JP2005085642A - Stationary fuel cell power generation system - Google Patents

Stationary fuel cell power generation system Download PDF

Info

Publication number
JP2005085642A
JP2005085642A JP2003317649A JP2003317649A JP2005085642A JP 2005085642 A JP2005085642 A JP 2005085642A JP 2003317649 A JP2003317649 A JP 2003317649A JP 2003317649 A JP2003317649 A JP 2003317649A JP 2005085642 A JP2005085642 A JP 2005085642A
Authority
JP
Japan
Prior art keywords
power generation
electric control
control unit
air
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003317649A
Other languages
Japanese (ja)
Inventor
Yoshimi Miyamoto
好美 宮本
Kenji Kubo
謙二 久保
Yutaka Enokitsu
豊 榎津
Hiroshi Iwata
博 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Home and Life Solutions Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Home and Life Solutions Inc filed Critical Hitachi Home and Life Solutions Inc
Priority to JP2003317649A priority Critical patent/JP2005085642A/en
Publication of JP2005085642A publication Critical patent/JP2005085642A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stationary fuel cell power generation system where the security of the system can be maintained in the case of combustible gas leakage even if it is not continuously ventilated, and heat recovery efficiency is improved. <P>SOLUTION: In the fuel cell power generation system, a main body housing houses an electric control part where an electric control means and a power conversion means are housed in one electric article housing or an insulated field, a reforming means, a power generation means, and a heat recovery means. The electric control part is provided with an intake vent of the electric control part, communicating with the outside air, and provided with an exhaust vent of the electric control part, communicating with the inside of the main body housing. An air intake port for the reforming means or an air intake port for the power generation means are arranged in the front surface or the upper surface or the vicinity of the exhaust vent of the electric control part. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、定置用燃料電池発電システムに係り、主に住宅などの屋外に設置される燃料電池発電システムに関する。   The present invention relates to a stationary fuel cell power generation system, and more particularly to a fuel cell power generation system installed outdoors such as a house.

従来、定置用燃料電池システムでは、特許文献1に示されるように可燃性ガスが漏洩した場合の安全性の確保のため、可燃性ガスの検知器を設けて監視したり、システム本体の筐体内部若しくはシステム本体の筐体内の可燃性ガスを扱うエリアを外気より負圧にして、万一可燃性ガスが漏洩しても、排気部以外から外部に漏洩しないようにしていた。   Conventionally, in a stationary fuel cell system, as shown in Patent Document 1, in order to ensure safety when a flammable gas leaks, a detector of flammable gas is provided and monitored, or a casing of the system body The area for handling the combustible gas inside the casing of the system main body is set to a negative pressure from the outside air so that even if the combustible gas leaks, it does not leak outside from the exhaust part.

また、特許文献2には、燃料電池本体や改質器に空気を供給するブロアへと空気を導く空気吸入口を筐体の上部に開口して設置することによって、筐体の上部に滞留する温度の高い空気を吸入できる燃料電池発電システムが開示されている。   Further, in Patent Document 2, an air suction port that guides air to a blower that supplies air to a fuel cell main body and a reformer is opened at the upper part of the casing so that it stays at the upper part of the casing. A fuel cell power generation system capable of inhaling high-temperature air is disclosed.

特開平7-263008号公報JP 7-263008 A 特開2003-208915号公報JP 2003-208915 A

上記の従来の技術で、可燃性ガスの検知器を設けて監視する方法は、検知器の取付け位置によって実質的な検出レベルが変動する恐れがあり、また経時変化により検出レベルが変動する恐れがある。また、システム本体の筐体内部若しくはシステム本体の筐体内の可燃性ガスを扱うエリアを外気より負圧にして、万一可燃性ガスが漏洩しても、所定の排気部以外から外部に漏洩しないようにする方法は安全性の確保に対して適切な方法であるが、この負圧の条件を維持するためには常時換気ファンを回していなければならず、常時連続で運転するシステムには適するが、毎日運転停止を繰り返す方式のシステムでは、発電していないときにも換気ファンを運転する必要がある。また、常時換気する場合、改質手段や発電手段の周囲が換気により冷却され、熱回収効率が低下する恐れがある。また、燃料電池発電システムの内部の着火源に対する対応は十分とは言えない。   In the above-described conventional technique, the method of providing and monitoring a combustible gas detector may cause the substantial detection level to vary depending on the mounting position of the detector, and the detection level may vary due to changes over time. is there. In addition, even if flammable gas leaks in the system body casing or in the system body casing, where the flammable gas handling area is set to a negative pressure from the outside air, it will not leak outside the specified exhaust section. This method is appropriate for ensuring safety, but in order to maintain this negative pressure condition, the ventilation fan must be running at all times, which is suitable for a system that operates continuously at all times. However, in a system that repeatedly stops operation every day, it is necessary to operate the ventilation fan even when power is not generated. In the case of continuous ventilation, the surroundings of the reforming means and the power generation means are cooled by ventilation, which may reduce the heat recovery efficiency. Moreover, it cannot be said that the response | compatibility with respect to the ignition source inside a fuel cell power generation system is enough.

