JP2005081889A - Air-conditioning ventilation system of high-speed railroad vehicle - Google Patents

Air-conditioning ventilation system of high-speed railroad vehicle Download PDF

Info

Publication number
JP2005081889A
JP2005081889A JP2003313544A JP2003313544A JP2005081889A JP 2005081889 A JP2005081889 A JP 2005081889A JP 2003313544 A JP2003313544 A JP 2003313544A JP 2003313544 A JP2003313544 A JP 2003313544A JP 2005081889 A JP2005081889 A JP 2005081889A
Authority
JP
Japan
Prior art keywords
air
vehicle
cooling device
bypass passage
interior
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003313544A
Other languages
Japanese (ja)
Other versions
JP4315768B2 (en
Inventor
Tadaharu Ohashi
忠晴 大橋
Toshinori Marunaka
俊則 丸中
Junichi Yanaida
淳一 谷内田
Hisatsugu Yamada
久嗣 山田
Hiroyoshi Oka
太良 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP2003313544A priority Critical patent/JP4315768B2/en
Publication of JP2005081889A publication Critical patent/JP2005081889A/en
Application granted granted Critical
Publication of JP4315768B2 publication Critical patent/JP4315768B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T30/00Transportation of goods or passengers via railways, e.g. energy recovery or reducing air resistance

Abstract

<P>PROBLEM TO BE SOLVED: To provide an air-conditioning ventilation system of a high-speed railroad vehicle using a cooling device of an air cycle system. <P>SOLUTION: The air-conditioning ventilation system of the high-speed railroad vehicle is constituted such that the cooling device 12 of the air cycle system (composed of a compressor 12A, a heat exchanger 12B, and an expansion machine 12C) is installed in an air supply duct 2 communicating to the cabin of the railroad vehicle. The upstream and downstream of the cooling device 12 are connected to each other through a first bypass passage 13 which is provided with a first variable flow valve 14. The temperature of a cooling wind into the cabin is adjusted by controlling the valve 14, while pressure is in the vehicle controlled by regulating the revolving speed of an air exhaust fan 41. A dehumidifying device 11 is installed upstream of the cooling device 12, and the upstream and downstream of the dehumidifying device 11 are connected to each other through a second bypass passage 21 which is provided with a second variable flow valve 22. The humidity of the cooling wind into the cabin is adjusted by controlling the valve 22. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、空気サイクル方式の冷却装置を用いる高速鉄道車両の空調換気システムに関するものである。   The present invention relates to an air-conditioning ventilation system for a high-speed railway vehicle using an air cycle type cooling device.

従来より、鉄道車両の空調換気システムとしては、大きな潜熱を利用できるフロン系冷媒を用いる圧縮式冷凍サイクルが主流となっている。   Conventionally, as an air-conditioning ventilation system for a railway vehicle, a compression refrigeration cycle using a chlorofluorocarbon-based refrigerant capable of utilizing a large latent heat has been mainstream.

しかし、近年地球環境の保護の観点から、広く利用されているHCFCも、1996年以降の消費量が制限され、2020年には全廃となる予定である。これらの規制に対応するために、従来の空調分野で最も利用されていた上記圧縮式冷凍システムに使用されるフロン系冷媒の代替として、より環境に優しい混合冷媒あるいはアンモニアなどの自然冷媒を用いることが再検討されている。そこで、フロンの代わりに自然冷媒である空気を用いる空気冷凍サイクルを利用した車両空調システムが提案されている(例えば、特許文献1参照)。   However, HCFC, which has been widely used from the viewpoint of protecting the global environment in recent years, is limited in consumption after 1996 and is scheduled to be abolished in 2020. In order to comply with these regulations, a more environmentally friendly mixed refrigerant or a natural refrigerant such as ammonia is used as an alternative to the fluorocarbon refrigerant used in the compression refrigeration system that has been used most in the conventional air conditioning field. Has been reviewed. Therefore, a vehicle air conditioning system using an air refrigeration cycle that uses air, which is a natural refrigerant, instead of Freon has been proposed (see, for example, Patent Document 1).

ところで、新幹線などの高速鉄道車両では、自然換気が困難であるため、車両を気密構造とすると共に、給気ファン及び排気ファンを備えた換気装置と空調装置を組み合わせて各車両を定員に応じた風量で強制換気(常時換気)と空気調和とをすることが一般に行われている(例えば、特許文献2,3参照)。   By the way, in high-speed railway vehicles such as the Shinkansen, natural ventilation is difficult. Therefore, the vehicle has an airtight structure, and a combination of a ventilation device having an air supply fan and an exhaust fan and an air conditioner is used for each vehicle according to the capacity. In general, forced ventilation (normal ventilation) and air conditioning are performed with the air volume (see, for example, Patent Documents 2 and 3).

具体的には、例えば図3に示すように、給気ファン101及び冷媒方式の空調装置102が順に設けられた給気ダクト106を通じて、給気ファン101にて車両外部から取り入れられた空気が車両103の車室内に一定の割合で送られる一方、車室内の空気は一定の割合で排気ファン104を有する排気ダクト107を通じて車両外部に排出されている。排気ダクト107は、排気ファン104の上流側において分岐ダクト107aが分岐し、その分岐ダクト107aが給気ダクト106の給気ファン101の下流側に接続され、排気の一部を給気ダクト101を通じて車室内に戻す構成とされている。なお、空調装置102において熱交換された廃熱を外部に排出するために別のファン105が廃熱送給ダクト108に設けられている。   Specifically, for example, as shown in FIG. 3, air taken in from the outside of the vehicle by the air supply fan 101 is supplied to the vehicle through the air supply duct 106 in which the air supply fan 101 and the refrigerant type air conditioner 102 are sequentially provided. The vehicle interior 103 is sent at a constant rate, while the vehicle interior air is discharged outside the vehicle through an exhaust duct 107 having an exhaust fan 104 at a constant rate. In the exhaust duct 107, a branch duct 107 a branches on the upstream side of the exhaust fan 104, the branch duct 107 a is connected to the downstream side of the air supply fan 101 of the air supply duct 106, and a part of the exhaust is passed through the air supply duct 101. It is configured to return to the passenger compartment. In addition, another fan 105 is provided in the waste heat supply duct 108 in order to discharge the waste heat exchanged in the air conditioner 102 to the outside.

