JP2005084320A - Antireflection film - Google Patents

Antireflection film Download PDF

Info

Publication number
JP2005084320A
JP2005084320A JP2003315569A JP2003315569A JP2005084320A JP 2005084320 A JP2005084320 A JP 2005084320A JP 2003315569 A JP2003315569 A JP 2003315569A JP 2003315569 A JP2003315569 A JP 2003315569A JP 2005084320 A JP2005084320 A JP 2005084320A
Authority
JP
Japan
Prior art keywords
refractive index
meth
index layer
group
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003315569A
Other languages
Japanese (ja)
Other versions
JP4479198B2 (en
Inventor
Mitsuhiro Nishida
三博 西田
Masahito Yoshikawa
雅人 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2003315569A priority Critical patent/JP4479198B2/en
Publication of JP2005084320A publication Critical patent/JP2005084320A/en
Application granted granted Critical
Publication of JP4479198B2 publication Critical patent/JP4479198B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antireflection film which has a low-refractive index layer having excellent scratching resistance and a low refractive index, is consequently excellent in antireflection performance, and is highly resistant to flawing and is highly durable when applied to the surface of a display etc. <P>SOLUTION: The antireflection film is formed by laminating a hard coat layer 2, a high-refractive index layer 3 and the low-refractive index layer 4 in this order on a transparent base material film 1. The low-refractive index layer 4 is formed by curing a coating film containing a fluorine-containing (meth)acrylic compound expressed by general formula: A<SP>1</SP>-O(CH<SB>2</SB>)na-Rf-(CH<SB>2</SB>)nbO-A<SP>2</SP>, polyfunctional (meth)acrylic compound and silica particulate subjected to (meth)acryl denaturation at the terminal and the refractive index of light of a wavelength 500 to 600 nm is 1.39 to 1.47. In the general formula, A<SP>1</SP>and A<SP>2</SP>respectively independently represent an acrylol group, methacryloyl group, α-fluoroacryloyl group or trifluoromethacryloyl group; Rf represents a perfluoroakylene group; na and nb respectively independently represent an integer of 0 to 3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ワープロ、コンピュータ、CRT、プラズマテレビ、液晶ディスプレイ、有機ELなどの各種ディスプレイ、及び自動車、建築物、電車などの窓ガラスに好適な、耐摺傷性に優れ、しかも反射防止性能が高い反射防止フィルムに関する。   The present invention is excellent in scratch resistance and antireflection performance suitable for various displays such as word processors, computers, CRTs, plasma televisions, liquid crystal displays, organic EL, and window glass for automobiles, buildings, trains, etc. It relates to a high antireflection film.

ワープロ、コンピュータ、CRT、プラズマテレビ、液晶ディスプレイ、有機ELなどの各種ディスプレイ、及び自動車、建築物、電車などの窓ガラスには、光の反射を防止して高い光透過性を確保するために反射防止フィルムが適用されている。   Reflections on word processors, computers, CRTs, plasma televisions, liquid crystal displays, organic EL displays, and window glass for automobiles, buildings, trains, etc. to prevent light reflection and ensure high light transmission A protective film is applied.

従来、この種の用途に用いられる反射防止フィルムとして、透明な基材フィルムの表面に高屈折率層と低屈折率層とを設けてなるものが提供されている。この反射防止フィルムでは、高屈折率層と低屈折率層との屈折率差を利用して反射防止機能を得ている。高屈折率層及び低屈折率層としては、スパッタや蒸着による無機薄膜もあるが、無機薄膜は成膜コストが高い。これに対して、樹脂系の塗工型の薄膜であれば、低コストに成膜することができる。   Conventionally, as an antireflection film used for this type of application, a film obtained by providing a high refractive index layer and a low refractive index layer on the surface of a transparent substrate film has been provided. In this antireflection film, an antireflection function is obtained by utilizing the refractive index difference between the high refractive index layer and the low refractive index layer. As the high refractive index layer and the low refractive index layer, there is an inorganic thin film by sputtering or vapor deposition, but the inorganic thin film has a high film formation cost. In contrast, a resin-based thin film can be formed at low cost.

従来、塗工型反射防止フィルムとしては、図1に示す如く、合成樹脂よりなる透明な基材フィルム1の表面上に、下層側からハードコート層2、高屈折率層3、及び低屈折率層4を順次積層したものが主として用いられている。   Conventionally, as a coating-type antireflection film, as shown in FIG. 1, a hard coat layer 2, a high refractive index layer 3, and a low refractive index are formed on the surface of a transparent base film 1 made of a synthetic resin from the lower layer side. What laminated | stacked the layer 4 one by one is mainly used.

このような反射防止フィルムの反射防止性能を上げるためには、低屈折率層の屈折率を下げるのが必須であり、また、低屈折率層にはその用途から、耐摺傷性に優れることも要求される。そこで、従来、低屈折率層の屈折率を下げると共に耐摺傷性を得るために、次のような方法が提案されている。
(i) ベース樹脂の多官能アクリル樹脂にシリカ微粒子を混合する。
(ii) ベース樹脂の多官能アクリル樹脂にフッ化マグネシウム微粒子を混合する。
(iii) ベース樹脂としてフッ素系アクリル樹脂を用いる(特開平9−203801号公報)。
特開平9−203801号公報
In order to improve the antireflection performance of such an antireflection film, it is essential to lower the refractive index of the low refractive index layer, and the low refractive index layer has excellent scratch resistance from its application. Is also required. Therefore, conventionally, the following method has been proposed in order to lower the refractive index of the low refractive index layer and to obtain scratch resistance.
(i) Silica fine particles are mixed with the base resin polyfunctional acrylic resin.
(ii) The magnesium fluoride fine particles are mixed with the polyfunctional acrylic resin of the base resin.
(iii) A fluorine-based acrylic resin is used as the base resin (Japanese Patent Laid-Open No. 9-203801).
JP-A-9-203801

上記従来法のうち、(i)のシリカ微粒子を用いるものでは、シリカの屈折率が1.47と高いために、低屈折率化を図ることができない。また、(ii)のフッ化マグネシウム微粒子を用いるものでは、フッ化マグネシウムの末端アクリル変性が困難であるために、膜強度が劣るものとなる。   Among the above conventional methods, the method using the silica fine particles (i) cannot achieve a low refractive index because the refractive index of silica is as high as 1.47. In addition, in the case of using the magnesium fluoride fine particles of (ii), it is difficult to modify the terminal acrylic of the magnesium fluoride, so that the film strength is inferior.