本発明では、換気ファン等を常時運転しなくても万一の可燃性ガス漏れ時に対して、システムの安全性を維持できるとともに、熱回収効率を向上させた定置用燃料電池発電システムを提供することを目的としている。   The present invention provides a stationary fuel cell power generation system capable of maintaining the safety of the system and improving the heat recovery efficiency in the event of a flammable gas leak without always operating a ventilation fan or the like. The purpose is that.

上記の目的を達成するため、本発明では、定置用燃料電池発電システムにおいて、電気制御手段と電力変換手段とを1つの電気品筐体若しくは隔離域に収納した電気制御部と、燃料を改質して水素を生成させる改質手段と、水素と空気中の酸素とを反応させて発電する発電手段と、熱回収手段とを本体筐体に収納し、前記電気制御部に外気に連通した電気制御部吸気口を設け、掛かる電気制御部の、本体筐体内部側の面に電気制御部排気口を設け、係る電気制御部排気口の前面または上面または近傍に、改質手段用空気吸入口若しくは発電手段用空気吸入口を配置した。   In order to achieve the above object, according to the present invention, in a stationary fuel cell power generation system, an electric control unit in which the electric control means and the power conversion means are housed in one electric product casing or an isolation region, and the fuel is reformed. Then, the reforming means for generating hydrogen, the power generation means for generating electricity by reacting hydrogen and oxygen in the air, and the heat recovery means are housed in the main body casing, and the electric control unit communicates with the outside air. An air inlet for reforming means is provided on the front surface or upper surface of the electric control unit exhaust port or in the vicinity of the electric control unit exhaust port. Alternatively, an air inlet for power generation means is arranged.

また、電気制御手段と電力変換手段とを1つの電気品筐体若しくは隔離域に収納した電気制御部と、燃料を改質して水素を生成させる改質手段と、水素と空気中の酸素とを反応させて発電する発電手段と、熱回収手段とを本体筐体に収納し、前記電気制御部に外気に連通した電気制御部吸気口を設け、本体筐体内部で前記電気制御部の近傍に改質手段用空気吸入口若しくは発電手段用空気吸入口を設け、システムの発電中に前記電気制御部の内部よりも本体筐体内部側の電気制御部周囲の方が低圧になるようにして、本体筐体内部の空気が電気制御部の内部に流入しないようにした。   In addition, an electric control unit in which the electric control means and the power conversion means are housed in one electrical component housing or an isolation region, a reforming means for reforming the fuel to generate hydrogen, hydrogen and oxygen in the air A power generation means for generating electricity by reacting with each other and a heat recovery means are housed in the main body casing, and an electric control section intake port communicating with the outside air is provided in the electric control section, in the vicinity of the electric control section inside the main body casing Provided with an air inlet for reforming means or an air inlet for power generation means so that the pressure around the electric control unit inside the main body casing is lower than that inside the electric control unit during power generation of the system. The air inside the main body casing is prevented from flowing into the electric control unit.

また、電気制御部吸気口に、吸気方向に通風するように動作するファンを設けることにより、係るファンを動作させることにより、電気制御部の内部が定置用燃料電池発電システムの本体筐体の内部よりも高圧にして、本体筐体内部の空気が電気制御部の内部に流入しないようにした。   In addition, by providing a fan that operates to ventilate in the intake direction at the intake port of the electric control unit, by operating the fan, the inside of the electric control unit is inside the main body housing of the stationary fuel cell power generation system. The air inside the main body casing was prevented from flowing into the electric control unit.

また、電気制御部吸気口を、本体筐体の床面に設けることにより、強制的に吸気しなくても自然対流により、電気制御部を通過して本体筐体内部に空気を流入させられるようにしている。   In addition, by providing an electrical control unit air inlet on the floor of the main unit casing, air can flow into the main unit casing through the electric control unit by natural convection without forced intake. I have to.

また、電気制御部吸気口を電気制御部の放熱器の下方側に設けることにより、外気が電気制御部の放熱器の周囲を通過して本体筐体内部に流入するようにしている。   Further, by providing the electric control unit intake port below the radiator of the electric control unit, the outside air passes through the periphery of the radiator of the electric control unit and flows into the main body casing.

また、電気制御部を防爆構造にすることにより、万一漏洩した可燃性ガスが電気制御部に侵入しても、電気制御部の動作時に引火する恐れがないようにしている。   In addition, by making the electric control unit an explosion-proof structure, even if a leaked combustible gas enters the electric control unit, there is no risk of ignition during operation of the electric control unit.

また、電気制御部吸気口に、吸気方向に通風するように動作するファンを設けるとともに、本体筐体内部に可燃性ガス検知手段を設け、係る可燃性ガス検知手段の検知信号により、前記ファンの風量を増減させるように制御するようにした。 In addition, a fan that operates so as to ventilate in the intake direction is provided at the air inlet of the electric control unit, and a combustible gas detection means is provided inside the main body casing. Control was made to increase or decrease the air volume.

本体筐体内部で空気温度が高い位置に改質手段用空気吸入口若しくは発電手段用空気吸入口を配置し、熱回収しやすくした。 An air inlet for reforming means or an air inlet for power generation means is arranged at a position where the air temperature is high inside the main body casing to facilitate heat recovery.