このように、高速鉄道車両では、各車両の車室内は換気装置を介して車両外部と連通されているため、例えば車両同士のすれ違いや車両のトンネルへの侵入により車外圧力が変動した場合は、そのままでは車内圧力が急激に変動することになり、その結果、乗客に耳部に、いわゆる「耳つん現象」という不快感を生ずるという課題がある。これを防止するために、特許文献2の技術では、給気ファンの入り口及び排気ファンの出口に締切手段を設け、いずれかの車両について車外圧力変動による一定量以上の風量の増加を検出したときに、すべての車両の締切手段を閉じるように制御することによって、乗客の受ける「耳つん現象」を防止するようにしている。また、特許文献3の技術では、車両外部の気圧を検出し、該検出値により車内圧力の急激な変動を抑制するように、給気ファン及び排気ファンの回転数制御を行っている。   Thus, in a high-speed railway vehicle, the interior of each vehicle is communicated with the outside of the vehicle via a ventilation device.For example, when the pressure outside the vehicle fluctuates due to passing between vehicles or entering the tunnel of the vehicle, If this is the case, the pressure inside the vehicle will fluctuate abruptly, and as a result, there is a problem in that the passengers experience an uncomfortable feeling called “ear pinching” in the ears. In order to prevent this, in the technique of Patent Literature 2, when a closing means is provided at the inlet of the air supply fan and the outlet of the exhaust fan, and an increase in the air volume over a certain amount due to fluctuations in the external pressure is detected for any vehicle, In addition, by controlling the closing means of all the vehicles to be closed, the “ear pinching phenomenon” experienced by passengers is prevented. Further, in the technique of Patent Document 3, the air pressure outside the vehicle is detected, and the rotation speed control of the air supply fan and the exhaust fan is performed so as to suppress the rapid fluctuation of the in-vehicle pressure based on the detected value.

また、空気サイクル方式の冷却装置において、空気と接触して吸湿と放湿とを行う湿度媒体を用い、空気サイクルの作動流体としての空気の除湿を圧縮機に供給する前に行うことは知られている(例えば特許文献4参照)。
特開平10−175544号公報(段落番号0020〜0022) 特開平5−294236号公報(段落番号0010,0016,0020,0021) 特開2001−180484号公報(請求項2) 特開2000−257968号公報(段落番号0090,0095及び図1参照)
Also, it is known that in an air cycle type cooling device, a humidity medium that absorbs and releases moisture in contact with air is used, and air is dehumidified as a working fluid for the air cycle before being supplied to the compressor. (For example, refer to Patent Document 4).
JP-A-10-175544 (paragraph numbers 0020 to 0022) Japanese Patent Laid-Open No. 5-294236 (paragraph numbers 0010, 0016, 0020, 0021) JP 2001-180484 A (Claim 2) Japanese Unexamined Patent Publication No. 2000-257968 (see paragraph numbers 0090 and 0095 and FIG. 1)

発明者は、冷媒である空気をそのまま車室内に供給する空気サイクルを利用した空調換気システムとすれば、空気サイクルの圧縮機の回転数が高く、高い圧力が得られるので、前述したような締切手段を設けたり回転数制御をすることなく、前記「耳つん現象」を防止することができ、しかも、給気ファン101(図3参照)が必要なくなるので、システムのシンプル化を図れることに着目し、本発明を開発するに至った。   If the inventor makes an air-conditioning ventilation system using an air cycle that supplies air, which is a refrigerant, directly into the passenger compartment, the rotation speed of the compressor of the air cycle is high and high pressure can be obtained. Focusing on simplification of the system, since the above-mentioned “pinching phenomenon” can be prevented without providing means or controlling the rotational speed, and the air supply fan 101 (see FIG. 3) is not necessary. Thus, the present invention has been developed.

請求項1の発明は、車両外部から車両の車室内に空気が流れる給気ダクトと、前記車室内から車両外部に空気が流れる排気ダクトと、この排気ダクトに設けられ前記車室内から車両外部に前記排気ダクトを通じて空気を排出させる排気ファンとを備え、常時換気を行う高速鉄道車両の空調換気システムにおいて、前記給気ダクトに設けられ前記車室内に供給する空気を冷却する空気サイクル方式の冷却装置と、前記冷却装置の入口部分と出口部分とを接続する第1のバイパス通路と、前記第1のバイパス通路に設けられる第1の可変流量弁と、前記冷却装置の上流側に設けられた除湿装置と、前記除湿装置の入口部分と出口部分とを接続する第2のバイパス通路と、前記第2のバイパス通路に設けられた第2の可変流量弁と、前記第1及び第2の可変流量弁を制御して前記第1及び第2のパイパス通路の流量を調整すると共に、前記排気ファンのファン回転数を調整する調整手段とを備えることを特徴とする。ここで、調整手段は、継電器などを用いた電気回路によるアナログ制御により調整を行うものであってもよいし、マイクロコンピュータなどを用いたデジタル制御により調整を行うものであってもよい。   According to the first aspect of the present invention, an air supply duct through which air flows from the outside of the vehicle into the vehicle interior of the vehicle, an exhaust duct through which air flows from the vehicle interior to the outside of the vehicle, and the exhaust duct provided in the exhaust duct from the vehicle interior to the outside of the vehicle. In an air-conditioning ventilation system for a high-speed railway vehicle, which is provided with an exhaust fan that exhausts air through the exhaust duct and performs constant ventilation, an air cycle cooling device that cools the air that is provided in the air supply duct and is supplied to the vehicle interior A first bypass passage connecting an inlet portion and an outlet portion of the cooling device, a first variable flow valve provided in the first bypass passage, and a dehumidification provided on the upstream side of the cooling device A second bypass passage connecting the inlet portion and the outlet portion of the dehumidifying device, a second variable flow valve provided in the second bypass passage, the first and second With a variable flow valve controlled by adjusting the flow rate of the first and second bypass passages, characterized in that it comprises an adjustment means for adjusting the fan speed of the exhaust fan. Here, the adjustment means may perform adjustment by analog control using an electric circuit using a relay or the like, or may perform adjustment by digital control using a microcomputer or the like.

このようにすれば、空気サイクル方式の冷却装置における圧縮機が従来の給気ファンと同様の機能を発揮するので、従来必要とされた給気ファンを省略することができ、システム全体の簡素化が図れる。よって、小型簡略化を図る上で有利となる。   In this way, since the compressor in the air cycle type cooling device performs the same function as a conventional air supply fan, the air supply fan that has been required in the past can be omitted, and the entire system can be simplified. Can be planned. Therefore, it is advantageous in simplifying the size.

