JP2005082083A - Pneumatic tire - Google Patents
Pneumatic tire Download PDFInfo
- Publication number
- JP2005082083A JP2005082083A JP2003318593A JP2003318593A JP2005082083A JP 2005082083 A JP2005082083 A JP 2005082083A JP 2003318593 A JP2003318593 A JP 2003318593A JP 2003318593 A JP2003318593 A JP 2003318593A JP 2005082083 A JP2005082083 A JP 2005082083A
- Authority
- JP
- Japan
- Prior art keywords
- tread
- rubber
- pneumatic tire
- rubber member
- tread rubber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Tires In General (AREA)
Abstract
Description
本発明はトレッド部を備える空気入りタイヤに関し、特に、本発明は熱特性及び耐摩耗性の双方に優れるトレッド部を備える空気入りタイヤに関する。 The present invention relates to a pneumatic tire including a tread portion, and in particular, the present invention relates to a pneumatic tire including a tread portion excellent in both thermal characteristics and wear resistance.
従来から、発熱性を低減するために、低グレードカーボンの使用、カーボンの使用部数の抑制又は総充填材量の低量化、ポリマーの低Tg(ガラス転移点)化等の手法が実施されている。また、熱伝導性等の改良のための炭素繊維の使用が知られている(例えば、特許文献1及び2参照)。
低発熱性と耐摩擦性とに対する市場要求性能が厳しい中、本発明者は、所定の低グレードカーボン等の使用による発熱性の低減や炭素繊維による熱伝導性の改善では、タイヤに要求される熱特性と耐摩耗性とを両立させることが極めて困難であることを見出した。 While market demand performance for low heat generation and friction resistance is severe, the present inventors are required for tires to reduce heat generation by using a predetermined low grade carbon or the like and to improve heat conductivity by carbon fiber. It has been found that it is extremely difficult to achieve both thermal properties and wear resistance.
本発明の課題は、タイヤのトレッド部において、熱特性の大幅な向上と耐摩耗性の維持とを高度に両立させ、高性能の空気入りタイヤを得ることである。 An object of the present invention is to obtain a high-performance pneumatic tire at the tread portion of the tire that achieves a high degree of compatibility between a significant improvement in thermal characteristics and maintenance of wear resistance.
本発明は、トレッド部を備える空気入りタイヤであって、前記トレッド部が、路面に接する第1トレッドゴム部材及び第2トレッドゴム部材を有しており、第1トレッドゴム部材の熱伝導率が第2トレッドゴム部材の熱伝導率の1.3倍以上であることを特徴とする空気入りタイヤに係るものである。 The present invention is a pneumatic tire including a tread portion, wherein the tread portion includes a first tread rubber member and a second tread rubber member in contact with a road surface, and the thermal conductivity of the first tread rubber member is The present invention relates to a pneumatic tire characterized by being 1.3 times or more the thermal conductivity of the second tread rubber member.
本発明は、所定の熱伝導率の関係からなる複数のトレッドゴム部材をトレッド部の路面接地部に配置することによって、耐摩耗性が維持された状態で、熱特性に優れた空気入りタイヤが得られるという知見に基づくものである。 The present invention provides a pneumatic tire excellent in thermal characteristics in a state in which wear resistance is maintained by disposing a plurality of tread rubber members having a predetermined thermal conductivity relationship on a road surface ground portion of the tread portion. It is based on the knowledge that it can be obtained.
本発明者は、従来における諸問題を解決するため、上記課題に対して、種々のタイヤを試作し検討した。その結果、本発明者は、ゴム自体の発熱性や熱伝導性を改良するだけでは、発熱量は低減され放熱性は改善されるものの耐摩耗性を維持することが大変困難であることを知見した。 In order to solve various problems in the prior art, the present inventor has made various tires as prototypes and examined them. As a result, the present inventor has found that it is very difficult to maintain the wear resistance although the calorific value is reduced and the heat dissipation is improved only by improving the heat generation and heat conductivity of the rubber itself. did.