以上のように、本発明によれば、定置用燃料電池発電システムにおいて、万一可燃性ガスが漏洩しても電気制御部に可燃性ガスが侵入する恐れがなく、安全で効率よく熱回収できるシステムを提供できる。   As described above, according to the present invention, in a stationary fuel cell power generation system, even if a flammable gas leaks, there is no risk of the flammable gas entering the electric control unit, and heat can be recovered safely and efficiently. Can provide a system.

以下、本発明の実施例について、図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は本発明の1実施例の定置用燃料電池発電システムのブロック構成概略図である。1は定置用燃料電池発電システムの本体筐体であり、係る定置用燃料電池発電システムの各部の制御を行う電気制御手段2、発電された直流電力を交流電力に変換して商用電源(表示せず)に系統連系して出力する電力変換手段3、電力変換手段3で発生した熱を放熱する放熱器4とは電気品筐体5に収納してあり、電気制御部6を構成している。電気制御手段2と電力変換手段3とは隔壁7により放熱器4の放熱空間8と隔離してある。本体筐体1の床面9には電気制御部吸気口10が設けてあり、フィルタ11を介して連通部12により電気品筐体5の放熱器4のある放熱空間8の底面と連通している。電気品筐体5の上面の、放熱空間8の上方には電気制御部排気口13を設けてあり、その上方には発電手段用空気吸入口14が設けてあり、該発電手段用空気吸入口14に内蔵されたブロワ(表示せず)により電気制御部排気口13付近の空気を吸入するようになっている。係る発電手段用空気吸入口14は発電用空気供給管15により発電手段16に配管接続されている。また、都市ガス等の燃料より水素を生成させる改質手段17に燃焼用空気を供給するための改質手段用空気吸入口18を電気制御部6の近傍に設けてあり、該改質手段用空気吸入口18は燃焼用空気供給管19で前記改質手段17に配管接続してある。係る改質手段用空気吸入口18にはブロワ(表示せず)が内蔵してあり、改質手段17の動作中には前記電気制御部6の周囲の空気を吸入するように構成してある。改質手段17には燃料を供給する燃料供給管20が接続してあり、係る改質手段17で生成した水素を多量含む改質ガスを発電手段16に供給する改質ガス供給管21は、熱回収手段23を経由して発電手段16に配管接続してある。発電手段16は改質ガス中の水素と空気中の酸素とを反応させて発電する。発電手段16での発電反応後の発電排ガス用の発電排ガス配管23a、23bは熱回収手段22を経由して改質手段17に配管接続してある。熱回収手段22には、熱回収用給水管24、熱水出水管25が配管接続してある。改質手段17には燃焼後の排気用の排気管26が設けてあり、係る排気管26は熱回収手段22を経由して排気口27に配管接続してある。前記熱回収手段22では、熱回収用給水管24で供給された水により、改質ガスや発電排ガス、燃焼後の排気から熱を回収して熱水を生成し、熱水出水管25により熱水を出力する。28a、28bは据付座であり、これらの据付座28a、28bにより、本体筐体1の床面9は据付面(表示せず)から浮いている。なお、本図では、発電手段16や改質手段17に水分を供給する純水装置や凝縮水を排出する凝縮水排水トラップ、開閉弁等については表示を省いている。   FIG. 1 is a block diagram schematically showing a stationary fuel cell power generation system according to one embodiment of the present invention. Reference numeral 1 denotes a main body casing of a stationary fuel cell power generation system, an electric control means 2 for controlling each part of the stationary fuel cell power generation system, and a commercial power source (display) by converting the generated DC power into AC power. The power conversion means 3 that is connected to the system and the radiator 4 that dissipates the heat generated by the power conversion means 3 are housed in an electrical housing 5 and constitutes an electrical control unit 6. Yes. The electric control means 2 and the power conversion means 3 are separated from the heat radiation space 8 of the radiator 4 by the partition wall 7. An electric control unit air inlet 10 is provided on the floor surface 9 of the main body housing 1, and communicates with the bottom surface of the heat radiation space 8 where the radiator 4 of the electric component housing 5 is located by the communication unit 12 through the filter 11. Yes. An electrical control unit exhaust port 13 is provided above the heat radiation space 8 on the upper surface of the electrical housing 5, and a power generation unit air suction port 14 is provided above the electrical control unit exhaust port 13. The air in the vicinity of the electric control unit exhaust port 13 is sucked in by a blower (not shown) built in the unit 14. The air inlet 14 for power generation means is connected to the power generation means 16 by a power generation air supply pipe 15. In addition, a reforming means air intake port 18 for supplying combustion air to the reforming means 17 that generates hydrogen from fuel such as city gas is provided in the vicinity of the electric control unit 6. The air inlet 18 is connected to the reforming means 17 by a combustion air supply pipe 19. A blower (not shown) is built in the reforming means air suction port 18 and is configured to suck air around the electric control unit 6 during the operation of the reforming means 17. . A fuel supply pipe 20 for supplying fuel is connected to the reforming means 17, and a reformed gas supply pipe 21 for supplying a reformed gas containing a large amount of hydrogen generated by the reforming means 17 to the power generation means 16, A pipe connection is made to the power generation means 16 via the heat recovery means 23. The power generation means 16 generates electricity by reacting hydrogen in the reformed gas with oxygen in the air. The power generation exhaust gas pipes 23 a and 23 b for the power generation exhaust gas after the power generation reaction in the power generation means 16 are connected to the reforming means 17 via the heat recovery means 22. A heat recovery water supply pipe 24 and a hot water outlet pipe 25 are connected to the heat recovery means 22 by piping. The reforming means 17 is provided with an exhaust pipe 26 for exhaust after combustion, and the exhaust pipe 26 is connected to an exhaust port 27 via a heat recovery means 22. In the heat recovery means 22, heat supplied from the reformed gas, power generation exhaust gas, and exhaust gas after combustion is generated by the water supplied from the heat recovery water supply pipe 24 to generate hot water. Output water. 28a and 28b are installation seats, and the floor surface 9 of the main body housing 1 is lifted from the installation surface (not shown) by these installation seats 28a and 28b. In this figure, the display is omitted for the pure water device that supplies moisture to the power generation means 16 and the reforming means 17, the condensed water drain trap that discharges condensed water, the on-off valve, and the like.

係る構造の定置用燃料電池発電システムでは、発電中は発電手段用空気吸入口14及び改質手段用空気吸入口18により吸気されるため、本体筐体1の内部の電気制御部6の周囲は電気制御部6の内部よりも気圧が低くなり、該電気制御部6の放熱空間8が外気と連通しているため、外気が電気制御部吸気口10、フィルタ11を介して放熱空間8に吸入され、その空気は電気制御部排気口13から本体筐体1の内部に流入する。このときに電気制御部6の放熱で暖められた空気が発電手段用空気吸入口14及び改質手段用空気吸入口18に吸入されるので、電気制御部6の放熱が容易にできるとともに、その熱を回収できる。また、電気制御部6よりも本体筐体1の内部の方が低圧になるので、万一発電中に可燃性ガスが漏れても、そのガスが電気制御部6の内部に侵入することがない。また、電気制御手段2及び電力変換手段3は電気品筐体5及び隔壁7により囲むとともに、電気制御手段2及び電力変換手段3は、それらの内部で使用している機械的接点部等をシール等により防爆品として、電気制御部6を防爆構造としており、万一定置用燃料電池発電システムが発電停止中に可燃性ガスが漏洩しても、電気制御部6の動作で可燃性ガスに着火するおそれがない。また、電気制御部吸気口10を放熱空間8の下方の本体筐体1の床面9に設けるとともに、電気制御部排気口13を放熱空間8の上方に設けたので、定置用燃料電池発電システムが発電を停止中には、自然対流により外気が放熱空間8を通過して本体筐体1の内部に通風するようになっている。   In the stationary fuel cell power generation system having such a structure, since the air is sucked in by the air intake 14 for the power generation means and the air intake 18 for the reforming means during power generation, the periphery of the electric control unit 6 inside the body housing 1 is Since the atmospheric pressure is lower than the inside of the electric control unit 6 and the heat radiation space 8 of the electric control unit 6 communicates with the outside air, the outside air is sucked into the heat radiation space 8 through the electric control unit intake port 10 and the filter 11. Then, the air flows into the inside of the main body housing 1 from the electric control unit exhaust port 13. At this time, the air warmed by the heat radiation of the electric control unit 6 is sucked into the air intake port 14 for power generation means and the air suction port 18 for reforming means, so that the electric control unit 6 can easily dissipate heat. Heat can be recovered. Moreover, since the inside of the main body housing 1 has a lower pressure than the electric control unit 6, even if a flammable gas leaks during power generation, the gas does not enter the electric control unit 6. . The electric control means 2 and the power conversion means 3 are surrounded by an electrical component casing 5 and a partition wall 7, and the electric control means 2 and the power conversion means 3 seal mechanical contact portions and the like used therein. As an explosion-proof product, etc., the electric control unit 6 has an explosion-proof structure. Even if the flammable gas leaks while the fixed fuel cell power generation system stops generating power, the electric control unit 6 operates to convert it into a flammable gas. There is no risk of ignition. In addition, since the electric control unit intake port 10 is provided on the floor surface 9 of the main body housing 1 below the heat radiation space 8 and the electric control unit exhaust port 13 is provided above the heat radiation space 8, the stationary fuel cell power generation system However, when the power generation is stopped, the outside air passes through the heat radiation space 8 by natural convection and flows into the main body housing 1.

次に、本発明の第2の実施例について説明する。図2は本発明の第2の実施例に係る定置用燃料電池システムのブロック構成概略図である。図1と同じ番号のものは、図1と同じ機能部であり、これらについては説明を省く。また、図1と同様に、発電手段16や改質手段17に水分を供給する純水装置や凝縮水を排出する凝縮水排水トラップ、開閉弁等については表記を省いている。13a、13bは電気品筐体5に設けた電気制御部排気口であり、該電気制御部排気口13a、13bは、電気制御手段2及び電力変換手段3の周囲に設けた放熱空間8に連通しており、電気制御部排気口13aは電気品筐体5の上部にあって発電手段用空気吸入口14が近傍に設けてあり、電気制御部排気口13bは電気品筐体5の側面部にあって改質手段用空気吸入口18が近傍に設けてある。定置用燃料電池発電システムが運転中には、発電手段用空気吸入口14及び改質手段用空気吸入口18が吸気動作をするので、電気制御部6の内部の放熱空間8の空気は前記電気制御部排気口13a及び13bを通して吸引される。本実施例では電気制御部吸気口10は本体筐体1の側面に設けてあり、電気制御部6の内部の放熱空間8と電気制御部吸気口10とをつなぐ連通部12の電気制御部吸気口10の内側には吸気方向に通風するように動作するファン29を設けてあり、定置用燃料電池発電システムが運転中はファン29を回すことにより電気制御部6の発熱を放熱するとともに、電気制御部6の内部を本体筐体1の他の内部よりも高圧にし、万一本体筐体内部で可燃性ガスが漏洩してもそのガスが電気制御部6の内部に侵入することを防止している。本体筐体1の内部の発電手段16の上方に可燃性ガス検知手段30を設け、係る可燃性ガス検知手段30の検知信号を出力する信号線31は前記電気制御手段2に接続してある。可燃性ガス検知手段30は、万一可燃性ガスを検知した場合は、可燃性ガスの濃度に応じた信号を信号線31を介して出力し、電気制御部2は係る信号に応じて、可燃性ガスの濃度が予め設定した爆発する恐れの無い許容レベル未満の場合にはファン29の回転数を増加させて、可燃性ガスが本体筐体1の内部に滞留するのを防止する。また、可燃性ガスの濃度が予め設定した許容レベル以上の場合には、直ちに定置用燃料電池発電システムの運転を停止して、異常発生を所定の手段により報知する。   Next, a second embodiment of the present invention will be described. FIG. 2 is a schematic block diagram of a stationary fuel cell system according to a second embodiment of the present invention. Components having the same numbers as those in FIG. 1 are the same functional units as those in FIG. 1, and description thereof will be omitted. Further, as in FIG. 1, the description of a pure water device that supplies moisture to the power generation means 16 and the reforming means 17, a condensed water drain trap that discharges condensed water, an on-off valve, and the like is omitted. Reference numerals 13 a and 13 b denote electrical control unit exhaust ports provided in the electrical housing 5, and the electrical control unit exhaust ports 13 a and 13 b communicate with the heat radiation space 8 provided around the electrical control unit 2 and the power conversion unit 3. The electric control unit exhaust port 13a is provided in the upper part of the electric component housing 5 and the air intake port 14 for power generation means is provided in the vicinity thereof, and the electric control unit exhaust port 13b is provided on the side surface portion of the electric component casing 5. Therefore, an air inlet 18 for reforming means is provided in the vicinity. While the stationary fuel cell power generation system is in operation, the air intake 14 for the power generation means and the air intake 18 for the reforming means perform an intake operation, so that the air in the heat radiation space 8 inside the electric control unit 6 is the electric power. Suction is performed through the control unit exhaust ports 13a and 13b. In the present embodiment, the electric control unit intake port 10 is provided on the side surface of the main body casing 1, and the electric control unit intake port of the communication unit 12 that connects the heat radiation space 8 inside the electric control unit 6 and the electric control unit intake port 10. A fan 29 that operates to ventilate in the intake direction is provided inside the mouth 10, and while the stationary fuel cell power generation system is in operation, the fan 29 is rotated to dissipate heat generated by the electric control unit 6, and The inside of the control unit 6 is set to a higher pressure than the other inside of the main body casing 1, and even if a flammable gas leaks inside the main body casing, the gas is prevented from entering the inside of the electric control section 6. ing. A combustible gas detection means 30 is provided above the power generation means 16 inside the main body housing 1, and a signal line 31 for outputting a detection signal of the combustible gas detection means 30 is connected to the electric control means 2. In the unlikely event that combustible gas is detected, the combustible gas detection means 30 outputs a signal corresponding to the concentration of the combustible gas via the signal line 31, and the electric control unit 2 combusts in accordance with the signal. When the concentration of the combustible gas is lower than a preset allowable level at which there is no risk of explosion, the rotational speed of the fan 29 is increased to prevent the combustible gas from staying inside the main body housing 1. Further, when the concentration of the combustible gas is equal to or higher than a preset allowable level, the operation of the stationary fuel cell power generation system is immediately stopped and the occurrence of abnormality is notified by a predetermined means.

次に、本発明の第3の実施例について説明する。図3は本発明の第3の実施例に係る定置用燃料電池システムのブロック構成概略図である。図2と同じ番号のものは、図2と同じ機能部であり、これらについては説明を省く。また、図2と同様に、本発明に関わらない部分については表記を省いている。図3で図2と異なる点は、発電手段用空気吸入口14の配置のみである。本第3の実施例では、発電手段用空気吸入口14を本体筐体1の中で最も空気温度の高い熱回収手段22と発電手段16との間に配置し、熱回収効率を向上させている。なお、発電手段用空気吸入口14の配置は熱回収手段22と発電手段16との間に限定するものではなく、本体筐体1の中で空気温度の高い位置に配置することにより、熱回収効率を向上させることができるものである。   Next, a third embodiment of the present invention will be described. FIG. 3 is a schematic block diagram of a stationary fuel cell system according to a third embodiment of the present invention. Components having the same numbers as those in FIG. 2 are the same functional units as those in FIG. 2, and description thereof will be omitted. In addition, as in FIG. 2, notation is omitted for portions not related to the present invention. 3 is different from FIG. 2 only in the arrangement of the air inlet 14 for power generation means. In the third embodiment, the air intake 14 for power generation means is disposed between the heat recovery means 22 and the power generation means 16 having the highest air temperature in the main body casing 1 to improve the heat recovery efficiency. Yes. The arrangement of the air inlet 14 for the power generation means is not limited to the position between the heat recovery means 22 and the power generation means 16, and the heat recovery is achieved by disposing it at a position where the air temperature is high in the main body casing 1. Efficiency can be improved.

以上に示した本発明の実施例によれば、定置用燃料電池発電システムが発電運転中に万一可燃性ガスが漏洩しても、電気制御部に侵入する恐れがないので、電気制御部によって漏洩ガスが爆発するおそれがない。また、発電運転中に電気制御部の発熱を放熱した空気を吸入して利用するので、電気制御部の損失分を熱回収でき、熱効率が上がるとともに、電気制御部の放熱用ファンをなくすか、風量を減らすことができるので、使用電力を減らすことができる。また、電気制御部吸気口に吸気方向に通風するファンを設けることにより、該ファンを回すことにより、電気制御部をシステムの本体筐体内部よりも高圧にできるので、万一可燃性ガスが漏洩しても電気制御部に侵入する恐れがない。また、電気制御部吸気口を本体筐体の床面に設けることにより、システムが運転停止中も自然対流により外気が電気制御部に流入し、冷却と換気ができ、可燃性ガスが電気制御部に滞留するおそれがない。また、屋外に設置され、雨がかかっても、電気制御部内部に雨が侵入する恐れがない。また、電気制御部吸気口を電気制御部の放熱器の下方側に設けることにより、放熱器の周囲の空気の対流が容易になり、放熱が容易になる。また、電気制御部を防爆構造にすることにより、万一可燃性ガスが電気制御部に侵入しても、可燃性ガスが爆発する恐れがない。また、電気制御部吸気口に吸気方向に通風するように動作するファンを設けるとともに本体筐体内部に可燃性ガス検知手段を設けて、可燃性ガス検知手段の検知信号で前記ファンの風量を増減させるように制御することにより、可燃性ガスが万一漏洩しても、可燃性ガスの濃度が爆発する恐れのないレベルの内にファンの風量を増加させて筐体内部に可燃性ガスが滞留するのを防止できる。また、本体筐体内部で最も空気温度が高い位置に改質手段用空気吸入口若しくは発電手段用空気吸入口を配置することにより熱回収効率を向上できる。   According to the embodiment of the present invention described above, even if flammable gas leaks during the power generation operation of the stationary fuel cell power generation system, there is no risk of entering the electric control unit. There is no risk of leakage gas explosion. In addition, since the air that has dissipated the heat generated by the electric control unit is sucked and used during power generation operation, the loss of the electric control unit can be recovered and the heat efficiency can be improved. Since the air volume can be reduced, the power consumption can be reduced. In addition, by providing a fan that ventilates in the intake direction at the air inlet of the electric control unit, turning the fan makes the electric control unit at a higher pressure than the inside of the main body of the system. However, there is no risk of entering the electric control unit. In addition, by providing an air inlet for the electric control unit on the floor of the main unit housing, outside air can flow into the electric control unit due to natural convection even when the system is shut down, allowing cooling and ventilation, and combustible gas is supplied to the electric control unit. There is no risk of stagnation. Moreover, even if it is installed outdoors and it rains, there is no risk of rain entering the electric control unit. Further, by providing the electric control unit intake port on the lower side of the radiator of the electric control unit, convection of air around the radiator is facilitated, and heat radiation is facilitated. In addition, since the electric control unit has an explosion-proof structure, even if flammable gas enters the electric control unit, there is no possibility that the flammable gas will explode. In addition, a fan that operates to ventilate the electric control unit in the intake direction is provided, and a combustible gas detection means is provided inside the main body casing, and the air volume of the fan is increased or decreased by a detection signal of the combustible gas detection means. By controlling so that the flammable gas leaks, the flammable gas stays inside the enclosure by increasing the fan air flow within a level where the concentration of the flammable gas will not explode. Can be prevented. Further, the heat recovery efficiency can be improved by disposing the reforming means air suction port or the power generation means air suction port at a position where the air temperature is highest in the main body casing.

本発明の第1の実施例のブロック構成概略図。1 is a schematic block diagram of a first embodiment of the present invention. 本発明の第2の実施例のブロック構成概略図。The block block schematic diagram of the 2nd Example of this invention. 本発明の第3の実施例のブロック構成概略図。The block block schematic diagram of the 3rd Example of this invention.

符号の説明Explanation of symbols

1…本対筐体、2…電気制御手段、3…電力変換手段、5…電気品筐体、6…電気制御部、10…電気制御部吸気口、13…電気制御部排気口、14…発電手段用空気吸入口、16…発電手段、17…改質手段、18…改質手段用空気吸入口、22…熱回収手段。
DESCRIPTION OF SYMBOLS 1 ... This vs. housing | casing, 2 ... Electrical control means, 3 ... Power conversion means, 5 ... Electrical equipment housing | casing, 6 ... Electrical control part, 10 ... Electrical control part inlet port, 13 ... Electrical control part exhaust port, 14 ... Air intake port for power generation means, 16 ... Power generation means, 17 ... Reforming means, 18 ... Air suction port for reforming means, 22 ... Heat recovery means.

Claims (9)

電気制御手段と電力変換手段とを1つの電気品筐体若しくは隔離域に収納した電気制御部と、燃料を改質して水素を生成させる改質手段と、水素と空気中の酸素とを反応させて発電する発電手段とを本体筐体に収納してなる燃料電池発電システムにおいて、
前記電気制御部に、外気と連通した電気制御部吸気口と前記本体筐体内部側に連通する電気制御部排気口とを備え、
前記電気制御部排気口の近傍に、前記改質手段又は前記発電手段に空気を吸入する空気吸入口を配置したことを特徴とする燃料電池発電システム。
Reaction between electric control means and electric power conversion means housed in one electrical component housing or isolation region, reforming means for reforming fuel to generate hydrogen, and hydrogen and oxygen in the air In the fuel cell power generation system in which the power generation means for generating power is housed in the main body housing,
The electric control unit includes an electric control unit intake port communicating with outside air and an electric control unit exhaust port communicating with the inside of the main body housing,
A fuel cell power generation system, wherein an air suction port for sucking air into the reforming unit or the power generation unit is disposed in the vicinity of the electrical control unit exhaust port.
定置用燃料電池発電システムにおいて、電気制御手段と電力変換手段とを1つの電気品筐体若しくは隔離域に収納した電気制御部と、燃料を改質して水素を生成させる改質手段と、水素と空気中の酸素とを反応させて発電する発電手段と、熱回収手段とを本体筐体に収納し、前記電気制御部に外気に連通した電気制御部吸気口を設け、掛かる電気制御部の、本体筐体内部側の面に電気制御部排気口を設け、係る電気制御部排気口の前面または上面または近傍に、改質手段用空気吸入口若しくは発電手段用空気吸入口を配置したことを特徴とする定置用燃料電池発電システム。   In a stationary fuel cell power generation system, an electric control unit in which electric control means and power conversion means are housed in a single electric housing or isolation region, reforming means for reforming fuel to generate hydrogen, hydrogen A power generation means for generating electricity by reacting oxygen with oxygen in the air and a heat recovery means are housed in the main body housing, and an electric control section intake port communicating with the outside air is provided in the electric control section, In addition, an electrical control unit exhaust port is provided on the inner surface of the main body casing, and the air inlet for reforming means or the air intake port for power generation unit is disposed on the front surface, upper surface, or near the electrical control unit exhaust port. A stationary fuel cell power generation system. 電気制御手段と電力変換手段とを1つの電気品筐体若しくは隔離域に収納した電気制御部と、燃料を改質して水素を生成させる改質手段と、水素と空気中の酸素とを反応させて発電する発電手段と、熱回収手段とを本体筐体に収納し、前記電気制御部に外気に連通した電気制御部吸気口を設け、本体筐体内部で前記電気制御部の近傍に改質手段用空気吸入口若しくは発電手段用空気吸入口を設け、システムの発電中に前記電気制御部の内部よりも本体筐体内部側の電気制御部周囲の方が低圧になるようにしたことを特徴とする定置用燃料電池発電システム。   Electric control means and electric power conversion means housed in one electrical product casing or isolation region, reforming means for reforming fuel to generate hydrogen, and reaction between hydrogen and oxygen in the air The power generation means for generating power and the heat recovery means are housed in the main body casing, and the electric control section is provided with an electric control section intake port that communicates with the outside air. The air intake for the quality control means or the air intake for the power generation means is provided so that the pressure around the electrical control unit inside the main body housing is lower than the inside of the electrical control unit during power generation of the system. A stationary fuel cell power generation system. 電気制御部吸気口に、吸気方向に通風するように動作するファンを設けたことを特徴とする請求項1乃至3のいずれかに記載の定置用燃料電池発電システム。   The stationary fuel cell power generation system according to any one of claims 1 to 3, wherein a fan that operates to ventilate in an intake direction is provided at an intake port of the electric control unit. 電気制御部吸気口を、本体筐体の床面に設けたことを特徴とする請求項1乃至4のいずれかに記載の定置用燃料電池発電システム。   The stationary fuel cell power generation system according to any one of claims 1 to 4, wherein the electric control unit intake port is provided on a floor surface of the main body casing. 電気制御部吸気口を電気制御部の放熱器の下方側に設けたことを特徴とする請求項1乃至5のいずれかに記載の定置用燃料電池発電システム。   The stationary fuel cell power generation system according to any one of claims 1 to 5, wherein the electric control unit intake port is provided below the radiator of the electric control unit. 電気制御部を防爆構造にしたことを特徴とする請求項1乃至6のいずれかに記載の定置用燃料電池発電システム。   The stationary fuel cell power generation system according to any one of claims 1 to 6, wherein the electric control unit has an explosion-proof structure. 電気制御部吸気口に、吸気方向に通風するように動作するファンを設けるとともに、本体筐体内部に可燃性ガス検知手段を設け、係る可燃性ガス検知手段の検知信号により、前記ファンの風量を増減させるように制御することを特徴とする請求項1乃至7のいずれかに記載の定置用燃料電池発電システム。   A fan that operates to ventilate in the intake direction is provided at the air inlet of the electric control unit, and a combustible gas detection means is provided inside the main body housing, and the air volume of the fan is determined by a detection signal of the combustible gas detection means. The stationary fuel cell power generation system according to claim 1, wherein the stationary fuel cell power generation system is controlled to increase or decrease. 本体筐体内部で空気温度が高い位置に改質手段用空気吸入口若しくは発電手段用空気吸入口を配置したことを特徴とする請求項1乃至8のいずれかに記載の定置用燃料電池発電システム。
The stationary fuel cell power generation system according to any one of claims 1 to 8, wherein the air inlet for reforming means or the air inlet for power generation means is disposed at a position where the air temperature is high inside the main body casing. .
JP2003317649A 2003-09-10 2003-09-10 Stationary fuel cell power generation system Pending JP2005085642A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003317649A JP2005085642A (en) 2003-09-10 2003-09-10 Stationary fuel cell power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003317649A JP2005085642A (en) 2003-09-10 2003-09-10 Stationary fuel cell power generation system

Publications (1)

Publication Number Publication Date
JP2005085642A true JP2005085642A (en) 2005-03-31

Family

ID=34417132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003317649A Pending JP2005085642A (en) 2003-09-10 2003-09-10 Stationary fuel cell power generation system

Country Status (1)

Country Link
JP (1) JP2005085642A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010062004A (en) * 2008-09-04 2010-03-18 Fuji Electric Systems Co Ltd Fuel cell power generating system and cooling method for fuel cell power generating system
JP2011029117A (en) * 2009-07-29 2011-02-10 Kyocera Corp Fuel cell device
JP2011181411A (en) * 2010-03-02 2011-09-15 Eneos Celltech Co Ltd Fuel cell system
JP2012243595A (en) * 2011-05-20 2012-12-10 Noritz Corp Fuel cell power generation equipment
JP2013509677A (en) * 2009-11-02 2013-03-14 バクシー・イノテヒ・ゲゼルシャフト・ミット・ベシュレンタク・ハフツング Fuel cell device
JP5301437B2 (en) * 2007-07-04 2013-09-25 パナソニック株式会社 Power generation system
JP2014032753A (en) * 2012-08-01 2014-02-20 Toshiba Fuel Cell Power Systems Corp Fuel cell system
JP2015072879A (en) * 2013-10-04 2015-04-16 株式会社日本製鋼所 Fuel cell system
JP2016207342A (en) * 2015-04-17 2016-12-08 本田技研工業株式会社 Fuel cell module

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5301437B2 (en) * 2007-07-04 2013-09-25 パナソニック株式会社 Power generation system
JP2010062004A (en) * 2008-09-04 2010-03-18 Fuji Electric Systems Co Ltd Fuel cell power generating system and cooling method for fuel cell power generating system
JP2011029117A (en) * 2009-07-29 2011-02-10 Kyocera Corp Fuel cell device
JP2013509677A (en) * 2009-11-02 2013-03-14 バクシー・イノテヒ・ゲゼルシャフト・ミット・ベシュレンタク・ハフツング Fuel cell device
JP2011181411A (en) * 2010-03-02 2011-09-15 Eneos Celltech Co Ltd Fuel cell system
JP2012243595A (en) * 2011-05-20 2012-12-10 Noritz Corp Fuel cell power generation equipment
JP2014032753A (en) * 2012-08-01 2014-02-20 Toshiba Fuel Cell Power Systems Corp Fuel cell system
JP2015072879A (en) * 2013-10-04 2015-04-16 株式会社日本製鋼所 Fuel cell system
JP2016207342A (en) * 2015-04-17 2016-12-08 本田技研工業株式会社 Fuel cell module

Similar Documents

Publication Publication Date Title
JP4950497B2 (en) Fuel cell power generator and ventilation method thereof
JP4024554B2 (en) Fuel cell power generation system
CN111133605B (en) Exhaust system
JP4537313B2 (en) Fuel cell device
JP2006253020A (en) Fuel cell generating device and intake and exhaust device
US20090186245A1 (en) Racked power supply ventilation
JP4961681B2 (en) Fuel cell power generator
JP4932265B2 (en) Fuel cell system
JP2003229148A (en) Fuel cell device
JP2008192528A (en) Fuel cell power generating device and its ventilating device
JP2003229148A5 (en)
JP2005085642A (en) Stationary fuel cell power generation system
JP7340753B2 (en) fuel cell system
JP5098372B2 (en) Fuel cell power generation system
JP2007048704A (en) Fuel cell apparatus
JPH09199152A (en) Ventilating method for package type fuel cell power plant
JP2010262746A (en) Fuel cell power generation system
JP2011119095A (en) Fuel cell system
JP4015839B2 (en) Fuel cell power generation system
JP6304601B2 (en) Fuel cell cogeneration system
JP5229121B2 (en) Fuel cell device
JPH07263008A (en) Fuel cell power generating equipment
JP2012212687A (en) Fuel cell device
JP2010062004A (en) Fuel cell power generating system and cooling method for fuel cell power generating system
JP6478208B2 (en) Fuel cell cogeneration system