しかも、空気サイクル方式の冷却装置は、昇圧量が大きいため、新幹線などの高速鉄道車両特有の車外圧変動が車内へ伝播するおそれがなく、特許文献2に記載の技術のようにダクト締切手段などを用いなくても、常時換気可能となる。また、1つの排気ファンのファン回転数を調整することで、車内圧制御を行うことができ、車内圧制御のシンプル化も図れる。   In addition, since the air cycle type cooling device has a large pressure increase amount, there is no possibility that a fluctuation in the external pressure peculiar to a high-speed railway vehicle such as the Shinkansen will propagate to the inside of the vehicle. Even if it is not used, ventilation is possible at all times. Further, by adjusting the fan rotation speed of one exhaust fan, the vehicle pressure control can be performed, and the vehicle pressure control can be simplified.

また、冷却装置をバイパスするバイパス通路に設けた可変流量弁にて、バイパス通路を流れる空気の量と冷却装置にて冷却される空気の量とを調整することで、車室内に供給される空調風の温度制御が簡単にできる。   In addition, air conditioning supplied to the passenger compartment by adjusting the amount of air flowing through the bypass passage and the amount of air cooled by the cooling device with a variable flow valve provided in the bypass passage that bypasses the cooling device Wind temperature can be controlled easily.

外部から取り入れ冷却した空気をそのまま車室内に供給するので、その空気を除湿装置により湿度制御を行うことで、車室内の湿度制御が可能となる。この場合、除湿装置をバイパスするバイパス通路に設けた可変流量弁にて、バイパス通路を流れ除湿されない空気の量と除湿装置にて除湿される空気の量とを調整することで、車室内に供給される空調風の湿度制御が簡単にできる。   Since the air taken in from the outside and cooled is supplied as it is into the vehicle interior, humidity control of the vehicle interior can be performed by performing humidity control on the air using a dehumidifier. In this case, the variable flow valve provided in the bypass passage that bypasses the dehumidifying device adjusts the amount of air that flows through the bypass passage and is not dehumidified, and the amount of air that is dehumidified by the dehumidifying device, thereby supplying the vehicle interior. The humidity control of the conditioned air can be easily performed.

請求項2の発明は、車両外部から車両の車室内に空気が流れる給気ダクトと、前記車室内から車両外部に空気が流れる排気ダクトと、この排気ダクトに設けられ前記車室内から車両外部に前記排気ダクトを通じて空気を排出させる排気ファンとを備え、常時換気を行う高速鉄道車両の空調換気システムにおいて、前記給気ダクトに設けられ前記車室内に供給する空気を冷却する空気サイクル方式の冷却装置と、前記冷却装置の入口部分と出口部分とを接続するバイパス通路と、前記バイパス通路に設けられる可変流量弁と、前記車室内の室温を検出する温度センサと、前記車室内の圧力を検出する第1の圧力センサと、前記車室外の圧力を検出する第2の圧力センサと、前記温度センサ、第1及び第2の圧力センサからの信号を受け、前記温度センサからの信号に基づき前記可変流量弁を制御して前記パイパス通路の流量を調整すると共に、前記第1及び第2の圧力センサからの信号に基づき前記排気ファンのファン回転数を調整する制御手段とを備えることを特徴とする。   According to a second aspect of the present invention, there is provided an air supply duct through which air flows from the outside of the vehicle into the vehicle interior of the vehicle, an exhaust duct through which air flows from the vehicle interior to the outside of the vehicle, and the exhaust duct provided in the exhaust duct from the vehicle interior to the vehicle exterior. In an air-conditioning ventilation system for a high-speed railway vehicle, which is provided with an exhaust fan that exhausts air through the exhaust duct and performs constant ventilation, an air cycle cooling device that cools the air that is provided in the air supply duct and is supplied to the vehicle interior A bypass passage connecting an inlet portion and an outlet portion of the cooling device, a variable flow valve provided in the bypass passage, a temperature sensor for detecting a room temperature in the vehicle compartment, and a pressure in the vehicle compartment Receiving the signals from the first pressure sensor, the second pressure sensor for detecting the pressure outside the passenger compartment, the temperature sensor, and the first and second pressure sensors; Control means for adjusting the flow rate of the bypass passage by controlling the variable flow valve based on a signal from the sensor and adjusting the fan rotational speed of the exhaust fan based on the signals from the first and second pressure sensors. It is characterized by providing.

このようにすれば、空気サイクル方式の冷却装置における圧縮機が従来の給気ファンと同様の機能を発揮するので、従来必要とされた給気ファンを省略することができ、システム全体の簡素化が図れる。よって、小型簡略化を図る上で有利となる。   In this way, since the compressor in the air cycle type cooling device performs the same function as a conventional air supply fan, the air supply fan that has been required in the past can be omitted, and the entire system can be simplified. Can be planned. Therefore, it is advantageous in simplifying the size.

しかも、空気サイクル方式の冷却装置は、昇圧量が大きいため、新幹線などの高速鉄道車両特有の車外圧変動が車内へ伝播するおそれがなく、特許文献2に記載の技術のようにダクト締切手段など用いなくても、常時換気可能となる。また、1つの排気ファンのファン回転数を調整することで、車内圧制御を行うことができ、車内圧制御のシンプル化も図れる。   In addition, since the air cycle type cooling device has a large pressure increase amount, there is no possibility that a fluctuation in the external pressure peculiar to a high-speed railway vehicle such as the Shinkansen will propagate to the inside of the vehicle. Even if it is not used, ventilation is possible at all times. Further, by adjusting the fan rotation speed of one exhaust fan, the vehicle pressure control can be performed, and the vehicle pressure control can be simplified.

また、冷却装置をバイパスするバイパス通路に設けた可変流量弁にて、バイパス通路を流れる空気の量と冷却装置にて冷却される空気の量とを調整することで、車室内に供給される空調風の温度制御が簡単にできる。   In addition, air conditioning supplied to the passenger compartment by adjusting the amount of air flowing through the bypass passage and the amount of air cooled by the cooling device with a variable flow valve provided in the bypass passage that bypasses the cooling device Wind temperature can be controlled easily.

