JP2005082945A - Anti-trichophyton fibrous structural material - Google Patents

Anti-trichophyton fibrous structural material Download PDF

Info

Publication number
JP2005082945A
JP2005082945A JP2003319125A JP2003319125A JP2005082945A JP 2005082945 A JP2005082945 A JP 2005082945A JP 2003319125 A JP2003319125 A JP 2003319125A JP 2003319125 A JP2003319125 A JP 2003319125A JP 2005082945 A JP2005082945 A JP 2005082945A
Authority
JP
Japan
Prior art keywords
fiber
silver
trichophyton
acrylonitrile
fungus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003319125A
Other languages
Japanese (ja)
Inventor
Hideo Naka
秀雄 中
Tetsuo Nakagawa
哲男 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Exlan Co Ltd
Original Assignee
Japan Exlan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Exlan Co Ltd filed Critical Japan Exlan Co Ltd
Priority to JP2003319125A priority Critical patent/JP2005082945A/en
Priority to CNB2004100446470A priority patent/CN100467709C/en
Publication of JP2005082945A publication Critical patent/JP2005082945A/en
Priority to HK05105815.7A priority patent/HK1073141A1/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fibrous structural material having an anti-trichophyton activity against trichophyton which is a kind of fungus, and further having an anti-trichophyton spore activity against the spores of the trichophyton. <P>SOLUTION: This anti-trichophyton fibrous structural material contains a silver-loaded acrylonitrile-based fiber obtained by heat-treating the acrylonitrile-based fiber containing a silver-based compound in pH 1-6 range, as an active ingredient. The anti-trichophyton fibrous structural material has an excellent anti-trichophyton activity against the trichophyton, and further anti-trichophyton spore activity against the spores of the trichophyton. Further it has an anti-bacterial property against bacteria, and in addition, a so-called photo-catalytic activity function capable of improving the antibacterial activity by the irradiation of light. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、銀担持アクリロニトリル系繊維を有効成分とする抗白癬菌繊維構造体に関する。   The present invention relates to an anti- ringworm fungus fiber structure comprising silver-supported acrylonitrile fiber as an active ingredient.

白癬菌は、真菌類の一種で水虫の原因菌であり、人や動物のケラチンタンパクを栄養源として、皮膚、毛、爪などに寄生する。現在、多くの人々がこの病気に悩まされており、抗白癬菌性を有する繊維製品の出現が望まれている。特に、白癬菌は高温多湿を好む性質があるため、風呂場の足ふきマットから頻繁に検出される。かかる白癬菌は胞子形成することにより長期間生きているため、家庭内の水虫の感染源となっている。そのため、白癬菌の胞子に対しても効果のある、抗白癬菌性を有する繊維製品の出現が望まれている。   Ringworm fungus is a type of fungus that causes athlete's foot, and infests skin, hair, nails, etc. using keratin protein from humans and animals as a nutrient source. Currently, many people are suffering from this disease, and the appearance of textile products having anti-tinea fungus properties is desired. In particular, ringworm bacteria are frequently detected from a foot mat in a bathroom because they tend to be hot and humid. Since such ringworms live for a long time by sporulation, they are a source of infection for athlete's foot in the home. Therefore, there is a demand for the appearance of an anti- ringworm fungus fiber product that is also effective against ringworm fungus spores.

そこで、抗白癬菌性を繊維に付与する方法として、クロトリマゾール、トルナフタート等の薬剤をナイロン繊維に付与する方法が開示されている。(特許文献1) また、抗カビ(真菌)剤としてチアベンダゾール系薬剤、抗細菌剤として銀含有無機物質を含むバインダーでガラス繊維を結合せしめた抗菌エアフィルター用濾紙が開示されている。(特許文献2) しかし、これらの方法は、抗白癬菌剤あるいは抗カビ(真菌)剤として医薬品等に使用される特殊な薬剤を使用しており、取扱に難がある。また、白癬菌の胞子に関しては何ら開示していない。   Therefore, as a method for imparting anti-tinea fungus properties to fibers, a method for imparting drugs such as clotrimazole and tolnaphthalate to nylon fibers is disclosed. (Patent Document 1) Further, a filter paper for an antibacterial air filter in which glass fibers are bonded with a binder containing a thiabendazole-based agent as an antifungal (fungal) agent and a silver-containing inorganic substance as an antibacterial agent is disclosed. (Patent Document 2) However, these methods use special drugs used in pharmaceuticals and the like as anti-tinea fungi or anti-fungal agents, and are difficult to handle. Moreover, nothing is disclosed about spores of ringworm.

一方、銀イオンは優れた抗菌作用があることが知られているが、一般に、銀系の抗菌剤は細菌類に対しては優れた抗菌性を有するが、真菌類に対する抗菌効果は小さいといわれている。上記特許文献2でも、その点を考慮して抗細菌剤として酸化銀を、抗カビ(真菌)剤としてチアベンダゾール系薬剤を用いている。   On the other hand, silver ions are known to have excellent antibacterial activity, but silver antibacterial agents generally have excellent antibacterial properties against bacteria, but are said to have little antibacterial effect against fungi. ing. In the above-mentioned Patent Document 2, considering this point, silver oxide is used as an antibacterial agent, and a thiabendazole-based agent is used as an antifungal agent.

