JP2005084126A - Electro-optical composite substrate, optical waveguide, and optical waveguide with optical element - Google Patents

Electro-optical composite substrate, optical waveguide, and optical waveguide with optical element Download PDF

Info

Publication number
JP2005084126A
JP2005084126A JP2003313044A JP2003313044A JP2005084126A JP 2005084126 A JP2005084126 A JP 2005084126A JP 2003313044 A JP2003313044 A JP 2003313044A JP 2003313044 A JP2003313044 A JP 2003313044A JP 2005084126 A JP2005084126 A JP 2005084126A
Authority
JP
Japan
Prior art keywords
optical
optical element
optical waveguide
electronic circuit
waveguide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003313044A
Other languages
Japanese (ja)
Inventor
Takeshi Ono
大野  猛
Toshikatsu Takada
俊克 高田
Toshifumi Kojima
敏文 小嶋
Masaki Ono
正樹 大野
Ayako Kawamura
彩子 川村
Toshikazu Horio
俊和 堀尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2003313044A priority Critical patent/JP2005084126A/en
Publication of JP2005084126A publication Critical patent/JP2005084126A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily presume a cause of failure when optical transmission becomes impossible in an electro-optical composite substrate where an optical element is mounted in an optical waveguide and electronic circuit substrates are spliced. <P>SOLUTION: In the electro-optical composite substrate where a light emitting elements 14 and a light receiving element 15 are mounted on one side of the optical waveguide 10; electronic circuit substrates 30a, 30b are laminated on the opposite side; and the light emitting element 14 and the electronic circuit substrate 30a, and the light receiving element 15 and the electronic substrate 30b are electrically connected to each other through via-wiring 22a, 22b, respectively, the optical waveguide 10 is provided with conductive layers 20a, 20b and are electrically connected to the via-wiring 22a, 22b. As a result of this, when an abnormality occurs in the optical transmission in the optical waveguide 10, it becomes possible to easily presume faulty points (separation or the like of electrically connected parts of an optical waveguide or failure of optical elements) by monitoring the signals inputted/outputted to/from each element 14, 15 via the conductive layers 20a, 20b. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電子回路基板と光信号伝送用の光導波路とを一体化してなる光電気複合基板、及び、この光電気複合基板を作製するのに好適な光導波路並びに光学素子付光導波路に関する。   The present invention relates to an optoelectric composite substrate in which an electronic circuit board and an optical waveguide for optical signal transmission are integrated, an optical waveguide suitable for producing the optoelectric composite substrate, and an optical waveguide with an optical element.

これから普及が本格化する画像を含む光通信システムでは、伝送容量の飛躍的増大とそれに伴う情報処理装置の処理速度の飛躍的な向上が求められている。このような環境の中、大容量高速通信を担う電子機器内の配線基板間での接続、配線基板内の半導体チップ間での接続あるいは半導体チップ内での接続など、比較的短い距離における信号伝達に関しても、従来一般的であった金属ケーブルや金属配線を用いた信号伝送に代わり、光導波路を用いた光伝送が採用されつつある。   In optical communication systems including images that are becoming increasingly popular in the future, a dramatic increase in transmission capacity and a dramatic improvement in processing speed of information processing apparatuses are required. In such an environment, signal transmission over a relatively short distance, such as connections between wiring boards in electronic devices that are responsible for high-capacity high-speed communication, connections between semiconductor chips in a wiring board, or connections within a semiconductor chip With regard to the above, in place of the conventional signal transmission using a metal cable or metal wiring, optical transmission using an optical waveguide is being adopted.

このような光伝送を支える重要な技術として、光導波路を垂直面発光ダイオード(VCSEL)やフォトダイオード(PD)のような光学素子と接続する技術がある。
光導波路を光学素子と接続する方法としては、従来より、光学素子を搭載した電子回路基板上に集光レンズを嵌め込んだケースを被せ、そのケースに反射ミラー付ハウジングをガイドピンで一体化し光導波路を反射ミラーの前面に固定する方法が提案されている。(例えば、非特許文献1等参照)。
As an important technique for supporting such optical transmission, there is a technique for connecting an optical waveguide to an optical element such as a vertical surface light emitting diode (VCSEL) or a photodiode (PD).
As a method of connecting an optical waveguide to an optical element, conventionally, a case in which a condensing lens is fitted on an electronic circuit board on which the optical element is mounted is covered, and a housing with a reflecting mirror is integrated with the case with a guide pin. A method for fixing the waveguide to the front surface of the reflection mirror has been proposed. (For example, refer nonpatent literature 1 etc.).

しかし、この方法では、ケースとハウジングをガイドピンで嵌合しているため、反射ミラーと光学素子間の距離が大きくなり、集光用のレンズが必要となる。また、レンズで焦点を合わせる構造であるため、光学素子−レンズ−反射面−光導波路の間の光軸のアライメントを、受光素子を作動させた状態で受光エネルギーが最大となるように光学素子から光導波路に致る構成品の位置を調整するアクティブアライメント方式で行う必要がある。さらに、このアクティブアライメント操作を行う際には、該構成品間に静電気が発生する場合があり、その静電気のために光学素子を劣化させ易いといった問題点があった。   However, in this method, since the case and the housing are fitted with the guide pins, the distance between the reflection mirror and the optical element is increased, and a condensing lens is required. In addition, since the lens is focused, the optical axis alignment between the optical element-lens-reflecting surface-optical waveguide is adjusted from the optical element so that the received light energy becomes maximum when the light receiving element is operated. It is necessary to use an active alignment method that adjusts the position of a component that matches the optical waveguide. Further, when this active alignment operation is performed, static electricity may be generated between the components, and there is a problem that the optical element is easily deteriorated due to the static electricity.

一方、こうした問題を解決する方法として、光学素子を光導波路に直接実装することにより光学素子と光導波路の接続精度を向上させる方式が提案されている(例えば、非特許文献2等参照)。   On the other hand, as a method for solving such a problem, a method of improving the connection accuracy between the optical element and the optical waveguide by directly mounting the optical element on the optical waveguide has been proposed (see, for example, Non-Patent Document 2).

即ち、この提案の方法では、光導波路の端面をコアの軸方向に対して45度の角度で切断して反射面を形成し、該反射面によって光学素子からのレーザ光が90度反射され、光導波路のコア部分に入射されるように光学素子を光導波路に直接実装するようにしている。 さらに、この方法では、光学素子に電源又は電気信号を供給するために、光学素子を実装した光導波路を電子回路基板に搭載して、光導波路を貫通するビア配線を介して、該電子回路基板の配線パターン部分から光導波路に実装されている光学素子に電源又は電気信号を供給するように電子回路基板と光導波路を一体化している。   That is, in the proposed method, the end face of the optical waveguide is cut at an angle of 45 degrees with respect to the axial direction of the core to form a reflecting surface, and the laser light from the optical element is reflected by 90 degrees by the reflecting surface, The optical element is directly mounted on the optical waveguide so as to be incident on the core portion of the optical waveguide. Further, in this method, in order to supply power or an electrical signal to the optical element, the optical circuit board on which the optical element is mounted is mounted on the electronic circuit board, and the electronic circuit board is connected via the via wiring penetrating the optical waveguide. The electronic circuit board and the optical waveguide are integrated so as to supply power or an electric signal from the wiring pattern portion to the optical element mounted on the optical waveguide.