請求項3の発明は、車両外部から車両の車室内に空気が流れる給気ダクトと、前記車室内から車両外部に空気が流れる排気ダクトと、この排気ダクトに設けられ前記車室内から車両外部に前記排気ダクトを通じて空気を排出させる排気ファンとを備え、前記両ダクトを通じて常時換気を行う高速鉄道車両の空調換気システムにおいて、前記給気ダクトに設けられ前記車室内に供給する空気を冷却する空気サイクル方式の冷却装置と、この冷却装置の上流側に設けられた除湿装置と、この除湿装置の入口部分と出口部分とを接続するバイパス通路と、このバイパス通路に設けられた可変流量弁と、前記車室内の湿度を検出する湿度センサと、前記車室内の圧力を検出する第1の圧力センサと、前記車室外の圧力を検出する第2の圧力センサと、前記湿度センサ、第1及び第2の圧力センサからの信号を受け、前記湿度センサからの信号に基づき前記可変流量弁を制御して前記パイパス通路の流量を調整すると共に、前記第1及び第2の圧力センサからの信号に基づき前記排気ファンのファン回転数を調整する制御手段とを備えることを特徴とする。   According to a third aspect of the present invention, an air supply duct through which air flows from the outside of the vehicle into the vehicle interior of the vehicle, an exhaust duct through which air flows from the vehicle interior to the outside of the vehicle, and the exhaust duct provided in the exhaust duct from the vehicle interior to the outside of the vehicle. In an air-conditioning ventilation system for a high-speed railway vehicle that includes an exhaust fan that exhausts air through the exhaust duct and continuously ventilates through both the ducts, an air cycle that cools the air that is provided in the air supply duct and that is supplied to the vehicle interior A cooling device of the type, a dehumidifying device provided upstream of the cooling device, a bypass passage connecting an inlet portion and an outlet portion of the dehumidifying device, a variable flow valve provided in the bypass passage, A humidity sensor for detecting the humidity in the passenger compartment, a first pressure sensor for detecting the pressure in the passenger compartment, a second pressure sensor for detecting the pressure outside the passenger compartment, A signal from the humidity sensor, the first and second pressure sensors is received, and the flow rate of the bypass passage is adjusted by controlling the variable flow valve based on the signal from the humidity sensor, and the first and second And a control means for adjusting the fan rotational speed of the exhaust fan based on a signal from the pressure sensor.

このようにすれば、空気サイクル方式の冷却装置を用い、外部から取り入れ冷却した空気をそのまま車室内に供給するので、その空気を除湿装置により湿度制御を行うことで、車室内の湿度制御が可能となる。この場合、除湿装置をバイパスするバイパス通路に設けた可変流量弁にて、バイパス通路を流れ除湿されない空気の量と除湿装置にて除湿される空気の量とを調整することで、車室内に供給される空調風の湿度制御が簡単にできる。   In this way, the air cycle cooling device is used, and the air taken in and cooled from the outside is supplied as it is to the vehicle interior. By controlling the humidity with the dehumidifier, the humidity in the vehicle interior can be controlled. It becomes. In this case, the variable flow valve provided in the bypass passage that bypasses the dehumidifying device adjusts the amount of air that flows through the bypass passage and is not dehumidified, and the amount of air that is dehumidified by the dehumidifying device, thereby supplying the vehicle interior. The humidity control of the conditioned air can be easily performed.

請求項4に記載のように、前記空気サイクル方式の冷却装置の熱交換器から廃熱を含む空気を除湿装置に送給する廃熱送給ダクトを有することが望ましい。   According to a fourth aspect of the present invention, it is desirable to have a waste heat supply duct for supplying air containing waste heat from the heat exchanger of the air cycle type cooling device to the dehumidifier.

このようにすれば、空気サイクル方式の冷却装置の熱交換器の廃熱を利用して、効率のよい湿度制御が可能となる。   If it does in this way, efficient humidity control will be attained using the waste heat of the heat exchanger of the cooling device of an air cycle system.

請求項5に記載のように、暖房時に、給気ダクトの下流端に代えて、廃熱送給ダクトの下流端を車室に接続可能とするダクト接続切替機構が設けられている構成とすることも可能である。   According to a fifth aspect of the present invention, a duct connection switching mechanism is provided that enables the downstream end of the waste heat supply duct to be connected to the passenger compartment instead of the downstream end of the air supply duct during heating. It is also possible.

このようにすれば、ダクトの配管を変更するだけで、除湿冷房だけでなく、加湿暖房にも利用することができる。   If it does in this way, it can utilize not only for dehumidification cooling but humidification heating only by changing the piping of a duct.

以上のように構成したから、環境問題となっている冷媒であるフロン(あるいは代替フロン)を用いることなく、常時換気を行う高速鉄道車両における空調機能を得ることができる。排気ファンのファン回転数調整による車内圧力制御が可能となり、いわゆる「耳つん現象」を防止できる。   Since it comprised as mentioned above, the air-conditioning function in the high-speed rail vehicle which always ventilates can be obtained, without using Freon (or alternative Freon) which is a refrigerant | coolant which is an environmental problem. The pressure inside the vehicle can be controlled by adjusting the fan rotation speed of the exhaust fan, so that the so-called “pinch phenomenon” can be prevented.

以下、本発明に係る実施の形態を図面に沿って詳細に説明する。   Embodiments according to the present invention will be described below in detail with reference to the drawings.

図1及び図2は本発明に係る高速鉄道車両の空調換気システムの概略構成であって、それぞれ、除湿冷房時及び加湿暖房時の状態を示す説明図である。   1 and 2 are schematic configurations of an air-conditioning ventilation system for a high-speed railway vehicle according to the present invention, and are explanatory views showing states during dehumidifying cooling and humidifying heating, respectively.

本発明に係る高速鉄道車両の空調換気システムは、車両1の車室内の常時換気を行うものであって、車両1の車室内の後部に通じる給気ダクト2(給気通路)と、車両1の車室内の前部に通じる排気ダクト3(排気通路)とを備える。   The air-conditioning ventilation system for a high-speed railway vehicle according to the present invention constantly ventilates the vehicle interior of the vehicle 1, and includes an air supply duct 2 (air supply passage) leading to the rear of the vehicle interior of the vehicle 1, and the vehicle 1. And an exhaust duct 3 (exhaust passage) communicating with the front part of the vehicle interior.

給気ダクト2には、上流側から、除湿部11Aと加湿部11B(放湿部)とを有する除湿装置11(例えばロータリ式の除湿器)及び空気サイクル方式の冷却装置12が順に設けられている。   A dehumidifying device 11 (for example, a rotary dehumidifier) having a dehumidifying unit 11A and a humidifying unit 11B (humidity releasing unit) and an air cycle type cooling device 12 are sequentially provided in the air supply duct 2 from the upstream side. Yes.