(iii)のフッ素系アクリル樹脂を用いる特開平9−203801号公報には、低屈折率で耐摺傷性に優れた低屈折率層を成膜することができる旨の記載がなされているが、実際には、この低屈折率層では、後述の比較例1,5の結果からも明らかなように、耐摺傷性に劣るものとなる。なお、特開平9−203801号公報には、フッ素系アクリル樹脂に、多官能アクリル樹脂の少量を併用することも記載されているが、この場合には、耐摺傷性は向上するが屈折率が増加する。   Japanese Patent Laid-Open No. 9-203801 using a fluorine-based acrylic resin of (iii) describes that a low refractive index layer having a low refractive index and excellent scratch resistance can be formed. Actually, this low refractive index layer is inferior in scratch resistance, as is apparent from the results of Comparative Examples 1 and 5 described later. JP-A-9-203801 also describes that a small amount of a polyfunctional acrylic resin is used in combination with a fluorine-based acrylic resin. In this case, although the scratch resistance is improved, the refractive index is increased. Will increase.

本発明は、上記従来の問題点を解決し、耐摺傷性に優れると共に、屈折率の低い低屈折率層を有し、従って、反射防止性能に優れると共に、ディスプレイ等の表面に適用した場合、極めて傷付き難く、耐久性に優れた反射防止フィルムを提供することを目的とする。   The present invention solves the above-mentioned conventional problems, has excellent scratch resistance, has a low refractive index layer having a low refractive index, and therefore has excellent antireflection performance and is applied to the surface of a display or the like. An object of the present invention is to provide an antireflection film that is extremely resistant to scratching and excellent in durability.

本発明の反射防止フィルムは、透明基材フィルム上に、ハードコート層、高屈折率層及び低屈折率層をこの順で積層してなる反射防止フィルムにおいて、該低屈折率層が、下記一般式(1)で表されるフッ素含有(メタ)アクリル系化合物、多官能(メタ)アクリル系化合物、及び末端が(メタ)アクリル変性されたシリカ微粒子を含む塗膜を硬化してなり、波長500〜600nmの光の屈折率が1.39〜1.47であることを特徴とする。
−O(CHna−Rf−(CHnbO−A ……(1)
(上記(1)式中、A,Aは各々独立に、アクリロイル基、メタクリロイル基、α−フルオロアクリロイル基、又はトリフルオロメタクリロイル基を表し、Rfはパーフルオロアルキレン基を表し、na,nbは各々独立に、0〜3の整数を表す。)
The antireflective film of the present invention is an antireflective film obtained by laminating a hard coat layer, a high refractive index layer and a low refractive index layer in this order on a transparent substrate film. A coating film containing a fluorine-containing (meth) acrylic compound represented by the formula (1), a polyfunctional (meth) acrylic compound, and silica fine particles having a terminal (meth) acryl-modified, is cured, and has a wavelength of 500 The refractive index of light of ˜600 nm is 1.39 to 1.47.
A 1 -O (CH 2) na -Rf- (CH 2) nb O-A 2 ...... (1)
(In the formula (1), A 1 and A 2 each independently represents an acryloyl group, a methacryloyl group, an α-fluoroacryloyl group, or a trifluoromethacryloyl group, Rf represents a perfluoroalkylene group, and na, nb Each independently represents an integer of 0 to 3.)

なお、本発明において、「(メタ)アクリル」とは「アクリル及び/又はメタクリル」を意味する。また、以下において、「屈折率」は「波長500〜600nmの光に対する屈折率」を示す。   In the present invention, “(meth) acryl” means “acryl and / or methacryl”. In the following description, “refractive index” indicates “refractive index for light having a wavelength of 500 to 600 nm”.

前述の如く、フッ素系アクリル樹脂は低屈折率性には優れるが、耐摺傷性に劣る。   As described above, the fluorinated acrylic resin is excellent in low refractive index property but inferior in scratch resistance.

本発明では、前記一般式(1)で表されるフッ素含有(メタ)アクリル系化合物由来の樹脂成分(以下「フッ素系2官能(メタ)アクリル樹脂」と称す。)に、(メタ)アクリル変性シリカ微粒子と多官能(メタ)アクリル系化合物由来の樹脂成分(以下、「多官能(メタ)アクリル樹脂」と称す。)とを配合することにより、フッ素系2官能(メタ)アクリル樹脂のみの場合に比べて膜強度を飛躍的に高め、また、フッ素系2官能(メタ)アクリル樹脂に多官能(メタ)アクリル樹脂のみを配合した場合に比べて、(メタ)アクリル変性シリカ微粒子の配合で屈折率の増加を極力抑える。このため、低屈折率で耐摺傷性に優れた低屈折率層とすることができる。   In the present invention, the resin component derived from the fluorine-containing (meth) acrylic compound represented by the general formula (1) (hereinafter referred to as “fluorinated bifunctional (meth) acrylic resin”) is modified with (meth) acrylic modification. In the case of only a fluorine-based bifunctional (meth) acrylic resin by blending silica fine particles and a resin component derived from a polyfunctional (meth) acrylic compound (hereinafter referred to as “polyfunctional (meth) acrylic resin”). Compared with the case where only polyfunctional (meth) acrylic resin is blended with fluorine-based bifunctional (meth) acrylic resin, the film strength is refracted by blending with (meth) acrylic modified silica fine particles. Minimize the rate increase. For this reason, it can be set as the low-refractive-index layer excellent in scratch resistance with a low refractive index.

本発明において、前記一般式(1)におけるRfは(CF(mは2以上の整数)であることが好ましい。 In the present invention, Rf in the general formula (1) is preferably (CF 2 ) m (m is an integer of 2 or more).