かかる知見の下、本発明者は耐摩耗性を十分に維持しつつ発熱性及び放熱性を改善できるタイヤについて詳細に検討した。その結果、本発明者は、所定の熱伝導率の関係からなる第1トレッドゴム部材及び第2トレッドゴム部材とからなる複数のトレッドゴム部材を路面に接するトレッド部に配置することにより、熱特性の改善と耐磨耗性の維持とが両立し得ることを突き止め、本発明に至った。 Based on this knowledge, the present inventor has studied in detail a tire that can improve heat generation and heat dissipation while maintaining sufficient wear resistance. As a result, the present inventor arranges a plurality of tread rubber members composed of a first tread rubber member and a second tread rubber member having a predetermined thermal conductivity relationship in a tread portion in contact with a road surface, thereby providing thermal characteristics. As a result, it has been found that the improvement of the above and the maintenance of the wear resistance can be achieved at the same time.
本発明の空気入りタイヤによれば、トレッド部の路面に接する部分が所定の熱伝導率の関係からなる複数のトレッドゴム部材によって形成されており、熱伝導率の関係によって放熱特性と耐摩耗性との調和がとれるので、熱特性及び耐摩耗性に優れる。 According to the pneumatic tire of the present invention, the portion of the tread that is in contact with the road surface is formed by a plurality of tread rubber members having a predetermined thermal conductivity relationship, and the heat dissipation characteristics and wear resistance are determined by the thermal conductivity relationship. Therefore, it has excellent thermal characteristics and wear resistance.
(1)空気入りタイヤ
トレッド部を備える。種々の空気入りタイヤが含まれるが、乗用車用空気入りタイヤや悪路用大型タイヤが好適である。低発熱性や高放熱性等の熱特性及び耐摩耗性の双方の高い要求性能を満たすことができる。
(1) A pneumatic tire has a tread portion. Various pneumatic tires are included, but pneumatic tires for passenger cars and large tires for rough roads are suitable. It is possible to satisfy the required performance of both thermal characteristics such as low heat generation and high heat dissipation and wear resistance.
(2)トレッド部
路面に接する路面接地部を有し、路面接地部は第1トレッドゴム部材及び第2トレッドゴム部材を有する。第1トレッドゴム部材の熱伝導率は第2トレッドゴム部材の熱伝導率の1.3倍以上である。
(2) Tread part It has a road surface grounding part in contact with the road surface, and the road surface grounding part has a first tread rubber member and a second tread rubber member. The thermal conductivity of the first tread rubber member is 1.3 times or more of the thermal conductivity of the second tread rubber member.
路面接地部は複数の縦方向に分割されたトレッドゴム部材からなることができる。かかる場合、タイヤトレッド部は路面接地部に第1及び第2トレッドゴム部材を含む複数の細長いトレッドゴム部材を配置して形成することができる。 The road surface grounding portion can be composed of a plurality of tread rubber members divided in the vertical direction. In this case, the tire tread portion can be formed by arranging a plurality of elongated tread rubber members including the first and second tread rubber members on the road surface grounding portion.
トレッド部は、ベルトコーティングゴムに接するベースゴムとこのベースゴム上のキャップゴムとを備えるキャップベース2層構造を有することができる。トレッド部の下側には、トレッドアンダークッションゴムを設けることができる。 The tread portion may have a cap base two-layer structure including a base rubber in contact with the belt coating rubber and a cap rubber on the base rubber. A tread undercushion rubber can be provided below the tread portion.
(3)第1及び第2トレッドゴム部材
第1トレッドゴム部材は、第2トレッドゴム部材の熱伝導率の1.3倍以上、好ましくは1.4倍以上、更に好ましくは1.5倍以上、最も好ましくは1.7倍以上の所定の熱伝導率を有する。
(3) First and second tread rubber members The first tread rubber member is 1.3 times or more, preferably 1.4 times or more, more preferably 1.5 times or more the thermal conductivity of the second tread rubber member. Most preferably, it has a predetermined thermal conductivity of 1.7 times or more.
第1及び第2トレッドゴム部材は種々の形状からなることができる。例えば、キャップベース2層構造やトレッド部の下側にトレッドアンダークッションゴムを設ける構造の場合、ベースゴム又はトレッドアンダークッションゴムの一部に、膨出部等を形成させ、この膨出部等をトレッド部の表面に露出させて第1トレッドゴム部材とすることができる。かかる構造は、ベースゴム吸い上げ構造、又は乗用車用タイヤのシリカトレッドで見られるようなアンテナ構造と称する。かかる場合、ベースゴム又はトレッドアンダークッションゴムは、第1トレッドゴム部材と同様に、第2トレッドゴム部材の熱伝導率の1.3倍以上等の所定の熱伝導率を有することができる。また、かかる場合、前記キャップゴムは前記第2トレッドゴム部材からなることができる。 The first and second tread rubber members can have various shapes. For example, in the case of a cap base two-layer structure or a structure in which a tread undercushion rubber is provided below the tread part, a bulging part or the like is formed on a part of the base rubber or the tread undercushion rubber, and this bulging part or the like is formed. The first tread rubber member can be formed by being exposed on the surface of the tread portion. Such a structure is referred to as a base rubber sucking structure or an antenna structure as found in the silica tread of a passenger car tire. In such a case, the base rubber or the tread undercushion rubber can have a predetermined thermal conductivity such as 1.3 times or more the thermal conductivity of the second tread rubber member, similarly to the first tread rubber member. In such a case, the cap rubber can be made of the second tread rubber member.
また、上述のように、トレッド部がベースゴムとキャップゴムとを備えるか、又はトレッド部の下側にトレッドアンダークッションゴムが設けられる場合、第1トレッドゴム部材は、ベースゴムやトレッドアンダークッションゴムとは別体の表層ゴム部材として形成することができる。かかる場合、第1トレッドゴム部材としての表層ゴム部材を、直接か、又は他の部材を介してベースゴム又はトレッドアンダークッションゴム等に接するように配置することができる。かかる場合も、上述のように、ベースゴム又はトレッドアンダークッションゴムは、第2トレッドゴム部材の熱伝導率の1.3倍以上等の所定の熱伝導率を有することができる。また、かかる場合、前記キャップゴムは前記第2トレッドゴム部材からなることができる。 As described above, when the tread portion includes the base rubber and the cap rubber, or when the tread undercushion rubber is provided below the tread portion, the first tread rubber member is the base rubber or the tread undercushion rubber. It can be formed as a separate surface rubber member. In such a case, the surface layer rubber member as the first tread rubber member can be disposed so as to be in contact with the base rubber, the tread undercushion rubber, or the like directly or through another member. Even in such a case, as described above, the base rubber or the tread undercushion rubber can have a predetermined thermal conductivity such as 1.3 times or more the thermal conductivity of the second tread rubber member. In such a case, the cap rubber can be made of the second tread rubber member.
トレッド部が複数の縦方向に分割されたトレッドゴム部材からなる場合、最も熱伝導率の大きなトレッドゴム部材を第1トレッドゴム部材とし、第1トレッドゴム部材よりも熱伝導率が小さいか、又は最も熱伝導率の小さなトレッドゴム部材を第2トレッドゴム部材とすることができる。 When the tread portion is composed of a plurality of longitudinally divided tread rubber members, the tread rubber member having the largest thermal conductivity is the first tread rubber member, and the thermal conductivity is smaller than that of the first tread rubber member, or The tread rubber member having the smallest thermal conductivity can be used as the second tread rubber member.
第1及び第2トレッドゴム部材は、いずれも、種々のゴム成分や、種々の充填剤等、又は通常用いる配合剤等を配合してゴム組成物を製造し、このゴム組成物をトレッド部の所定の位置に配置し、加硫することによって製造することができる。 Each of the first and second tread rubber members produces a rubber composition by blending various rubber components, various fillers, etc., or a commonly used compounding agent, and this rubber composition is used for the tread portion. It can be manufactured by placing in a predetermined position and vulcanizing.
第1トレッドゴム部材のように、熱伝導率を高めるには、炭素繊維、好ましくは炭素短繊維、更に好ましくは気相成長法で作製された炭素繊維、特に気相成長炭素繊維を配合するのが望ましい。炭素繊維はファイバー状又はチューブ状(中空状)であっても良い。 As in the case of the first tread rubber member, in order to increase the thermal conductivity, carbon fibers, preferably carbon short fibers, more preferably carbon fibers produced by a vapor growth method, particularly vapor growth carbon fibers are blended. Is desirable. The carbon fiber may be fiber-shaped or tube-shaped (hollow).