冷却装置12は、圧縮機12A、熱交換器12B及び膨張機12Cとが順にダクト接続されてなり、空気サイクルによって車両1の車室内に供給する空気を冷却するように構成されている。この冷却装置12の上下流(圧縮機12Aの入口側部分と膨張機12Cの出口側部分)が、第1のバイパス通路13にて接続されている。この第1のバイパス通路13には、第1のバイパス通路13を流れる空気の量を調整する第1の可変流量弁14(電磁式可変流量弁)が設けられている。   The cooling device 12 is configured such that a compressor 12A, a heat exchanger 12B, and an expander 12C are duct-connected in order, and cools the air supplied into the vehicle interior of the vehicle 1 by an air cycle. The upstream and downstream of the cooling device 12 (the inlet side portion of the compressor 12 </ b> A and the outlet side portion of the expander 12 </ b> C) are connected by a first bypass passage 13. The first bypass passage 13 is provided with a first variable flow valve 14 (electromagnetic variable flow valve) that adjusts the amount of air flowing through the first bypass passage 13.

そして、第1の可変流量弁14を、例えばマイクロコンピュータからなる制御手段U(調整手段)によって制御して、冷却装置12を流れる空気量と第1のバイパス通路13を流れる空気量の比率を調整することで、車両1の車室内に送給される冷却風の温度を調整(最適化)するように構成されている。この調整は、例えば車両1の車室内の温度を検出する温度センサS1よりの温度信号に基づいて行われる。   Then, the first variable flow valve 14 is controlled by a control means U (adjustment means) made of, for example, a microcomputer to adjust the ratio of the amount of air flowing through the cooling device 12 and the amount of air flowing through the first bypass passage 13. By doing so, it is configured to adjust (optimize) the temperature of the cooling air fed into the vehicle compartment of the vehicle 1. This adjustment is performed based on, for example, a temperature signal from a temperature sensor S1 that detects the temperature in the passenger compartment of the vehicle 1.

冷却装置12の上流側に位置する除湿装置11の上下流(除湿装置11の入口側部分と出口側部分)が第2のバイパス通路21にて接続されている。この第2のバイパス通路21には第2の可変流量弁22(電磁式可変流量弁)が設けられている。   The upstream and downstream of the dehumidifying device 11 located on the upstream side of the cooling device 12 (the inlet side portion and the outlet side portion of the dehumidifying device 11) are connected by a second bypass passage 21. The second bypass passage 21 is provided with a second variable flow valve 22 (electromagnetic variable flow valve).

そして、第2の可変流量弁22も、制御手段Uにて制御され、除湿装置11を流れる空気量と第2のバイパス通路21を流れる空気量の比率を調整することで、車室内に送給される冷却風の湿度を調整する構成とされている。この調整は、例えば車両1の車室内の湿度を検出する湿度センサS2よりの湿度信号に基づいて行われ、図1に示す場合は除湿冷房、図2に示す場合は加湿暖房されることになる。   The second variable flow valve 22 is also controlled by the control means U, and is fed into the vehicle interior by adjusting the ratio of the amount of air flowing through the dehumidifier 11 and the amount of air flowing through the second bypass passage 21. The humidity of the cooling air is adjusted. This adjustment is performed based on, for example, a humidity signal from a humidity sensor S2 that detects the humidity in the passenger compartment of the vehicle 1. In the case shown in FIG. 1, dehumidification cooling is performed, and in the case shown in FIG. 2, humidification heating is performed. .

冷却装置12の熱交換器11Bから熱交換により得られた廃熱は、送給ファン31によって、廃熱送給ダクト32を通じて除湿装置11に送られ、除湿装置11の除湿を促進させるようになっている。この送給ファン31も制御手段Uによって回転数制御される。   Waste heat obtained by heat exchange from the heat exchanger 11B of the cooling device 12 is sent to the dehumidifier 11 through the waste heat supply duct 32 by the supply fan 31 to promote dehumidification of the dehumidifier 11. ing. The number of rotations of the feeding fan 31 is also controlled by the control means U.

排気ダクト3には、排気ファン41が設けられ、制御手段Uが、排気ファン41のファン回転数を調整して車内圧を制御するように構成されている。この調整は、例えば車両1の車室内の圧力を検出する車内圧力センサS3(第1の圧力センサ)および車室外の圧力を検出する車外圧力センサS4(第2の圧力センサ)よりの圧力信号に基づいて、車内圧がほぼ一定圧に維持され、いわゆる「耳つん現象」を防止するように行われる。   The exhaust duct 3 is provided with an exhaust fan 41, and the control means U is configured to adjust the fan rotation speed of the exhaust fan 41 to control the in-vehicle pressure. This adjustment is performed, for example, on pressure signals from an in-vehicle pressure sensor S3 (first pressure sensor) that detects the pressure in the vehicle interior of the vehicle 1 and an external pressure sensor S4 (second pressure sensor) that detects the pressure outside the vehicle interior. Based on this, the in-vehicle pressure is maintained at a substantially constant pressure to prevent the so-called “ear pinching phenomenon”.

排気ダクト3は、排気ファン41の下流側において、大気にそのまま開放される第1のダクト部分3aと、給気ダクト2に一部を送給する第2のダクト部分3bとに分岐されるように構成されている。   The exhaust duct 3 is branched on the downstream side of the exhaust fan 41 into a first duct portion 3a that is opened to the atmosphere as it is and a second duct portion 3b that supplies a part to the air supply duct 2. It is configured.

上記のように構成すれば、冷却装置12が作動を開始することで、給気ダクト2を通じて外気(空気)が取り入れられる。この外気は、まず、除湿装置11の除湿部11Aで除湿される。つまり、湿度センサS2からの信号に基づき、車室内の湿度に応じて制御手段Uにて第2可変流量弁22が制御され、その第2の可変流量弁22により第2のバイパス通路21を流れる空気の量が調整される。これにより、除湿部11Aを通過する空気の量と除湿部11Aをバイパスする空気の量とのバランスで、車室内に供給される空気の湿度が調整される。   If comprised as mentioned above, external air (air) will be taken in through the air supply duct 2 when the cooling device 12 starts an action | operation. The outside air is first dehumidified by the dehumidifying unit 11A of the dehumidifying device 11. That is, based on the signal from the humidity sensor S2, the second variable flow valve 22 is controlled by the control means U according to the humidity in the passenger compartment, and flows through the second bypass passage 21 by the second variable flow valve 22. The amount of air is adjusted. Thereby, the humidity of the air supplied into the vehicle interior is adjusted by the balance between the amount of air passing through the dehumidifying unit 11A and the amount of air bypassing the dehumidifying unit 11A.