また、低屈折率層中の前記フッ素含有(メタ)アクリル系化合物由来の樹脂成分の含有量は60〜95重量%であり、(メタ)アクリル変性シリカ微粒子及び多官能(メタ)アクリル系化合物由来の樹脂成分の合計の含有量は5〜40重量%であり、(メタ)アクリル変性シリカ微粒子と多官能(メタ)アクリル系化合物由来の樹脂成分の含有割合は40:60〜80:20(重量比)であることが好ましい。また、(メタ)アクリル変性シリカ微粒子の平均粒子径は5〜200nmであることが好ましい。   The content of the resin component derived from the fluorine-containing (meth) acrylic compound in the low refractive index layer is 60 to 95% by weight, and is derived from (meth) acryl-modified silica fine particles and polyfunctional (meth) acrylic compound. The total content of the resin components is 5 to 40% by weight, and the content ratio of the resin component derived from the (meth) acryl-modified silica fine particles and the polyfunctional (meth) acrylic compound is 40:60 to 80:20 (weight). Ratio). The average particle diameter of the (meth) acryl-modified silica fine particles is preferably 5 to 200 nm.

本発明に係る低屈折率層は、好ましくは紫外線(UV)又は電子線(EV)により硬化される。   The low refractive index layer according to the present invention is preferably cured by ultraviolet rays (UV) or electron beams (EV).

本発明の反射防止フィルムは、耐摺傷性に優れると共に屈折率の低い低屈折率層を有し、従って、反射防止性能に優れると共に、ディスプレイ等の表面に適用した場合、極めて傷付き難く、耐久性に優れる。   The antireflection film of the present invention has a low refractive index layer having excellent scratch resistance and a low refractive index, and therefore excellent in antireflection performance, and when applied to the surface of a display or the like, it is extremely difficult to be damaged. Excellent durability.

以下に本発明の反射防止フィルムの実施の形態を説明する。   Embodiments of the antireflection film of the present invention will be described below.

本発明の反射防止フィルムは、図1に示す如く、透明基材フィルム1上に、ハードコート層2、高屈折率層3及び低屈折率層4をこの順で積層してなるものである。   As shown in FIG. 1, the antireflection film of the present invention is obtained by laminating a hard coat layer 2, a high refractive index layer 3 and a low refractive index layer 4 in this order on a transparent substrate film 1.

本発明において、基材フィルム1としては、ポリエステル、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート、ポリメチルメタアクリレート(PMMA)、アクリル、ポリカーボネート(PC)、ポリスチレン、セルローストリアセテート(TAC)、ポリビニルアルコール、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエチレン、エチレン−酢酸ビニル共重合体、ポリウレタン、セロファン等、好ましくはPET、PC、PMMAの透明フィルムが挙げられる。   In the present invention, the base film 1 includes polyester, polyethylene terephthalate (PET), polybutylene terephthalate, polymethyl methacrylate (PMMA), acrylic, polycarbonate (PC), polystyrene, cellulose triacetate (TAC), polyvinyl alcohol, poly Vinyl chloride, polyvinylidene chloride, polyethylene, ethylene-vinyl acetate copolymer, polyurethane, cellophane, etc., preferably PET, PC, PMMA transparent films.

基材フィルム1の厚さは得られる反射防止フィルムの用途による要求特性(例えば、強度、薄膜性)等によって適宜決定されるが、通常の場合、1μm〜10mmの範囲とされる。   The thickness of the base film 1 is appropriately determined depending on the required properties (for example, strength and thin film properties) depending on the use of the obtained antireflection film, and is usually in the range of 1 μm to 10 mm.

ハードコート層2としては、合成樹脂系のものが好ましく、特に、紫外線硬化型又は電子線硬化型の合成樹脂、とりわけ多官能アクリル樹脂が好適である。このハードコート層2の厚みは2〜20μmが好ましい。   The hard coat layer 2 is preferably a synthetic resin type, and particularly, an ultraviolet curable or electron beam curable synthetic resin, particularly a polyfunctional acrylic resin is suitable. The thickness of the hard coat layer 2 is preferably 2 to 20 μm.

高屈折率層3は、金属酸化物微粒子を含む合成樹脂系のものが好ましく、合成樹脂としては特に紫外線硬化型又は電子線硬化型の合成樹脂、とりわけ、アクリル系樹脂、エポキシ系樹脂、スチレン系樹脂、最も好ましくはアクリル系樹脂が挙げられる。また、金属酸化物微粒子としては、ITO、TiO、ZrO、CeO、Al、Y、La、LaO及びHoよりなる群から選ばれる1種又は2種以上の高屈折率金属酸化物微粒子の1種又は2種以上、特に好ましくは、TiO微粒子、ITO微粒子が好ましい。 The high refractive index layer 3 is preferably a synthetic resin-based material containing metal oxide fine particles, and the synthetic resin is particularly an ultraviolet curable or electron beam curable synthetic resin, especially an acrylic resin, an epoxy resin, or a styrene resin. Resins, most preferably acrylic resins. Further, the metal oxide fine particles are selected from the group consisting of ITO, TiO 2 , ZrO 2 , CeO 2 , Al 2 O 3 , Y 2 O 3 , La 2 O 3 , LaO 2 and Ho 2 O 3. Alternatively, one or more of two or more kinds of high refractive index metal oxide fine particles, particularly preferably TiO 2 fine particles and ITO fine particles are preferable.

高屈折率層3における、金属酸化物微粒子と合成樹脂との割合は、金属酸化物微粒子が過度に多く合成樹脂が不足すると耐薬品性が低下し、逆に金属酸化物微粒子が少ないと屈折率を十分に高めることができないことから、金属酸化物微粒子と合成樹脂との合計に対する金属酸化物微粒子の割合が10〜60体積%、特に20〜40体積%とするのが好ましい。   The ratio of the metal oxide fine particles and the synthetic resin in the high refractive index layer 3 is such that when the metal oxide fine particles are excessively large and the synthetic resin is insufficient, the chemical resistance is deteriorated. Therefore, the ratio of the metal oxide fine particles to the total of the metal oxide fine particles and the synthetic resin is preferably 10 to 60% by volume, particularly preferably 20 to 40% by volume.