通常、スチレンブタジエンゴム(SBR)配合のトレッドゴム部材の熱伝導率は、天然ゴム(NR)配合のトレッドゴム部材の1.1〜1.2倍となる。他の配合要因によっても変わり得るが、大きく変えるには、炭素繊維を配合するのがよい。 Usually, the thermal conductivity of a tread rubber member containing styrene butadiene rubber (SBR) is 1.1 to 1.2 times that of a tread rubber member containing natural rubber (NR). Although it may vary depending on other blending factors, it is better to blend carbon fibers in order to change greatly.
好ましくは、炭素繊維は、断面で見て、0.5μm以下の平均直径を有する。平均直径が0.5μm以下であれば、炭素繊維を前記ゴム成分と共に混練することにより、その加硫ゴムの耐摩耗性を向上させると共に、金属粉とほぼ同等か、又はそれ以上の熱伝導性を保持してゴム温度を速やかに下げることができる。平均直径が0.5μmを超える場合には、耐摩耗性の大幅な低下を伴ってくるので、好ましくない。 Preferably, the carbon fiber has an average diameter of 0.5 μm or less when viewed in cross section. If the average diameter is 0.5 μm or less, carbon fiber is kneaded with the rubber component to improve the wear resistance of the vulcanized rubber, and the thermal conductivity is almost equal to or higher than that of metal powder. And the rubber temperature can be lowered quickly. When the average diameter exceeds 0.5 μm, it is not preferable because it is accompanied by a significant decrease in wear resistance.
さらに好ましくは、炭素繊維は、0.5〜500nm、特に1〜400nmの平均直径の範囲内にある。平均直径が、0.5〜500nm、特に1〜400nmの範囲に収まる場合には、混練りの際にゴム成分中への分散も適度に達成でき、加硫ゴムの熱伝導性を十分高めると共に、耐摩耗性が低下することもない。特に、炭素繊維はナノファイバー又はナノチューブからなるのが望ましい。 More preferably, the carbon fibers are in the range of an average diameter of 0.5 to 500 nm, in particular 1 to 400 nm. When the average diameter falls within the range of 0.5 to 500 nm, particularly 1 to 400 nm, dispersion into the rubber component can be appropriately achieved during kneading, and the thermal conductivity of the vulcanized rubber is sufficiently enhanced. Further, the wear resistance is not lowered. In particular, the carbon fiber is preferably composed of nanofibers or nanotubes.
好ましくは、炭素繊維は、0.5〜50μm、特に1〜40μmの長さの範囲内にある。長さが0.5〜50μmの範囲、特に1〜40μmの範囲にあれば、混練り時の炭素繊維のゴム成分中への分散性も良く、またアスペクト比も10以上、特に15以上とすることができるので、ゴム組成物に十分な耐摩耗性と熱伝導性とを付与することができる。炭素繊維長さが0.5μm未満では、その製造が困難であり、また十分なアスペクト比が得られず、配合効果も十分に現れない場合がある。一方、炭素繊維長が50μmを超えると、前記ゴム組成物の耐磨耗性が十分でないことがある。また、前記炭素繊維のアスペクト比が10未満であれば、配合効果が十分に現れない場合がある。 Preferably, the carbon fibers are in the range of 0.5 to 50 μm, in particular 1 to 40 μm in length. If the length is in the range of 0.5 to 50 μm, particularly in the range of 1 to 40 μm, the dispersibility of the carbon fiber in the rubber component during kneading is good, and the aspect ratio is 10 or more, particularly 15 or more. Therefore, sufficient abrasion resistance and thermal conductivity can be imparted to the rubber composition. If the carbon fiber length is less than 0.5 μm, the production thereof is difficult, a sufficient aspect ratio cannot be obtained, and the blending effect may not be sufficiently exhibited. On the other hand, if the carbon fiber length exceeds 50 μm, the rubber composition may not have sufficient wear resistance. Moreover, if the aspect ratio of the carbon fiber is less than 10, the blending effect may not be sufficiently exhibited.
前記条件を満たす炭素繊維は、その製造方法は特に制限されないが、気相成長法によって製造される気相成長炭素繊維であることが望ましい。このような炭素繊維としては、例えば、昭和電工(株)製のVGCF等を挙げることができる。 The carbon fiber satisfying the above conditions is not particularly limited in its production method, but is desirably a vapor growth carbon fiber produced by a vapor deposition method. Examples of such carbon fibers include VGCF manufactured by Showa Denko Co., Ltd.
炭素繊維は、ゴム成分100質量部に対して、5〜50質量部が望ましく、更に好ましくは、5〜30質量部である。5質量部未満では、熱伝導率の向上に効果が小さく、50質量部より多いと、作業性及び耐摩耗性が著しく低下し、コスト面でも不利となる傾向がある。 As for carbon fiber, 5-50 mass parts is desirable with respect to 100 mass parts of rubber components, More preferably, it is 5-30 mass parts. If the amount is less than 5 parts by mass, the effect of improving the thermal conductivity is small. If the amount is more than 50 parts by mass, the workability and wear resistance are remarkably lowered, and the cost tends to be disadvantageous.
その他、配合するポリマー、充填剤等に関しては、特に制限はない。トレッド部全体に炭素繊維を導入した方が放熱効果が大きいが、耐摩耗性の低下が懸念されるため、路面接地部の一部のトレッドゴム部材で用いる構造の方が、放熱性及び耐摩耗性の観点から有利である。 In addition, there is no restriction | limiting in particular regarding the polymer to mix | blend, a filler, etc. The introduction of carbon fiber to the entire tread has a greater heat dissipation effect, but there is concern about a decrease in wear resistance, so the structure used for some tread rubber members on the road surface grounding part is more heat radiant and wear resistant. From the viewpoint of sex.
以下、図面を参照して、本発明を詳細に説明する。
図1は本発明の1例の空気入りタイヤのトレッド部を示す断面図である。図2は本発明の他の例の空気入りタイヤのトレッド部を示す断面図である。
Hereinafter, the present invention will be described in detail with reference to the drawings.
FIG. 1 is a cross-sectional view showing a tread portion of a pneumatic tire according to an example of the present invention. FIG. 2 is a cross-sectional view showing a tread portion of a pneumatic tire according to another example of the present invention.
空気入りタイヤは、図1及び2に示すようなトレッド部1,11を有する。加硫前のタイヤは所定の加硫装置において加硫され、トレッド部1,11の路面接地部1A,11Aに所定のトレッドパターンが成形されるが、図1及び2では省略してある。
The pneumatic tire has
トレッド部1,11は、路面に接する第1トレッドゴム部材2A,12及び第2トレッドゴム部材3,13を有する。第1トレッドゴム部材2A,12の熱伝導率は、第2トレッドゴム部材3,13の熱伝導率の1.3倍以上である。
The
第1トレッドゴム部材2A,12は放熱性に優れ、第2トレッドゴム部材3,13やベルト等に蓄積される熱を路面接地部1A,11Aを介して路面に容易に放出させる。第2トレッドゴム部材3,13は耐摩耗性に優れ、第1トレッドゴム部材2A,12が容易に摩耗してしまうのを抑制する。
The first
詳細には、図1及び2に示すように、トレッド部1,11はキャップベース構造を有する。このキャップベース構造では、ベルトコーティングゴムに接するベースゴム2,14とベースゴム2,14上のキャップゴム3,13とを備える。前述したように、キャップゴム3,13は第2トレッドゴム部材である。
Specifically, as shown in FIGS. 1 and 2, the
図1では、第1トレッドゴム部材2Aはベースゴム2の吸い上げ構造によって形成される。すなわち、第1トレッドゴム部材2Aは、ベースゴム2の膨出部として形成され、トレッド部1の路面接地部1Aで表面に露出する。他方、図2では、第1トレッドゴム部材12は、ベースゴム14とは別体の表層ゴム部材であり、ベースゴム14と直接接するように配置される。
In FIG. 1, the first
図面を参照し、実施例及び比較例に基づき、本発明をより一層詳細に説明する。
図1に示すような構造のトレッド部を備える空気入りタイヤを製造する。
タイヤサイズは3700R57とする。表1及び2に示すように、吸い上げ構造のベースゴム及びキャップゴムは、それぞれが組成A及びDからなる。なお、表1中、N2SA及びDBPはそれぞれ窒素吸着比表面積及び給油量を示す。
The present invention will be described in more detail with reference to the drawings based on examples and comparative examples.
A pneumatic tire including a tread portion having a structure as shown in FIG. 1 is manufactured.
The tire size is 3700R57. As shown in Tables 1 and 2, the base rubber and the cap rubber of the suction structure are composed of compositions A and D, respectively. In Table 1, N 2 SA and DBP represent the nitrogen adsorption specific surface area and the amount of oil supply, respectively.
表1及び2に示すように、実施例1において、吸い上げ構造のベースゴムの組成をAからBに変える以外は実施例1と同様にして空気入りタイヤを製造する。 As shown in Tables 1 and 2, in Example 1, a pneumatic tire is manufactured in the same manner as in Example 1 except that the composition of the base rubber of the suction structure is changed from A to B.
表1及び2に示すように、実施例2において、キャップゴムの組成をDからFに変える以外は実施例2と同様にして空気入りタイヤを製造する。 As shown in Tables 1 and 2, in Example 2, a pneumatic tire is manufactured in the same manner as in Example 2 except that the composition of the cap rubber is changed from D to F.
表1及び2に示すように、実施例3において、吸い上げ構造ベースゴムの組成をBからCに変える以外は実施例3と同様にして空気入りタイヤを製造する。 As shown in Tables 1 and 2, in Example 3, a pneumatic tire is manufactured in the same manner as in Example 3 except that the composition of the base structure rubber is changed from B to C.
図2に示すような構造のトレッド部を備える空気入りタイヤを製造する。
実施例1〜4のような吸い上げ構造のベースゴムは用いないが、通常のベースゴムと、キャップゴムと、キャップゴムを貫通する表層ゴム部材とを用いる。表1及び2に示すように、ベースゴム及びキャップゴムはそれぞれ組成E及びDからなり、表層ゴム部材は組成Bからなる。なお、タイヤサイズは実施例1と同様である。
A pneumatic tire having a tread portion having a structure as shown in FIG. 2 is manufactured.
The base rubber having the sucking structure as in Examples 1 to 4 is not used, but a normal base rubber, a cap rubber, and a surface rubber member penetrating the cap rubber are used. As shown in Tables 1 and 2, the base rubber and the cap rubber have compositions E and D, respectively, and the surface rubber member has a composition B. The tire size is the same as in Example 1.
(比較例1)
表1及び2に示すように、実施例5において、表層ゴム部材を用いずに、トレッド部の表面をキャップゴムで覆う以外は、実施例5と同様にしてタイヤを製造する。
(Comparative Example 1)
As shown in Tables 1 and 2, in Example 5, a tire is manufactured in the same manner as in Example 5 except that the surface rubber member is not used and the surface of the tread portion is covered with cap rubber.
(比較例2)
表1及び2に示すように、比較例1において、キャップゴムの組成をEからFに変える以外は比較例1と同様にしてタイヤを製造する。
(Comparative Example 2)
As shown in Tables 1 and 2, in Comparative Example 1, a tire is manufactured in the same manner as in Comparative Example 1 except that the composition of the cap rubber is changed from E to F.
(比較例3)
表1及び2に示すように、比較例1において、ベースゴムの組成をEからBに変え、キャップゴムの組成をDからBに変える以外は比較例1と同様にしてタイヤを製造する。
(Comparative Example 3)
As shown in Tables 1 and 2, in Comparative Example 1, a tire is manufactured in the same manner as in Comparative Example 1 except that the composition of the base rubber is changed from E to B and the composition of the cap rubber is changed from D to B.
実施例の空気入りタイヤ及び比較例のタイヤについて、熱伝導率比、発熱性能及び耐摩耗性を以下のようにして調べる。結果を表2に示す。
(熱伝導率比)
京都電子(株)製の迅速熱伝導率計QTM−500を用いて測定し、第1トレッドゴム部材の熱伝導率を、第2トレッドゴム部材の熱伝導率に対する比率で表す。大きい程、第1トレッドゴム部材の熱伝導率が第2トレッドゴム部材の熱伝導率より大きい。
(発熱性の評価)
一定速度・ステップロード条件のドラムテストで行なう。タイヤトレッド内部の一定深さ位置の温度を測定し、コントロール(比較例1)の値を100とし、指数で表示する。指数の値が大きい程、低発熱化(放熱)の効果が大きいことを示す。
(耐摩擦性の評価)
2000時間走行後のタイヤにおけるトレッドゴムを下記式:
走行距離/(走行前溝深さ−走行後溝深さ)
により算出し、コントロールの値を100とし、指数で表示する。指数の値が大きい程、耐摩擦性の改良効果が大きいことになる。
About the pneumatic tire of an Example and the tire of a comparative example, heat conductivity ratio, heat-generation performance, and abrasion resistance are investigated as follows. The results are shown in Table 2.
(Thermal conductivity ratio)
Measured using a rapid thermal conductivity meter QTM-500 manufactured by Kyoto Electronics Co., Ltd., the thermal conductivity of the first tread rubber member is expressed as a ratio to the thermal conductivity of the second tread rubber member. The larger the thermal conductivity of the first tread rubber member, the larger the thermal conductivity of the second tread rubber member.
(Evaluation of heat generation)
Perform a drum test under constant speed and step load conditions. The temperature at a constant depth position inside the tire tread is measured, and the value of the control (Comparative Example 1) is set to 100 and displayed as an index. The larger the index value, the greater the effect of low heat generation (heat dissipation).
(Evaluation of friction resistance)
The tread rubber in the tire after running for 2000 hours is represented by the following formula:
Travel distance / (groove depth before travel-groove depth after travel)
The control value is set to 100 and is displayed as an index. The greater the index value, the greater the effect of improving the friction resistance.
表2に示すように、実施例1〜4では、吸い上げ構造のベースゴムとキャップゴムが、それぞれ、第1トレッドゴム部材と第2トレッドゴム部材に相当し、熱伝導率比が1.3倍以上である。実施例5では、表層ゴム部材が第1トレッドゴム部材に相当し、キャップゴムが第2トレッドゴム部材に相当し、熱伝導率比が1.3倍以上である。これらの実施例の空気入りタイヤでは、耐摩耗性を低下させることなく発熱性能の向上が可能である。 As shown in Table 2, in Examples 1 to 4, the base rubber and the cap rubber having the sucked-up structure correspond to the first tread rubber member and the second tread rubber member, respectively, and the thermal conductivity ratio is 1.3 times. That's it. In Example 5, the surface rubber member corresponds to the first tread rubber member, the cap rubber corresponds to the second tread rubber member, and the thermal conductivity ratio is 1.3 times or more. In the pneumatic tires of these examples, the heat generation performance can be improved without reducing the wear resistance.
一方、比較例1〜3は、いずれも、路面に接する部分に複数のトレッドゴム部材を配しておらず、通常の構造のキャップベース構造であるので、耐摩耗性と発熱性能とを同時に満足させるのは困難である。 On the other hand, all of Comparative Examples 1 to 3 do not have a plurality of tread rubber members in contact with the road surface, and are a cap base structure of a normal structure, so that both wear resistance and heat generation performance are satisfied at the same time. It is difficult to do.
本発明の空気入りタイヤは、所定の熱伝導率の関係からなる複数のトレッドゴム部材をトレッド部の路面接地部に配置することによって製造することができ、大幅な発熱性の低減と耐磨耗性の維持とを両立することができるので、高性能な空気入りタイヤとして有用である。 The pneumatic tire of the present invention can be manufactured by disposing a plurality of tread rubber members having a predetermined thermal conductivity relationship on the road surface grounding portion of the tread portion, greatly reducing heat generation and wear resistance. Therefore, it is useful as a high performance pneumatic tire.
1,11 トレッド部
1A,11A 路面接地部
2,14 ベースゴム
2A,12 第1トレッドゴム部材
3,13 第2トレッドゴム部材
DESCRIPTION OF
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003318593A JP2005082083A (en) | 2003-09-10 | 2003-09-10 | Pneumatic tire |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003318593A JP2005082083A (en) | 2003-09-10 | 2003-09-10 | Pneumatic tire |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2005082083A true JP2005082083A (en) | 2005-03-31 |
Family
ID=34417829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003318593A Pending JP2005082083A (en) | 2003-09-10 | 2003-09-10 | Pneumatic tire |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2005082083A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007145242A (en) * | 2005-11-29 | 2007-06-14 | Bridgestone Corp | Tire for construction vehicle |
JP2007210552A (en) * | 2006-02-13 | 2007-08-23 | Bridgestone Corp | Pneumatic tire |
JP2007216829A (en) * | 2006-02-16 | 2007-08-30 | Bridgestone Corp | Tire for construction vehicle, and its manufacturing method |
JP2011005894A (en) * | 2009-06-23 | 2011-01-13 | Sumitomo Rubber Ind Ltd | Pneumatic tire |
US20200086693A1 (en) * | 2017-05-02 | 2020-03-19 | Compagnie Generale Des Etablissements Michelin | Electrically Conductive Crown Architecture for a Tire of a Heavy Duty Civil Engineering Vehicle |
JP7479594B2 (en) | 2020-07-28 | 2024-05-09 | 住友ゴム工業株式会社 | Pneumatic tires |
-
2003
- 2003-09-10 JP JP2003318593A patent/JP2005082083A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007145242A (en) * | 2005-11-29 | 2007-06-14 | Bridgestone Corp | Tire for construction vehicle |
JP2007210552A (en) * | 2006-02-13 | 2007-08-23 | Bridgestone Corp | Pneumatic tire |
JP2007216829A (en) * | 2006-02-16 | 2007-08-30 | Bridgestone Corp | Tire for construction vehicle, and its manufacturing method |
JP2011005894A (en) * | 2009-06-23 | 2011-01-13 | Sumitomo Rubber Ind Ltd | Pneumatic tire |
US20200086693A1 (en) * | 2017-05-02 | 2020-03-19 | Compagnie Generale Des Etablissements Michelin | Electrically Conductive Crown Architecture for a Tire of a Heavy Duty Civil Engineering Vehicle |
US11597242B2 (en) * | 2017-05-02 | 2023-03-07 | Compagnie Generale Des Etablissements Michelin | Electrically conductive crown architecture for a tire of a heavy duty civil engineering vehicle |
JP7479594B2 (en) | 2020-07-28 | 2024-05-09 | 住友ゴム工業株式会社 | Pneumatic tires |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101744125B1 (en) | Tire tread rubber composition and Tire manufactured by using the same | |
JP4452303B2 (en) | Rubber composition for tire | |
KR101914387B1 (en) | Rubber composite of tyre tread | |
JP2014080550A (en) | Rubber composition for tread of high-performance wet tire, and high-performance wet tire | |
JP2007210552A (en) | Pneumatic tire | |
JP2005082083A (en) | Pneumatic tire | |
JP2009073887A (en) | Rubber composition for cap tread, and pneumatic tire with cap tread obtained using the same | |
JP2008303334A (en) | Rubber composition for cap tread, and tire with cap tread using the same | |
US5744536A (en) | Rubber compositions | |
JP2008207574A (en) | Pneumatic tire | |
JP4555011B2 (en) | Rubber composition for studless tire and studless tire | |
JP3819813B2 (en) | Studless tire and tread manufacturing method | |
JP2007070451A (en) | Rubber composition for pneumatic tire and pneumatic tire | |
JP4762640B2 (en) | Pneumatic tire | |
JP4435335B2 (en) | Rubber composition for tire tread | |
JP4713052B2 (en) | Rubber composition and tire using the same | |
JP2005325308A (en) | Rubber composition | |
KR100760824B1 (en) | Rubber composition for truck/bus tire tread | |
JP2009114253A (en) | Rubber composition for tire tread | |
KR20200005265A (en) | An under-tread rubber composition for car tires with improved handling performance and electrical conductivity, and tires manufactured by using the same | |
JP5992747B2 (en) | High performance tire tread rubber composition and high performance tire | |
JP2008303389A (en) | Rubber composition for studless tire and pneumatic tire | |
JP2004034743A (en) | Method for manufacturing studless tire and tread | |
KR100705783B1 (en) | Tire tread composition filed nanofiber | |
JP2008303333A (en) | Rubber composition, and tire with cap tread using the same |