それから、湿度制御された空気が圧縮機12Aによって圧縮され、空気の温度及び圧力が上昇する。圧縮された空気は熱交換器12Bに流れ、廃熱送給ダクト32を流れる空気と熱交換されて冷却される。冷却された空気は膨張機12Cで膨張し、空気の温度及び圧力が低下する。そして低温となり適度な湿度を有する空気が、車室内に供給される。このときも、温度センサS1からの信号に基づき、制御手段Uにて第1の可変流量弁14が制御され、第1の可変流量弁14により第1のバイパス通路13を流れる空気の量が調整される。これにより、冷却装置12を通過する空気の量と冷却装置12をバイパスする空気の量とのバランスで、車室内に供給される空気の温度が制御される。よって、空気サイクル方式の冷却装置12により冷却された空気が車室内に常時供給されるが、冷却装置12を一部バイパスさせることで、温度制御がなされ、結果として車室内の過冷却が回避される。   Then, the humidity-controlled air is compressed by the compressor 12A, and the temperature and pressure of the air rise. The compressed air flows into the heat exchanger 12B, and is heat-exchanged with the air flowing through the waste heat supply duct 32 to be cooled. The cooled air is expanded by the expander 12C, and the temperature and pressure of the air are reduced. And the air which becomes low temperature and has moderate humidity is supplied in a vehicle interior. Also at this time, the first variable flow valve 14 is controlled by the control means U based on the signal from the temperature sensor S1, and the amount of air flowing through the first bypass passage 13 is adjusted by the first variable flow valve 14. Is done. Thereby, the temperature of the air supplied into the vehicle interior is controlled by the balance between the amount of air passing through the cooling device 12 and the amount of air bypassing the cooling device 12. Therefore, air cooled by the air cycle type cooling device 12 is always supplied to the vehicle interior, but by partially bypassing the cooling device 12, temperature control is performed, and as a result, overcooling of the vehicle interior is avoided. The

一方、車室内の空気は、排気ダクト3を通じて排出される。その排出量は、排気ファン41のファン回転数を調整することにより調整される。この調整により車内圧力(車室内の圧力)が制御される。排気の一部は、第2のダクト部分3bを通じて給気ダクト2に供給されて給気と混合され、再び同様に除湿制御・冷却制御が行われ、車室内に戻される。   On the other hand, the air in the passenger compartment is exhausted through the exhaust duct 3. The discharge amount is adjusted by adjusting the fan rotation speed of the exhaust fan 41. By this adjustment, the in-vehicle pressure (pressure in the vehicle interior) is controlled. A part of the exhaust gas is supplied to the air supply duct 2 through the second duct portion 3b and mixed with the air supply, and similarly, dehumidification control and cooling control are performed again and returned to the vehicle interior.

車内圧力の制御は、圧力センサS3,S4からの信号に基づき、制御手段Uにて排気ファン41のファン回転数が調整され、車室内から排出される空気量を調整することで行われる。つまり、1つの排気ファン41のファン回転数を調整することで、車内圧力制御が実行され、いわゆる「耳つん現象」が回避される。   Control of the in-vehicle pressure is performed by adjusting the fan rotation speed of the exhaust fan 41 by the control means U based on the signals from the pressure sensors S3 and S4 and adjusting the amount of air discharged from the passenger compartment. That is, by adjusting the fan rotation speed of one exhaust fan 41, the in-vehicle pressure control is executed, and the so-called “pinch phenomenon” is avoided.

上記空調換気システムは、具体的には図示していないが、暖房時には、図2に示すように、給気ダクト2の下流端2a(冷却装置12より下流側部分の下流端)に代えて、廃熱送給ダクト32の下流端32a(除湿装置11より下流側部分の下流端)を車室の後部に接続可能とするダクト接続切替機構が設けられている。つまり、給気ダクト2の冷却装置12の下流側部分(給気ダクト2の下流端2a)を車両1の車室に接続するのに代えて、冷却装置12の熱交換器12Bから得られた廃熱(空気)を運ぶ廃熱送給ダクト32の送給ファン31の下流側(廃熱送給ダクト32の下流端32a)を車両1の車室に接続できるようにダクト配管が変更可能に構成されている。なお、このダクト接続切替機構は、作業者が手作業によってダクト配管の変更を行うように構成されたものであってもよいし、周知の機構を利用して機械的にダクト配管の変更を行うように構成されたものであってもよい。   Although the air conditioning ventilation system is not specifically illustrated, as shown in FIG. 2, instead of the downstream end 2 a of the air supply duct 2 (the downstream end of the downstream portion of the cooling device 12) during heating, A duct connection switching mechanism is provided that allows the downstream end 32a of the waste heat supply duct 32 (the downstream end of the downstream portion from the dehumidifying device 11) to be connected to the rear portion of the passenger compartment. That is, instead of connecting the downstream portion of the cooling device 12 of the air supply duct 2 (the downstream end 2a of the air supply duct 2) to the passenger compartment of the vehicle 1, it was obtained from the heat exchanger 12B of the cooling device 12. Duct piping can be changed so that the downstream side of the supply fan 31 of the waste heat supply duct 32 carrying the waste heat (air) (the downstream end 32a of the waste heat supply duct 32) can be connected to the passenger compartment of the vehicle 1. It is configured. The duct connection switching mechanism may be configured such that the operator manually changes the duct piping, or mechanically changes the duct piping using a known mechanism. It may be configured as described above.

暖房が要求されるときには、前述したようにダクト配管を変更することにより、給気ダクト2の下流端2a(冷却装置12の下流側部分の下流端)が大気に開放される一方、冷却装置12の熱交換器12Bから熱交換により得られた廃熱によって温められた空気が車両1の車室内に導入され、車室内の暖房が行われる。このとき、車室内への送給に先立って、空気は除湿装置11の加湿部11Bを通過するので、適度に加湿され、加湿暖房が実現される。   When heating is required, by changing the duct piping as described above, the downstream end 2a of the air supply duct 2 (the downstream end of the downstream portion of the cooling device 12) is opened to the atmosphere, while the cooling device 12 The air heated by the waste heat obtained by heat exchange from the heat exchanger 12B is introduced into the vehicle interior of the vehicle 1 to heat the vehicle interior. At this time, air passes through the humidifying section 11B of the dehumidifying device 11 prior to feeding into the vehicle compartment, so that it is appropriately humidified and humidification heating is realized.

本発明に係る高速鉄道車両の空調換気システムの概略構成であって、除湿冷房時の状態を示す説明図である。It is a schematic structure of the air-conditioning ventilation system of the high-speed railway vehicle which concerns on this invention, Comprising: It is explanatory drawing which shows the state at the time of dehumidification cooling. 本発明に係る高速鉄道車両の空調換気システムの概略構成であって、加湿暖房時の状態を示す説明図である。It is a schematic structure of the air-conditioning ventilation system of the high-speed railway vehicle which concerns on this invention, Comprising: It is explanatory drawing which shows the state at the time of humidification heating. 従来の空調換気システムの概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of the conventional air-conditioning ventilation system.