本発明者らはかねてより抗菌性繊維の開発を行っており、その一環として先に、抗菌活性金属化合物を含有するアクリロニトリル系繊維に、pH1〜6の範囲内で熱処理を施してなる光触媒活性を有する抗菌性アクリロニトリル系繊維を提案した。(特許文献3) この繊維は、優れた抗細菌性を有し、しかも光の照射により抗細菌活性が向上するという光触媒活性を有するものである。しかしながら、白癬菌などの真菌類に関する記載はなく、本願が意図するような「抗白癬菌性」さらには白癬菌の胞子に対する「抗白癬菌胞子性」といった機能は全く認識されていない。
特開平8−226078 特開平8−144199 特開2001−89968
The present inventors have been developing antibacterial fibers for some time. As part of the development, the photocatalytic activity obtained by subjecting the acrylonitrile fiber containing the antibacterial active metal compound to a heat treatment within the range of pH 1 to 6 has been developed. Proposed antibacterial acrylonitrile fiber. (Patent Document 3) This fiber has an excellent antibacterial property and also has a photocatalytic activity in which antibacterial activity is improved by light irradiation. However, there is no description on fungi such as ringworm, and the functions such as “anti- ringworm” and “anti- ringworm fungus” on the spores of ringworm are not recognized at all.
JP-A-8-226078 JP-A-8-144199 JP 2001-89968 A

本発明の目的は、真菌類の一種である白癬菌に対する抗白癬菌性、さらには白癬菌の胞子に対する抗白癬菌胞子性を有する繊維構造体を提供することにある。   An object of the present invention is to provide a fiber structure having anti- ringworm fungus against tinea fungus, which is a kind of fungus, and further having anti-ringworm fungus spores against spore of ringworm fungus.

本発明者らは、抗菌性繊維の抗菌性向上手段について鋭意研究を続けてきた。その結果、銀系化合物を含有するアクリロニトリル系繊維に、pH1〜6の範囲内で熱処理を施してなる銀担持アクリロニトリル系繊維が白癬菌に対する優れた抗白癬菌性を有することを見出し、本発明を完成するに至った。即ち本発明は、銀系化合物を含有するアクリロニトリル系繊維に、pH1〜6の範囲内で熱処理を施した銀担持アクリロニトリル系繊維を有効成分とする抗白癬菌繊維構造体にある。   The inventors of the present invention have continually studied on the antibacterial improvement means of antibacterial fibers. As a result, it was found that the silver-supported acrylonitrile fiber obtained by heat-treating acrylonitrile fiber containing a silver compound within the range of pH 1 to 6 has excellent anti-tinea fungus properties against ringworm. It came to be completed. That is, the present invention resides in an anti- ringworm fungus fiber structure comprising, as an active ingredient, silver-supported acrylonitrile fiber obtained by heat-treating acrylonitrile fiber containing a silver compound within a pH range of 1 to 6.

さらに、本発明の目的は、白癬菌の胞子に対する抗白癬菌胞子性を有するものであること、アクリロニトリル系繊維がアニオン性官能基を有するものであること、熱処理が、100〜160℃の湿熱又は乾熱であることにより好適に達成される。また、抗白癬菌繊維構造体からなる靴下類、敷物類、履物類、履物用資材であることにより、より好適に達成される。   Further, the object of the present invention is to have anti- ringworm fungus spores against ringworm fungus spores, that the acrylonitrile fiber has an anionic functional group, and heat treatment is performed at a heat of This is preferably achieved by dry heat. Moreover, it is achieved more suitably by using socks, rugs, footwear, and footwear materials comprising an anti- ringworm fungus fiber structure.

本発明の抗白癬菌繊維構造体は、銀系化合物を含有するアクリロニトリル系繊維(以下、銀系化合物含有アクリロニトリル系繊維とも言う)に、pH1〜6の範囲内で熱処理を施してなる銀担持アクリロニトリル系繊維を有効成分とすることにより、白癬菌に対する優れた抗白癬菌性、さらには白癬菌の胞子に対する抗白癬菌胞子性を有している。また細菌に対する抗細菌性も有し、加えて光照射により抗細菌性を高めることができるという、いわゆる光触媒活性機能をも有している。なお、以下本願においては、抗白癬菌胞子性を含めて、抗白癬菌性という。   The anti- ringworm fungus fiber structure of the present invention is a silver-supported acrylonitrile obtained by subjecting an acrylonitrile fiber containing a silver compound (hereinafter also referred to as a silver compound-containing acrylonitrile fiber) to a heat treatment within a range of pH 1-6. By using a system fiber as an active ingredient, it has excellent anti- ringworm fungus resistance against ringworm and further anti- ringworm fungus spores against spore of ringworm fungus. In addition, it has antibacterial properties against bacteria, and in addition, has a so-called photocatalytic activity function that can enhance antibacterial properties by light irradiation. Hereinafter, in the present application, the antiscabic fungus is referred to as an anti- ringworm fungus.

以下本発明を詳細に説明する。本発明の抗白癬菌繊維構造体は、銀系化合物を含有するアクリロニトリル系繊維に、pH1〜6の範囲内で熱処理を施してなる銀担持アクリロニトリル系繊維を有効成分とするものであり、かかる銀担持アクリロニトリル系繊維を少なくとも一部に含んでいればよい。必要に応じて他の繊維と混用して用いられることも好ましい。かかる繊維構造体は、通常の方法によって製造される糸、ヤーン、フィラメント、織物、編物、不織布、紙状物、シート状物、積層体、綿状体及びこれらの組み合わせによる複合体を総称して指すものであり、銀担持アクリロニトリル系繊維以外の繊維やその割合等は特に限定されるものではないが、銀担持アクリロニトリル系繊維を5重量%以上含有するものであることが好ましい。また、バスマット等の吸水性を必要とする製品においては、他の繊維として吸水性を有する繊維を混用することが好ましい。   The present invention will be described in detail below. The anti- ringworm fungus fiber structure of the present invention comprises, as an active ingredient, a silver-supported acrylonitrile fiber obtained by subjecting an acrylonitrile fiber containing a silver compound to a heat treatment within a pH range of 1 to 6. It is sufficient that the supported acrylonitrile-based fiber is included at least in part. It is also preferred to be used in combination with other fibers as necessary. Such a fiber structure is a generic term for composites made of yarns, yarns, filaments, woven fabrics, knitted fabrics, non-woven fabrics, paper-like products, sheet-like products, laminates, cotton-like products, and combinations thereof produced by ordinary methods. The fibers other than the silver-supporting acrylonitrile fiber and the ratio thereof are not particularly limited, but preferably contain 5% by weight or more of the silver-supporting acrylonitrile fiber. Moreover, in the product which requires water absorption, such as a bath mat, it is preferable to mix a fiber having water absorption as another fiber.

本発明の繊維構造体は、例えば白癬菌に感染する皮膚に直接接する繊維製品や白癬菌の胞子が付着する可能性のある製品などに応用することが可能である。具体的な製品としては、足袋、タイツなどの靴下類、バスマット、玄関マット、カーペットなどの敷物類、スリッパ、サンダル、靴などの履物類、インソール、靴の内張り材などの履物用資材等をあげることができる。   The fiber structure of the present invention can be applied to, for example, a fiber product directly in contact with the skin infected with ringworm fungi, a product to which the ringworm spores may adhere, and the like. Specific products include socks such as tabi and tights, rugs such as bath mats, entrance mats and carpets, footwear such as slippers, sandals and shoes, footwear materials such as insoles and shoe lining materials, etc. be able to.

本発明に用いられる銀系化合物を含有するアクリロニトリル系繊維は、アクリロニトリル系重合体から形成された繊維であって、銀系化合物を含有するものである限り特に制約はなく、かかるアクリロニトリル系重合体は、好ましくは60重量%以上、更に好ましくは80%重量以上のアクリロニトリルと公知のモノマーとの共重合体を用いることができる。   The acrylonitrile fiber containing a silver compound used in the present invention is a fiber formed from an acrylonitrile polymer and is not particularly limited as long as it contains a silver compound. Such an acrylonitrile polymer is A copolymer of acrylonitrile and a known monomer, preferably 60% by weight or more, more preferably 80% by weight or more, can be used.

共重合に用いられるコモノマーとしては他の重合性不飽和ビニル化合物など、アクリロニトリルと共重合するものであれば特に制限はなく、例えば酢酸ビニル等のビニルエステル類;塩化ビニル、臭化ビニル、塩化ビニリデン等のハロゲン化ビニル又はビニリデン類;アクリル酸メチル、メタアクリル酸メチル等の(メタ)アクリル酸低級アルキルエステル類(以下、(メタ)アクリルの記載はアクリルとメタアクリルの両方を表現するものとする);アクリルアミド、スチレン、メタアリルスルホン酸ソーダ、2−アクリルアミド−2−メチルプロパンスルホン酸、パラスチレンスルホン酸ソーダ、ビニルスルホン酸ソーダ等のスルホン酸基含有単量体、(メタ)アクリル酸、マレイン酸等のカルボン酸基含有単量体等を使用することができるが、銀系化合物を効率的に含有させるため、スルホン酸基あるいはカルボン酸基含有単量体等のアニオン性官能基含有単量体を0.1〜20重量%含有することが望ましい。   The comonomer used for copolymerization is not particularly limited as long as it is copolymerizable with acrylonitrile, such as other polymerizable unsaturated vinyl compounds. For example, vinyl esters such as vinyl acetate; vinyl chloride, vinyl bromide, vinylidene chloride Vinyl halides or vinylidenes such as: (meth) acrylic acid lower alkyl esters such as methyl acrylate and methyl methacrylate (hereinafter (meth) acrylic description represents both acrylic and methacrylic) ); Sulfonic acid group-containing monomers such as acrylamide, styrene, sodium methallyl sulfonate, 2-acrylamido-2-methylpropane sulfonic acid, sodium parastyrene sulfonate, sodium vinyl sulfonate, (meth) acrylic acid, malee It is possible to use carboxylic acid group-containing monomers such as acids That is, in order to contain a silver-based compound efficiently, it is desirable to include an anionic functional group-containing monomers such as sulfonic acid group or carboxylic acid group-containing monomer and 0.1 to 20 wt%.

本発明において繊維に含有せしめるべき銀系化合物の量は、特に限定はないが、より好ましくは繊維に対して金属イオンとして1〜200m・mol/kg含有させるのが良い。即ち銀系化合物の含有量は要求される抗白癬菌性のレベルにより異なるのであり、係る範囲の下限に満たない場合は充分な抗白癬菌性能が得られにくく、上限を越える場合は、繊維が乾燥等の熱処理工程で著しく着色する問題が生じ易い。さらに係る範囲内で充分な抗菌性能が恒久的に得られることから上述した範囲を越えてまで含有せしめることは、不必要にコストが高くなり工業的に有利でない。   In the present invention, the amount of the silver-based compound to be contained in the fiber is not particularly limited, but more preferably 1 to 200 m · mol / kg is contained as a metal ion with respect to the fiber. That is, the content of the silver-based compound varies depending on the required level of anti-tinea fungi, and when the lower limit of the range is not reached, it is difficult to obtain sufficient anti-tinea fungi performance, and when the upper limit is exceeded, the fiber A problem of remarkable coloring easily occurs in a heat treatment process such as drying. Furthermore, since sufficient antibacterial performance is permanently obtained within such a range, it is unnecessarily expensive to increase the content beyond the above range, which is not industrially advantageous.

かかる銀系化合物をアクリロニトリル系繊維に含有せしめる方法としては特に制約はなく、例えば、特開平3−199418号公報に開示されている方法、すなわちアクリロニトリル系繊維を製造するに際し、乾燥、熱緩和工程前のゲル構造繊維を銀系水溶液で連続的に処理し、繊維に銀系化合物を含有させる方法、特開昭52−92000号公報や特開平7−243169号公報に開示されている方法、すなわち通常の方法によりアクリロニトリル系繊維を製造した後、後加工により銀系化合物を含有させる方法をあげることが出来る。   There is no particular limitation on the method for incorporating the silver-based compound into the acrylonitrile-based fiber. For example, in the method disclosed in JP-A-3-199418, that is, when the acrylonitrile-based fiber is produced, before the drying and heat relaxation steps. The gel structure fiber is continuously treated with a silver-based aqueous solution, and the fiber is made to contain a silver-based compound, the method disclosed in JP-A-52-92000 and JP-A-7-243169, Examples of the method of producing an acrylonitrile fiber by the method described above and then adding a silver compound by post-processing can be mentioned.

本発明においては、かくして得られた銀系化合物を含有するアクリロニトリル系繊維に、pH1〜6好ましくはpH2〜4の範囲内で熱処理を施して銀担持アクリロニトリル系繊維とすることが必要である。かかる熱処理の方法としては特に限定されるものではないが、100〜160℃の湿熱又は乾熱で処理する方法が好ましく、例えば、銀系化合物を含有するアクリロニトリル系繊維をpH1〜6の酸性水溶液に浸漬し水切りした繊維を、オートクレーブ中でスチームにより湿熱処理する方法、あるいは水切りした繊維をそのまま熱風乾燥機にて乾熱処理する方法などが挙げられる。なお処理時間は処理温度により設定される。   In the present invention, it is necessary to heat-treat the acrylonitrile fiber containing the silver compound thus obtained in the range of pH 1-6, preferably pH 2-4, to obtain silver-supported acrylonitrile fiber. Although it does not specifically limit as the method of this heat processing, The method of processing by 100-160 degreeC wet heat or dry heat is preferable, for example, the acrylonitrile fiber containing a silver type compound is made into acidic aqueous solution of pH 1-6. Examples thereof include a method of wet-heat treating the dipped and drained fibers with steam in an autoclave, or a method of directly drying and heat-treating the drained fibers with a hot air dryer. The processing time is set according to the processing temperature.

ここで熱処理時のpHが1未満の場合には、繊維物性が著しく阻害されるため、又pHが6を超える場合には、光触媒活性が付与されない。また、熱処理温度が100℃未満の場合は、処理時間が長くなり工業的に有利な方法ではなく、又160℃を超えると銀担持アクリロニトリル系繊維の色相や強伸度等の物性を阻害するため好ましくない。   Here, when the pH during the heat treatment is less than 1, the fiber properties are remarkably inhibited. When the pH exceeds 6, the photocatalytic activity is not imparted. Further, when the heat treatment temperature is less than 100 ° C., the treatment time becomes longer and it is not an industrially advantageous method. When the heat treatment temperature exceeds 160 ° C., the physical properties such as the hue and strength of the silver-supported acrylonitrile fiber are hindered. It is not preferable.

以下に本発明に採用しうる銀担持アクリロニトリル系繊維の具体的な製造方法を示すが、これらはあくまで例示的なものであり、該繊維の製造方法はこれらにより限定されるものではない。なお、以下の製造方法において、部及び百分率は特に断りのない限り重量基準で示す。なお、以下の製造方法において記述する銀イオン含有量および抗細菌性能は下記の方法で測定したものである。
(1)銀イオン含有量
0.1gの繊維を、95%の濃硫酸と62%の濃硝酸溶液で湿式分解した溶液を日本ジャ−レルアッシュ(株)製原子吸光分析装置AA855型を用いて原子吸光度を測定して求めた。
Although the specific manufacturing method of the silver carrying | support acrylonitrile type | system | group fiber which can be employ | adopted for this invention below is shown, these are an illustration to the last and the manufacturing method of this fiber is not limited by these. In the following production methods, parts and percentages are shown on a weight basis unless otherwise specified. The silver ion content and antibacterial performance described in the following production methods were measured by the following methods.
(1) Silver ion content A solution obtained by wet-degrading 0.1 g of fiber with 95% concentrated sulfuric acid and 62% concentrated nitric acid solution is atomized using an atomic absorption spectrometer AA855 manufactured by Nippon Jarrell Ash Co., Ltd. Absorbance was measured and determined.

(2)抗細菌性
黄色ブドウ球菌の菌数が1.5〜3.0x10個/mlとなるように菌懸濁液を調整し、試験菌液とした。三角フラスコに、試料繊維0.2g、試験菌液20mlを加え、30℃で30分振盪した後、生菌数を測定し、残存生菌率(LogS(%))を求めた。ここで、残存生菌率とは加えた試験菌液の菌数をA、30分振盪後の菌数をBとして次式で算出する。
残存生菌率(LogS(%))=Log[(B/A)×100]
残存生菌率が2の場合は、全く抗細菌性がないことを示し、−2は強い抗細菌性(99.99%の菌が死滅)があることを示している。
(2) Antibacterial property The bacterial suspension was adjusted so that the number of Staphylococcus aureus was 1.5 to 3.0 × 10 6 cells / ml to obtain a test bacterial solution. To the Erlenmeyer flask, 0.2 g of sample fiber and 20 ml of the test bacterial solution were added and shaken at 30 ° C. for 30 minutes, and then the viable cell count was measured to determine the residual viable cell rate (LogS (%)). Here, the residual viable cell rate is calculated by the following formula, where A is the number of bacteria in the added test bacterial solution, and B is the number of bacteria after shaking for 30 minutes.
Residual viable cell rate (LogS (%)) = Log [(B / A) × 100]
A residual viable rate of 2 indicates no antibacterial activity, and -2 indicates a strong antibacterial property (99.99% of the bacteria are killed).

なお、本発明に採用する銀担持アクリロニトリル系繊維の光触媒活性を調べるため、上述の30℃での振盪は、光照射下(タングステンランプ100V、100W)及び暗室下で行い、暗室下の残存生菌率から光照射下の残存生菌率を減じた値を残存生菌率差とした。該残存生菌率差の値は、光触媒活性能を表すパラメーターであり、この値が大きいほど光触媒活性能力が高いといえる。   In order to investigate the photocatalytic activity of the silver-supported acrylonitrile fiber used in the present invention, the above-mentioned shaking at 30 ° C. is performed under light irradiation (tungsten lamp 100 V, 100 W) and in a dark room, and the remaining viable bacteria in the dark room The value obtained by subtracting the residual viable cell rate under light irradiation from the rate was defined as the residual viable cell rate difference. The value of the residual viable cell rate difference is a parameter representing the photocatalytic activity ability, and it can be said that the larger this value, the higher the photocatalytic activity ability.

銀系化合物含有アクリロニトリル系繊維の製造例1
常法に従って重合して得られたアクリロニトリル91.1%、アクリル酸メチルエステル8.6%、メタアリルスルホン酸ソーダ0.3%からなるアクリロニトリル系重合体を、濃度45%のロダンソーダ水溶液に溶解し、重合体濃度が12%である紡糸原液を作成した。該原液を10%、−3℃のロダンソーダ水溶液中に公知である口金を用いて押し出し、水洗、延伸、熱処理を行い、アクリロニトリル系繊維(繊維A)を作成した。次いで、銀を該繊維に導入するため、20m・mol/lに調整した硝酸銀水溶液1000mlを1%の硝酸水溶液でpH3に調整した溶液中に繊維Aを100g投入して、98℃で10分間処理を行い、水洗、乾燥した後、10m・mol/lに調整したシュウ酸ナトリウム水溶液1000mlに投入して、98℃で10分間処理を行い、水洗、乾燥を行い、銀系化合物含有アクリロニトリル系繊維(繊維B)を作成した。
Production Example 1 of Silver Compound-Containing Acrylonitrile Fiber
An acrylonitrile-based polymer comprising 91.1% acrylonitrile, 8.6% acrylic acid methyl ester, and 0.3% sodium methallyl sulfonate obtained by polymerization according to a conventional method is dissolved in a 45% concentration aqueous rhodium soda solution. A spinning stock solution having a polymer concentration of 12% was prepared. The stock solution was extruded into a 10%, -3 ° C aqueous rhodium soda solution using a known die, washed with water, stretched, and heat-treated to prepare acrylonitrile fiber (fiber A). Next, in order to introduce silver into the fiber, 100 g of fiber A was introduced into a solution adjusted to pH 3 with 1% nitric acid aqueous solution of silver nitrate aqueous solution adjusted to 20 m · mol / l and treated at 98 ° C. for 10 minutes. After washing with water and drying, the solution was poured into 1000 ml of an aqueous sodium oxalate solution adjusted to 10 m · mol / l, treated at 98 ° C. for 10 minutes, washed with water and dried, and then a silver compound-containing acrylonitrile fiber ( Fiber B) was prepared.

銀系化合物含有アクリロニトリル系繊維の製造例2
AN95%、酢酸ビニル5%からなるアクリロニトリル系重合体を用い、硝酸銀水溶液での処理時間を30分とした以外は銀系化合物含有アクリロニトリル系繊維の製造例1と同様にして、銀系化合物含有アクリロニトリル系繊維(繊維C)を作成した。
Production example 2 of silver compound-containing acrylonitrile fiber
A silver compound-containing acrylonitrile was prepared in the same manner as in Production Example 1 of a silver compound-containing acrylonitrile fiber, except that an acrylonitrile polymer comprising 95% AN and 5% vinyl acetate was used and the treatment time in the aqueous silver nitrate solution was 30 minutes. A system fiber (fiber C) was prepared.

上述の如くして得られた銀系化合物含有アクリロニトリル系繊維(繊維B、C)を、硝酸でpHを調整した水溶液に浸漬した後、水切りして、オートクレーブ(熱処理温度が100℃を超える場合)もしくは熱風乾燥機(熱処理温度が100℃以下の場合)に入れ、表1に示したpH、温度で熱処理し、繊維No.1〜5、及び8の6種類の繊維を作成した。繊維No.6、7は夫々銀系化合物含有アクリロニトリル系繊維の製造例1のアクリロニトリル系繊維(繊維A)、銀系化合物含有アクリロニトリル系繊維(繊維B)そのものである。   The silver-based compound-containing acrylonitrile fiber (fibers B and C) obtained as described above is immersed in an aqueous solution adjusted in pH with nitric acid, drained, and then autoclaved (when the heat treatment temperature exceeds 100 ° C.) Or it put into the hot air dryer (when heat processing temperature is 100 degrees C or less), and it heat-processed by pH and temperature shown in Table 1, and produced six types of fibers of fiber No. 1-5, and 8. Fibers Nos. 6 and 7 are the acrylonitrile fiber (fiber A) and the silver compound-containing acrylonitrile fiber (fiber B) of Production Example 1 of the silver compound-containing acrylonitrile fiber, respectively.

Figure 2005082945
Figure 2005082945

かくして得られた繊維について、金属イオン含有量並びに光照射下及び暗室下で残存生菌率で表される抗細菌性能及び残存生菌率差で表される光触媒活性能を測定、算出した結果を表2に示す。   For the fiber thus obtained, the metal ion content and the antibacterial performance represented by the residual viable cell rate under light irradiation and dark room and the photocatalytic activity represented by the residual viable cell rate difference were calculated and calculated. Table 2 shows.

Figure 2005082945
Figure 2005082945

表2から、本発明に採用しうる銀担持アクリロニトリル系繊維である繊維No.1〜5は、残存生菌率差の値が1.2以上と光照射下での残存生菌率が暗室下での残存生菌率に較べ優れており、光触媒活性の有ること、すなわち光を当てることにより抗細菌性能が向上すること、また光照射時の残存生菌率も−2以下であり、優れた抗細菌性能を有していることがわかる。特に繊維No.1及び2は残存生菌率差が1.8以上と極めて優れた光触媒活性能を持ち、残存生菌率も−2.4以下と極めて優れた抗細菌性能を有している。ただし、繊維No.1はpH1という酸性度の強い条件で処理したため、単繊維同志の部分的な融着が発生するなど、若干繊維形態が乱されていた。また、170℃で熱処理した繊維No.5は、若干繊維が着色していた。   From Table 2, fibers No. 1 to 5, which are silver-supported acrylonitrile fibers that can be used in the present invention, have a residual viable cell ratio difference value of 1.2 or more, and the remaining viable cell rate under light irradiation is in the dark room. It is superior to the residual viable cell rate in the above, has photocatalytic activity, that is, the antibacterial performance is improved by applying light, and the remaining viable cell rate at the time of light irradiation is -2 or less, which is excellent It can be seen that it has antibacterial performance. In particular, fibers No. 1 and 2 have an extremely excellent photocatalytic activity with a difference in residual viable bacteria rate of 1.8 or more, and an extremely excellent antibacterial performance with a residual viable cell rate of -2.4 or less. . However, since the fiber No. 1 was treated under a highly acidic condition of pH 1, the fiber form was slightly disturbed, such as partial fusion between single fibers. Further, the fiber No. 5 heat-treated at 170 ° C. was slightly colored.

これに対し、銀系化合物を含まない繊維No.6は全く抗細菌性能、光触媒活性能を示さず、銀系化合物を含んだ繊維No.7及びpH7で熱処理した繊維No.8は、ある程度の抗細菌性能は有するものの、光触媒活性能は認められなかった。   On the other hand, fiber No. 6 containing no silver compound does not exhibit antibacterial performance and photocatalytic activity at all, and fiber No. 7 containing silver compound and fiber No. 8 heat-treated at pH 7 have some degree of Although it has antibacterial performance, no photocatalytic activity was observed.

以下に本発明の理解を容易にするために実施例を示すが、これらはあくまで例示的なものであり、本発明の要旨はこれらにより限定されるものではない。なお、実施例中、部及び百分率は特に断りのない限り重量基準で示す。なお、実施例において記述する抗白癬菌性能は下記の方法で測定したものである。 Examples are shown below for facilitating the understanding of the present invention. However, these are merely examples, and the gist of the present invention is not limited thereto. In the examples, parts and percentages are based on weight unless otherwise specified. In addition, the anti- ringworm fungus performance described in the examples was measured by the following method.

抗白癬菌性能
白癬菌として、Trichophyton mentagrophytesを用い、JIS L 1902に準拠して、以下の方法で測定した。
供試菌をサブロー寒天培地で培養し、着生した胞子を生理食塩水で集め、ガーゼをつめたチップでろ過して胞子懸濁液を作成した。この胞子懸濁液をサブロー液体培地を無菌水で20倍に希釈した1/20サブロー液体培地を用いて胞子数約10〜10cells/mlに調整し、これを試験菌液とした。
Anti- ringworm fungus performance Trichophyton mentagrophytes was used as the ringworm fungus, and was measured by the following method according to JIS L1902.
The test bacteria were cultured on a Sabouraud agar medium, and the grown spores were collected with physiological saline and filtered through a chip filled with gauze to prepare a spore suspension. This spore suspension was adjusted to a spore count of about 10 5 to 10 6 cells / ml using a 1/20 Sabouraud liquid medium obtained by diluting a Sabouraud liquid medium 20 times with sterile water, and this was used as a test bacterial solution.

試験菌液2mlを試験片(0.4g)の数箇所に接種し、バイアル瓶中、室内光下30±1℃にて、所定の時間静置培養した。所定時間経過後(0時間の場合は、接種後直ちに)、洗い出し用生理食塩水20mlをバイアル瓶に加え、手振り(振幅約30cm、30回振盪)で菌を洗い出した。洗い出し液1mlを採取し、生理食塩水9mlの入った試験管に混ぜ、よく撹拌した。この試験管から1mlを採取し別の試験管の生理食塩水9mlに入れて撹拌した。この操作を繰り返して、10倍希釈法による希釈系列を作成した。各希釈系列の試験管から0.1ml採取し、サブロー寒天培地に塗布した後、30℃で48時間培養した。30〜300個のコロニーが現れた希釈系列のシャーレのコロニー数を測定した。   2 ml of the test bacterial solution was inoculated into several portions of the test piece (0.4 g), and left to stand for a predetermined time in a vial at 30 ± 1 ° C. under room light. After a predetermined period of time (in the case of 0 hours, immediately after inoculation) 20 ml of physiological saline for washing was added to the vial, and the bacteria were washed out by hand shaking (amplitude about 30 cm, shaking 30 times). 1 ml of the washing solution was collected, mixed in a test tube containing 9 ml of physiological saline, and stirred well. 1 ml was collected from this test tube, and stirred in 9 ml of physiological saline in another test tube. This operation was repeated to prepare a dilution series by a 10-fold dilution method. 0.1 ml was taken from each dilution series test tube, applied to a Sabouraud agar medium, and then cultured at 30 ° C. for 48 hours. The number of colonies in the petri dish of dilution series in which 30 to 300 colonies appeared was measured.

生菌数は、以下の計算式で求めた。
生菌数 M=Z×R×20
ここで、Zはコロニー数(2枚のシャーレの平均)、Rは希釈倍率である。
生菌数が少ないほど、抗白癬菌性が高いことを示している。なお生菌数が0は、コロニーが全く観察されないことを示しており、非常に高い抗白癬菌性を有していることを示している。
The number of viable bacteria was determined by the following calculation formula.
Viable count M = Z × R × 20
Here, Z is the number of colonies (average of two petri dishes), and R is the dilution factor.
The smaller the number of viable bacteria, the higher the anti-tinea fungus property. A viable count of 0 indicates that no colonies are observed, indicating that it has a very high anti-tinea fungus property.

実施例1、比較例1
銀担持アクリロニトリル系繊維として上述の繊維No.2を10重量%、日本エクスラン工業株式会社製アクリル繊維「K85−1.3T51」を40%、同社製吸水アクリル繊維「K626−1.7T51」を50重量%混綿し、合繊2インチ紡紡績の常法に従ってメートル番手1/10Sの単糸を紡出し、続いて双糸加工を行った後、カセ枠周200cmで重量250gのカセを作成した。該カセを常圧箱型スチーム処理装置にて100℃で15分間バルキー加工を施した。バルキー加工を施したカセをリワインドし、3ゲージ自動横編機にて目付け約600g/mの天竺組織の編地試料(実施例1)を作成した。なお比較例1は、銀担持アクリロニトリル系繊維を日本エクスラン工業株式会社製アクリル繊維「K8−2.2T51」に変更した以外は実施例1と同様にして得られた編地試料である。
Example 1 and Comparative Example 1
As a silver-supporting acrylonitrile fiber, 10% by weight of the above-mentioned fiber No. 2, 40% of acrylic fiber “K85-1.3T51” manufactured by Nippon Exlan Industries Co., Ltd., 50 of water-absorbing acrylic fiber “K626-1.7T51” manufactured by the same company After blending by weight%, spinning a single yarn of metric count 1 / 10S in accordance with a conventional method of spinning a synthetic fiber 2 inch, followed by twin yarn processing, a casserole having a weight of 250 g with a cassette frame circumference of 200 cm was prepared. The cassette was subjected to bulky processing at 100 ° C. for 15 minutes using an atmospheric pressure box type steam processing apparatus. The bulky processed casserole was rewinded, and a knitted fabric sample (Example 1) having a weight per unit area of about 600 g / m 2 was prepared using a 3-gauge automatic flat knitting machine. Comparative Example 1 is a knitted fabric sample obtained in the same manner as in Example 1 except that the silver-supported acrylonitrile fiber is changed to an acrylic fiber “K8-2.2T51” manufactured by Nippon Exlan Industries Co., Ltd.

かくして得られた、実施例1及び比較例1の編地の抗白癬菌性を測定した結果を表3に示した。なお、銀担持アクリロニトリル系繊維(繊維No.2)単独での抗白癬菌性は、0時間6.7×10、6時間後、12時間後、18時間後はいずれも0であった。また、「K8−2.2T51」は、それぞれ、6.7×10、1.0×10、1.1×10、7.2×10と全く抗白癬菌性が認められなかった。 Table 3 shows the results of measuring the anti-tinea fungus properties of the knitted fabrics of Example 1 and Comparative Example 1 thus obtained. In addition, the anti-tinea fungus property of the silver-supporting acrylonitrile fiber (fiber No. 2) alone was 0 at 6.7 × 10 5 , 6 hours, 12 hours, and 18 hours. In addition, “K8-2.2T51” was 6.7 × 10 5 , 1.0 × 10 6 , 1.1 × 10 6 , and 7.2 × 10 5 , respectively, and no anti-tinea fungus property was observed. It was.

Figure 2005082945
Figure 2005082945

実施例2
前記「銀系化合物含有アクリロニトリル系繊維の製造例1」における硝酸銀水溶液の濃度を10m・mol/lとした以外は繊維No.2と同様にして、銀担持アクリロニトリル系繊維を作成した。かかる銀担持アクリロニトリル系繊維は21m・mol/Kgの銀イオンが担持されていた。かかる銀担持アクリロニトリル系繊維を用いた以外は実施例1と同様にして目付け約600g/mの編地試料を作成した。かかる編地の抗白癬菌性も表3に併記した。
Example 2
Silver-supported acrylonitrile fiber was prepared in the same manner as fiber No. 2 except that the concentration of the silver nitrate aqueous solution in “Production Example 1 of silver compound-containing acrylonitrile fiber” was 10 m · mol / l. Such silver-supported acrylonitrile fiber supported 21 m · mol / Kg of silver ions. A knitted fabric sample with a basis weight of about 600 g / m 2 was prepared in the same manner as in Example 1 except that such silver-supported acrylonitrile fiber was used. The anti-tinea fungus properties of the knitted fabric are also shown in Table 3.

実施例3
同様に硝酸銀水溶液の濃度を15m・mol/lとした以外は繊維No.2と同様にして、32m・mol/Kgの銀イオンが担持された銀担持アクリロニトリル系繊維を作成した。かかる銀担持アクリロニトリル系繊維を10重量%、日本エクスラン工業株式会社製アクリル繊維「K65−3.3TV64」を40%、同社製吸水アクリル繊維「C808−2.8TV64」を50重量%混綿し、そ毛紡紡績の常法に従ってメートル番手1/15Sの単糸を紡出し、続いて3本子撚糸加工を行った後、カセ周200cmで重量250gのカセを作成した。該カセを用い実施例1と同様にして目付け約600g/mの編地試料を作成した。かかる編地の抗白癬菌性も表3に併記した。
Example 3
Similarly, a silver-supporting acrylonitrile fiber carrying 32 m · mol / Kg of silver ions was prepared in the same manner as the fiber No. 2 except that the concentration of the silver nitrate aqueous solution was 15 m · mol / l. 10% by weight of the silver-supported acrylonitrile fiber, 40% of the acrylic fiber “K65-3.3TV64” manufactured by Nippon Exlan Industries Co., Ltd., and 50% by weight of the water-absorbing acrylic fiber “C808-2.8TV64” manufactured by the same company. After spinning a single yarn having a metric count of 1 / 15S in accordance with a conventional method of wool spinning, and performing triple-twist yarn processing, a casserole having a circumference of 200 cm and a weight of 250 g was produced. A knitted fabric sample having a weight per unit area of about 600 g / m 2 was prepared in the same manner as in Example 1 by using the casserole. The anti-tinea fungus properties of the knitted fabric are also shown in Table 3.

実施例4
実施例2で作成したカセを常法に従ってカチオン染料で染色し、吸水柔軟剤で吸水処理を施した。吸水処理を施したカセから、5/32ゲージのミシンタフト機で、パイル長さ12mm、目付け800g/mのバスマット(実施例4)を作成した。かかるバスマットについて、白癬菌をTrichophyton rubumとして、6時間後の抗白癬菌性を測定した結果も表3に併記した。なお、通常のアクリル繊維(日本エクスラン工業製K8−2.2T51)の該菌による抗白癬菌性は、0時間後7.6×10、6時間後で9.4×10と、全く抗白癬菌性を示さなかった。
Example 4
The cake prepared in Example 2 was dyed with a cationic dye according to a conventional method and subjected to water absorption treatment with a water absorbing softener. A bath mat (Example 4) having a pile length of 12 mm and a basis weight of 800 g / m 2 was prepared from a case subjected to water absorption treatment using a 5/32 gauge sewing machine. Table 3 also shows the results of measuring the anti-tinea fungus properties after 6 hours with Trichophyton rubum as the trichophyton rubum. In addition, the anti-tinea fungus property of the normal acrylic fiber (Nippon Exlan Kogyo K8-2.2T51) by the fungus is 7.6 × 10 4 after 0 hours and 9.4 × 10 4 after 6 hours. It did not show anti-tinea fungus.

実施例1及び3の編地及びバスマットは6時間後に、実施例2の編地も12時間後にはコロニーが観察されなくなり、優れた抗白癬菌性を有する事がわかる。銀担持アクリロニトリル系繊維を用いなかった比較例1は全く抗白癬菌性を示さなかった。   Colonies are not observed after 6 hours for the knitted fabrics and bath mats of Examples 1 and 3 and after 12 hours for the knitted fabrics of Example 2, indicating that they have excellent anti-tinea fungus properties. Comparative Example 1 in which the silver-supported acrylonitrile fiber was not used did not show anti-tinea fungus properties at all.

Claims (8)

銀系化合物を含有するアクリロニトリル系繊維に、pH1〜6の範囲内で熱処理を施してなる銀担持アクリロニトリル系繊維を有効成分とする抗白癬菌繊維構造体。 An anti- ringworm fungus fiber structure comprising silver-supported acrylonitrile fiber formed by heat-treating acrylonitrile fiber containing a silver compound within a pH range of 1 to 6 as an active ingredient. 白癬菌の胞子に対する抗白癬菌胞子性を有することを特徴とする請求項1に記載の抗白癬菌繊維構造体。 2. The anti- ringworm fungus fiber structure according to claim 1, which has an anti- ringworm fungus spore property with respect to a ringworm fungus spore. アクリロニトリル系繊維がアニオン性官能基を有するものである請求項1又は2に記載の抗白癬菌繊維構造体。 The anti- ringworm fungus fiber structure according to claim 1 or 2, wherein the acrylonitrile fiber has an anionic functional group. 熱処理が、100〜160℃の湿熱又は乾熱である請求項1〜3のいずれかに記載の抗白癬菌繊維構造体。 The anti- ringworm fungus fiber structure according to any one of claims 1 to 3, wherein the heat treatment is wet heat or dry heat at 100 to 160 ° C. 請求項1〜4のいずれかに記載の抗白癬菌繊維構造体からなる靴下類。 Socks comprising the anti- ringworm fungus fiber structure according to any one of claims 1 to 4. 請求項1〜4のいずれかに記載の抗白癬菌繊維構造体からなる敷物類。 Rugs comprising the anti- ringworm fungus fiber structure according to any one of claims 1 to 4. 請求項1〜4のいずれかに記載の抗白癬菌繊維構造体からなる履物類。 Footwear comprising the anti- ringworm fungus fiber structure according to any one of claims 1 to 4. 請求項1〜4のいずれかに記載の抗白癬菌繊維構造体からなる履物用資材。 The footwear material which consists of an anti- ringworm fungus fiber structure in any one of Claims 1-4.
JP2003319125A 2003-09-11 2003-09-11 Anti-trichophyton fibrous structural material Pending JP2005082945A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003319125A JP2005082945A (en) 2003-09-11 2003-09-11 Anti-trichophyton fibrous structural material
CNB2004100446470A CN100467709C (en) 2003-09-11 2004-05-19 Tinea alba fungi resisting fiber structure body
HK05105815.7A HK1073141A1 (en) 2003-09-11 2005-07-11 Use of fiber structure having anti-trichomonad and anti-spores of trichomonad property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003319125A JP2005082945A (en) 2003-09-11 2003-09-11 Anti-trichophyton fibrous structural material

Publications (1)

Publication Number Publication Date
JP2005082945A true JP2005082945A (en) 2005-03-31

Family

ID=34418157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003319125A Pending JP2005082945A (en) 2003-09-11 2003-09-11 Anti-trichophyton fibrous structural material

Country Status (3)

Country Link
JP (1) JP2005082945A (en)
CN (1) CN100467709C (en)
HK (1) HK1073141A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100395009C (en) * 2006-10-17 2008-06-18 浙江大学 Antibacterial hollow-fiber membrane, preparation method and application
CN114404566B (en) * 2022-02-17 2023-10-20 浙江省农业科学院 Application of trichoderma

Also Published As

Publication number Publication date
CN1594715A (en) 2005-03-16
HK1073141A1 (en) 2005-09-23
CN100467709C (en) 2009-03-11

Similar Documents

Publication Publication Date Title
US9481961B2 (en) Antimicrobial finish on fabrics
CN101331263A (en) Antimicrobial fiber and its production method, and antimicrobial fiber product comprising the antimicrobial fiber, its production method and regeneration method
RU2350356C1 (en) Antibacterial textile fibre material and method of obtaining it
JPH11124729A (en) Antimicrobial fiber and its production
JP2005082945A (en) Anti-trichophyton fibrous structural material
JP2842564B2 (en) Antibacterial viscose rayon and method for producing the same
CN102102240A (en) Antibacterial polyester fibers and manufacturing method and application thereof
JP3349028B2 (en) Textile products made of deodorant and antibacterial acrylic synthetic fibers
JP2017088583A (en) Antimicrobial and antiviral processing agent and processed product thereby
JPH04126820A (en) Antimicrobial polyvinyl alcohol-based synthetic fiber and formed product using the same
JP4062471B2 (en) Antibacterial acrylonitrile fiber with photocatalytic activity
JPH0913221A (en) High-strength acrylic fiber having antibacterial and antifungal properties and its production
JP6474039B2 (en) Discoloration-resistant fiber and fiber structure containing the fiber
JP2006249609A (en) Method for imparting fiber structural product with antibacterial and antifungal performance
JP7259150B2 (en) Antibacterial and antiviral processing agents and products processed therefrom
RU2752998C1 (en) Method for obtaining textile material with protective acaricid-repellent finish
JP4888985B2 (en) Antibacterial and deodorant fiber structures
JPH0424220A (en) Insect-proof acrylic synthetic fiber
JP2000064149A (en) Structure containing fiber for preventing sweat odor and body odor
JP3674202B2 (en) Antibacterial acrylonitrile fiber and method for producing the same
JPH02300315A (en) Deodorizing acrylic conjugate fiber and production thereof
KR20070029955A (en) Reactive antibioties and a method of preparing the same and antibacterial fiber treated thereby
JPH09273081A (en) Antimicrobial acrylic fiber and its production
JPH04126819A (en) Polyvinyl alcohol-based fiber having antimicrobial effect and fiber sheetlike material using the same
JP2001303372A (en) Antimicrobial, antiviral acrylonitrile-based fiber and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080331

A131 Notification of reasons for refusal

Effective date: 20090226

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090526