この方法によると、光導波路と光学素子を接合するためのケースやハウジングが不要となり、反射面と光学素子間の距離が小さくなって、集光用のレンズが不要となる。また。アライメントもパッシブアライメント方式で可能となり、アクティブアライメント操作の際、該構成品間に発生する静電気のために光学素子を劣化させるといった問題点が解消される。
エレクトロニクス実装学会誌Vol.5 No.5 AUG.2002 光回路実装技術の現状と今後(畠山意知郎他) H15年、超先端電子技術開発機構主催、第4回電子SI研究報告会、報告会資料 P.106(熊井晃一)
According to this method, a case or a housing for joining the optical waveguide and the optical element becomes unnecessary, the distance between the reflecting surface and the optical element becomes small, and a condensing lens becomes unnecessary. Also. Alignment is also possible with the passive alignment method, and the problem of deteriorating the optical element due to static electricity generated between the components during the active alignment operation is solved.
Electronics Packaging Society Journal Vol. 5 No. 5 AUG. 2002 Present state and future of optical circuit packaging technology (Ichiro Hiyama et al.) H15, sponsored by the Advanced Technology Development Organization, 4th Electronic SI Research Report Meeting, Report Meeting Material 106 (Keiichi Kumai)

ところで、上記の実装方法では、光導波路と光学素子あるいは光導波路と電子回路基板を電気的に接続するためには、光導波路を貫通するビア配線の端の部分に導電性の薄膜を形成して、該薄膜上で半田リフロー又はフリップチップボンディング等によって、光導波路と光学素子あるいは光導波路と電子回路基板を接続する必要がある。   By the way, in the above mounting method, in order to electrically connect the optical waveguide and the optical element or the optical waveguide and the electronic circuit board, a conductive thin film is formed on the end portion of the via wiring that penetrates the optical waveguide. It is necessary to connect the optical waveguide and the optical element or the optical waveguide and the electronic circuit board by solder reflow or flip chip bonding on the thin film.

しかし、光導波路上へ薄膜を形成して半田リフロー又はフロップチップボンディング等で光導波路と光学素子、あるいは光導波路と電子回路基板とを接合させることは、光導波路と光学素子あるいは光導波路と電子回路基板との密着性が得られない場合があり、接合面が剥れ易い等の問題点があり、光導波路と光学素子あるいは光導波路と電子回路基板の接合面で断線の恐れがある。   However, forming a thin film on an optical waveguide and bonding the optical waveguide and the optical element or the optical waveguide and the electronic circuit board by solder reflow or flop chip bonding or the like means that the optical waveguide and the optical element or the optical waveguide and the electronic circuit are joined. In some cases, adhesion to the substrate may not be obtained, and there is a problem that the joint surface is easily peeled off, and there is a risk of disconnection at the joint surface between the optical waveguide and the optical element or between the optical waveguide and the electronic circuit substrate.

すなわち、光導波路による光伝送中に、振動や衝撃又は機械的な曲げ力あるいは熱等によって、光導波路と光学素子、あるいは、光導波路と電子回路基板の接合面が剥れる、あるいは、クラックが入る等により接合面で断線し、光学素子の受発光が不能となって光伝送ができなくなる恐れがあるのである。   That is, the optical waveguide and the optical element, or the joint surface between the optical waveguide and the electronic circuit board is peeled off or cracked by vibration, impact, mechanical bending force, heat, or the like during optical transmission through the optical waveguide. There is a risk that the optical element may not be able to receive and emit light and light transmission cannot be performed due to disconnection at the joint surface due to the above.

また、断線時には光伝送が不能となるが、その原因が、断線によるものなのか、光学素子の不良によるものなのかを推定することができない。
従って、従来の方法を産業用のみならず、オフィスや家庭で広く使われる装置内部に利用するには、保守性の観点で問題点が大きく、その解決が望まれていた。
In addition, optical transmission becomes impossible at the time of disconnection, but it cannot be estimated whether the cause is due to disconnection or a defect of the optical element.
Therefore, in order to use the conventional method not only in industrial use but also in apparatuses widely used in offices and homes, there are significant problems from the viewpoint of maintainability, and a solution has been desired.

すなわち、光伝送が不能となった場合に、その原因が光学素子の不良であるのか、あるいは光導波路と光学素子又は光導波路と電子回路基板との接合面の断線によるものかを短時間に推定することにより、修理に要する時間とコストを低減するということが望まれていたのである。   That is, when optical transmission becomes impossible, it is estimated in a short time whether the cause is a defect in the optical element or due to the disconnection of the joint surface between the optical waveguide and the optical element or between the optical waveguide and the electronic circuit board. Thus, it has been desired to reduce the time and cost required for repair.

本発明は、こうした問題に鑑みなされたもので、上述した、光学素子を光導波路に実装し、さらに電子回路基板上に該光導波路を接続し、光導波路に設けられた接続配線を介して電子回路基板から電気信号を送受するようにした光電気基板において、光導波路での光伝送が不能となった場合に、その不良原因を容易に推定できるようにすることを目的とする。   The present invention has been made in view of these problems. The above-described optical element is mounted on an optical waveguide, the optical waveguide is connected to an electronic circuit board, and electrons are connected via a connection wiring provided in the optical waveguide. An object of the present invention is to make it possible to easily estimate the cause of a failure when optical transmission through an optical waveguide is disabled in an opto-electric board that transmits and receives electrical signals from a circuit board.

かかる目的を達成するためになされた請求項1に記載の発明は、
光信号を送受信するための光学素子と、
該光学素子が実装され、該光学素子から出射されるか又は該光学素子に入射すべき光信号を伝送するための光路を有する光導波路と、
前記光学素子を介して電気信号を送信又は受信するための電子回路が組み込まれ、前記光導波路が前記光学素子の実装面とは反対側の面を介して積層された電子回路基板と、
該電子回路基板と前記光学素子とを電気的に接続するために設けられた複数の接続配線と、
を備えた光電気複合基板であって、
前記各接続配線を介して前記光学素子に入出力される電気信号をモニタするために、前記各接続配線に接続された複数の導電層を、前記光導波路の前記光学素子の実装面に形成してなることを特徴とする。
The invention according to claim 1, which has been made to achieve the object,
An optical element for transmitting and receiving optical signals;
An optical waveguide mounted with the optical element and having an optical path for transmitting an optical signal to be emitted from or incident on the optical element;
An electronic circuit board in which an electronic circuit for transmitting or receiving an electrical signal via the optical element is incorporated, and the optical waveguide is laminated via a surface opposite to the mounting surface of the optical element;
A plurality of connection wirings provided to electrically connect the electronic circuit board and the optical element;
A photoelectric composite substrate comprising:
In order to monitor an electrical signal input to and output from the optical element via each connection wiring, a plurality of conductive layers connected to each connection wiring are formed on the mounting surface of the optical element of the optical waveguide. It is characterized by.