符号の説明Explanation of symbols

1 車両
2 給気ダクト
3 排気ダクト
11 除湿装置
11A 除湿部
11B 加湿部
12 冷却装置
12A 圧縮機
12B 熱交換部
12C 膨張機
13 第1のバイパス通路
14 第1の可変流量弁
21 第2のバイパス通路
22 第2の可変流量弁
31 送給ファン
32 廃熱送給ダクト
41 排気ファン
U 制御手段(調整手段)
S1 温度センサ
S2 湿度センサ
S3 車内圧力センサ(第1の圧力センサ)
S4 車外圧力センサ(第2の圧力センサ)
DESCRIPTION OF SYMBOLS 1 Vehicle 2 Air supply duct 3 Exhaust duct 11 Dehumidification apparatus 11A Dehumidification part 11B Humidification part 12 Cooling apparatus 12A Compressor 12B Heat exchange part 12C Expansion machine 13 1st bypass flow path 14 1st variable flow valve 21 2nd bypass flow path 22 Second variable flow valve 31 Supply fan 32 Waste heat supply duct 41 Exhaust fan U Control means (adjustment means)
S1 Temperature sensor S2 Humidity sensor S3 In-car pressure sensor (first pressure sensor)
S4 External pressure sensor (second pressure sensor)

Claims (5)

車両外部から車両の車室内に空気が流れる給気ダクトと、前記車室内から車両外部に空気が流れる排気ダクトと、この排気ダクトに設けられ前記車室内から車両外部に前記排気ダクトを通じて空気を排出させる排気ファンとを備え、常時換気を行う高速鉄道車両の空調換気システムにおいて、
前記給気ダクトに設けられ前記車室内に供給する空気を冷却する空気サイクル方式の冷却装置と、
前記冷却装置の入口部分と出口部分とを接続する第1のバイパス通路と、
前記第1のバイパス通路に設けられる第1の可変流量弁と、
前記冷却装置の上流側に設けられた除湿装置と、
前記除湿装置の入口部分と出口部分とを接続する第2のバイパス通路と、
前記第2のバイパス通路に設けられた第2の可変流量弁と、
前記第1及び第2の可変流量弁を制御して前記第1及び第2のパイパス通路の流量を調整すると共に、前記排気ファンのファン回転数を調整する調整手段とを備えることを特徴とする高速鉄道車両の空調換気システム。
An air supply duct through which air flows from the outside of the vehicle to the interior of the vehicle, an exhaust duct through which air flows from the interior of the vehicle to the outside of the vehicle, and air is exhausted from the interior of the vehicle to the outside of the vehicle through the exhaust duct. In an air-conditioning ventilation system for a high-speed railway vehicle that is equipped with an exhaust fan to perform continuous ventilation,
An air cycle type cooling device that is provided in the air supply duct and cools the air supplied to the vehicle interior;
A first bypass passage connecting an inlet portion and an outlet portion of the cooling device;
A first variable flow valve provided in the first bypass passage;
A dehumidifying device provided upstream of the cooling device;
A second bypass passage connecting the inlet portion and the outlet portion of the dehumidifier;
A second variable flow valve provided in the second bypass passage;
And adjusting the flow rate of the first and second bypass passages by controlling the first and second variable flow valves, and adjusting means for adjusting the fan rotation speed of the exhaust fan. Air-conditioning ventilation system for high-speed railway vehicles.
車両外部から車両の車室内に空気が流れる給気ダクトと、前記車室内から車両外部に空気が流れる排気ダクトと、この排気ダクトに設けられ前記車室内から車両外部に前記排気ダクトを通じて空気を排出させる排気ファンとを備え、常時換気を行う高速鉄道車両の空調換気システムにおいて、
前記給気ダクトに設けられ前記車室内に供給する空気を冷却する空気サイクル方式の冷却装置と、
前記冷却装置の入口部分と出口部分とを接続するバイパス通路と、
前記バイパス通路に設けられる可変流量弁と、
前記車室内の室温を検出する温度センサと、
前記車室内の圧力を検出する第1の圧力センサと、
前記車室外の圧力を検出する第2の圧力センサと、
前記温度センサ、第1及び第2の圧力センサからの信号を受け、前記温度センサからの信号に基づき前記可変流量弁を制御して前記パイパス通路の流量を調整すると共に、前記第1及び第2の圧力センサからの信号に基づき前記排気ファンのファン回転数を調整する制御手段とを備えることを特徴とする高速鉄道車両の空調換気システム。
An air supply duct through which air flows from the outside of the vehicle to the interior of the vehicle, an exhaust duct through which air flows from the interior of the vehicle to the outside of the vehicle, and air is exhausted from the interior of the vehicle to the outside of the vehicle through the exhaust duct. In an air-conditioning ventilation system for a high-speed railway vehicle that is equipped with an exhaust fan to perform continuous ventilation,
An air cycle type cooling device that is provided in the air supply duct and cools the air supplied to the vehicle interior;
A bypass passage connecting an inlet portion and an outlet portion of the cooling device;
A variable flow valve provided in the bypass passage;
A temperature sensor for detecting a room temperature in the passenger compartment;
A first pressure sensor for detecting the pressure in the passenger compartment;
A second pressure sensor for detecting a pressure outside the passenger compartment;
The signals from the temperature sensor and the first and second pressure sensors are received, and the variable flow valve is controlled based on the signal from the temperature sensor to adjust the flow rate of the bypass passage, and the first and second And an air-conditioning ventilation system for a high-speed railway vehicle, comprising: control means for adjusting the fan rotation speed of the exhaust fan based on a signal from the pressure sensor.
車両外部から車両の車室内に空気が流れる給気ダクトと、前記車室内から車両外部に空気が流れる排気ダクトと、この排気ダクトに設けられ前記車室内から車両外部に前記排気ダクトを通じて空気を排出させる排気ファンとを備え、前記両ダクトを通じて常時換気を行う高速鉄道車両の空調換気システムにおいて、
前記給気ダクトに設けられ前記車室内に供給する空気を冷却する空気サイクル方式の冷却装置と、
この冷却装置の上流側に設けられた除湿装置と、
この除湿装置の入口部分と出口部分とを接続するバイパス通路と、
このバイパス通路に設けられた可変流量弁と、
前記車室内の湿度を検出する湿度センサと、
前記車室内の圧力を検出する第1の圧力センサと、
前記車室外の圧力を検出する第2の圧力センサと、
前記湿度センサ、第1及び第2の圧力センサからの信号を受け、前記湿度センサからの信号に基づき前記可変流量弁を制御して前記パイパス通路の流量を調整すると共に、前記第1及び第2の圧力センサからの信号に基づき前記排気ファンのファン回転数を調整する制御手段とを備えることを特徴とする高速鉄道車両の空調換気システム。
An air supply duct through which air flows from the outside of the vehicle to the interior of the vehicle, an exhaust duct through which air flows from the interior of the vehicle to the outside of the vehicle, and air is exhausted from the interior of the vehicle to the outside of the vehicle through the exhaust duct. An air-conditioning ventilation system for a high-speed railway vehicle, which is equipped with an exhaust fan to perform continuous ventilation through both ducts.
An air cycle type cooling device that is provided in the air supply duct and cools the air supplied to the vehicle interior;
A dehumidifying device provided upstream of the cooling device;
A bypass passage connecting the inlet portion and the outlet portion of the dehumidifier,
A variable flow valve provided in the bypass passage;
A humidity sensor for detecting humidity in the vehicle compartment;
A first pressure sensor for detecting the pressure in the passenger compartment;
A second pressure sensor for detecting a pressure outside the passenger compartment;
The signal from the humidity sensor and the first and second pressure sensors is received, the variable flow valve is controlled based on the signal from the humidity sensor to adjust the flow rate of the bypass passage, and the first and second And an air-conditioning ventilation system for a high-speed railway vehicle, comprising: control means for adjusting the fan rotation speed of the exhaust fan based on a signal from the pressure sensor.
前記空気サイクル方式の冷却装置の熱交換器から廃熱を含む空気を除湿装置に送給する廃熱送給ダクトを有する請求項2記載の高速鉄道車両の空調換気システム。   The air-conditioning ventilation system for a high-speed railway vehicle according to claim 2, further comprising a waste heat supply duct for supplying air including waste heat to a dehumidifier from a heat exchanger of the air cycle type cooling device. 暖房時に、給気ダクトの下流端に代えて、廃熱送給ダクトの下流端を車室に接続可能とするダクト接続切替機構が設けられている請求項1〜3のいずれかに記載の高速鉄道車両の空調換気システム。   The high speed according to any one of claims 1 to 3, wherein a duct connection switching mechanism is provided that enables the downstream end of the waste heat supply duct to be connected to the passenger compartment instead of the downstream end of the air supply duct during heating. Air conditioning ventilation system for railway vehicles.
JP2003313544A 2003-09-05 2003-09-05 Air-conditioning ventilation system for high-speed railway vehicles Expired - Fee Related JP4315768B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003313544A JP4315768B2 (en) 2003-09-05 2003-09-05 Air-conditioning ventilation system for high-speed railway vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003313544A JP4315768B2 (en) 2003-09-05 2003-09-05 Air-conditioning ventilation system for high-speed railway vehicles

Publications (2)

Publication Number Publication Date
JP2005081889A true JP2005081889A (en) 2005-03-31
JP4315768B2 JP4315768B2 (en) 2009-08-19

Family

ID=34414432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003313544A Expired - Fee Related JP4315768B2 (en) 2003-09-05 2003-09-05 Air-conditioning ventilation system for high-speed railway vehicles

Country Status (1)

Country Link
JP (1) JP4315768B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011521828A (en) * 2008-05-30 2011-07-28 エアバス オペラツィオンス ゲゼルシャフト ミット ベシュレンクテル ハフツング Exhaust air cooling apparatus and method for air conditioning system for aircraft
KR101484973B1 (en) * 2013-10-23 2015-01-21 한국철도기술연구원 Apparatus and method for controlling a press of guest-room in express train using by pressurization instrument
JP2015051680A (en) * 2013-09-06 2015-03-19 三菱電機株式会社 Vehicular air conditioner and control method for the same
CN107521513A (en) * 2017-08-11 2017-12-29 中车株洲电力机车有限公司 A kind of passenger room of railway vehicle method for controlling internal temp and system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3112104B1 (en) * 2020-07-03 2023-04-07 Alstom Transp Tech Traction electric vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011521828A (en) * 2008-05-30 2011-07-28 エアバス オペラツィオンス ゲゼルシャフト ミット ベシュレンクテル ハフツング Exhaust air cooling apparatus and method for air conditioning system for aircraft
JP2015051680A (en) * 2013-09-06 2015-03-19 三菱電機株式会社 Vehicular air conditioner and control method for the same
KR101484973B1 (en) * 2013-10-23 2015-01-21 한국철도기술연구원 Apparatus and method for controlling a press of guest-room in express train using by pressurization instrument
CN107521513A (en) * 2017-08-11 2017-12-29 中车株洲电力机车有限公司 A kind of passenger room of railway vehicle method for controlling internal temp and system

Also Published As

Publication number Publication date
JP4315768B2 (en) 2009-08-19

Similar Documents

Publication Publication Date Title
JP4489776B2 (en) Air cycle air conditioning with adaptive ram heat exchanger
JP6167416B2 (en) Air conditioner for vehicles
WO2012160735A1 (en) Air conditioning device for vehicle
US10363792B2 (en) Air-conditioning system for cooling and drying air in passenger compartment of vehicle
JP2009264661A (en) Air conditioning system
JP2000052757A (en) Air-conditioning and heating equipment for automobile
JP3246250B2 (en) Heat pump air conditioner dehumidifier for electric vehicles
JP2007131072A (en) Air-conditioner for vehicle
JP7017120B2 (en) Air conditioning system for passenger compartment
JP2006282080A (en) Air conditioner for vehicle
JP4315768B2 (en) Air-conditioning ventilation system for high-speed railway vehicles
JP5012758B2 (en) Air conditioner for vehicles
JP4526397B2 (en) Air-conditioning ventilation system for high-speed railway vehicles
JP4476644B2 (en) Control method and control apparatus for vehicle air conditioner
WO2011037082A1 (en) Air conditioning device for vehicle
EP1623857B2 (en) HVAC Systems
JP5147653B2 (en) Paint booth exhaust dehumidification recycling air conditioning system
JP3912252B2 (en) Parking ventilation or air conditioning
JP2020131846A (en) Vehicular air conditioner
JP4042556B2 (en) Air conditioner
JP4452111B2 (en) Air conditioner for vehicles
JP2000016072A (en) Cooling and heating device for automobile
JP2014100925A (en) Vehicle air conditioner
JPH1111307A (en) Air conditioner for rolling stock
JP2022055544A (en) Air conditioning device for vehicle and method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090519

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090519

R150 Certificate of patent or registration of utility model

Ref document number: 4315768

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130529

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140529

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees