
A method for producing a nitride-based compound semiconductor light emitting device, wherein the second substrate has a thermal conductivity higher than that of the first substrate.

第4の手段は、第1から第3の手段のいずれかに記載の窒化物系化合物半導体発光素子の製造方法であって、
前記工程(f)における剥離方法が、エッチング法であることを特徴とする窒化物系化合物半導体発光素子の製造方法である。
A fourth means is a method for producing a nitride-based compound semiconductor light-emitting element according to any one of the first to third means,
The method for producing a nitride-based compound semiconductor light-emitting element is characterized in that the peeling method in the step (f) is an etching method.

第5の手段は、第1から第4の手段のいずれかに記載の窒化物系化合物半導体発光素子の製造方法であって、
前記工程(e)における前記第二の基板の貼付において、前記第二の基板が貼付される前記発光素子構造表面が、p型層であることを特徴とする窒化物系化合物半導体発光素子の製造方法である。
A fifth means is a method for producing a nitride-based compound semiconductor light-emitting element according to any one of the first to fourth means,
In the step of attaching the second substrate in the step (e), the surface of the light-emitting element structure to which the second substrate is attached is a p-type layer. Is the method.

以上詳述したように、本発明は、半導体発光素子の製造方法であって、
(a)第一の基板上に、第一の窒化物系化合物半導体層を積層させる工程と、
(b)前記第一の窒化物系化合物半導体層上に、金属膜を形成する工程と、
(c)前記金属膜を表面に形成した第一の窒化物系化合物半導体層を熱処理することによって、前記金属膜を網目状とし、前記窒化物系化合物半導体層中に空隙を形成する工程と、
(d)前記網目状となった金属膜上に、第二の窒化物系化合物半導体層を含む発光素子構造を形成する工程と、
(e)前記発光素子構造上に、第二の基板を貼付する工程と、
(f)前記第一の基板と第一の窒化物系化合物半導体からなる層を、前記発光素子構造から剥離する工程と、
を備える窒化物系化合物半導体発光素子の製造方法であるが、当該製造法によれば、電極製造のプロセス工程が容易になると共に、放熱性に優れ、発光出力の高い窒化物系LEDを製造することかできる。
As described above in detail, the present invention is a method for manufacturing a semiconductor light emitting device,
(A) laminating a first nitride-based compound semiconductor layer on a first substrate;
(B) forming a metal film on the first nitride-based compound semiconductor layer;
(C) forming a void in the nitride compound semiconductor layer by heat-treating the first nitride compound semiconductor layer having the metal film formed on a surface thereof to form a network; and
(D) forming a light emitting element structure including a second nitride-based compound semiconductor layer on the network-like metal film;
(E) attaching a second substrate on the light emitting element structure;
(F) peeling off the layer made of the first substrate and the first nitride-based compound semiconductor from the light-emitting element structure;
A nitride-based compound semiconductor light-emitting device comprising: a nitride-based LED that facilitates the electrode manufacturing process, has excellent heat dissipation, and has high light output. I can do it.

以下、実施例に基づき図面を参照しながら、本発明に係る窒化物系化合物半導体発光素子(以下、窒化物系LEDと記載する。)の製造方法における実施の形態について説明する。   Embodiments of a method for manufacturing a nitride-based compound semiconductor light-emitting element (hereinafter referred to as a nitride-based LED) according to the present invention will be described below with reference to the drawings based on examples.

図1は、第1の手段にて説明した窒化物系LEDの製造方法における(a)工程〜(f)工程のウエハーの模式的な断面図であり、図2は、第1の手段にて説明した(e)工程におけるウエハーと、当該ウエハーより作製された窒化物系LEDのより詳細な断面図であり、図3は、本実施例に係る窒化物系LEDの第2実施例の断面図であり、図4は、比較例に係る窒化物系LEDの断面図である。   FIG. 1 is a schematic cross-sectional view of a wafer in steps (a) to (f) in the method for manufacturing a nitride LED described in the first means, and FIG. FIG. 3 is a more detailed cross-sectional view of the wafer and the nitride-based LED manufactured from the wafer in the step (e) described, and FIG. 3 is a cross-sectional view of the second embodiment of the nitride-based LED according to the present embodiment. FIG. 4 is a cross-sectional view of a nitride LED according to a comparative example.

本発明に係る窒化物系LEDの製造は、以下のように行われる。   The manufacture of the nitride LED according to the present invention is performed as follows.

まず、図1(a)に示すように、第一の基板10上に第一の窒化物系化合物半導体層(以下、第一の窒化物半導体層と記載する。)20をエピタキシャル成長させる。ここで、第一の基板10としてサファイア基板が好ましいが、これに限られず、窒化物半導体、炭化珪素、珪素、あるいは酸化物材料等からなる単結晶基板等を用いることもできる。また、第一の窒化物半導体層20としては、例えばGaNが好ましい。尚、好ましい膜厚については、後述する。   First, as shown in FIG. 1A, a first nitride-based compound semiconductor layer (hereinafter referred to as a first nitride semiconductor layer) 20 is epitaxially grown on a first substrate 10. Here, the first substrate 10 is preferably a sapphire substrate, but is not limited thereto, and a single crystal substrate made of a nitride semiconductor, silicon carbide, silicon, an oxide material, or the like can also be used. The first nitride semiconductor layer 20 is preferably GaN, for example. A preferable film thickness will be described later.

次に、図1(b)に示すように、第一の窒化物半導体層20上に金属膜30を形成する。ここで、金属膜30としては、Ti膜が好適に使用できる。   Next, as shown in FIG. 1B, a metal film 30 is formed on the first nitride semiconductor layer 20. Here, as the metal film 30, a Ti film can be preferably used.

次に、図1(c)に示すように、第一の基板10、第一の窒化物半導体層20と金属膜30からなる層を熱処理する。すると、まず金属膜30が網目状となり、その網目状の開口部を起点として第一の窒化物半導体層20中に空隙ができる。   Next, as shown in FIG. 1C, the first substrate 10, the first nitride semiconductor layer 20, and the metal film 30 are heat-treated. Then, first, the metal film 30 has a mesh shape, and voids are formed in the first nitride semiconductor layer 20 starting from the mesh-shaped opening.

尚、本実施の形態において、当該熱処理は1100℃の水素80%、アンモニア20%雰囲気で30分間の処理をもって行った。   In this embodiment mode, the heat treatment was performed in an atmosphere of 80% hydrogen and 20% ammonia at 1100 ° C. for 30 minutes.

次に図1(d)に示すように、網目状の金属膜30上へ、第二の窒化物系化合物半導体層(以下、第二の窒化物半導体層と記載する。)を含む発光素子構造40を形成する。   Next, as shown in FIG. 1 (d), a light emitting device structure including a second nitride-based compound semiconductor layer (hereinafter referred to as a second nitride semiconductor layer) on a network-like metal film 30. 40 is formed.

次に、図1(e)に示すように、発光素子構造40の上に第二の基板50を貼付する。ここで、第二の基板50として、第一の基板10より熱伝導率の大きなものを用いることが好ましい。この部分に熱伝導率の大きな基板を用いることで本発明に係る窒化物系LEDの放熱性を高め、発光出力を上げることができる。第二の基板50としてはCuW(銅タングステン)が好ましいが、これに限られず、AlN(窒化アルミニウム)、CuMo(銅モリブデン)、Cu(銅)等を用いることができる。   Next, as shown in FIG. 1E, a second substrate 50 is attached on the light emitting element structure 40. Here, it is preferable to use the second substrate 50 having a higher thermal conductivity than the first substrate 10. By using a substrate having a high thermal conductivity for this portion, the heat dissipation of the nitride LED according to the present invention can be enhanced and the light emission output can be increased. The second substrate 50 is preferably CuW (copper tungsten), but is not limited thereto, and AlN (aluminum nitride), CuMo (copper molybdenum), Cu (copper), or the like can be used.

次に、図1(f)に示すように、発光素子構造40と第二の基板50とから、第一の基板10と第一の窒化物半導体層20とを剥離する。   Next, as shown in FIG. 1F, the first substrate 10 and the first nitride semiconductor layer 20 are peeled from the light emitting element structure 40 and the second substrate 50.

この剥離工程において、工程(c)にて第一の窒化物半導体層20に付与された空隙の存在割合である空隙率の影響が大きいことが判明した。そして、当該空隙率は、第一の窒化物半導体層20の膜厚によって、ほぼ定まることが見出された。即ち、当該膜厚が薄い程、第一の窒化物半導体層20の空隙率が高くなる。そして当該空隙率が高くなる程、剥離の際の歩留りが向上する。   In this peeling step, it was found that the influence of the void ratio, which is the ratio of the voids provided to the first nitride semiconductor layer 20 in the step (c), is large. It was found that the porosity is substantially determined by the film thickness of the first nitride semiconductor layer 20. That is, the thinner the film thickness, the higher the porosity of the first nitride semiconductor layer 20. And the yield at the time of peeling improves, so that the said porosity is high.

さらに、剥離方法には、機械的に剥離する方法と、エッチングにより剥離する方法とがあるが、剥離工程の製造歩留りの観点からはエッチングにより剥離する方が好ましいことが判明した。   Further, the peeling method includes a mechanical peeling method and a peeling method by etching, but it has been found that peeling by etching is preferable from the viewpoint of production yield in the peeling process.

この、第一の窒化物半導体層20の膜厚と、機械的剥離およびエッチング剥離と、歩留りとの関係を図7に一覧表として示す。   The relationship between the film thickness of the first nitride semiconductor layer 20, mechanical peeling and etching peeling, and the yield is shown as a list in FIG.

尚、本実施の形態において、当該エッチング剥離は、フッ酸による30分間のエッチングをもって行った。   In this embodiment mode, the etching separation is performed by etching with hydrofluoric acid for 30 minutes.

図7の結果より、第一の窒化物半導体層20の膜厚が1000nm以下であれば、エッチング剥離によって満足すべき歩留りが得られること、第一の窒化物半導体層20の膜厚が薄い程、機械的剥離およびエッチング剥離において歩留りが向上すること、さらに第一の窒化物半導体層20の膜厚が400nm以下であれば、いずれの剥離方法によっても100%の歩留りが得られることも判明した。   From the result of FIG. 7, when the film thickness of the first nitride semiconductor layer 20 is 1000 nm or less, a satisfactory yield can be obtained by etching peeling, and the thinner the film thickness of the first nitride semiconductor layer 20 is. It has also been found that the yield is improved in mechanical peeling and etching peeling, and that if the film thickness of the first nitride semiconductor layer 20 is 400 nm or less, 100% yield can be obtained by any peeling method. .

(実施例1)
ここで、図2(a)(b)を参照しながら実施例1について説明する。
(Example 1)
Here, Example 1 will be described with reference to FIGS.

図2(a)は基板上に形成されたウエハーの模式的な断面図であり、(b)は当該ウエハーより作製された窒化物系LEDの模式的な断面図である。   FIG. 2A is a schematic cross-sectional view of a wafer formed on a substrate, and FIG. 2B is a schematic cross-sectional view of a nitride LED manufactured from the wafer.

図2(a)において、符号10は第一の基板であるサファイア基板、符号20は第一の窒化物半導体層であるn−GaN層、図2(a)(b)において、符号30は金属膜であるTi膜、符号41はn−A1GaN層、符号42はGaN/A1GaN多重量子井戸層、符号43はp−AlGaN層、符号50は第二の基板であるCuW基板、図2(b)において、符号60は上部電極、符号70は底面電極を示している。尚、n−A1GaN層41、GaN/A1GaN多重量子井戸層42、p−AlGaN層43は、第二の窒化物半導体層となり発光素子構造40を構成している。   2A, reference numeral 10 denotes a sapphire substrate as a first substrate, reference numeral 20 denotes an n-GaN layer as a first nitride semiconductor layer, and in FIGS. 2A and 2B, reference numeral 30 denotes a metal. Ti film as a film, reference numeral 41 is an n-A1GaN layer, reference numeral 42 is a GaN / A1GaN multiple quantum well layer, reference numeral 43 is a p-AlGaN layer, reference numeral 50 is a CuW substrate as a second substrate, FIG. Reference numeral 60 denotes an upper electrode, and reference numeral 70 denotes a bottom electrode. Note that the n-A1GaN layer 41, the GaN / A1GaN multiple quantum well layer 42, and the p-AlGaN layer 43 serve as the second nitride semiconductor layer and constitute the light emitting element structure 40.

実施例1に係る窒化物系LEDの作製について説明する。   The production of the nitride LED according to Example 1 will be described.

まず、サファイア基板10上へn−GaN層20を500nm成長させ、次にTi膜30を30nm形成した後、水素80%アンモニア20%の1100℃雰囲気で30分間熱処理を行い、Ti膜を網目状としn−GaN層に空隙を発生させて下地基板とした。この下地基板上にn−A1GaN層41(厚さ3μm)、GaN/A1GaN多重量子井戸層42(GaN厚さ2nm,AlGaN厚さ4nm)、p−AlGaN層43(厚さ0.5μm)を順次形成し、p−AlGaN層43上にCuW基板50を貼付した。   First, an n-GaN layer 20 is grown to 500 nm on the sapphire substrate 10, and then a Ti film 30 is formed to 30 nm. Then, heat treatment is performed in an atmosphere of 1100 ° C. of 80% hydrogen and 20% ammonia for 30 minutes to form a Ti film in a mesh shape A gap was generated in the n-GaN layer to form a base substrate. An n-A1GaN layer 41 (thickness 3 μm), a GaN / A1GaN multiple quantum well layer 42 (GaN thickness 2 nm, AlGaN thickness 4 nm), and p-AlGaN layer 43 (thickness 0.5 μm) are sequentially formed on the base substrate. Then, a CuW substrate 50 was stuck on the p-AlGaN layer 43.

尚、このとき、n−A1GaN層41の組成をn−AlXGa1-XN(X=0.2)、p−AlGaN層43の組成をp−AlXGa1-XN(X=0.2)とし、貼付は、高温で熱処理することによる融着で行った。 At this time, the composition of the n-A1GaN layer 41 n-Al X Ga 1- X N (X = 0.2), the composition of the p-AlGaN layer 43 p-Al X Ga 1- X N (X = 0.2), and the pasting was performed by fusion by heat treatment at a high temperature.

その後、機械的に下地基板を剥離し、n−A1GaN層41の表面に上部電極60を、CuW基板50の底面に底面電極70を設け、図2(b)に示す窒化物系LEDを作製した。当該窒化物系LEDに20mA通電したところ、発光波長354nmで、発光出力は3.2mWであった。   Thereafter, the base substrate was mechanically peeled off, and the upper electrode 60 was provided on the surface of the n-A1 GaN layer 41, and the bottom electrode 70 was provided on the bottom surface of the CuW substrate 50, thereby producing the nitride LED shown in FIG. . When a current of 20 mA was passed through the nitride LED, the emission wavelength was 354 nm and the emission output was 3.2 mW.

作製された実施例1に係る窒化物系LEDの発光特性を図5に示す。   The light emission characteristics of the manufactured nitride LED according to Example 1 are shown in FIG.

図5は、横軸に注入電流値(mA)をとり、縦軸に発光出力(mW)をとったグラフである。   FIG. 5 is a graph in which the horizontal axis represents the injection current value (mA) and the vertical axis represents the light emission output (mW).

(比較例)
ここで、図4を参照しながら、従来の技術に係る比較例について説明する。
(Comparative example)
Here, the comparative example which concerns on a prior art is demonstrated, referring FIG.

図4は、従来の技術に係る窒化物系LEDの模式的な断面図である。   FIG. 4 is a schematic cross-sectional view of a nitride-based LED according to the prior art.

図4において、各符号は上述した図2(a)(b)と同様であるが、Ti膜30、CuW層50、底面電極70を有せず、代わりに対電極80を有している。   In FIG. 4, each symbol is the same as in FIGS. 2A and 2B described above, but does not have the Ti film 30, the CuW layer 50, and the bottom electrode 70, but has a counter electrode 80 instead.

従来の技術に係る窒化物系LEDの作製について説明する。   The production of a nitride LED according to the prior art will be described.

まず、サファイア基板10上へn−GaN層20を500nm成長させ、次にn−A1GaN層41(厚さ3μm)、GaN/A1GaN多重量子井戸層42(GaN厚さ2nm,AlGaN厚さ4nm)、p−AlGaN層43(厚さ0.5μm)を順次形成してウエハーを作製した。尚、n−A1GaN層41、およびp−AlGaN層43の組成は、実施例1と同様のものとした。   First, the n-GaN layer 20 is grown on the sapphire substrate 10 by 500 nm, then the n-A1 GaN layer 41 (thickness 3 μm), the GaN / A1GaN multiple quantum well layer 42 (GaN thickness 2 nm, AlGaN thickness 4 nm), A p-AlGaN layer 43 (thickness 0.5 μm) was sequentially formed to produce a wafer. The compositions of the n-A1 GaN layer 41 and the p-AlGaN layer 43 were the same as those in Example 1.

作製されたウエハーの表面をRIE(Reactive Ion Etching)により部分的に除去し、n−GaN層20の一部を露出させて、ここに対電極80を設け、図4に示す従来の技術に係る窒化物系LEDを作製した。当該窒化物系LEDに20mA通電したところ、発光波長354nmで、発光出力は0.05mWであった。   The surface of the fabricated wafer is partially removed by RIE (Reactive Ion Etching), a part of the n-GaN layer 20 is exposed, and a counter electrode 80 is provided here, and the conventional technique shown in FIG. A nitride-based LED was produced. When a current of 20 mA was passed through the nitride LED, the emission wavelength was 354 nm and the emission output was 0.05 mW.

作製された窒化物系LEDの発光特性を図6に示す。   The light emission characteristics of the fabricated nitride LED are shown in FIG.

図6は、図5と同様に、横軸に注入電流値(mA)をとり、縦軸に発光出力(mW)をとったグラフである。   FIG. 6 is a graph with the injection current value (mA) on the horizontal axis and the light emission output (mW) on the vertical axis, as in FIG.

(評価1)
実施例1と比較例とを較べてみると、各窒化物系LEDに20mA通電したところ、上述したように、発光波長354nmで、実施例1の発光出力が3.2mWであったのに対し、比較例は0.05mWであった。
(Evaluation 1)
Comparing Example 1 and the comparative example, when each of the nitride LEDs was energized with 20 mA, as described above, the emission output of Example 1 was 3.2 mW at the emission wavelength of 354 nm. The comparative example was 0.05 mW.

これは、発光波長が380nm以下となると、発光がGaN層で吸収され始めるが、実施例1に係る窒化物系LEDでは、サファイア基板とGaN層とを共に窒化物系LEDから剥離している。この剥離のために光の吸収が小さくなり、外部量子効率が向上し発光出力が上昇したと考えられる。   When the emission wavelength is 380 nm or less, the light emission begins to be absorbed by the GaN layer. In the nitride LED according to Example 1, both the sapphire substrate and the GaN layer are separated from the nitride LED. It is considered that the light absorption is reduced due to this separation, the external quantum efficiency is improved, and the light emission output is increased.

さらに、実施例1に係る窒化物系LEDでは、絶縁性のサファイア基板を剥離し、導電性のCuW基板を用いたことにより、電極形成プロセスにおいて、RIE等の方法により窒化物系LEDエピタキシャルウエハー表面をエッチングする工数を省くことができた。   Furthermore, in the nitride-based LED according to Example 1, the insulating sapphire substrate was peeled off and the conductive CuW substrate was used, so that the surface of the nitride-based LED epitaxial wafer was formed by a method such as RIE in the electrode formation process. The man-hour for etching was saved.

また、図5と図6との比較より明らかなように、実施例1に係る窒化物系LEDは注入電流値の増加に伴い発光出力が一次的に増加し高い光出力が得られた。これに対し、従来の技術に係る窒化物系LEDは注入電流値の増加に伴い発光出力が一次的に増加せずに飽和する傾向がみられ、発光出力自体も上述した本発明に係る窒化物系LEDと比較して、1/60以下程度に留まった。これは、本発明に係る窒化物系LEDでは熱伝導率が低いサファイア基板が剥離され、当該サファイア基板より熱伝導率の高いCuW基板が貼付されているために放熱性が向上し、注入電流値が増加しても発光出力が飽和し難くなったためであると考えられる。   Further, as is clear from the comparison between FIG. 5 and FIG. 6, the light emission output of the nitride LED according to Example 1 increased temporarily as the injection current value increased, and a high light output was obtained. On the other hand, in the nitride-based LED according to the prior art, the light emission output tends to saturate without increasing temporarily as the injection current value increases, and the light emission output itself is also the nitride according to the present invention described above. Compared with system LED, it remained at about 1/60 or less. This is because, in the nitride LED according to the present invention, the sapphire substrate having a low thermal conductivity is peeled off, and the CuW substrate having a higher thermal conductivity than the sapphire substrate is attached, so that the heat dissipation is improved and the injection current value is increased. This is considered to be because the light emission output is less likely to be saturated even if the increase is increased.

(実施例2)
ここで、図3を参照しながら実施例2について説明する。
(Example 2)
Here, Example 2 will be described with reference to FIG.

図3は、実施例2に係る窒化物系LEDの模式的な断面図である。   FIG. 3 is a schematic cross-sectional view of the nitride LED according to the second embodiment.

図3において、各符号は上述した図2(a)(b)と同様であるが、CuW基板50の上に順次、n−A1GaN層41、GaN/A1GaN多重量子井戸層42、p−AlGaN層43が設けられ、第二の窒化物半導体層となり発光素子構造40を構成している。そして、p−AlGaN層43上には上部電極60が、CuW基板50の底面には底面電極70が設けられている。   In FIG. 3, each symbol is the same as that in FIGS. 2A and 2B described above, but an n-A1GaN layer 41, a GaN / A1GaN multiple quantum well layer 42, and a p-AlGaN layer are sequentially formed on the CuW substrate 50. 43 is provided to form the second nitride semiconductor layer and constitute the light emitting element structure 40. An upper electrode 60 is provided on the p-AlGaN layer 43, and a bottom electrode 70 is provided on the bottom surface of the CuW substrate 50.

実施例2に係る窒化物系LEDの作製について説明する。   The production of a nitride LED according to Example 2 will be described.

実施例1と同様に、サファイア基板10上へn−GaN層20、Ti膜30を形成した後、熱処理を行い下地基板とした。この下地基板上にp−AlGaN層43(厚さ0.5μm)、GaN/A1GaN多重量子井戸層42(GaN厚さ2nm,AlGaN厚さ4nm)、n−A1GaN層41(厚さ3μm)を順次形成し、最後にその上にCuW基板50を貼付した。尚、n−A1GaN層41、およびp−AlGaN層43の組成は、実施例1と同様のものとした。   Similarly to Example 1, after forming the n-GaN layer 20 and the Ti film 30 on the sapphire substrate 10, heat treatment was performed to form a base substrate. A p-AlGaN layer 43 (thickness 0.5 μm), a GaN / A1GaN multiple quantum well layer 42 (GaN thickness 2 nm, AlGaN thickness 4 nm), and n-A1GaN layer 41 (thickness 3 μm) are sequentially formed on the base substrate. Finally, a CuW substrate 50 was pasted thereon. The compositions of the n-A1 GaN layer 41 and the p-AlGaN layer 43 were the same as those in Example 1.

その後、機械的に下地基板を剥離し、p−A1GaN層43の表面に上部電極60を、CuW基板50の底面に底面電極70を設け、図3に示す窒化物系LEDを作製した。   Thereafter, the base substrate was mechanically peeled off, and the upper electrode 60 was provided on the surface of the p-A1 GaN layer 43, and the bottom electrode 70 was provided on the bottom surface of the CuW substrate 50, thereby producing the nitride LED shown in FIG.

当該窒化物系LEDに20mA通電したところ、発光波長354nmで、発光出力は1.4mWであった。   When a current of 20 mA was passed through the nitride LED, the emission wavelength was 354 nm and the emission output was 1.4 mW.

(評価2)
実施例1と実施例2とを較べてみると、各窒化物系LEDに20mA通電したところ、上述したように、発光波長354nmで、実施例1の発光出力が3.2mWであったのに対し、実施例2は1.4mWであった。
(Evaluation 2)
Comparing Example 1 and Example 2, when each nitride LED was energized with a current of 20 mA, as described above, the emission wavelength of 354 nm and the emission output of Example 1 was 3.2 mW. On the other hand, Example 2 was 1.4 mW.

この発光出力の差の原因は、以下のように考えられる。   The cause of this difference in light emission output is considered as follows.

即ち、一般に窒化物半導体においてはp型層を低抵抗化することが困難なため、p型層はn型層よりも電流分散が起こり難い。ここで実施例1に係る窒化物系LEDでは、p型層であるp−AlGaN層43側にCuW基板50が貼付されているため、たとえp型層の電流分散が起こり難くても、当該層全面に電流を注入することができる。この結果、p型層において電流分散が起こり難いという問題点が克服され、実施例1に係る窒化物系LEDは、高い発光出力を得ることが出来たものと考えられる。   That is, since it is generally difficult to reduce the resistance of the p-type layer in a nitride semiconductor, the p-type layer is less susceptible to current dispersion than the n-type layer. Here, in the nitride LED according to Example 1, since the CuW substrate 50 is attached to the p-AlGaN layer 43 side which is a p-type layer, even if current distribution of the p-type layer is difficult to occur, Current can be injected over the entire surface. As a result, the problem that current dispersion hardly occurs in the p-type layer is overcome, and the nitride LED according to Example 1 is considered to be able to obtain a high light emission output.

これに対し、実施例2に係る窒化物系LEDでは、p型層であるp−AlGaN層43側が光の取り出し側となり上部電極60が設けられているため、上部電極60を当該層全面に広げることが出来ない。このため注入電流は、p−AlGaN層43で拡散することとなるが、上述したようにp型層での電流拡散は困難なため、発光面積が減少する結果、実施例1に係る窒化物系LEDと比較してより低い発光出力に留まったものと考えられる。   On the other hand, in the nitride-based LED according to Example 2, the p-AlGaN layer 43 side which is a p-type layer is the light extraction side and the upper electrode 60 is provided, so that the upper electrode 60 is spread over the entire surface of the layer. I can't. For this reason, the injection current is diffused in the p-AlGaN layer 43. However, since the current diffusion in the p-type layer is difficult as described above, the light emitting area is reduced. It is considered that the light output remained lower than that of the LED.

本発明の実施例に係るウエハー製造工程おけるウエハーの模式的な断面図である。It is typical sectional drawing of the wafer in the wafer manufacturing process which concerns on the Example of this invention. 本発明の実施例1に係るウエハーと、当該ウエハーより作製された窒化物系LEDのより詳細な断面図である。It is a more detailed sectional view of a wafer concerning Example 1 of the present invention, and nitride system LED produced from the wafer concerned. 本発明の実施例2に係る窒化物系LEDの断面図である。It is sectional drawing of nitride type LED which concerns on Example 2 of this invention. 本発明の比較例に係る窒化物系LEDの断面図である。It is sectional drawing of nitride type LED which concerns on the comparative example of this invention. 本発明の実施例1に係る窒化物系LEDのL−I特性図である。It is a LI characteristic figure of nitride system LED concerning Example 1 of the present invention. 本発明の比較例に係る窒化物系LEDのL−I特性図である。It is a LI characteristic figure of nitride system LED concerning a comparative example of the present invention. 第一の窒化物半導体層の膜厚、および金属膜のエッチング併用の有無と、機械的剥離の際の歩留りとの関係を示した一覧表である。6 is a table showing the relationship between the film thickness of the first nitride semiconductor layer and the presence / absence of combined use of the metal film and the yield at the time of mechanical peeling.

符号の説明Explanation of symbols

10 第一の基板(サファイア基板)
20 第一の窒化物半導体層(n−GaN層)
30 金属膜(Ti膜)
40 発光素子構造(第二の窒化物半導体層)
41 n−AlGaN層
42 GaN/AlGaN多重量子井戸層
43 p−AlGaN層
50 第二の基板(CuW基板)
60 上部電極
70 底面電極
80 対電極

10 First substrate (sapphire substrate)
20 First nitride semiconductor layer (n-GaN layer)
30 Metal film (Ti film)
40 Light emitting device structure (second nitride semiconductor layer)
41 n-AlGaN layer 42 GaN / AlGaN multiple quantum well layer 43 p-AlGaN layer 50 Second substrate (CuW substrate)
60 Upper electrode 70 Bottom electrode 80 Counter electrode

Claims (5)

窒化物系化合物半導体発光素子の製造方法であって、
(a)第一の基板上に、第一の窒化物系化合物半導体層を積層させる工程と、
(b)前記第一の窒化物系化合物半導体層上に、金属膜を形成する工程と、
(c)前記金属膜を表面に形成した第一の窒化物系化合物半導体層を熱処理することによって、前記金属膜を網目状とし、前記窒化物系化合物半導体層中に空隙を形成する工程と、
(d)前記網目状となった金属膜上に、第二の窒化物系化合物半導体層を含む発光素子構造を形成する工程と、
(e)前記発光素子構造上に、第二の基板を貼付する工程と、
(f)前記第一の基板と第一の窒化物系化合物半導体からなる層を、前記発光素子構造から剥離する工程と、
を備えることを特徴とした窒化物系化合物半導体発光素子の製造方法。
A method for manufacturing a nitride-based compound semiconductor light-emitting device, comprising:
(A) laminating a first nitride-based compound semiconductor layer on a first substrate;
(B) forming a metal film on the first nitride-based compound semiconductor layer;
(C) forming a void in the nitride compound semiconductor layer by heat-treating the first nitride compound semiconductor layer having the metal film formed on a surface thereof to form a network; and
(D) forming a light emitting element structure including a second nitride-based compound semiconductor layer on the network-like metal film;
(E) attaching a second substrate on the light emitting element structure;
(F) peeling off the layer made of the first substrate and the first nitride-based compound semiconductor from the light-emitting element structure;
A method for producing a nitride-based compound semiconductor light-emitting device comprising:
請求項1に記載の窒化物系化合物半導体発光素子の製造方法であって、
前記第一の窒化物系化合物半導体層の厚さを1000nm以下とすることを特徴とする窒化物系化合物半導体発光素子の製造方法。
A method for producing a nitride-based compound semiconductor light-emitting device according to claim 1,
A method for manufacturing a nitride-based compound semiconductor light-emitting element, wherein the first nitride-based compound semiconductor layer has a thickness of 1000 nm or less.
請求項1または2に記載の窒化物系化合物半導体発光素子の製造方法であって、
前記第二の基板として、その熱伝導率が、前記第一の基板の熱伝導率より大きいものを用いることを特徴とする窒化物系化合物半導体発光素子の製造方法。
A method for producing a nitride-based compound semiconductor light-emitting device according to claim 1 or 2,
A method for producing a nitride-based compound semiconductor light-emitting element, wherein the second substrate has a thermal conductivity higher than that of the first substrate.
請求項1から3のいずれかに記載の窒化物系化合物半導体発光素子の製造方法であって、
前記工程(f)における剥離方法が、エッチング法であることを特徴とする窒化物系化合物半導体発光素子の製造方法。
A method for producing a nitride-based compound semiconductor light-emitting device according to claim 1,
The method for producing a nitride-based compound semiconductor light-emitting element, wherein the peeling method in the step (f) is an etching method.
請求項1から4のいずれかに記載の窒化物系化合物半導体発光素子の製造方法であって、
前記工程(e)における前記第二の基板の貼付において、前記第二の基板が貼付される前記発光素子構造表面が、p型層であることを特徴とする窒化物系化合物半導体発光素子の製造方法。
A method for producing a nitride-based compound semiconductor light-emitting device according to claim 1,
In the step of attaching the second substrate in the step (e), the surface of the light-emitting element structure to which the second substrate is attached is a p-type layer. Method.
JP2003313761A 2003-09-05 2003-09-05 Method for manufacturing nitride compound semiconductor light emitting device Pending JP2005085851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003313761A JP2005085851A (en) 2003-09-05 2003-09-05 Method for manufacturing nitride compound semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003313761A JP2005085851A (en) 2003-09-05 2003-09-05 Method for manufacturing nitride compound semiconductor light emitting device

Publications (1)

Publication Number Publication Date
JP2005085851A true JP2005085851A (en) 2005-03-31

Family

ID=34414595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003313761A Pending JP2005085851A (en) 2003-09-05 2003-09-05 Method for manufacturing nitride compound semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP2005085851A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100411206C (en) * 2005-06-21 2008-08-13 新世纪光电股份有限公司 Light-emitting diode making method
WO2011046292A2 (en) * 2009-10-16 2011-04-21 서울옵토디바이스주식회사 High-quality nonpolar or semipolar semiconductor device on porous nitride semiconductor and fabrication method thereof
WO2011025149A3 (en) * 2009-08-26 2011-04-21 서울옵토디바이스주식회사 Method for manufacturing a semiconductor substrate and method for manufacturing a light-emitting device
WO2011099772A3 (en) * 2010-02-10 2011-11-24 Seoul Opto Device Co., Ltd. Semiconductor substrate, semiconductor device, and manufacturing methods thereof
KR101106150B1 (en) 2009-08-26 2012-01-20 서울옵토디바이스주식회사 Method of fabricating light emitting device
KR101106149B1 (en) 2009-08-26 2012-01-20 서울옵토디바이스주식회사 Method of fabricating semiconductor substarte and method of fabricating light emitting device
WO2012093758A1 (en) * 2011-01-04 2012-07-12 (주)세미머티리얼즈 Template, method of manufacturing same, and method of manufacturing a vertical type nitride semiconductor light-emitting device
US8294183B2 (en) 2009-06-10 2012-10-23 Seoul Opto Device Co., Ltd. Semiconductor substrate, method of fabricating the same, semiconductor device, and method of fabricating the same
US8481411B2 (en) 2009-06-10 2013-07-09 Seoul Opto Device Co., Ltd. Method of manufacturing a semiconductor substrate having a cavity
US8564134B2 (en) 2010-02-10 2013-10-22 Seoul Opto Device Co., Ltd. Semiconductor substrate, semiconductor device, and manufacturing methods thereof
US8860183B2 (en) 2009-06-10 2014-10-14 Seoul Viosys Co., Ltd. Semiconductor substrate, semiconductor device, and manufacturing methods thereof

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100411206C (en) * 2005-06-21 2008-08-13 新世纪光电股份有限公司 Light-emitting diode making method
US8294183B2 (en) 2009-06-10 2012-10-23 Seoul Opto Device Co., Ltd. Semiconductor substrate, method of fabricating the same, semiconductor device, and method of fabricating the same
US10128403B2 (en) 2009-06-10 2018-11-13 Seoul Viosys Co., Ltd. Semiconductor substrate, semiconductor device, and manufacturing methods thereof
US9773940B2 (en) 2009-06-10 2017-09-26 Seoul Viosys Co., Ltd. Semiconductor substrate, semiconductor device, and manufacturing methods thereof
US9425347B2 (en) 2009-06-10 2016-08-23 Seoul Viosys Co., Ltd. Semiconductor substrate, semiconductor device, and manufacturing methods thereof
US9202685B2 (en) 2009-06-10 2015-12-01 Seoul Viosys Co., Ltd. Method of manufacturing a compound semiconductor substrate in a flattened growth substrate
US9006084B2 (en) 2009-06-10 2015-04-14 Seoul Viosys Co., Ltd. Method of preparing semiconductor layer including cavities
US8860183B2 (en) 2009-06-10 2014-10-14 Seoul Viosys Co., Ltd. Semiconductor substrate, semiconductor device, and manufacturing methods thereof
US8481411B2 (en) 2009-06-10 2013-07-09 Seoul Opto Device Co., Ltd. Method of manufacturing a semiconductor substrate having a cavity
US8609449B2 (en) 2009-08-26 2013-12-17 Seoul Opto Device Co., Ltd. Method of fabricating semiconductor substrate and method of fabricating light emitting device
KR101106150B1 (en) 2009-08-26 2012-01-20 서울옵토디바이스주식회사 Method of fabricating light emitting device
US8329488B2 (en) 2009-08-26 2012-12-11 Seoul Opto Device Co., Ltd. Method of fabricating semiconductor substrate and method of fabricating light emitting device
WO2011025149A3 (en) * 2009-08-26 2011-04-21 서울옵토디바이스주식회사 Method for manufacturing a semiconductor substrate and method for manufacturing a light-emitting device
US8183075B2 (en) 2009-08-26 2012-05-22 Seoul Opto Device Co., Ltd. Method of fabricating semiconductor substrate and method of fabricating light emitting device
US8026119B2 (en) 2009-08-26 2011-09-27 Seoul Opto Device Co., Ltd. Method of fabricating semiconductor substrate and method of fabricating light emitting device
KR101106149B1 (en) 2009-08-26 2012-01-20 서울옵토디바이스주식회사 Method of fabricating semiconductor substarte and method of fabricating light emitting device
US9153737B2 (en) 2009-10-16 2015-10-06 Seoul Viosys Co., Ltd. High-quality non-polar/semi-polar semiconductor device on porous nitride semiconductor and manufacturing method thereof
WO2011046292A3 (en) * 2009-10-16 2011-06-30 서울옵토디바이스주식회사 High-quality nonpolar or semipolar semiconductor device on porous nitride semiconductor and fabrication method thereof
WO2011046292A2 (en) * 2009-10-16 2011-04-21 서울옵토디바이스주식회사 High-quality nonpolar or semipolar semiconductor device on porous nitride semiconductor and fabrication method thereof
WO2011099772A3 (en) * 2010-02-10 2011-11-24 Seoul Opto Device Co., Ltd. Semiconductor substrate, semiconductor device, and manufacturing methods thereof
US8564134B2 (en) 2010-02-10 2013-10-22 Seoul Opto Device Co., Ltd. Semiconductor substrate, semiconductor device, and manufacturing methods thereof
CN103151433A (en) * 2010-02-10 2013-06-12 首尔Opto仪器股份有限公司 Semiconductor substrate, semiconductor device, and manufacturing methods thereof
WO2012093758A1 (en) * 2011-01-04 2012-07-12 (주)세미머티리얼즈 Template, method of manufacturing same, and method of manufacturing a vertical type nitride semiconductor light-emitting device

Similar Documents

Publication Publication Date Title
JP5050574B2 (en) Group III nitride semiconductor light emitting device
US6887770B2 (en) Method for fabricating semiconductor device
JP3606015B2 (en) Method for manufacturing group 3 nitride semiconductor device
JP4653804B2 (en) Light emitting semiconductor chip manufacturing method and semiconductor chip
JP4920298B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor device
JP2007067418A (en) Group iii nitride light emitting device having light emitting region with double hetero-structure
JP2005229085A (en) Nitride semiconductor light emitting element having improved ohmic contact and manufacturing method therefor
JP2008166678A (en) Light-emitting diode and method of manufacturing same
JP2008047871A (en) Semiconductor light emitting diode
JP4204163B2 (en) Manufacturing method of semiconductor substrate
JP2007134507A (en) Semiconductor light emitting element and manufacturing method thereof
JP2008171941A (en) Light-emitting element
JP2007214384A (en) Nitride semiconductor element
JP4015865B2 (en) Manufacturing method of semiconductor device
JP4765415B2 (en) Light emitting diode and manufacturing method thereof
JP2005085851A (en) Method for manufacturing nitride compound semiconductor light emitting device
JP3962283B2 (en) Manufacturing method of semiconductor device
JP2000091637A (en) Manufacture of semiconductor light emitting element
JPH11274082A (en) Group iii nitride semiconductor and fabrication thereof, and group iii nitride semiconductor device
JP5384783B2 (en) Reverse-polarized light-emitting region for semiconductor light-emitting devices
JP2006287212A (en) Nitride semiconductor light emitting device and method of fabricating the same
JP2007184644A (en) Semiconductor device and method of manufacturing same
JP2007142345A (en) Nitride semiconductor light-emitting element
JP2002009003A (en) Semiconductor substrate, its manufacturing method, and light emitting device
JP2007103894A (en) (Al, Ga, In) N COMPOUND SEMICONDUCTOR AND ITS MANUFACTURE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051216

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090602