このように構成された本発明の光電気複合基板においては、接続配線を介して電子回路基板と光学素子との間で入出力される電気信号を、光導波路における光学素子の実装面に形成された導電層を介してモニタすることができるようになり、光導波路での光伝送に異常が生じた際の不良原因が光学素子にあるのか光導波路側(詳しくは、接続配線の断線、接続配線と電子回路基板若しくは光学素子との接続不良等)にあるのかを極めて容易に検出できることになる。   In the optoelectric composite substrate of the present invention configured as described above, an electrical signal input / output between the electronic circuit board and the optical element via the connection wiring is formed on the mounting surface of the optical element in the optical waveguide. It is possible to monitor through the conductive layer, and whether the optical element is the cause of failure when an optical transmission in the optical waveguide is abnormal is the optical waveguide side (specifically, disconnection of connection wiring, connection wiring And inadequate connection between the electronic circuit board and the optical element, etc.).

つまり、例えば、光導波路に光学素子として発光素子が実装されており、その発光素子からの光送信に異常が生じた場合には、電子回路基板からその発光素子に入力される電気信号を、導電層を介してモニタし、その電気信号が、電子回路基板からの出力と一致しているか否かを判断することで、光送信の不良原因が光学素子(発光素子)にあるのか光導波路側にあるのかを極めて簡単に検出できる。なお、この場合、導電層を介してモニタした電気信号が電子回路基板からの出力と一致しているときには、発光素子が故障したと判断でき、その電気信号が電子回路基板からの出力と一致していない(通常、変化しない)ときには、発光素子は正常で、光導波路側で断線等が生じたものと判断できる。   In other words, for example, when a light emitting element is mounted as an optical element in an optical waveguide, and an abnormality occurs in light transmission from the light emitting element, an electric signal input from the electronic circuit board to the light emitting element is conducted. By monitoring through the layer and determining whether the electrical signal matches the output from the electronic circuit board, whether the cause of optical transmission failure is in the optical element (light emitting element) or on the optical waveguide side It can be detected very easily. In this case, when the electrical signal monitored through the conductive layer matches the output from the electronic circuit board, it can be determined that the light emitting element has failed, and the electrical signal matches the output from the electronic circuit board. When it is not (usually not changing), it can be determined that the light-emitting element is normal and a disconnection or the like has occurred on the optical waveguide side.

また、例えば、光導波路に光学素子として受光素子が実装されており、受光素子から電子回路基板に正常な受光信号が入力されない場合には、受光素子から接続配線を介して電子回路基板側に出力される電気信号(受光信号)を導電層を介してモニタし、その電気信号が正常に変化しているか否かを判断することにより、信号受信の不良原因が光学素子(受光素子)にあるのか光導波路側にあるのかを極めて簡単に検出できる。なお、この場合、導電層を介してモニタした電気信号が変化しない場合(換言すれば受光素子から信号が出力されない場合)には、受光素子が故障したと判断でき、その電気信号が正常に変化している場合には、光導波路側で断線等が生じ、光学素子から電子回路基板に受光信号が伝達されていないものと判断できる。   Also, for example, when a light receiving element is mounted as an optical element in the optical waveguide, and a normal light receiving signal is not input from the light receiving element to the electronic circuit board, output from the light receiving element to the electronic circuit board side via the connection wiring The optical signal (light receiving signal) is monitored through the conductive layer, and it is determined whether the electric signal is changing normally, so that the optical element (light receiving element) is the cause of the signal reception failure. Whether it is on the optical waveguide side can be detected very easily. In this case, when the electrical signal monitored through the conductive layer does not change (in other words, when no signal is output from the light receiving element), it can be determined that the light receiving element has failed, and the electrical signal changes normally. If it is, disconnection or the like occurs on the optical waveguide side, and it can be determined that the light reception signal is not transmitted from the optical element to the electronic circuit board.

そして、このように、本発明の光電気複合基板によれば、光導波路での光伝送に異常が生じた際の不良原因を極めて容易に特定できることから、光電気複合基板を実際に使用した場合の保守・修理費用を低減することが可能となる。   As described above, according to the optoelectric composite substrate of the present invention, the cause of failure when abnormality occurs in the optical transmission in the optical waveguide can be identified very easily. It is possible to reduce maintenance and repair costs.

ここで、導電層は、光導波路に実装された光学素子に接続配線を介して入出力される電気信号を直接モニタできるようにするためのものであることから、光導波路における光学素子の実装面に形成する必要はあるが、その実装面とは異なる面(つまり電子回路基板に積層される側の面)にも別途形成するようにしてもよい。   Here, the conductive layer is used to directly monitor an electric signal input / output to / from the optical element mounted on the optical waveguide via the connection wiring. However, it may be separately formed on a surface different from the mounting surface (that is, the surface laminated on the electronic circuit board).

つまり、このように接続配線に接続される導電層を光導波路の両面に形成するようにすれば、光導波路での光伝送に異常が生じた際の不良原因が光学素子にあるのか光導波路側にあるのかを判断できるだけでなく、不良原因が光導波路側にあるときに、光学素子と接続配線との接続部分に異常があるのか、或いは、接続配線と電子回路基板との接続部分に異常があるのかを判定できることになり、故障箇所をより詳しく検知できることになる。   That is, if the conductive layers connected to the connection wiring are formed on both surfaces of the optical waveguide in this way, whether the optical element is the cause of the failure when an optical transmission in the optical waveguide is abnormal is determined on the optical waveguide side. If the cause of the defect is on the optical waveguide side, there is an abnormality in the connection part between the optical element and the connection wiring, or there is an abnormality in the connection part between the connection wiring and the electronic circuit board. It is possible to determine whether or not there is a failure, and it is possible to detect the failure location in more detail.

また、導電層は、光導波路の表面に露出させる必要はなく、モニタ用の端子部分を除いて、絶縁皮膜を形成して、導電層を保護するようにしてもよい。
また、接続配線は、請求項2に示すように、光導波路の電子回路基板の積層面(換言すれば、光学素子の実装面とは反対側の面)から光学素子の実装面へと貫通するようにして形成された、ビア配線であってもよい。
Further, the conductive layer does not need to be exposed on the surface of the optical waveguide, and an insulating film may be formed to protect the conductive layer except for the monitor terminal portion.
Further, as shown in claim 2, the connection wiring penetrates from the laminated surface of the optical circuit board of the optical waveguide (in other words, the surface opposite to the mounting surface of the optical element) to the mounting surface of the optical element. Via wiring formed as described above may be used.

一方、光導波路は、単に一つの電子回路基板に積層するようにしてもよいが、例えば、光導波路には、その両端に投受光用の一対(複数の光路を有する場合には複数対)の光学素子を実装できるようにし、その光学素子の実装面とは反対側の面に、各光学素子に対応した一対の電子回路基板を積層するようにしてもよい。   On the other hand, the optical waveguide may be simply laminated on one electronic circuit board. For example, the optical waveguide has a pair of light emitting / receiving units (a plurality of pairs when there are a plurality of optical paths) at both ends thereof. An optical element can be mounted, and a pair of electronic circuit boards corresponding to each optical element may be laminated on a surface opposite to the mounting surface of the optical element.

つまり、2つの電子回路基板を、光通信用の光学素子を実装した光導波路を介して接続し、電子回路基板間でその光導波路を介して信号を送受信するようにしてもよい。
そして、このように一つの光導波路を複数の電子回路基板間を接続するように配置する場合には、光導波路に各電子回路基板から振動や衝撃又は機械的な曲げ等の力が加わり易くなる。そして、この場合、光導波路がガラス等の無機系の材料で製造されていると、光導波路は、比較的硬くなるため、光導波路に加わった振動や衝撃又は機械的な曲げ等の力が光学素子と光導波路の接合部分あるいは電子回路基板と光導波路の接合部分に応力として直接加わることになり、その接合部分が剥れ易くなるという問題が生じる。
That is, two electronic circuit boards may be connected via an optical waveguide on which an optical element for optical communication is mounted, and signals may be transmitted and received between the electronic circuit boards via the optical waveguide.
In the case where one optical waveguide is arranged so as to connect a plurality of electronic circuit boards, a force such as vibration, impact or mechanical bending is easily applied to the optical waveguide from each electronic circuit board. . In this case, if the optical waveguide is made of an inorganic material such as glass, the optical waveguide becomes relatively hard, so that the force applied to the optical waveguide, such as vibration, impact, or mechanical bending, is optical. A stress is directly applied to the joint portion between the element and the optical waveguide or the joint portion between the electronic circuit board and the optical waveguide, resulting in a problem that the joint portion is easily peeled off.

そこで、こうした問題を防止するためには、請求項3に記載のように、光導波路を可撓性を有するものとして光電気複合基板を構成するとよい。
つまり、光導波路を、例えば、高分子材料系の可撓性を有するものとすることで、光導波路に加わる振動や衝撃又は機械的な曲げ等の力が光学素子と光導波路の接合部分あるいは電子回路基板と光導波路の接合部分に応力として直接に加わることを緩和することができ、その接合部分の剥れを防止することができるようになる。
Therefore, in order to prevent such a problem, as described in claim 3, it is preferable to configure the optoelectric composite substrate with the optical waveguide having flexibility.
That is, by making the optical waveguide flexible, for example, a polymer material system, a force such as vibration, impact, or mechanical bending applied to the optical waveguide may cause a joint between the optical element and the optical waveguide or an electron. It is possible to relieve the direct application of stress as a stress to the joint between the circuit board and the optical waveguide, and to prevent the joint from peeling off.

次に、請求項4に記載の発明は、請求項1又は請求項2又は請求項3に記載の光電気複合基板を作製するのに好適な光導波路に関するものであり、光信号を送受信するための光学素子を実装可能で、しかも、その実装された光学素子に電気信号を入出力するための複数の接続配線が、光学素子の実装面から裏面にかけて形成され、更に、光学素子の実装面には、各接続配線を介して光学素子に入出力される電気信号をモニタするために、各接続配線に接続された複数の導電層が形成されたことを特徴としている。   Next, the invention according to claim 4 relates to an optical waveguide suitable for manufacturing the optoelectric composite substrate according to claim 1, claim 2, or claim 3, for transmitting and receiving optical signals. In addition, a plurality of connection wirings for inputting / outputting electric signals to / from the mounted optical element are formed from the mounting surface of the optical element to the back surface, and further on the mounting surface of the optical element. Is characterized in that a plurality of conductive layers connected to each connection wiring are formed in order to monitor an electrical signal input to and output from the optical element through each connection wiring.

また、同様に、請求項5に記載の発明は、請求項1又は請求項2又は請求項3に記載の光電気複合基板を作製するのに好適な光学素子付光導波路に関するものであり、光信号を送受信するための光学素子が実装され、その実装された光学素子に電気信号を入出力するための複数の接続配線が、光学素子の実装面から裏面にかけて形成され、しかも、光学素子の実装面には、各接続配線を介して光学素子に入出力される電気信号をモニタするために、各接続配線に接続された複数の導電層が形成されたことを特徴としている。   Similarly, the invention according to claim 5 relates to an optical waveguide with an optical element suitable for producing the optoelectric composite substrate according to claim 1, claim 2, or claim 3. An optical element for transmitting and receiving signals is mounted, and a plurality of connection wirings for inputting and outputting electrical signals to the mounted optical element are formed from the mounting surface to the back surface of the optical element, and the mounting of the optical element The surface is characterized in that a plurality of conductive layers connected to each connection wiring are formed in order to monitor an electrical signal input to and output from the optical element via each connection wiring.

従って、請求項4に記載の光導波路、若しくは、請求項5に記載の光学素子付光導波路を使用すれば、本発明(請求項1、2、3)の光電気複合基板を簡単に実現できることになり、延いては、上述した本発明の効果を発揮できることになる。   Therefore, if the optical waveguide according to claim 4 or the optical waveguide with an optical element according to claim 5 is used, the photoelectric composite substrate of the present invention (claims 1, 2, 3) can be easily realized. Thus, the effects of the present invention described above can be exhibited.

以下に、本発明の実施形態を図面に基づき説明する。
図1は本発明が適用された実施例の光電気複合基板を光導波路の光軸に沿って切断した断面図である。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a sectional view of an optoelectric composite substrate according to an embodiment to which the present invention is applied, cut along the optical axis of an optical waveguide.

図1に示すように、本実施例の光電気複合基板1は、例えば、VCSEL等の発光素子14、例えば、PD等の受光素子15、それらの光学素子を搭載した光導波路10、IC31aを搭載した電子回路基板30a及びIC31bを搭載した電子回路基板30bから構成されている。   As shown in FIG. 1, the optoelectric composite substrate 1 of the present embodiment includes a light emitting element 14 such as a VCSEL, a light receiving element 15 such as a PD, an optical waveguide 10 mounting these optical elements, and an IC 31a. The electronic circuit board 30a and the electronic circuit board 30b on which the IC 31b is mounted.

ここで、光導波路10は、長尺状で、光路となる屈折率の高いコア11を屈折率の低いクラッドで覆って形成されている。
そして、光導波路10の長手方向の一端に発光素子14、又、反対端に受光素子15が搭載されている。そして、発光素子14の搭載面と反対の面には、電子回路基板30aが接続され、同様に受光素子15搭載面の反対面に電子回路基板30bが接続されている。
Here, the optical waveguide 10 is long and is formed by covering a core 11 having a high refractive index serving as an optical path with a clad having a low refractive index.
A light emitting element 14 is mounted on one end of the optical waveguide 10 in the longitudinal direction, and a light receiving element 15 is mounted on the opposite end. The electronic circuit board 30a is connected to the surface opposite to the mounting surface of the light emitting element 14, and similarly, the electronic circuit board 30b is connected to the opposite surface of the light receiving element 15 mounting surface.

そして、光導波路10には、発光素子14の搭載面から電子回路基板30aの搭載面へと貫通する複数のビア配線22a(理解が容易となるように切断面の手前にあるビア配線は、図1中に記入してある)が設けられているおり、このビア配線22aによって発光素子14と電子回路基板30aは電気的に接続されている。   The optical waveguide 10 includes a plurality of via wirings 22a penetrating from the mounting surface of the light emitting element 14 to the mounting surface of the electronic circuit board 30a (the via wiring in front of the cut surface is shown in FIG. 1 is provided, and the light emitting element 14 and the electronic circuit board 30a are electrically connected by the via wiring 22a.

同様に、受光素子15も光導波路10を受光素子15の搭載面から電子回路基板30bの搭載面へ貫通する複数のビア配線22bによって、電子回路基板30bと電気的に接続されている。   Similarly, the light receiving element 15 is also electrically connected to the electronic circuit board 30b by a plurality of via wirings 22b penetrating the optical waveguide 10 from the mounting surface of the light receiving element 15 to the mounting surface of the electronic circuit board 30b.

また、光導波路10には、搭載されている発光素子14の光軸上に、光路変換部16aが形成されている。この光路変換部16aは非特許文献2に記載のように、光導波路10をコアの光軸方向に対して45度の角度でブレード加工等によって切り欠くことで形成され、コアの光軸と垂直方向から入射されるレーザ光を反射してコアに入射する機能と、コアを伝搬してきたレーザ光をコアの光軸に垂直方向に反射する機能とを有するものである。   In the optical waveguide 10, an optical path conversion unit 16 a is formed on the optical axis of the mounted light emitting element 14. As described in Non-Patent Document 2, the optical path changing unit 16a is formed by cutting the optical waveguide 10 by blade machining or the like at an angle of 45 degrees with respect to the optical axis direction of the core, and is perpendicular to the optical axis of the core. The laser beam incident from the direction is reflected and incident on the core, and the laser beam propagating through the core is reflected in the direction perpendicular to the optical axis of the core.

そして、発光素子14は非特許文献2に記載のように発光素子14と光路変換部16aの各々の光軸が合致するようにアライメント調整されて、光導波路10にバンプ23によって半田リフロー又はフリップチップボンディング等により接合される。   Then, as described in Non-Patent Document 2, the light-emitting element 14 is aligned so that the optical axes of the light-emitting element 14 and the optical path changing unit 16a coincide with each other. Bonded by bonding or the like.

そして、電子回路基板30aにはIC31aが搭載され、さらにIC31aを作動させるために必要となる電源その他の電子回路(図示省略)が実装されている。
また、同様に、受光素子15も光導波路10に形成された光路変換部16bとの光軸が合致するようにアライメント調整されて、光導波路10に接合される。
An IC 31a is mounted on the electronic circuit board 30a, and further, a power supply and other electronic circuits (not shown) necessary for operating the IC 31a are mounted.
Similarly, the light receiving element 15 is also adjusted in alignment so that the optical axis of the light receiving element 15 coincides with the optical path changing unit 16 b formed in the optical waveguide 10, and is joined to the optical waveguide 10.

そして、電子回路基板30bにはIC31bが搭載され、さらにIC31bを作動させるために必要となる電源その他の電子回路(図示省略)が実装されている。
そして、電子回路基板30a側では、IC31aからの送信信号が電子回路基板30aの配線パターンを通じてビア配線22aを介し、発光素子14に入力される。発光素子14は、入力された送信信号を電−光変換してレーザ光を出射する。出射されたレーザ光は、光路変換部16aで反射されて、光導波路10のコア11に入射され、電子回路基板30b側へと伝送される。
An IC 31b is mounted on the electronic circuit board 30b, and further, a power source and other electronic circuits (not shown) necessary for operating the IC 31b are mounted.
On the electronic circuit board 30a side, a transmission signal from the IC 31a is input to the light emitting element 14 through the via wiring 22a through the wiring pattern of the electronic circuit board 30a. The light emitting element 14 performs electro-optical conversion on the input transmission signal and emits laser light. The emitted laser light is reflected by the optical path conversion unit 16a, enters the core 11 of the optical waveguide 10, and is transmitted to the electronic circuit board 30b side.

電子回路基板30b側では、伝送されてきたレーザ光が光路変換部16bで反射されて、受光素子15に入射される。受光素子15は入射されたレーザ光を光−電変換して受信信号を出力する。受信信号は、ビア配線22bを介して、電子回路基板30bの配線パターンを通じIC31bに入力される。   On the electronic circuit board 30 b side, the transmitted laser light is reflected by the optical path conversion unit 16 b and is incident on the light receiving element 15. The light receiving element 15 photoelectrically converts the incident laser light and outputs a reception signal. The reception signal is input to the IC 31b through the wiring pattern of the electronic circuit board 30b through the via wiring 22b.

このようにして、IC31aとIC31b間で信号の入出力が行われることとなる。
ここで、光導波路10には発光素子14と受光素子15との間の光伝送が不能となった場合の不良原因推定のための導電層20aが形成されている。この導電層20aの構成と機能について、図2及び図3により詳細に説明をする。
In this way, signals are input / output between the IC 31a and the IC 31b.
Here, the optical waveguide 10 is formed with a conductive layer 20a for estimating the cause of failure when light transmission between the light emitting element 14 and the light receiving element 15 becomes impossible. The configuration and function of the conductive layer 20a will be described in detail with reference to FIGS.

図2は、図1の一方の光学素子搭載部分の拡大図を示し、図3は、図2をa−a‘に沿って切断したときの状態を示す断面図である。
図2に示すように、光導波路10の発光素子14が搭載されている面に導電層20aが複数(本実施例では2本)形成されている。この導電層20aは、例えば、導電性の金属又は導電性のポリマーを、各々の材料に適したプロセスで光導波路10に積層して形成される。また、この導電層20aの端部21aは、ビア配線22aと電気的に接続され、かつ、発光素子14の端子と接合されるように形成されている。この端部21aは、発光素子14の端子配列と同じように光導波路10上に配列される。
FIG. 2 is an enlarged view of one optical element mounting portion of FIG. 1, and FIG. 3 is a cross-sectional view showing a state when FIG. 2 is cut along aa ′.
As shown in FIG. 2, a plurality (two in this embodiment) of conductive layers 20a are formed on the surface of the optical waveguide 10 on which the light emitting element 14 is mounted. The conductive layer 20a is formed, for example, by laminating a conductive metal or a conductive polymer on the optical waveguide 10 by a process suitable for each material. Further, the end portion 21 a of the conductive layer 20 a is formed so as to be electrically connected to the via wiring 22 a and to be joined to the terminal of the light emitting element 14. The end 21 a is arranged on the optical waveguide 10 in the same manner as the terminal arrangement of the light emitting element 14.

同様に、光導波路10の反対端では、受光素子15が搭載されている面に導電層20bが複数形成されている。この導電層20bの端部21bは、ビア配線22bと電気的に接続され、かつ、受光素子15の端子と接合されるように形成されている。この端部21bは、受光素子15の端子配列と同じように光導波路10上に配列される。   Similarly, at the opposite end of the optical waveguide 10, a plurality of conductive layers 20b are formed on the surface on which the light receiving element 15 is mounted. The end portion 21 b of the conductive layer 20 b is formed so as to be electrically connected to the via wiring 22 b and to be joined to the terminal of the light receiving element 15. The end 21 b is arranged on the optical waveguide 10 in the same manner as the terminal arrangement of the light receiving element 15.

このようにして、形成された光電気複合基板では、発光素子14、ビア配線22a、導電層20a及び電子回路基板30aが電気的に接続されているため、電子回路基板30aからビア配線22aを介して発光素子14に送られる送信信号は、同時に導電層20aにも送られることになる。   In the thus formed photoelectric composite substrate, the light emitting element 14, the via wiring 22a, the conductive layer 20a, and the electronic circuit board 30a are electrically connected, and therefore, from the electronic circuit board 30a via the via wiring 22a. The transmission signal sent to the light emitting element 14 is also sent to the conductive layer 20a at the same time.

従って、前述のように発光素子14と受光素子15の間で行われる光伝送による送受信に異常が発生した場合、その原因が発光素子14の不良であれば、導電層20aには送信信号が送られてくるので、この導電層20aに、例えば、オシロスコープ等の計測器を接続し、送信信号を観測することにより、その波形等が正常(送信信号と同じ波形)であれば、発光素子14の不良が推定できることとなる。また、原因が発光素子14と光導波路10の接合部分の剥れ等である場合には、導電層20aに送信信号が送られなくなるため、観測波形等が異常(信号が全く観測されない等)であれば、発光素子14と光導波路10の接合部分の剥れ等が発生したものと推定できることとなる。   Therefore, when an abnormality occurs in transmission / reception by light transmission performed between the light emitting element 14 and the light receiving element 15 as described above, if the cause is a defect in the light emitting element 14, a transmission signal is transmitted to the conductive layer 20a. Therefore, by connecting a measuring instrument such as an oscilloscope to the conductive layer 20a and observing the transmission signal, if the waveform or the like is normal (the same waveform as the transmission signal), the light emitting element 14 Defects can be estimated. In addition, when the cause is peeling of the joint portion between the light emitting element 14 and the optical waveguide 10, the transmission signal is not sent to the conductive layer 20 a, so the observation waveform is abnormal (the signal is not observed at all). If there is, it can be estimated that peeling or the like of the joint portion between the light emitting element 14 and the optical waveguide 10 has occurred.

同様に、受光素子15側においても光導波路10の導電層20bが形成され、受光素子15、導電層20bとビア配線22b及び電子回路基板30bが電気的に接続されている。   Similarly, the conductive layer 20b of the optical waveguide 10 is formed on the light receiving element 15 side, and the light receiving element 15, the conductive layer 20b, the via wiring 22b, and the electronic circuit board 30b are electrically connected.

従って、前述のようにコア11を通り、光路変換部16bで反射され、受光素子15に入射されたレーザ光は光−電変換されて受信信号となり、ビア配線22bを介して、電子回路基板30bに入力されると同時に導電層20bにも出力される。   Therefore, as described above, the laser light that passes through the core 11 and is reflected by the optical path conversion unit 16b and incident on the light receiving element 15 is photoelectrically converted into a reception signal, and the electronic circuit board 30b via the via wiring 22b. Are simultaneously output to the conductive layer 20b.

そして、発光素子14と受光素子15の間で行われる光伝送による送受信に異常が発生した場合、この導電層20bに、オシロスコープ等の計測器を接続して、受信信号を観測することにより、発光素子14の場合とは逆に、受光素子15が不良であれば、導電層20bには受信信号が送られなくなるため、その観測波形等が異常(信号が全く観測されない等)であれば、受光素子15の不良が推定できることとなる。また、受光素子15と光導波路10の接合部分の剥れ等による断線が発生した場合には、導電層20bには受信信号が送られてくるため、観測波形等が正常(受信信号と同じ波形)であれば、受光素子15と光導波路10の接合部分の剥れ等が発生したものと推定できることとなる。   When an abnormality occurs in transmission / reception by light transmission performed between the light emitting element 14 and the light receiving element 15, a measuring instrument such as an oscilloscope is connected to the conductive layer 20b, and the received signal is observed to emit light. Contrary to the case of the element 14, if the light receiving element 15 is defective, no reception signal is sent to the conductive layer 20 b, so if the observation waveform or the like is abnormal (such as no signal is observed), the light reception is performed. The defect of the element 15 can be estimated. Further, when a disconnection or the like due to peeling of the joint between the light receiving element 15 and the optical waveguide 10 occurs, the received signal is sent to the conductive layer 20b, so that the observation waveform is normal (the same waveform as the received signal). ), It can be presumed that peeling of the joint between the light receiving element 15 and the optical waveguide 10 has occurred.

以上、本発明の実施例を説明したが、本発明は、上記実施例に限定されるものではなく、種々の態様を採ることができる。例えば、上記実施例では導電層20aを発光素子14の搭載面に形成するとして説明したが、例えば、導電層20aは発光素子14搭載面に形成する導電層以外に、該搭載面と反対面に形成してもよい。   As mentioned above, although the Example of this invention was described, this invention is not limited to the said Example, A various aspect can be taken. For example, in the above embodiment, the conductive layer 20a is described as being formed on the mounting surface of the light emitting element 14. For example, the conductive layer 20a is formed on the surface opposite to the mounting surface other than the conductive layer formed on the mounting surface of the light emitting element 14. It may be formed.

図4は、導電層を発光素子14と反対の面にも形成した光導波路10の形態を示す図である。
図4に示すように本実施例の光導波路10には、前述したものと同じビア配線22aが形成されている。さらに、光導波路10には導電層20c及び導電層20dが形成される。この導電層20c及び導電層20dは、例えば、導電性の金属又は導電性のポリマーを、各々の材料に適したプロセスで光導波路10に積層して形成されたものである。
FIG. 4 is a diagram showing a form of the optical waveguide 10 in which a conductive layer is also formed on the surface opposite to the light emitting element 14.
As shown in FIG. 4, the same via wiring 22a as described above is formed in the optical waveguide 10 of this embodiment. Furthermore, a conductive layer 20 c and a conductive layer 20 d are formed in the optical waveguide 10. The conductive layer 20c and the conductive layer 20d are formed, for example, by laminating a conductive metal or a conductive polymer on the optical waveguide 10 by a process suitable for each material.

この導電層20cは、光導波路10の一方の面40aに形成され、導電層20bは光導波路10の反対の面40bに形成されており、各々ビア配線22aに電気的に接続されている。   The conductive layer 20c is formed on one surface 40a of the optical waveguide 10, and the conductive layer 20b is formed on the opposite surface 40b of the optical waveguide 10, and each is electrically connected to the via wiring 22a.

このように、導電層20c及び導電層20dを光導波路10の両面に形成してビア配線22aと電気的に接続することにより、光導波路10の接合面の剥れ等による断線に伴う電子回路基板30aから供給される送信信号を計測する箇所が増え、光伝送不能時の不良箇所の推定をより正確に実施することができるようになる。   As described above, the conductive layer 20c and the conductive layer 20d are formed on both surfaces of the optical waveguide 10 and are electrically connected to the via wiring 22a. The number of locations where the transmission signal supplied from 30a is measured increases, and the failure location when optical transmission is impossible can be estimated more accurately.

実施例の光電気複合基板の全体構成を表す説明図である。It is explanatory drawing showing the whole structure of the photoelectric composite board | substrate of an Example. 実施例の光電気複合基板の光学素子搭載部分の構成を表す図1の部分的拡大図である。It is the elements on larger scale of FIG. 1 showing the structure of the optical element mounting part of the photoelectric composite board | substrate of an Example. 実施例の光電気複合基板の光導波路の構成を表す説明図である。It is explanatory drawing showing the structure of the optical waveguide of the photoelectric composite board | substrate of an Example. 実施例の光導波路の構成を示す説明図である。It is explanatory drawing which shows the structure of the optical waveguide of an Example.

符号の説明Explanation of symbols

1・・・光電気複合基板、10・・・光導波路、11・・・コア、12・・・クラッド、14・・・発光素子、15・・・受光素子、16a、16b・・・光路変換部、20a、20b、20c、20d・・・導電層、21a、21b・・・端部、22a、22b・・・ビア配線、23・・・バンプ、30a、30b・・・電子回路基板、31a、31b・・・IC。

DESCRIPTION OF SYMBOLS 1 ... Photoelectric composite board | substrate, 10 ... Optical waveguide, 11 ... Core, 12 ... Cladding, 14 ... Light emitting element, 15 ... Light receiving element, 16a, 16b ... Optical path conversion Part, 20a, 20b, 20c, 20d ... conductive layer, 21a, 21b ... end, 22a, 22b ... via wiring, 23 ... bump, 30a, 30b ... electronic circuit board, 31a , 31b... IC.

Claims (5)

光信号を送受信するための光学素子と、
該光学素子が実装され、該光学素子から出射されるか又は該光学素子に入射すべき光信号を伝送するための光路を有する光導波路と、
前記光学素子を介して電気信号を送信又は受信するための電子回路が組み込まれ、前記光導波路が前記光学素子の実装面とは反対側の面を介して積層された電子回路基板と、
該電子回路基板と前記光学素子とを電気的に接続するために設けられた複数の接続配線と、
を備えた光電気複合基板であって、
前記各接続配線を介して前記光学素子に入出力される電気信号をモニタするために、前記各接続配線に接続された複数の導電層を、前記光導波路の前記光学素子の実装面に形成してなることを特徴とする光電気複合基板。
An optical element for transmitting and receiving optical signals;
An optical waveguide mounted with the optical element and having an optical path for transmitting an optical signal to be emitted from or incident on the optical element;
An electronic circuit board in which an electronic circuit for transmitting or receiving an electrical signal via the optical element is incorporated, and the optical waveguide is laminated via a surface opposite to the mounting surface of the optical element;
A plurality of connection wirings provided to electrically connect the electronic circuit board and the optical element;
A photoelectric composite substrate comprising:
In order to monitor an electrical signal input to and output from the optical element via each connection wiring, a plurality of conductive layers connected to each connection wiring are formed on the mounting surface of the optical element of the optical waveguide. A photoelectric composite substrate characterized by comprising:
前記接続配線が、前記光導波路の前記電子回路基板への積層面から前記光学素子の実装面へと貫通するよう形成されたビア配線であることを特徴とする請求項1記載の光電気複合基板。   2. The photoelectric composite substrate according to claim 1, wherein the connection wiring is a via wiring formed so as to penetrate from a laminated surface of the optical waveguide to the electronic circuit substrate to a mounting surface of the optical element. . 前記光導波路は、可撓性を有することを特徴とする請求項1記載の光電気複合基板。   The photoelectric composite substrate according to claim 1, wherein the optical waveguide has flexibility. 光信号を送受信するための光学素子を実装可能で、該実装された光学素子から出射されるか又は該光学素子に入射すべき光信号を伝送するための光路を有する光導波路であって、
前記光学素子の実装面から裏面にかけて、前記光学素子に電気信号を入出力するための複数の接続配線を形成すると共に、
前記各接続配線を介して前記光学素子に入出力される電気信号をモニタするために、前記各接続配線に接続された複数の導電層を、前記光学素子の実装面に形成してなることを特徴とする光導波路。
An optical waveguide capable of mounting an optical element for transmitting and receiving an optical signal, and having an optical path for transmitting an optical signal to be emitted from the mounted optical element or incident on the optical element,
From the mounting surface to the back surface of the optical element, forming a plurality of connection wiring for inputting and outputting electrical signals to the optical element,
A plurality of conductive layers connected to each connection wiring are formed on the mounting surface of the optical element in order to monitor an electrical signal input / output to / from the optical element via each connection wiring. Characteristic optical waveguide.
光信号を送受信するための光学素子が実装され、該光学素子から出射されるか又は該光学素子に入射すべき光信号を伝送する光路を有する光学素子付光導波路であって、
前記光学素子の実装面から裏面にかけて、前記光学素子に電気信号を入出力するための複数の接続配線を形成すると共に、
前記各接続配線を介して前記光学素子に入出力される電気信号をモニタするために、前記各接続配線に接続された複数の導電層を、前記光学素子の実装面に形成してなることを特徴とする光学素子付光導波路。

An optical element with an optical element on which an optical element for transmitting and receiving an optical signal is mounted and having an optical path for transmitting an optical signal to be emitted from the optical element or incident on the optical element,
From the mounting surface to the back surface of the optical element, forming a plurality of connection wiring for inputting and outputting electrical signals to the optical element,
A plurality of conductive layers connected to each connection wiring are formed on the mounting surface of the optical element in order to monitor an electrical signal input / output to / from the optical element via each connection wiring. A featured optical waveguide with an optical element.

JP2003313044A 2003-09-04 2003-09-04 Electro-optical composite substrate, optical waveguide, and optical waveguide with optical element Pending JP2005084126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003313044A JP2005084126A (en) 2003-09-04 2003-09-04 Electro-optical composite substrate, optical waveguide, and optical waveguide with optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003313044A JP2005084126A (en) 2003-09-04 2003-09-04 Electro-optical composite substrate, optical waveguide, and optical waveguide with optical element

Publications (1)

Publication Number Publication Date
JP2005084126A true JP2005084126A (en) 2005-03-31

Family

ID=34414121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003313044A Pending JP2005084126A (en) 2003-09-04 2003-09-04 Electro-optical composite substrate, optical waveguide, and optical waveguide with optical element

Country Status (1)

Country Link
JP (1) JP2005084126A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292852A (en) * 2005-04-07 2006-10-26 Kyocera Corp Optical-electrical wiring board
JP2007233318A (en) * 2006-01-31 2007-09-13 Kyocera Corp Optical waveguide member, optical wiring module, and electronic device
WO2007139155A1 (en) * 2006-05-30 2007-12-06 Sumitomo Bakelite Co., Ltd. Optical element mounting board, optical circuit board and optical element mounting board
JP2008089827A (en) * 2006-09-29 2008-04-17 Matsushita Electric Works Ltd Opto-electric transducer
JP2008112030A (en) * 2006-10-31 2008-05-15 Sumitomo Bakelite Co Ltd Optical circuit substrate with adhesive, component for mounting optical element and optical element mounted component
JP2008111990A (en) * 2006-10-30 2008-05-15 Sumitomo Bakelite Co Ltd Optical circuit substrate with adhesive, component for mounting optical element and optical element mounted component
WO2009001958A1 (en) * 2007-06-28 2008-12-31 Nippon Telegraph And Telephone Corporation Optical module
JP2010190994A (en) * 2009-02-16 2010-09-02 Nitto Denko Corp Opto-electric hybrid module and method of manufacturing the same
JP2010286777A (en) * 2009-06-15 2010-12-24 Toshiba Corp Optoelectronic interconnection film and optoelectronic interconnection module
US8045829B2 (en) 2005-12-02 2011-10-25 Kyocera Corporation Optical waveguide member, optical wiring board, optical wiring module and method for manufacturing optical waveguide member and optical wiring board
US9354408B2 (en) 2012-11-22 2016-05-31 International Business Machines Corporation Via for electrical contact passing through layers of optical waveguide in multilayer structure including electrical substrate and laminated layers of optical waveguide

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292852A (en) * 2005-04-07 2006-10-26 Kyocera Corp Optical-electrical wiring board
JP4624162B2 (en) * 2005-04-07 2011-02-02 京セラ株式会社 Opto-electric wiring board
US8045829B2 (en) 2005-12-02 2011-10-25 Kyocera Corporation Optical waveguide member, optical wiring board, optical wiring module and method for manufacturing optical waveguide member and optical wiring board
JP4684931B2 (en) * 2006-01-31 2011-05-18 京セラ株式会社 Optical waveguide member manufacturing method, optical wiring module manufacturing method, and electronic device manufacturing method
JP2007233318A (en) * 2006-01-31 2007-09-13 Kyocera Corp Optical waveguide member, optical wiring module, and electronic device
WO2007139155A1 (en) * 2006-05-30 2007-12-06 Sumitomo Bakelite Co., Ltd. Optical element mounting board, optical circuit board and optical element mounting board
KR101346878B1 (en) 2006-05-30 2014-01-15 스미토모 베이클리트 컴퍼니 리미티드 Substrate for mounting an optical element, optical circuit substrate, and substrate on which an optical element is mounted
US8208769B2 (en) 2006-05-30 2012-06-26 Sumitomo Bakelite Co., Ltd. Substrate for mounting an optical element, optical circuit substrate, and substrate on which an optical element is mounted
US7869670B2 (en) 2006-05-30 2011-01-11 Sumitomo Bakelite Co., Ltd. Substrate for mounting an optical element, optical circuit substrate, and substrate on which an optical element is mounted
JP2008089827A (en) * 2006-09-29 2008-04-17 Matsushita Electric Works Ltd Opto-electric transducer
JP2008111990A (en) * 2006-10-30 2008-05-15 Sumitomo Bakelite Co Ltd Optical circuit substrate with adhesive, component for mounting optical element and optical element mounted component
JP2008112030A (en) * 2006-10-31 2008-05-15 Sumitomo Bakelite Co Ltd Optical circuit substrate with adhesive, component for mounting optical element and optical element mounted component
JP5094860B2 (en) * 2007-06-28 2012-12-12 日本電信電話株式会社 Optical module
US8545111B2 (en) 2007-06-28 2013-10-01 Nippon Telegraph And Telephone Corporation Optical module
WO2009001958A1 (en) * 2007-06-28 2008-12-31 Nippon Telegraph And Telephone Corporation Optical module
JP2010190994A (en) * 2009-02-16 2010-09-02 Nitto Denko Corp Opto-electric hybrid module and method of manufacturing the same
JP2010286777A (en) * 2009-06-15 2010-12-24 Toshiba Corp Optoelectronic interconnection film and optoelectronic interconnection module
US9354408B2 (en) 2012-11-22 2016-05-31 International Business Machines Corporation Via for electrical contact passing through layers of optical waveguide in multilayer structure including electrical substrate and laminated layers of optical waveguide
US9772462B2 (en) 2012-11-22 2017-09-26 International Business Machines Corporation Via for electrical contact passing through layers of optical waveguide in multilayer structure including electrical substrate and laminated layers of optical waveguide

Similar Documents

Publication Publication Date Title
JP5102815B2 (en) Photoelectric composite wiring module and manufacturing method thereof
JP4859677B2 (en) Photovoltaic module fabrication system and method
US7366380B1 (en) PLC for connecting optical fibers to optical or optoelectronic devices
JP5439080B2 (en) Optical I / O array module
KR100911508B1 (en) Photoelectric integrated circuit element and transmission apparatus using the same
JP2008158440A (en) Photoelectric wiring board and method of manufacturing photoelectric wiring apparatus
US6863453B2 (en) Method and apparatus for parallel optical transceiver module assembly
US8000564B2 (en) Photoelectric conversion module for direct optical interconnection and method of manufacturing the same
US10050718B2 (en) Optical communication module
CN101131983A (en) Connector and light transmitting receiving module
US7876984B2 (en) Planar optical waveguide array module and method of fabricating the same
US7577323B2 (en) Photoelectric circuit board
JP2005084126A (en) Electro-optical composite substrate, optical waveguide, and optical waveguide with optical element
US8348522B2 (en) Attachable components for providing an optical interconnect between/through printed wiring boards
US20040136099A1 (en) Printed circuit board assembly with multi-channel block-type optical devices packaged therein
TWI402549B (en) Optoelectric interconnection module
JP2010028006A (en) Optical device
US8469606B2 (en) Optoelectronic interconnection system
JP2012215876A (en) Optical coupling circuit and optical module for signal transmission/reception using the same
JP2012013726A (en) Optical interconnection module, and optical and electrical circuit board using the same
JP2009058747A (en) Optoelectronic circuit board and inspecting device of the same
JP2005085819A (en) Photoelectric composite board, optical waveguide, and optical waveguide with optical element
JP2009014858A (en) Optoelectronic circuit substrate and inspection apparatus of the same
JP2018129651A (en) Optical transceiver
US9638878B2 (en) Optical coupling device and optical communication system