このような高屈折率層3の厚みは80〜100nm程度が好ましい。また、この高屈折率層3は屈折率1.65以上、特に1.66〜1.85であることが好ましく、この場合において、低屈折率層4の屈折率を1.39〜1.47とすることで、表面反射率の最小反射率1%以下の反射防止性能に優れた反射防止フィルムとすることができる。特に、低屈折率層4の屈折率を1.45以下とした場合には、更に反射防止性能を高め、表面反射率の最小反射率0.5%以下の反射防止フィルムとすることも可能である。   The thickness of the high refractive index layer 3 is preferably about 80 to 100 nm. The high refractive index layer 3 preferably has a refractive index of 1.65 or more, particularly 1.66 to 1.85. In this case, the refractive index of the low refractive index layer 4 is 1.39 to 1.47. By setting it as this, it can be set as the antireflection film excellent in the antireflection performance of the minimum reflectance 1% or less of a surface reflectance. In particular, when the refractive index of the low refractive index layer 4 is 1.45 or less, it is possible to further improve the antireflection performance and to form an antireflection film having a minimum surface reflectance of 0.5% or less. is there.

本発明において、低屈折率層4は以下のような樹脂で構成されるが、この低屈折率層4も、紫外線硬化型又は電子線硬化型であることが好ましい。   In the present invention, the low refractive index layer 4 is made of the following resin, but the low refractive index layer 4 is also preferably an ultraviolet curable type or an electron beam curable type.

本発明に係る低屈折率層4は、下記一般式(1)で表されるフッ素含有(メタ)アクリル系化合物と多官能(メタ)アクリル系化合物と(メタ)アクリル変性シリカ微粒子とが配合された樹脂組成物により形成される。
−O(CHna−Rf−(CHnbO−A ……(1)
(上記(1)式中、A,Aは各々独立に、アクリロイル基、メタクリロイル基、α−フルオロアクリロイル基、又はトリフルオロメタクリロイル基を表し、Rfはパーフルオロアルキレン基を表し、na,nbは各々独立に、0〜3の整数を表す。)
The low refractive index layer 4 according to the present invention includes a fluorine-containing (meth) acrylic compound represented by the following general formula (1), a polyfunctional (meth) acrylic compound, and (meth) acryl-modified silica fine particles. Formed by the resin composition.
A 1 -O (CH 2) na -Rf- (CH 2) nb O-A 2 ...... (1)
(In the formula (1), A 1 and A 2 each independently represents an acryloyl group, a methacryloyl group, an α-fluoroacryloyl group, or a trifluoromethacryloyl group, Rf represents a perfluoroalkylene group, and na, nb Each independently represents an integer of 0 to 3.)

上記一般式(1)において、Rfは(CF(mは2以上、好ましくは2〜8の整数)であることが好ましい。 In the general formula (1), Rf is preferably (CF 2 ) m (m is 2 or more, preferably an integer of 2 to 8).

(メタ)アクリル変性シリカ微粒子とは、シリカ微粒子を、末端(メタ)アクリル基を有するシランカップリング剤により処理することにより、シリカ微粒子の表面のSi−OH基に、シランカップリング剤を結合させ、シリカ微粒子表面に末端(メタ)アクリル基を導入したものであり、このような(メタ)アクリル変性シリカ微粒子であれば、シリカ微粒子の表面に導入された(メタ)アクリル基を介して、バインダー樹脂と共有結合することが可能となり、樹脂成分への結合性が高く、優れた機能性を得ることができる。このシリカ微粒子の平均粒子径は5〜200nm、特に5〜25nmであることが好ましい。シリカ微粒子の平均粒子径が5nm未満では耐擦傷性が低下し、200nmを超えるとHzが高くなり、平滑性が損なわれる。   (Meth) acrylic modified silica fine particles are silica fine particles treated with a silane coupling agent having a terminal (meth) acrylic group to bind the silane coupling agent to the Si-OH group on the surface of the silica fine particles. A terminal (meth) acrylic group is introduced on the surface of the silica fine particle, and if it is such a (meth) acryl-modified silica fine particle, the binder is introduced via the (meth) acrylic group introduced on the surface of the silica fine particle. It becomes possible to covalently bond to the resin, and the bondability to the resin component is high, and excellent functionality can be obtained. The average particle diameter of the silica fine particles is preferably 5 to 200 nm, particularly preferably 5 to 25 nm. When the average particle diameter of the silica fine particles is less than 5 nm, the scratch resistance is lowered, and when it exceeds 200 nm, the Hz is increased and the smoothness is impaired.

多官能(メタ)アクリル系化合物としては、例えば、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6−ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、1,1,1−トリス[(メタ)アクリロイルオキシエトキシエトキシ]プロパン、トリス(ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート、トリス(ヒドロキシエチル)イソシアヌレートジ(メタ)アクリレートなどの1種又は2種以上が挙げられる。なお、多官能(メタ)アクリル系化合物は、これらの1種又は2種以上が重合又は共重合したオリゴマーであっても良い。   Examples of the polyfunctional (meth) acrylic compound include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, tri Methylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol tetra (meth) acrylate , Ditrimethylolpropane tri (meth) acrylate, 1,1,1-tris [(meth) acryloyloxyethoxyethoxy] propane, tris (hydroxyethyl) ) Isocyanurate tri (meth) acrylate, tris (one or more, such as hydroxyethyl) isocyanurate di (meth) acrylate. The polyfunctional (meth) acrylic compound may be an oligomer obtained by polymerizing or copolymerizing one or more of these.

本発明において、低屈折率層中のフッ素系2官能(メタ)アクリル樹脂(一般式(1)で表されるフッ素含有(メタ)アクリル系化合物由来の樹脂成分)の含有量は60〜95重量%、特に60〜80重量%で、(メタ)アクリル変性シリカ微粒子と多官能(メタ)アクリル樹脂(多官能(メタ)アクリル系化合物由来の樹脂成分)との合計の含有量は5〜40重量%、特に5〜35重量%であることが好ましい。この範囲よりもフッ素系2官能(メタ)アクリル樹脂が少ないと、フッ素系2官能(メタ)アクリル樹脂による低屈折率性が損なわれ、多いと耐摺傷性の向上効果を十分に得ることができない。   In the present invention, the content of the fluorine-based bifunctional (meth) acrylic resin (the resin component derived from the fluorine-containing (meth) acrylic compound represented by the general formula (1)) in the low refractive index layer is 60 to 95 weight. %, Particularly 60 to 80% by weight, and the total content of (meth) acryl-modified silica fine particles and polyfunctional (meth) acrylic resin (resin component derived from polyfunctional (meth) acrylic compound) is 5 to 40 wt. %, Particularly 5 to 35% by weight is preferred. If the amount of the fluorine-based bifunctional (meth) acrylic resin is less than this range, the low refractive index property due to the fluorine-based bifunctional (meth) acrylic resin is impaired, and if it is large, the effect of improving the scratch resistance can be sufficiently obtained. Can not.

また、低屈折率層中の(メタ)アクリル変性シリカ微粒子と多官能(メタ)アクリル樹脂の割合は、(メタ)アクリル変性シリカ微粒子:多官能(メタ)アクリル樹脂=40:60〜80:20(重量比)であることが好ましい。この範囲よりも多官能(メタ)アクリル樹脂が多く、(メタ)アクリル変性シリカ微粒子が少ないと、(メタ)アクリル変性シリカ微粒子を配合したことによる屈折率の低減効果を十分に得ることができず、多官能(メタ)アクリル樹脂が少なく、(メタ)アクリル変性シリカ微粒子が多いと多官能(メタ)アクリル樹脂を配合したことによる耐摺傷性の向上効果を十分に得ることができない。   The ratio of the (meth) acryl-modified silica fine particles and the polyfunctional (meth) acrylic resin in the low refractive index layer is (meth) acryl-modified silica fine particles: polyfunctional (meth) acrylic resin = 40: 60 to 80:20. (Weight ratio) is preferable. If there are more polyfunctional (meth) acrylic resins than this range and less (meth) acryl-modified silica fine particles, the effect of reducing the refractive index due to the incorporation of (meth) acryl-modified silica fine particles cannot be obtained sufficiently. If the polyfunctional (meth) acrylic resin is small and the (meth) acryl-modified silica fine particles are large, the effect of improving the scratch resistance due to the blending of the polyfunctional (meth) acrylic resin cannot be sufficiently obtained.

本発明に係る低屈折率層は、前述のフッ素含有(メタ)アクリル系化合物、多官能(メタ)アクリル系化合物及び(メタ)アクリル変性シリカ微粒子を所定の割合で混合し、必要に応じて光重合開始剤を含む樹脂組成物を高屈折率層上に塗工して硬化させることにより成膜され、その屈折率は1.39〜1.47、好ましくは1.39〜1.46である。この低屈折率層4の屈折率が1.39未満であっても反射防止フィルムの表面反射率の最小反射率を更に下げることは難しく、低屈折率層4の屈折率が1.47を超えると反射防止フィルムとしての十分な機能が得られなくなる。   The low refractive index layer according to the present invention is a mixture of the above-mentioned fluorine-containing (meth) acrylic compound, polyfunctional (meth) acrylic compound and (meth) acryl-modified silica fine particles in a predetermined ratio, and light as required. A resin composition containing a polymerization initiator is applied on the high refractive index layer and cured to form a film, and the refractive index is 1.39 to 1.47, preferably 1.39 to 1.46. . Even if the refractive index of the low refractive index layer 4 is less than 1.39, it is difficult to further reduce the minimum reflectance of the surface reflectance of the antireflection film, and the refractive index of the low refractive index layer 4 exceeds 1.47. And sufficient function as an antireflection film cannot be obtained.

このような低屈折率層の厚みは、85〜110nmであることが好ましい。   The thickness of such a low refractive index layer is preferably 85 to 110 nm.

本発明において、基材フィルム1上にハードコート層2、高屈折率層3及び低屈折率層4を形成するには、未硬化の樹脂組成物(必要に応じ上記の微粒子を配合したもの)を塗工し、次いで紫外線又は電子線を照射するのが好ましい。この場合、各層2〜4を1層ずつ塗工して硬化させても良く、また、3層を塗工した後、まとめて硬化させてもよい。   In the present invention, in order to form the hard coat layer 2, the high refractive index layer 3 and the low refractive index layer 4 on the base film 1, an uncured resin composition (containing the above fine particles as necessary). It is preferable to apply UV light or an electron beam. In this case, each layer 2 to 4 may be applied and cured one by one, or after three layers are applied, they may be cured together.

塗工の具体的な方法としては、アクリルモノマー等のモノマー成分等をトルエン等の溶媒で溶液化した塗布液をグラビアコータ等によりコーティングし、その後乾燥し、次いで紫外線又は電子線照射によりキュアする方法が例示される。このウェットコーティング法であれば、高速で均一に且つ安価に成膜できるという利点がある。このコーティング後に例えば紫外線又は電子線を照射してキュアすることにより密着性の向上、膜の硬度の上昇という効果が奏される。   As a specific method of coating, a method of coating a coating solution in which a monomer component such as an acrylic monomer is dissolved in a solvent such as toluene with a gravure coater, then drying, and then curing by irradiation with ultraviolet rays or electron beams Is exemplified. This wet coating method has the advantage that the film can be uniformly formed at high speed at low cost. After this coating, for example, by curing by irradiating with ultraviolet rays or electron beams, the effect of improving the adhesion and increasing the hardness of the film can be obtained.

このような本発明の反射防止フィルムは、OA機器のPDPや液晶板の前面フィルタ、或いは、車輌や特殊建築物の窓材に適用することで、良好な光透過性と耐摺傷性を確保することができる。   Such an antireflection film of the present invention ensures good light transmission and scratch resistance when applied to a PDP for OA equipment, a front filter for a liquid crystal plate, or a window material for a vehicle or a special building. can do.

以下に実施例及び比較例を挙げて本発明をより具体的に説明する。   Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.

なお、以下において、低屈折率層の屈折率及び反射防止フィルムの耐摺傷性は次のようにして測定した。
<屈折率の測定>
易接着層のついてないPETフィルム(「東レルミラー」、膜厚50μm)に各実施例及び比較例と同様にして低屈折率層成膜用組成物を550nmの光波長に対し約1/4λの厚さに塗工して硬化させた。硬化条件は紫外線積算照射量300mJ/cm、硬化時の酸素濃度150ppmとした。その後、塗工してない面に黒いビニールテープを張り、反射率を測定し、この反射スペクトルの最小反射率から、屈折率を計算により求めた。
<耐摺傷性(耐消しゴム性)の測定>
各実施例及び比較例で作成した反射防止フィルムについて、その表面(低屈折率層表面)をTOMBO製消しゴム「NONDUST」で約2.5×10N/mの圧力で往復させ、傷がつくまでの回数を測定した。100往復以上傷がつかない場合は耐摺傷性良(○)、500往復以上傷がつかないものを耐摺傷性優(◎)とし、100往復未満で傷が付くものを耐摺傷性不良(×)とした。
In the following, the refractive index of the low refractive index layer and the scratch resistance of the antireflection film were measured as follows.
<Measurement of refractive index>
In the same manner as in the examples and comparative examples, a low refractive index layer-forming composition was applied to a PET film without an easy-adhesion layer (“East Lerre mirror”, film thickness 50 μm) at a wavelength of about 1 / 4λ with respect to a light wavelength of 550 nm. It was applied to a thickness and cured. The curing conditions were an ultraviolet integrated dose of 300 mJ / cm 2 and an oxygen concentration at curing of 150 ppm. Thereafter, a black vinyl tape was applied to the uncoated surface, the reflectance was measured, and the refractive index was determined by calculation from the minimum reflectance of this reflection spectrum.
<Measurement of Scratch Resistance (Eraser Resistance)>
About the antireflection film created in each example and comparative example, the surface (low refractive index layer surface) was reciprocated with a pressure of about 2.5 × 10 3 N / m 2 with a TOMBO eraser “NONDUST” The number of times until sticking was measured. Scratch resistance is good (○) when scratches are not more than 100 reciprocations, excellent scratch resistance (◎) is those that are not scratches more than 500 reciprocations, and those that are scratched less than 100 reciprocations are scratch resistance. Defective (x).

また、反射防止フィルムの反射防止性能は、低屈折率層の屈折率と高屈折率層の屈折率とから、低屈折率層の屈折率が1.440以下を優(◎)、1.440を超え1.451以下を良(○)、1.451を超え1.481以下を可(△)、1.481を超えるものを不可(×)とした。   The antireflective performance of the antireflective film is such that the refractive index of the low refractive index layer is 1.440 or less (◎) and 1.440 from the refractive index of the low refractive index layer and the refractive index of the high refractive index layer. Exceeding 1.451, good (◯), exceeding 1.451 and not more than 1.481 were acceptable (Δ), and exceeding 1.451 were unacceptable (x).

実施例1〜6、比較例1〜8
厚さ50μmのTACフィルム(富士フィルム社製「TACフィルム」)の上に、ハードコート(JSR製「Z7503」)を塗工した後、乾燥、硬化させて、厚さ5μm、鉛筆硬度3Hのハードコート層を形成した。硬化条件は紫外線積算照射量300mJ/cm、硬化時の酸素濃度150ppmとした。次いで、ITO微粒子含有アクリル樹脂組成物(大日本塗料(株)製「Ei−3」)を塗工し、乾燥、硬化させて、厚さ約90nmで、屈折率1.67の高屈折率層を形成した。硬化条件は紫外線積算照射量300mJ/cm、硬化時の酸素濃度は150ppmとした。
Examples 1-6, Comparative Examples 1-8
After a hard coat (“Z7503” manufactured by JSR) is applied onto a TAC film (“TAC film” manufactured by Fuji Film Co., Ltd.) having a thickness of 50 μm, it is dried and cured, and then a hard having a thickness of 5 μm and a pencil hardness of 3H. A coat layer was formed. The curing conditions were an ultraviolet integrated dose of 300 mJ / cm 2 and an oxygen concentration at curing of 150 ppm. Next, an ITO fine particle-containing acrylic resin composition (“Ei-3” manufactured by Dainippon Paint Co., Ltd.) was applied, dried and cured, and a high refractive index layer having a thickness of about 90 nm and a refractive index of 1.67. Formed. Curing conditions were an integrated UV irradiation dose of 300 mJ / cm 2 and an oxygen concentration during curing of 150 ppm.

次いで、下記の各成分を所定割合で含む低屈折率層成膜用組成物を高屈折率層上に塗工し、乾燥、硬化させて厚さ100nmの低屈折率層を形成した。硬化条件は紫外線積算照射量300mJ/cm、硬化時の酸素濃度は150ppmとした。 Next, a composition for forming a low refractive index layer containing the following components at a predetermined ratio was applied onto the high refractive index layer, dried and cured to form a low refractive index layer having a thickness of 100 nm. Curing conditions were an integrated UV irradiation dose of 300 mJ / cm 2 and an oxygen concentration during curing of 150 ppm.

この低屈折率層の各成分含有量は表1に示す通りである。   The content of each component in the low refractive index layer is as shown in Table 1.

<低屈折率層成分>
フッ素系2官能(メタ)アクリル樹脂用モノマーA(フッ素含有(メタ)アクリル系化合物)A:前記一般式(1)において、Aがアクリロイル基、Aがアクリロイル基、Rfが(CF、naが2,nbが2のフッ素含有(メタ)アクリル系化合物とこのフッ素含有(メタ)アクリル系化合物に対して光重合開始剤5重量%を含むもの)
フッ素系2官能(メタ)アクリル樹脂用モノマーB(フッ素含有(メタ)アクリル系化合物)B:前記一般式(1)において、Aがアクリロイル基、Aがアクリロイル基、Rfが(CF、naが2,nbが2のフッ素含有(メタ)アクリル系化合物とこのフッ素含有(メタ)アクリル系化合物に対して光重合開始剤5重量%を含むもの)
(メタ)アクリル変性シリカ微粒子:シリカ微粒子(平均粒子径10nm)を末端アクリロイル基シランカップリング剤で処理して末端アクリル基を導入したもの
多官能(メタ)アクリル系化合物:ペンタエリスリトールテトラアクリレートや、ジペンタエリスリトールヘキサアクリレート等
<Low refractive index layer component>
Monomer A for fluorine-based bifunctional (meth) acrylic resin (fluorine-containing (meth) acrylic compound) A: In the general formula (1), A 1 is an acryloyl group, A 2 is an acryloyl group, and Rf is (CF 2 ). 8 , a fluorine-containing (meth) acrylic compound having na of 2 and nb of 2 and containing 5% by weight of a photopolymerization initiator based on the fluorine-containing (meth) acrylic compound)
Monomer B for fluorine-based bifunctional (meth) acrylic resin (fluorine-containing (meth) acrylic compound) B: In the general formula (1), A 1 is an acryloyl group, A 2 is an acryloyl group, and Rf is (CF 2 ) 2 , a fluorine-containing (meth) acrylic compound having na of 2 and nb of 2 and a photopolymerization initiator containing 5% by weight based on the fluorine-containing (meth) acrylic compound)
(Meth) acryl-modified silica fine particles: Silica fine particles (average particle size 10 nm) treated with a terminal acryloyl group silane coupling agent to introduce terminal acrylic groups Multifunctional (meth) acrylic compound: pentaerythritol tetraacrylate, Dipentaerythritol hexaacrylate etc.

表1に、各低屈折率層の屈折率と反射防止フィルムの耐摺傷性の測定結果と反射防止性能の評価結果を示した。   Table 1 shows the measurement results of the refractive index of each low refractive index layer, the scratch resistance of the antireflection film, and the evaluation results of the antireflection performance.

Figure 2005084320
Figure 2005084320

表1より次のことが明らかである。   From Table 1, the following is clear.

フッ素系2官能(メタ)アクリル樹脂のみの比較例1,5では、低屈折率層の屈折率は1.425又は1.445と低いが、耐摺傷性は悪く、1往復又は40往復で傷がついた。   In Comparative Examples 1 and 5 using only the fluorine-based bifunctional (meth) acrylic resin, the refractive index of the low refractive index layer is as low as 1.425 or 1.445, but the scratch resistance is poor, and it is 1 or 40 reciprocations. Scratched.

フッ素系2官能(メタ)アクリル樹脂に多官能(メタ)アクリル樹脂のみを添加した比較例2〜4及び比較例6〜8では、多官能(メタ)アクリル樹脂の添加で耐摺傷性が向上するが、低屈折率層の屈折率が多官能(メタ)アクリル樹脂の添加に従って非常に高くなっていき、耐摺傷性が100往復を超えるようなものでは屈折率は非常に高くなってしまい、反射防止性能が落ちた。   In Comparative Examples 2 to 4 and Comparative Examples 6 to 8 in which only the polyfunctional (meth) acrylic resin is added to the fluorine-based bifunctional (meth) acrylic resin, the scratch resistance is improved by adding the polyfunctional (meth) acrylic resin. However, the refractive index of the low refractive index layer becomes very high as the polyfunctional (meth) acrylic resin is added, and the refractive index becomes very high when the scratch resistance exceeds 100 reciprocations. The antireflection performance fell.

これに対して、フッ素系2官能(メタ)アクリル樹脂に(メタ)アクリル変性シリカ微粒子と多官能(メタ)アクリル樹脂を添加した実施例1〜3、実施例4〜6では、これらの添加に従って屈折率が高くなるが、多官能(メタ)アクリル樹脂のみを加えた場合と比較し、屈折率の上昇が小さく、耐摺傷性が100往復を超えるものでも屈折率は低く、良好な反射防止性能が得られた。   In contrast, in Examples 1 to 3 and Examples 4 to 6 in which (meth) acryl-modified silica fine particles and polyfunctional (meth) acrylic resin were added to the fluorine-based bifunctional (meth) acrylic resin, according to these additions Although the refractive index is high, the increase in the refractive index is small compared to the case where only the polyfunctional (meth) acrylic resin is added, and even if the scratch resistance exceeds 100 reciprocations, the refractive index is low and good antireflection Performance was obtained.

反射防止性能と耐摺傷性、即ち耐久性とを兼備する本発明の反射防止フィルムは、ワープロ、コンピュータ、CRT、プラズマテレビ、液晶ディスプレイ、有機ELなどの各種ディスプレイ、及び自動車、建築物、電車などの窓ガラス等に有用である。   The antireflection film of the present invention having both antireflection performance and scratch resistance, that is, durability, includes various displays such as word processors, computers, CRTs, plasma televisions, liquid crystal displays, and organic EL, and automobiles, buildings, and trains. It is useful for window glass etc.

一般的な塗工型反射防止フィルムの構成を示す模式的な断面図である。It is typical sectional drawing which shows the structure of a general coating-type antireflection film.

符号の説明Explanation of symbols

1 基材フィルム
2 ハードコート層
3 高屈折率層
4 低屈折率層
1 Base film 2 Hard coat layer 3 High refractive index layer 4 Low refractive index layer

Claims (6)

透明基材フィルム上に、ハードコート層、高屈折率層及び低屈折率層をこの順で積層してなる反射防止フィルムにおいて、
該低屈折率層が、下記一般式(1)で表されるフッ素含有(メタ)アクリル系化合物、多官能(メタ)アクリル系化合物、及び末端が(メタ)アクリル変性されたシリカ微粒子を含む塗膜を硬化してなり、
波長500〜600nmの光の屈折率が1.39〜1.47であることを特徴とする反射防止フィルム。
−O(CHna−Rf−(CHnbO−A ……(1)
(上記(1)式中、A,Aは各々独立に、アクリロイル基、メタクリロイル基、α−フルオロアクリロイル基、又はトリフルオロメタクリロイル基を表し、Rfはパーフルオロアルキレン基を表し、na,nbは各々独立に、0〜3の整数を表す。)
In the antireflection film formed by laminating a hard coat layer, a high refractive index layer and a low refractive index layer in this order on the transparent substrate film,
The low refractive index layer comprises a fluorine-containing (meth) acrylic compound represented by the following general formula (1), a polyfunctional (meth) acrylic compound, and a silica fine particle having a terminal (meth) acryl-modified. The film is cured,
An antireflection film, wherein the refractive index of light having a wavelength of 500 to 600 nm is 1.39 to 1.47.
A 1 -O (CH 2) na -Rf- (CH 2) nb O-A 2 ...... (1)
(In the formula (1), A 1 and A 2 each independently represents an acryloyl group, a methacryloyl group, an α-fluoroacryloyl group, or a trifluoromethacryloyl group, Rf represents a perfluoroalkylene group, and na, nb Each independently represents an integer of 0 to 3.)
請求項1において、前記一般式(1)におけるRfが(CF(mは2以上の整数)であることを特徴とする反射防止フィルム。 According to claim 1, antireflection film, wherein the Rf in the general formula (1) is (CF 2) m (m is an integer of 2 or more). 請求項1又は2において、前記低屈折率層中の前記フッ素含有(メタ)アクリル系化合物由来の樹脂成分の含有量が60〜95重量%であり、前記(メタ)アクリル変性シリカ微粒子及び多官能(メタ)アクリル系化合物由来の樹脂成分の合計の含有量が5〜40重量%であることを特徴とする反射防止フィルム。   The content of the resin component derived from the fluorine-containing (meth) acrylic compound in the low refractive index layer according to claim 1 or 2 is 60 to 95% by weight, and the (meth) acryl-modified silica fine particles and polyfunctional The total content of the resin component derived from a (meth) acrylic compound is 5 to 40% by weight. 請求項1ないし3のいずれか1項において、前記(メタ)アクリル変性シリカ微粒子の平均粒子径が5〜200nmであることを特徴とする反射防止フィルム。   4. The antireflection film according to claim 1, wherein the (meth) acryl-modified silica fine particles have an average particle diameter of 5 to 200 nm. 請求項1ないし4のいずれか1項において、前記低屈折率層中の前記(メタ)アクリル変性シリカ微粒子と多官能(メタ)アクリル系化合物由来の樹脂成分の含有割合が40:60〜80:20(重量比)であることを特徴とする反射防止フィルム。   5. The content ratio of the resin component derived from the (meth) acryl-modified silica fine particles and the polyfunctional (meth) acrylic compound in the low refractive index layer according to claim 1 is 40:60 to 80: 5. An antireflective film characterized by being 20 (weight ratio). 請求項1ないし5のいずれか1項において、前記塗膜を紫外線又は電子線により硬化させてなることを特徴とする反射防止フィルム。   The antireflection film according to any one of claims 1 to 5, wherein the coating film is cured by ultraviolet rays or electron beams.
JP2003315569A 2003-09-08 2003-09-08 Antireflection film Expired - Fee Related JP4479198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003315569A JP4479198B2 (en) 2003-09-08 2003-09-08 Antireflection film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003315569A JP4479198B2 (en) 2003-09-08 2003-09-08 Antireflection film

Publications (2)

Publication Number Publication Date
JP2005084320A true JP2005084320A (en) 2005-03-31
JP4479198B2 JP4479198B2 (en) 2010-06-09

Family

ID=34415795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003315569A Expired - Fee Related JP4479198B2 (en) 2003-09-08 2003-09-08 Antireflection film

Country Status (1)

Country Link
JP (1) JP4479198B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007011323A (en) * 2005-06-03 2007-01-18 Bridgestone Corp Antireflection film, antireflective light-transmitting window material having the antireflection film, and display filter having the antireflective light-transmitting window material
JP2007014946A (en) * 2005-06-09 2007-01-25 Pentax Corp Method for manufacturing silica aerogel film
JP2010222160A (en) * 2009-03-23 2010-10-07 Bridgestone Corp Heat ray shielding glass and multilayered glass using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007011323A (en) * 2005-06-03 2007-01-18 Bridgestone Corp Antireflection film, antireflective light-transmitting window material having the antireflection film, and display filter having the antireflective light-transmitting window material
JP2007014946A (en) * 2005-06-09 2007-01-25 Pentax Corp Method for manufacturing silica aerogel film
JP2010222160A (en) * 2009-03-23 2010-10-07 Bridgestone Corp Heat ray shielding glass and multilayered glass using the same

Also Published As

Publication number Publication date
JP4479198B2 (en) 2010-06-09

Similar Documents

Publication Publication Date Title
JP4853813B2 (en) Anti-reflection laminate
TWI282443B (en) Antireflection films for use with displays
JP3862941B2 (en) High definition antiglare hard coat film
JP3694153B2 (en) Anti-glare hard coat film
JP2006047504A (en) Antireflective stack
JPH08244178A (en) Antireflection film containing ultra-fine particles, polarizing plate and liquid crystal display unit
JP4958609B2 (en) Antiglare hard coat film and method for producing the same
JP4135232B2 (en) Hard coat film or sheet
JP2005144699A (en) Optical film
JP4944572B2 (en) Anti-glare hard coat film
JP2001287308A (en) Plastic laminate and image display protecting film
WO2004031813A1 (en) Anti-reflection film
TWI389798B (en) An anti-reflectance film
JP2010266672A (en) Anti-glare hardcoat film and polarizing plate using the same
JP2020076993A (en) Coating material for forming light diffusion layer, film for projection screen, and projection screen
JP2010266658A (en) Antireflective film and polarizing plate using the same
KR101192387B1 (en) Optical laminate
JP2002248712A (en) Anti-glaring sheet
JP4913365B2 (en) Antireflection film and antireflection film
KR20060051875A (en) Optical laminate and optical element
JP2002167576A (en) Composition for high-refractive electroconductive material, transparent electroconductive material and reflection-reducing material
JP2010186020A (en) Antiglare antireflection film
JP3471217B2 (en) Transparent conductive film
JP4479198B2 (en) Antireflection film
KR20130098774A (en) Enhanced image quality composite film for electrostatic capacity type touch screen panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees