JP2005081867A - Tilt angle adjusting device for vehicle - Google Patents

Tilt angle adjusting device for vehicle Download PDF

Info

Publication number
JP2005081867A
JP2005081867A JP2003312948A JP2003312948A JP2005081867A JP 2005081867 A JP2005081867 A JP 2005081867A JP 2003312948 A JP2003312948 A JP 2003312948A JP 2003312948 A JP2003312948 A JP 2003312948A JP 2005081867 A JP2005081867 A JP 2005081867A
Authority
JP
Japan
Prior art keywords
vehicle
optical axis
axis control
tilt angle
acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003312948A
Other languages
Japanese (ja)
Other versions
JP4361332B2 (en
Inventor
Takashi Osawa
孝 大沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003312948A priority Critical patent/JP4361332B2/en
Publication of JP2005081867A publication Critical patent/JP2005081867A/en
Application granted granted Critical
Publication of JP4361332B2 publication Critical patent/JP4361332B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a tilt angle adjusting device for a vehicle capable of being switched to corresponding optical axis control, which assures a quick response when the confirmation of vehicle performance is necessary. <P>SOLUTION: The tilt angle adjusting device is equipped with a tilt angle sensor 4 to sense the tilt angle of a vehicle body, an optical axis control means 2 to perform optical axis control on the basis of the sensing output of the angle sensor 4, and vertical direction acceleration sensors 5 and 6 to sense acceleration in the vertical direction of the vehicle, whereby the acceleration in the vertical direction of the vehicle is sensed by the sensors 5 and 6 while the vehicle is stopped, and in the case the tilt angle value sensed by the tilt angle sensor 4 after sensing the acceleration differs from preceding sensing, optical axis control to suit the varied tilt angle of the body is conducted. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、車両用傾斜角度調整装置に関し、特に、車両用ヘッドライトの光軸制御を行う場合等に用いて好適な車両用傾斜角度調整装置に関する。   The present invention relates to a vehicle tilt angle adjusting device, and more particularly to a vehicle tilt angle adjusting device suitable for use in the case of performing optical axis control of a vehicle headlight.

従来、車両用ヘッドライトの光軸制御行う調整装置として、車両の車輪が縁石に乗り上げて停車している時にヘッドライトの光軸を不適切に移動しないように停車中には、光軸を移動せずに、車両が走行し所定の速度以上になった時に光軸の移動を行い、また、検出された傾斜角度の変動が大きい時や、車両の速度の変動が大きい時には、光軸を移動しないようにしたものが提案されている(例えば、特許文献1参照)。   Conventionally, as an adjustment device that controls the optical axis of a vehicle headlight, the optical axis is moved while the vehicle is stopped so that the optical axis of the headlight does not move improperly when the vehicle wheel is stopped on a curb. The optical axis is moved when the vehicle travels and exceeds a predetermined speed, and the optical axis is moved when the detected tilt angle fluctuation is large or the vehicle speed fluctuation is large. The thing which did not do is proposed (for example, refer patent document 1).

特開2000−229533号公報JP 2000-229533 A

しかしながら、上述の如き従来装置には、傾斜角度センサに例えば超音波センサを用いた場合、その光軸の制御動作は、1個所の傾斜角度センサで簡単に傾斜角度が検出でき、ヘッドライトと直下の路面がなす傾斜角度を、常に一定にすることができる利点があるものの、超音波式の傾斜角度センサによる検出角度は、その角度を検出する対象路面に縁石があれば、車両の停車中に検出される傾斜角度が正しい値にならないという課題に対しては、上記従来例も同様である。   However, in the conventional apparatus as described above, for example, when an ultrasonic sensor is used as the tilt angle sensor, the control operation of the optical axis can be easily detected by one tilt angle sensor, and the headlight is directly under the headlight. Although there is an advantage that the inclination angle formed by the road surface can always be constant, the detection angle by the ultrasonic inclination angle sensor can be detected while the vehicle is stopped if there is a curb on the target road surface for detecting the angle. The above-mentioned conventional example is the same for the problem that the detected inclination angle does not become a correct value.

また、平らな路面に停車した車両の傾斜角度を、タイヤのたわみや、車体の歪みによる誤差を無視して検出した場合、超音波式の傾斜角度センサによる傾斜角度の検出値は、路面の小さな凸凹による斜面の傾斜角度を検出している可能性があり、平らな路面でさえ、1点の傾斜角度測定値では正しい傾斜角度が得られないという課題に対しては、上記従来例も同様である。上記従来例においては、いずれも停車中に動作しない仕様となる為その動作の確認が極めて困難であった。   In addition, when the inclination angle of a vehicle parked on a flat road surface is detected ignoring errors due to tire deflection and vehicle body distortion, the detected value of the inclination angle by the ultrasonic inclination angle sensor is small on the road surface. There is a possibility that the inclination angle of the slope due to unevenness is detected, and the above-mentioned conventional example is the same for the problem that even with a flat road surface, a correct inclination angle cannot be obtained with a single inclination angle measurement value. is there. In the above conventional examples, it is difficult to confirm the operation because the specifications do not operate while the vehicle is stopped.

この発明は、上記のような課題を解決するためになされたもので、傾斜角度センサに超音波センサを使用した場合でも傾斜角度を検出する対象路面の状態に影響されることなく常に正しい光軸制御を行い、必要な折には車両の性能の確認が速やかに応答する試験モードにおいても応答可能な光軸制御に切り替えることができる車両用傾斜角度調整装置を得ることを目的とする。   The present invention has been made to solve the above-described problems. Even when an ultrasonic sensor is used as the inclination angle sensor, the optical axis is always correct without being affected by the state of the target road surface for detecting the inclination angle. It is an object of the present invention to provide a vehicle tilt angle adjusting device that performs control and can switch to optical axis control that can respond even in a test mode in which confirmation of vehicle performance quickly responds when necessary.

この発明に係る車両用傾斜角度調整装置は、車両の車体傾斜角度を検知する傾斜角度センサと、この傾斜角度センサの検出出力に基づいて光軸制御を行う光軸制御手段とを備え、試験モード時は通常モード時に対して光軸制御の応答性を早め、停車あるいは極低速度などでも動作することができるように光軸制御手段を切り替えるものである。   A vehicle tilt angle adjusting device according to the present invention includes a tilt angle sensor that detects a vehicle body tilt angle of a vehicle, and an optical axis control unit that performs optical axis control based on a detection output of the tilt angle sensor, and a test mode. At times, the optical axis control means is switched so that the response of the optical axis control is accelerated compared to the normal mode, and the vehicle can be operated even when the vehicle is stopped or at a very low speed.

この発明は、車両に搭載された傾斜角度センサの傾斜角度検出値に基づいて、試験モード時は通常モード時に対して光軸制御の応答性を早めるように切り替えるので、速やかな光軸調整の確認も可能になり、装置の信頼性を向上できる効果がある。   In the present invention, based on the detected tilt angle value of the tilt angle sensor mounted on the vehicle, the test mode is switched so as to accelerate the response of the optical axis control with respect to the normal mode. And the reliability of the apparatus can be improved.

以下、この発明の一実施の形態を、車両用ヘッドライトの光軸制御装置に適用した場合を例に取り、説明する。
実施の形態1.
図1は、この発明の実施の形態1による車両用ヘッドライトの光軸制御装置を示す構成図である。
本実施の形態は、上下方向加速度センサを用いて、車両の停車中にこの車両の上下方向の加速度を検知し、その加速度を検知する前と後で傾斜角度センサによる車体の傾斜角度検出値が変化している場合に、その変化した車体傾斜角度に見合った光軸制御を速やかに行うものである。
Hereinafter, a case where an embodiment of the present invention is applied to an optical axis control device for a vehicle headlight will be described as an example.
Embodiment 1 FIG.
1 is a block diagram showing an optical axis control device for a vehicle headlight according to Embodiment 1 of the present invention.
In this embodiment, the vertical acceleration sensor is used to detect the vertical acceleration of the vehicle while the vehicle is stopped, and before and after the acceleration is detected, the detected value of the vehicle body tilt angle is detected by the tilt angle sensor. When it has changed, the optical axis control corresponding to the changed vehicle body inclination angle is quickly performed.

図1において、車体1内に光軸制御手段2を設け、この光軸制御手段2に、ヘッドライト3と、例えば超音波センサを用いて車体傾斜角度を検知する傾斜角度センサ4を接続すると共に、車体1の前部と後部にそれぞれ取り付けられ、車両の上下方向の加速度を検知する第1の加速度センサとしての上下方向加速度センサ5,6を接続する。   In FIG. 1, an optical axis control means 2 is provided in a vehicle body 1, and a headlight 3 and an inclination angle sensor 4 for detecting the vehicle body inclination angle using, for example, an ultrasonic sensor are connected to the optical axis control means 2. The vertical acceleration sensors 5 and 6 are connected to the front and rear parts of the vehicle body 1 as first acceleration sensors for detecting the vertical acceleration of the vehicle.

次に、本実施の形態の動作について、図2を参照して説明する。
図2において、図2(a)は車速、図2(b)は傾斜角度センサ4による車体の傾斜角度検出値、図2(c)は上下方向加速度センサ5,6による車両の上下方向加速度検出値、図2(d)はヘッドライト3の光軸出力をそれぞれ表している。
いま、図2(a)に示すように、車両がt0の時点で走行状態から停止し、この車両1の停車中に、図2(c)に示すように、上下方向加速度センサ5,6により車両1の上下方向の加速度ADが検知されると、その検知出力が光軸制御手段2に供給され、同時に、この加速度を検知する前と後で、図2(b)に示すように、傾斜角度センサ4で検知された車体傾斜角度が変動していれば、その車体傾斜角度検出値の変化分Δiが光軸制御手段2に供給される。
Next, the operation of the present embodiment will be described with reference to FIG.
2 (a) is the vehicle speed, FIG. 2 (b) is the vehicle body tilt angle detection value by the tilt angle sensor 4, and FIG. 2 (c) is the vehicle vertical acceleration detection by the vertical acceleration sensors 5 and 6. FIG. 2D shows the optical axis output of the headlight 3.
Now, as shown in FIG. 2 (a), the vehicle stops from the running state at time t0, and while the vehicle 1 is stopped, as shown in FIG. When the vertical acceleration AD of the vehicle 1 is detected, the detection output is supplied to the optical axis control means 2, and at the same time, before and after detecting this acceleration, as shown in FIG. If the vehicle body tilt angle detected by the angle sensor 4 varies, the change Δi of the vehicle body tilt angle detection value is supplied to the optical axis control means 2.

そして、光軸制御手段2では、入力された上下方向加速度センサ5,6からの車両1の上下方向の加速度ADと傾斜角度センサ4からの車体傾斜角度検出値の変化分Δiから、車両1に対して搭乗者の乗り降りや貨物の積み下ろし等があったと判定できるので、この判定を下した時に、光軸制御手段2は、ヘッドライト3に対してその光軸を移動する操作を行う。つまり、光軸制御手段2は、変化した車体傾斜角度に見合った光軸制御を行う。この結果、ヘッドライト3からは、図2(d)に示すような、車体傾斜角度検出値の変化分Δiに対応した光軸出力OPが得られる。   Then, the optical axis control means 2 determines the vehicle 1 from the input vertical acceleration AD of the vehicle 1 from the vertical acceleration sensors 5 and 6 and the change Δi in the detected vehicle body tilt angle from the tilt angle sensor 4. On the other hand, since it can be determined that the passenger has got on and off, cargo has been loaded, etc., when this determination is made, the optical axis control means 2 operates the headlight 3 to move the optical axis. That is, the optical axis control means 2 performs optical axis control corresponding to the changed vehicle body tilt angle. As a result, an optical axis output OP corresponding to the change Δi in the detected value of the vehicle body tilt angle is obtained from the headlight 3 as shown in FIG.

斯くして、車体傾斜角度の測定による絶対値は使用せずに、車両1の上下方向の加速度を検知する前と後の、車体傾斜角度検出値の変化分Δiを使用し、この車体傾斜角度検出値の変化分Δiに相当する光軸制御を行うことで、停車した場所の傾斜角度検出対象路面の傾きによる影響を少なくする光軸制御を行うことができる。   Thus, the absolute value obtained by measuring the vehicle body tilt angle is not used, and the change Δi in the vehicle body tilt angle detection value before and after detecting the vertical acceleration of the vehicle 1 is used. By performing the optical axis control corresponding to the change Δi of the detected value, it is possible to perform the optical axis control that reduces the influence of the inclination of the road surface on which the inclination angle is detected at the place where the vehicle stops.

また、車体1の前部と後部にそれぞれ車両の上下方向の加速度を検知する上下方向加速度センサ5,6を取り付けているので、これらの上下方向加速度センサ5,6が車両の上下方向の加速度を検知した時に、車体1が前後に傾いたと判断して、その時の傾斜角度センサ4による車体傾斜角度検出値は、正常な値ではないと判断できるため、その車体傾斜角度検出値を光軸制御用のデータから取り除くことができ、正確な光軸制御ができる。つまり、車両が前後に揺れ動くことを検知して、そのときに検知した車体1の車体傾斜角度を制御に使用しないようにすることで、より正確な光軸制御が可能になる。   Since the vertical acceleration sensors 5 and 6 for detecting the vertical acceleration of the vehicle are attached to the front and rear parts of the vehicle body 1, respectively, the vertical acceleration sensors 5 and 6 detect the vertical acceleration of the vehicle. When detected, it is determined that the vehicle body 1 is tilted back and forth, and the vehicle body tilt angle detection value by the tilt angle sensor 4 at that time can be determined to be not a normal value. Can be removed from the data, and the optical axis can be controlled accurately. That is, more accurate optical axis control can be performed by detecting that the vehicle swings back and forth and not using the detected vehicle body tilt angle of the vehicle body 1 for control.

このようにして、本実施の形態では、停車中に車両の上下方向の加速度を検知し、その加速度を検知する前と後で傾斜角度センサによる車体の傾斜角度検出値が変化している場合に、その変化した車体傾斜角度に見合った光軸制御を行うので、速やかな光軸制御を行うことが出来る。また、車体の上下方向の加速度を検知することで、その時の傾斜角度検出値が正常な値ではないと判断して、その傾斜角度検出値を光軸制御用のデータから取り除くので、さらに正確な光軸制御ができる。   As described above, in the present embodiment, when the acceleration in the vertical direction of the vehicle is detected while the vehicle is stopped, and the detected value of the tilt angle of the vehicle body by the tilt angle sensor is changed before and after the acceleration is detected. Since the optical axis control corresponding to the changed vehicle body inclination angle is performed, the optical axis control can be performed promptly. In addition, by detecting the vertical acceleration of the vehicle body, it is determined that the detected tilt angle value is not a normal value, and the detected tilt angle value is removed from the data for optical axis control. The optical axis can be controlled.

実施の形態2.
図3は、この発明の実施の形態2による車両用ヘッドライトの光軸制御装置の動作を説明するためのフローチャートである。なお、本実施の形態における構成については、図1と同様のものを用いてよく、従って、その説明は省略する。
本実施の形態は、上下方向加速度センサを用いて停車中に特定な振動、例えば車体の揺すりを検知した時には、上述の通常モードに対して光軸制御の応答性を早めるように光軸制御手段を試験モードに切り替えるものである。
Embodiment 2. FIG.
FIG. 3 is a flowchart for explaining the operation of the optical axis control device for a vehicle headlight according to Embodiment 2 of the present invention. Note that the configuration in the present embodiment may be the same as that shown in FIG. 1, and thus the description thereof is omitted.
In the present embodiment, when a specific vibration, for example, shaking of the vehicle body, is detected while the vehicle is stopped by using the vertical acceleration sensor, the optical axis control means is provided so as to accelerate the response of the optical axis control to the normal mode described above. Is switched to the test mode.

例えば、車体1の前方を上下に揺すり、次いで車体1の後方を上下に揺する動作を2秒周期で3回繰り返し、この振動を車体1の前部と後部にそれぞれ設けた上下方向加速度センサ5,6により検出すれば(当然、その時の傾斜角度センサ4による傾斜角度検出値は取り除く)、その振動の後に傾斜角度センサ4により検出される傾斜角度検出値を平均処理(フィルタ処理)して、車体傾斜角度とすることで、光軸制御の応答性を変更し速やかな光軸制御を行う。   For example, the motion of swinging the front of the vehicle body 1 up and down and then swinging the rear of the vehicle body 1 up and down is repeated three times at a cycle of 2 seconds, and this vibration is provided in the vertical direction acceleration sensor 5 provided at the front and rear of the vehicle body 1 respectively. 6 (of course, the inclination angle detection value by the inclination angle sensor 4 at that time is removed), the inclination angle detection value detected by the inclination angle sensor 4 after the vibration is averaged (filtered), and the vehicle body By setting the tilt angle, the responsiveness of the optical axis control is changed and the optical axis control is performed promptly.

なお、揺動後に検出した傾斜角度検出値を統計的に処理して、検出傾斜角度に揺らぎが多い場合は光軸制御を行わず、検出傾斜角度の揺らぎが少ない場合にのみこの検出された傾斜角度検出値を、光軸制御用の車体傾斜角度として用い光軸制御を行えば、すばやい応答性を持ちながら、誤動作の無い試験モードの光軸制御が可能である。   Note that the detected tilt angle is statistically processed after swinging, and if the detected tilt angle fluctuates, the optical axis control is not performed, and this detected tilt is only performed when the detected tilt angle fluctuates little. By performing the optical axis control using the detected angle value as the vehicle body tilt angle for optical axis control, it is possible to perform the optical axis control in the test mode without malfunction while having quick response.

次に、本実施の形態の動作について、図3を参照しながら説明する。
まず、ステップST1において、通常の光軸制御動作に入り、ステップST2において、その経過時間が所定時間t1例えば5.2秒経過したか否かを判別し、経過してなければ、ステップST3において、車体1の前部に取り付けられた上下方向加速度センサ5により車体1の振動を検出し、検出されれば、ステップST4において、車体1の後部に取り付けられた上下方向加速度センサ6により車体1の振動を検出し、検出されなれば、ステップST5において、振動検出回数が0か否かを判別し、0であれば、ステップST6において、経過時間の計時を開始し、ステップST7において、振動検出回数を1に設定した後、ステップST1に戻って通常の光軸制御動作を持続する。また、ステップST4で上下方向加速度センサ6により車体1の振動を検出された場合も、ステップST1に戻って通常の光軸制御動作を持続する。
Next, the operation of the present embodiment will be described with reference to FIG.
First, in step ST1, a normal optical axis control operation is started. In step ST2, it is determined whether or not the elapsed time has passed a predetermined time t1, for example, 5.2 seconds. If not, in step ST3. The vibration of the vehicle body 1 is detected by the vertical acceleration sensor 5 attached to the front portion of the vehicle body 1, and if detected, the vibration of the vehicle body 1 is detected by the vertical acceleration sensor 6 attached to the rear portion of the vehicle body 1 in step ST4. If it is not detected, it is determined in step ST5 whether or not the number of vibration detection is 0. If it is 0, the elapsed time is started in step ST6, and the number of vibration detection is determined in step ST7. After setting to 1, the process returns to step ST1 to continue the normal optical axis control operation. Also, when vibration of the vehicle body 1 is detected by the vertical acceleration sensor 6 in step ST4, the process returns to step ST1 and the normal optical axis control operation is continued.

そして、再度、ステップST3で上下方向加速度センサ5により車体1の振動が検出され、ステップST4で上下方向加速度センサ6により車体1の振動が検出されず、且つステップST5で振動検出回数が0でないと、ステップST8において、振動検出回数が2か否かを判別し、この場合、振動検出回数は2であるので、ステップST9において、経過時間が所定時間t2〜t3の範囲例えば1.8〜2.2秒の範囲を経過したか否かを判別し、経過してなければ、ステップST1に戻って上述の動作を繰り返し、経過していれば、ステップST10において、振動検出回数を3に設定した後、ステップST1に戻って上述の動作を繰り返す。   Then, the vibration of the vehicle body 1 is detected again by the vertical acceleration sensor 5 in step ST3, the vibration of the vehicle body 1 is not detected by the vertical acceleration sensor 6 in step ST4, and the number of vibration detections is not 0 in step ST5. In step ST8, it is determined whether or not the number of vibration detections is 2. In this case, since the number of vibration detections is 2, in step ST9, the elapsed time is in the range of a predetermined time t2 to t3, for example, 1.8 to 2. It is determined whether or not the range of 2 seconds has elapsed. If not, the process returns to step ST1 and the above operation is repeated. If the period has elapsed, the number of vibration detections is set to 3 in step ST10. Returning to step ST1, the above operation is repeated.

一方、ステップST8で振動検出回数が2でなければ、ステップST11において、振動検出回数が4か否かを判別し、4でなければ、ステップST1に戻って上述の動作を繰り返し、4であれば、ステップST12において、経過時間が所定時間t4〜t5の範囲例えば3.8〜4.2秒の範囲を経過したか否かを判別し、経過してなければ、ステップST1に戻って上述の動作を繰り返し、経過していれば、ステップST13において、振動検出回数を5に設定した後、ステップST1に戻って上述の動作を繰り返す。   On the other hand, if the number of vibration detections is not 2 in step ST8, it is determined in step ST11 whether the number of vibration detections is 4. If not, the process returns to step ST1 and the above operation is repeated. In step ST12, it is determined whether or not the elapsed time has passed a predetermined time period t4 to t5, for example, 3.8 to 4.2 seconds. If it has elapsed, in step ST13, the number of vibration detection is set to 5, and then the process returns to step ST1 to repeat the above operation.

また、ステップST3で上下方向加速度センサ5により車体1の振動が検出されなければ、ステップST14において、車体1の後部に取り付けられた上下方向加速度センサ6により車体1の振動が検出されたか否かを判別し、検出されれば、ステップST15において、振動検出回数が1か否かを判別し、1であれば、ステップST16において、経過時間が所定時間t6〜t7の範囲即ち0.8〜1.2秒の範囲経過したか否かを判別し、経過してなければ、ステップST1に戻って上述の動作を繰り返し、経過していれば、ステップST17において、振動検出回数を2に設定した後、ステップST1に戻って上述の動作を繰り返す。   If vibration of the vehicle body 1 is not detected by the vertical acceleration sensor 5 in step ST3, whether or not vibration of the vehicle body 1 is detected by the vertical acceleration sensor 6 attached to the rear portion of the vehicle body 1 in step ST14. If it is determined and detected, it is determined in step ST15 whether or not the number of times of vibration detection is 1, and if it is 1, in step ST16, the elapsed time is in the range of a predetermined time t6 to t7, that is, 0.8 to 1.. It is determined whether or not the range of 2 seconds has elapsed. If not, the process returns to step ST1 to repeat the above-described operation. If the period has elapsed, after setting the number of vibration detections to 2 in step ST17, Returning to step ST1, the above operation is repeated.

一方、ステップST15で振動検出回数が1でなければ、ステップST18において、振動検出回数が3か否かを判別し、3であれば、ステップST19において、経過時間が所定時間t4〜t5の範囲即ち3.8〜4.2秒の範囲を経過したか否かを判別し、経過してなければ、ステップST1に戻って上述の動作を繰り返し、経過していれば、ステップST20において、振動検出回数を4に設定した後、ステップST1に戻って上述の動作を繰り返す。   On the other hand, if the number of vibration detections is not 1 in step ST15, it is determined in step ST18 whether or not the number of vibration detections is 3. If it is 3, the elapsed time is in a range of a predetermined time t4 to t5 in step ST19. It is determined whether or not the range of 3.8 to 4.2 seconds has elapsed. If not, the process returns to step ST1 and the above operation is repeated. If the period has elapsed, the number of vibration detections is determined in step ST20. Is set to 4, then the process returns to step ST1 to repeat the above operation.

また、ステップST18で振動検出回数が3でなければ、ステップST21において、振動検出回数が5か否かを判別し、5でなければ、ステップST1に戻って上述の動作を繰り返し、5であれば、ステップST22において、経過時間計時を停止し、ステップST23において、経過時間をリセットし、ステップST24において、振動検出回数をリセットし、ステップST25において、その振動の検出後に試験モードの光軸制御確認動作である傾斜角度センサ4により検出される傾斜角度検出値を平均処理(フィルタ処理)して、車体傾斜角度とすることで、光軸制御の応答性を早めるように変換して速やかな光軸制御を行い、ステップST1に戻って上述の動作を繰り返す。   If the number of vibration detections is not 3 in step ST18, it is determined in step ST21 whether the number of vibration detections is 5. If not, the process returns to step ST1 and the above operation is repeated. In step ST22, the elapsed time is stopped, the elapsed time is reset in step ST23, the number of vibration detections is reset in step ST24, and the optical axis control confirmation operation in the test mode is detected after the vibration is detected in step ST25. The inclination angle detection value detected by the inclination angle sensor 4 is averaged (filtered) to obtain a vehicle body inclination angle, which is converted so as to accelerate the responsiveness of the optical axis control, thereby promptly controlling the optical axis. And return to step ST1 to repeat the above operation.

一方、ステップST2において、経過時間が5.2秒を過ぎると、ステップST26において、経過時間の計時を停止し、ステップST27において、経過時間をリセットし、ステップST28において、振動検出回数をリセットした後、ステップST3に進んで、上述の動作を繰り返す。   On the other hand, if the elapsed time exceeds 5.2 seconds in step ST2, the elapsed time is stopped in step ST26, the elapsed time is reset in step ST27, and the number of vibration detections is reset in step ST28. The process proceeds to step ST3 and the above-described operation is repeated.

このようにして、本実施の形態では、上下方向加速度センサを用いて停車中に車体を揺する等の特定な振動を検知した時には、光軸制御の応答性を早めるように光軸制御手段を切り替えるので、試験モードにおいては速やかな光軸制御を行うことが出来る。また、揺動後に検出した傾斜角度検出値を統計的に処理して、検出傾斜角度に揺らぎが多い場合は光軸制御を行わず、検出傾斜角度の揺らぎが少ない場合にのみこの検出された車体傾斜角度検出値を、光軸制御用の車体傾斜角度として用い光軸制御を行うことで、すばやい応答性を持ちながら、誤動作の無い光軸制御が可能である。   In this way, in this embodiment, when a specific vibration such as shaking the vehicle body is detected while the vehicle is stopped using the vertical acceleration sensor, the optical axis control means is switched so as to accelerate the response of the optical axis control. Therefore, rapid optical axis control can be performed in the test mode. In addition, the detected tilt angle value detected after swinging is statistically processed. If the detected tilt angle has a large fluctuation, the optical axis control is not performed, and this detected vehicle body is only detected when the detected tilt angle has a small fluctuation. By performing the optical axis control using the detected tilt angle value as the vehicle body tilt angle for optical axis control, it is possible to perform optical axis control without malfunction while having quick response.

実施の形態3.
図4は、この発明の実施の形態3による車両用ヘッドライトの光軸制御装置を示す構成図である。
本実施の形態は、車体に前後方向の加速度が加わった時に、車両の前後方向の大きな加速度を検知しないで、車両が低速度で移動した時には、上述の通常モードに対して光軸制御の応答性を早める試験モードに切り替えるものである。
即ち、実車では殆ど遭遇しない、例えば人手で車体を押して移動するような、前後方向の加速度が極小さな値、即ち極低速度で一定な速度で車両が移動した場合は、その時に検出する複数の超音波センサ等による傾斜角度センサによる傾斜角度検出値を平均処理して、車体傾斜角度とすることで光軸制御を速やかに行うものである。
Embodiment 3 FIG.
4 is a block diagram showing an optical axis control device for a vehicle headlight according to Embodiment 3 of the present invention.
In this embodiment, when longitudinal acceleration is applied to the vehicle body, large acceleration in the longitudinal direction of the vehicle is not detected, and when the vehicle moves at a low speed, the response of the optical axis control to the normal mode described above It switches to the test mode that speeds up the performance.
In other words, when the vehicle moves at a very small value, that is, at a very low speed, such as when the vehicle is moved by pushing the vehicle body by hand, for example, when the vehicle moves at a constant speed at a very low speed, a plurality of vehicles detected at that time are detected. The optical axis control is quickly performed by averaging the detected tilt angle values by the tilt angle sensor such as an ultrasonic sensor to obtain the tilt angle of the vehicle body.

図4において、車体1内に光軸制御手段2Aを設け、この光軸制御手段2Aに、ヘッドライト3と傾斜角度センサ4を接続すると共に、車体1に取り付けられ、車両の前後方向の加速度を検知する第2の加速度センサとしての前後方向加速度センサ7を接続する。   In FIG. 4, an optical axis control means 2A is provided in the vehicle body 1, and a headlight 3 and an inclination angle sensor 4 are connected to the optical axis control means 2A and attached to the vehicle body 1, and acceleration in the longitudinal direction of the vehicle is measured. A longitudinal acceleration sensor 7 as a second acceleration sensor to be detected is connected.

次に、本実施の形態の動作について、説明する。
いま、車両の移動中に前後方向加速度センサ7により車両の前後方向の加速度が検知されると、その検知出力が光軸制御手段2Aに供給される。また、このとき、傾斜角度センサ4により車体1の車体傾斜角度が検知され、その検知出力が光軸制御手段2Aに供給される。光軸制御手段2Aでは、前後方向加速度センサ7で検知された前後方向の加速度が極小さな値、即ち極低速度で一定な速度で車両が移動した場合は、その時に検知する傾斜角度センサ4による車体傾斜角度検出値を平均処理して車体傾斜角度とし、ヘッドライト3に対する光軸制御を速やかに行う。
Next, the operation of the present embodiment will be described.
Now, when the longitudinal acceleration of the vehicle is detected by the longitudinal acceleration sensor 7 during the movement of the vehicle, the detection output is supplied to the optical axis control means 2A. At this time, the tilt angle sensor 4 detects the tilt angle of the vehicle body 1 and supplies the detected output to the optical axis control means 2A. In the optical axis control means 2A, when the longitudinal acceleration detected by the longitudinal acceleration sensor 7 moves at a very small value, that is, at a very low speed and at a constant speed, the inclination angle sensor 4 detected at that time is used. The vehicle body tilt angle detection value is averaged to obtain the vehicle body tilt angle, and the optical axis control for the headlight 3 is performed quickly.

また、前後方向加速度センサ7を用いて、車両が急速に移動したことを検知した場合には、その時に検知した車体傾斜角度を制御に使用しないものとしてもよい。即ち、車体1に前後方向の加速度が加わった時には何らかの車体1の傾斜が発生するため、前後方向加速度センサ7が車両の前後方向の加速度を検知した時には、車体1が前後に傾いたと判断でき、その時の傾斜角度センサ4による車体傾斜角度検出値が、正常な値ではないと判断できるため、その車体傾斜角度検出値を光軸制御用のデータから取り除くことで、正確な光軸制御ができる。   Further, when it is detected using the longitudinal acceleration sensor 7 that the vehicle has moved rapidly, the vehicle body inclination angle detected at that time may not be used for control. That is, when the longitudinal acceleration is applied to the vehicle body 1, some kind of inclination of the vehicle body 1 occurs. Therefore, when the longitudinal acceleration sensor 7 detects the longitudinal acceleration of the vehicle, it can be determined that the vehicle body 1 is tilted back and forth. Since the vehicle body tilt angle detected value by the tilt angle sensor 4 at that time can be determined to be not a normal value, accurate optical axis control can be performed by removing the vehicle body tilt angle detected value from the data for optical axis control.

なお、本実施の形態でも、低速度での移動中、あるいは、揺動後に検出した傾斜角度検出値を統計的に処理して、検出傾斜角度に揺らぎが多い場合は光軸制御を行わず、検出傾斜角度の揺らぎが少ない場合にのみその検出傾斜角度を、光軸制御用の車体傾斜角度として用い光軸制御を行えば、すばやい応答性を持ちながら、誤動作の無い光軸制御が可能である。
さらに、上下方向/前後方向の両加速度を同時に検出して使用すれば、車体が揺れず車両が移動したことを的確に判断でき、誤動作の無い光軸制御を行うことができる。
Even in this embodiment, the detected tilt angle value is statistically processed during movement at a low speed or after swinging, and the optical axis control is not performed when the detected tilt angle has a large fluctuation, Only when there is little fluctuation in the detected tilt angle, if the detected tilt angle is used as the tilt angle of the vehicle body for the optical axis control and the optical axis control is performed, the optical axis control without malfunction can be performed while having quick response. .
Furthermore, if both accelerations in the vertical direction / front-rear direction are detected and used at the same time, it is possible to accurately determine that the vehicle has moved without shaking the vehicle body, and optical axis control without malfunction can be performed.

このようにして、本実施の形態では、車両が低速度で移動した時には、光軸制御の応答性を早めるように試験モードの光軸制御手段に切り替えるようにすることで、試験モード中は光軸制御を速やかに行うことが可能になる。また、検出傾斜角度の揺らぎが少ない場合にのみその検出傾斜角度を、光軸制御用の車体傾斜角度として用い光軸制御を行うことで、すばやい応答性を持ちながら、誤動作の無い試験モードでの光軸制御が可能となる。   In this way, in the present embodiment, when the vehicle moves at a low speed, the optical axis control means in the test mode is switched so as to accelerate the response of the optical axis control so that the light is transmitted during the test mode. Axis control can be performed quickly. In addition, by performing optical axis control using the detected tilt angle as the vehicle body tilt angle for optical axis control only when the fluctuation of the detected tilt angle is small, the test mode can be operated in a test mode without malfunction while having quick response. Optical axis control is possible.

また、上下方向/前後方向の両加速度を併用することで、車体が揺れず車両が移動したことを的確に判断し、誤動作の無い光軸制御を行うことが可能になる。さらに、前後方向加速度センサを用いて、車両が急速に移動したことを検知して、その時に検知した車体傾斜角度を制御に使用しないようにするので、さらに正確な光軸制御が可能になる。   Further, by using both vertical / front / rear accelerations in combination, it is possible to accurately determine that the vehicle has moved without shaking the vehicle body, and to perform optical axis control without malfunction. Furthermore, since the longitudinal acceleration sensor is used to detect that the vehicle has moved rapidly and the vehicle body tilt angle detected at that time is not used for control, more accurate optical axis control is possible.

実施の形態4.
図5は、この発明の実施の形態4による車両用ヘッドライトの光軸制御装置を示す構成図である。
本実施の形態は、車速センサからの検知信号を微分することで、車両の加速度を検出し、その極低加速度、且つ、極低速度で車両が移動した時には、上述の通常モードの対して光軸制御の応答性を早めた試験モードに光軸制御手段を切り替えるものである。
Embodiment 4 FIG.
FIG. 5 is a block diagram showing an optical axis control device for a vehicle headlight according to Embodiment 4 of the present invention.
In this embodiment, the acceleration of the vehicle is detected by differentiating the detection signal from the vehicle speed sensor, and when the vehicle moves at the extremely low acceleration and the extremely low speed, the light is not emitted from the normal mode described above. The optical axis control means is switched to a test mode in which the responsiveness of the axis control is accelerated.

図5において、車体1内に光軸制御手段2Bを設け、この光軸制御手段2Bに、ヘッドライト3と傾斜角度センサ4を接続すると共に、車体1に取り付けられ、車両の速度を検知する車速センサ8を接続する。   In FIG. 5, an optical axis control means 2B is provided in the vehicle body 1. A head speed 3 and an inclination angle sensor 4 are connected to the optical axis control means 2B, and the vehicle speed is attached to the vehicle body 1 and detects the speed of the vehicle. The sensor 8 is connected.

次に、本実施の形態の動作について、図6および図7を参照して説明する。
いま、車両の移動中に車速センサ8により車両の速度が検知され、その検知信号(車速信号)が光軸制御手段2Bに供給されると、光軸制御手段2Bでは、入力された車速信号を処理、例えば微分して対応する車両の加速度を得る。また、このとき、傾斜角度センサ4により車両の車体傾斜角度が検知され、その検知出力が光軸制御手段2Bに供給される。光軸制御手段2Bでは、車両が極低加速度、且つ、極低速度で移動した時には、ヘッドライト3に対する光軸制御を応答性の早い試験モードに切り替える。
Next, the operation of the present embodiment will be described with reference to FIG. 6 and FIG.
Now, when the vehicle speed is detected by the vehicle speed sensor 8 while the vehicle is moving, and the detection signal (vehicle speed signal) is supplied to the optical axis control means 2B, the optical axis control means 2B receives the input vehicle speed signal. Processing, for example, differentiation to obtain the corresponding vehicle acceleration. At this time, the inclination angle sensor 4 detects the vehicle body inclination angle, and the detection output is supplied to the optical axis control means 2B. In the optical axis control means 2B, when the vehicle moves at an extremely low acceleration and an extremely low speed, the optical axis control for the headlight 3 is switched to a test mode having a quick response.

図6および図7は、車両の安定した所定速度例えば1.5km/h以下の走行状態を判別して光軸制御確認動作に移行する場合を説明するためのもので、図6は、車両発進時の車速センサからの車速信号のパルス変化を示し、図6(a)はその通常発進加速時、図6(b)はその極低速発進時の場合である。また、図7は、このときの走行状態を判別して試験モードの光軸制御確認動作に移行する場合のフローチャートである。   FIG. 6 and FIG. 7 are for explaining a case where the vehicle is moved to the optical axis control confirmation operation after determining a traveling state at a stable predetermined speed of, for example, 1.5 km / h or less. FIG. 6 (a) shows the case of normal start acceleration and FIG. 6 (b) shows the case of extremely low speed start. FIG. 7 is a flowchart in the case of determining the traveling state at this time and shifting to the optical axis control confirmation operation in the test mode.

例えば、1,000m当たり637×4周期を発する車速センサ8で、時速1.5km以下(極低速度)の一定な速度(極低加速度)で車両が移動した時を、当該条件に適合するとすれば、連続した3周期の車速信号において、その連続した3周期の合計が2.82秒以上であり、且つ、個々の信号周期ばらつきが10%以下であることが、判断できればよい。   For example, if the vehicle moves at a constant speed (very low acceleration) of 1.5 km / h (very low speed) with the vehicle speed sensor 8 that emits 637 × 4 cycles per 1,000 m, it is assumed that this condition is met. For example, in a vehicle speed signal of three consecutive cycles, it is only necessary to be able to determine that the total of the three consecutive cycles is 2.82 seconds or more and that the individual signal cycle variation is 10% or less.

いま、傾斜角度センサ4による傾斜角度検出周期を0.1秒とすれば、当該2.82秒間に、28回車体傾斜角度を計測でき、この2.82秒間に移動する距離は、1,177mmであるから、42mmごとに傾斜角度センサ4は車体傾斜角度を検出できる。
このように、多数の傾斜角度検出路面から得られる傾斜角度センサ4からの傾斜角度検出値を用いれば、路面の凸凹によって存在する路面の傾斜による検出誤差を軽減することができる。
図6において、図6(a)におけるD1は、車両の移動距離を表し、この移動距離D1と車速信号の周期との関係は、次式で表される。
Now, assuming that the inclination angle detection period by the inclination angle sensor 4 is 0.1 second, the vehicle body inclination angle can be measured 28 times in 2.82 seconds, and the distance moved in this 2.82 seconds is 1,177 mm. Therefore, the tilt angle sensor 4 can detect the vehicle body tilt angle every 42 mm.
As described above, by using the detected inclination angle value from the inclination angle sensor 4 obtained from a large number of inclination angle detection road surfaces, it is possible to reduce detection errors due to road surface inclinations caused by road surface unevenness.
In FIG. 6, D1 in FIG. 6A represents the moving distance of the vehicle, and the relationship between the moving distance D1 and the cycle of the vehicle speed signal is expressed by the following equation.

D1=1,000m÷637×4/周期=392mm/周期 (1)     D1 = 1,000 m ÷ 637 × 4 / cycle = 392 mm / cycle (1)

また、図6(b)におけるD2は、2.82秒間に車両が移動する距離1,177mmを表し、a、b、cは、1,177mmの間における3周期の計測時間を表し、下記の式(2)〜(4)を全て満たせば、3周期の車速信号のばらつきが10%以下となる。また、車速1.5km/h以下の時の車両が移動する距離1,177mmに対する計測時間a、b、cの合計は、2.82秒以上である。   In addition, D2 in FIG. 6 (b) represents a distance of 1,177 mm that the vehicle moves in 2.82 seconds, a, b, and c represent three periods of measurement time between 1,177 mm, and If all the equations (2) to (4) are satisfied, the variation in the vehicle speed signal in three cycles will be 10% or less. In addition, the total of the measurement times a, b, and c for the distance of 1,177 mm traveled by the vehicle when the vehicle speed is 1.5 km / h or less is 2.82 seconds or more.

2.7≦(a+b+c)/a≦3.3 (2)
2.7≦(a+b+c)/b≦3.3 (3)
2.7≦(a+b+c)/c≦3.3 (4)
2.7 ≦ (a + b + c) /a≦3.3 (2)
2.7 ≦ (a + b + c) /b≦3.3 (3)
2.7 ≦ (a + b + c) /c≦3.3 (4)

次に、図7を参照して、上述の如く連続した3周期の合計の計測時間が2.82秒以上であり、且つ、個々の信号周期ばらつきが10%以下である場合の走行状態を判別して試験モードの光軸制御確認動作に移行する場合の動作について説明する。
まず、ステップST31において、通常の光軸制御動作を開始し、ステップST32において、3周期の車速信号のパルス周期のばらつきが10%以下か否かを判別し、10%以下でなければステップST31に戻って通常の光軸制御動作を繰り返し、10%以下になったら、ステップST33において、車速が1.5km/h以下か否かを判別し、1.5km/h以下でなければステップST31に戻って通常の光軸制御動作を繰り返し、1.5km/h以下になったら、ステップST34において、試験モードである光軸制御動作の確認動作を行い、ステップST31に戻って、上述の動作を繰り返す。
Next, referring to FIG. 7, as described above, the traveling state is determined when the total measurement time of the three consecutive cycles is 2.82 seconds or more and the individual signal cycle variation is 10% or less. The operation when shifting to the test mode optical axis control confirmation operation will be described.
First, in step ST31, a normal optical axis control operation is started. In step ST32, it is determined whether or not the variation in the pulse period of the three-cycle vehicle speed signal is 10% or less. Returning and repeating the normal optical axis control operation, when 10% or less, in step ST33, it is determined whether or not the vehicle speed is 1.5 km / h or less, and if it is not 1.5 km / h or less, the process returns to step ST31. Then, the normal optical axis control operation is repeated, and when it becomes 1.5 km / h or less, the confirmation operation of the optical axis control operation as the test mode is performed in step ST34, and the process returns to step ST31 to repeat the above operation.

なお、加速度を車速センサ8からの車速信号の周期で判断する手法においては、低速度でも誤差の少ない加速度を得るために,低速度時に数多くの信号が入力されることが望ましい。
例えば、上述の1,000m当たり637×4周期のセンサより、分解能の細かい1,000m当たり637×25周期の車速センサの方が好ましい。
また、傾斜角度検出値が多いほど正確な車体傾斜角度になるため、長い距離(時間)を移動した時の傾斜角度検出値を使用することも、正確な光軸制御を行うためには好ましい。
In the method of determining acceleration based on the cycle of the vehicle speed signal from the vehicle speed sensor 8, it is desirable to input a large number of signals at low speed in order to obtain acceleration with little error even at low speed.
For example, a vehicle speed sensor having a fine resolution of 637 × 25 cycles per 1,000 m is preferable to the above-described sensor having 637 × 4 cycles per 1,000 m.
In addition, since the vehicle body inclination angle becomes more accurate as the inclination angle detection value increases, it is also preferable to use the inclination angle detection value when moving a long distance (time) for accurate optical axis control.

このようにして、本実施の形態では、車速センサからの信号を微分して車両の加速度を検出し、その極低加速度、且つ、極低速度で車両が移動した時には、光軸制御の応答性を早めた試験モードに光軸制御手段を切り替えるので、車両の前後方向の加速度センサを新たに設ける必要はなく、制御装置を簡素化、低廉化できる。   In this way, in the present embodiment, the signal from the vehicle speed sensor is differentiated to detect the acceleration of the vehicle, and when the vehicle moves at the extremely low acceleration and extremely low speed, the response of the optical axis control Since the optical axis control means is switched to the test mode in which the speed is increased, there is no need to newly provide an acceleration sensor in the longitudinal direction of the vehicle, and the control device can be simplified and reduced in price.

この発明の実施の形態1による車両用ヘッドライトの光軸制御装置を示す構成図である。It is a block diagram which shows the optical axis control apparatus of the vehicle headlight by Embodiment 1 of this invention. この発明の実施の形態1による車両用ヘッドライトの光軸制御装置の動作を示すタイミングチャートである。It is a timing chart which shows operation | movement of the optical-axis control apparatus of the vehicle headlight by Embodiment 1 of this invention. この発明の実施の形態2による車両用ヘッドライトの光軸制御装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the optical-axis control apparatus of the vehicle headlight by Embodiment 2 of this invention. この発明の実施の形態3による車両用ヘッドライトの光軸制御装置を示す構成図である。It is a block diagram which shows the optical-axis control apparatus of the vehicle headlight by Embodiment 3 of this invention. この発明の実施の形態4による車両用ヘッドライトの光軸制御装置を示す構成図である。It is a block diagram which shows the optical axis control apparatus of the vehicle headlight by Embodiment 4 of this invention. この発明の実施の形態4による車両用ヘッドライトの光軸制御装置の動作を示すタイミングチャートである。It is a timing chart which shows operation | movement of the optical axis control apparatus of the vehicle headlight by Embodiment 4 of this invention. この発明の実施の形態4による車両用ヘッドライトの光軸制御装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the optical axis control apparatus of the vehicle headlight by Embodiment 4 of this invention.

符号の説明Explanation of symbols

1 車体、2,2A,2B 光軸制御手段、3 ヘッドライト、4 傾斜角度センサ、5,6 上下方向加速度センサ、7 前後方向加速度センサ、8 車速センサ。   DESCRIPTION OF SYMBOLS 1 Car body, 2, 2A, 2B Optical axis control means, 3 Headlight, 4 Inclination angle sensor, 5, 6 Vertical direction acceleration sensor, 7 Longitudinal direction acceleration sensor, 8 Vehicle speed sensor.

Claims (7)

車両の車体傾斜角度を検知する傾斜角度センサと、
該傾斜角度センサの検出出力に基づいて光軸制御を行う光軸制御手段とを備え、
試験モード時は通常モード時に対して光軸制御の応答性を早めるように上記光軸制御手段を切り替えることを特徴とする車両用傾斜角度調整装置。
An inclination angle sensor for detecting a vehicle body inclination angle;
Optical axis control means for performing optical axis control based on the detection output of the tilt angle sensor,
An inclination angle adjusting device for a vehicle, characterized in that the optical axis control means is switched in the test mode so as to accelerate the response of the optical axis control with respect to the normal mode.
車両の上下方向の加速度を検知する第1の加速度センサを備え、停車中に上記第1の加速度センサにより上記車両の上下方向の加速度を検知し、その加速度を検知する前と後で上記傾斜角度センサによる傾斜角度検出値が変化している場合は、この変化した傾斜角度検出値に見合った光軸制御を行うことを特徴とする請求項1記載の車両用傾斜角度調整装置。   A first acceleration sensor for detecting the vertical acceleration of the vehicle; the vertical acceleration of the vehicle is detected by the first acceleration sensor while the vehicle is stopped; and the inclination angle is detected before and after the acceleration is detected. 2. The vehicle tilt angle adjusting device according to claim 1, wherein when the detected tilt angle value by the sensor is changed, optical axis control corresponding to the changed tilt angle detected value is performed. 第1の加速度センサにより停車中に車両の特定な振動を検知した時には、光軸制御の応答性を早めることを特徴とする請求項2記載の車両用傾斜角度調整装置。   3. The vehicle tilt angle adjusting device according to claim 2, wherein the response of the optical axis control is accelerated when a specific vibration of the vehicle is detected while the vehicle is stopped by the first acceleration sensor. 第1の加速度センサは、車両の車体の前部と後部にそれぞれ設けられた複数の加速度センサからなることを特徴とする請求項2または請求項3記載の車両用傾斜角度調整装置。   4. The vehicle inclination angle adjusting device according to claim 2, wherein the first acceleration sensor includes a plurality of acceleration sensors respectively provided at a front portion and a rear portion of a vehicle body of the vehicle. 車両の前後方向の加速度を検知する第2の加速度センサを備え、この第2の加速度センサにより上記車両の前後方向の大きな加速度を検知しないで、当該車両が低速度で移動した時には、光軸制御の応答性を早めることを特徴とする請求項1から請求項4のうちのいずれか1項記載の車両用傾斜角度調整装置。   A second acceleration sensor for detecting the acceleration in the longitudinal direction of the vehicle is provided. When the vehicle moves at a low speed without detecting a large acceleration in the longitudinal direction of the vehicle by the second acceleration sensor, optical axis control is performed. The vehicle tilt angle adjusting device according to any one of claims 1 to 4, wherein the responsiveness of the vehicle is accelerated. 車両の速度を検出する車速センサを備え、この車速センサの検出出力を上記光軸制御手段で処理して上記車両の加速度を検出し、この車両が極低加速度、且つ、極低速度で移動した時には、光軸制御の応答性を早めることを特徴とする請求項1記載の車両用傾斜角度調整装置。   A vehicle speed sensor for detecting the speed of the vehicle is provided, the detection output of the vehicle speed sensor is processed by the optical axis control means to detect the acceleration of the vehicle, and the vehicle has moved at a very low acceleration and a very low speed. 2. The vehicle tilt angle adjusting device according to claim 1, wherein the responsiveness of the optical axis control is accelerated. 傾斜角度センサとして、超音波センサを用いることを特徴とする請求項1から請求項6のうちのいずれか1項記載の車両用傾斜角度調整装置。   The vehicle inclination angle adjusting device according to any one of claims 1 to 6, wherein an ultrasonic sensor is used as the inclination angle sensor.
JP2003312948A 2003-09-04 2003-09-04 Vehicle tilt angle adjusting device and optical axis adjusting method Expired - Lifetime JP4361332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003312948A JP4361332B2 (en) 2003-09-04 2003-09-04 Vehicle tilt angle adjusting device and optical axis adjusting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003312948A JP4361332B2 (en) 2003-09-04 2003-09-04 Vehicle tilt angle adjusting device and optical axis adjusting method

Publications (2)

Publication Number Publication Date
JP2005081867A true JP2005081867A (en) 2005-03-31
JP4361332B2 JP4361332B2 (en) 2009-11-11

Family

ID=34414056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003312948A Expired - Lifetime JP4361332B2 (en) 2003-09-04 2003-09-04 Vehicle tilt angle adjusting device and optical axis adjusting method

Country Status (1)

Country Link
JP (1) JP4361332B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011116201A (en) * 2009-12-02 2011-06-16 Stanley Electric Co Ltd Optical axis adjusting device of headlamp
JP2012106719A (en) * 2010-10-26 2012-06-07 Koito Mfg Co Ltd Vehicle lamp controller, vehicle lamp system, and vehicle lamp control method
JP2012126232A (en) * 2010-12-15 2012-07-05 Koito Mfg Co Ltd Vehicle lamp control apparatus
JP2012240512A (en) * 2011-05-18 2012-12-10 Koito Mfg Co Ltd Control apparatus for vehicle lamp and vehicle lamp system
JP2013071477A (en) * 2011-09-26 2013-04-22 Koito Mfg Co Ltd Vehicle lamp control apparatus
JP2013241029A (en) * 2012-05-17 2013-12-05 Koito Mfg Co Ltd Control device for vehicular lamp and vehicular lamp system
WO2013190599A1 (en) * 2012-06-21 2013-12-27 三菱電機株式会社 Optical axis control unit for headlight, optical axis control system for headlight, and testing method
JP2015091701A (en) * 2015-01-14 2015-05-14 株式会社小糸製作所 Control device for vehicle lamp, and vehicle lamp system
JP2015187001A (en) * 2010-10-26 2015-10-29 株式会社小糸製作所 Vehicular lamp fitting control device and vehicular lamp fitting system
JP2016182958A (en) * 2016-06-24 2016-10-20 株式会社小糸製作所 Control device for vehicular lighting appliance
USRE49609E1 (en) 2010-10-26 2023-08-15 Koito Manufacturing Co., Ltd. Vehicle lamp controller, vehicle lamp system, and vehicle lamp control method
JP7454412B2 (en) 2020-03-05 2024-03-22 株式会社小糸製作所 Vehicle lighting control device and vehicle lighting system

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011116201A (en) * 2009-12-02 2011-06-16 Stanley Electric Co Ltd Optical axis adjusting device of headlamp
JP2019172260A (en) * 2010-10-26 2019-10-10 株式会社小糸製作所 Method for calculating vehicle attitude angle
JP2012106719A (en) * 2010-10-26 2012-06-07 Koito Mfg Co Ltd Vehicle lamp controller, vehicle lamp system, and vehicle lamp control method
USRE49776E1 (en) 2010-10-26 2024-01-02 Koito Manufacturing Co., Ltd. Vehicle lamp controller, vehicle lamp system, and vehicle lamp control method
USRE49609E1 (en) 2010-10-26 2023-08-15 Koito Manufacturing Co., Ltd. Vehicle lamp controller, vehicle lamp system, and vehicle lamp control method
JP7308334B2 (en) 2010-10-26 2023-07-13 株式会社小糸製作所 Control device for vehicle lamp and method for calculating vehicle attitude angle information
JP2022113788A (en) * 2010-10-26 2022-08-04 株式会社小糸製作所 Control device of vehicle lamp
JP2015187001A (en) * 2010-10-26 2015-10-29 株式会社小糸製作所 Vehicular lamp fitting control device and vehicular lamp fitting system
JP2022107780A (en) * 2010-10-26 2022-07-22 株式会社小糸製作所 Control device of vehicle lamp
JP2012126232A (en) * 2010-12-15 2012-07-05 Koito Mfg Co Ltd Vehicle lamp control apparatus
JP2012240512A (en) * 2011-05-18 2012-12-10 Koito Mfg Co Ltd Control apparatus for vehicle lamp and vehicle lamp system
US9238431B2 (en) 2011-05-18 2016-01-19 Koito Manufacturing Co., Ltd. Control apparatus for vehicle lamp and vehicle lamp system
JP2013071477A (en) * 2011-09-26 2013-04-22 Koito Mfg Co Ltd Vehicle lamp control apparatus
JP2013241029A (en) * 2012-05-17 2013-12-05 Koito Mfg Co Ltd Control device for vehicular lamp and vehicular lamp system
JP5638168B2 (en) * 2012-06-21 2014-12-10 三菱電機株式会社 Headlight optical axis control device, headlight optical axis control system, and test method
WO2013190599A1 (en) * 2012-06-21 2013-12-27 三菱電機株式会社 Optical axis control unit for headlight, optical axis control system for headlight, and testing method
JP2015091701A (en) * 2015-01-14 2015-05-14 株式会社小糸製作所 Control device for vehicle lamp, and vehicle lamp system
JP2016182958A (en) * 2016-06-24 2016-10-20 株式会社小糸製作所 Control device for vehicular lighting appliance
JP7454412B2 (en) 2020-03-05 2024-03-22 株式会社小糸製作所 Vehicle lighting control device and vehicle lighting system

Also Published As

Publication number Publication date
JP4361332B2 (en) 2009-11-11

Similar Documents

Publication Publication Date Title
JP4361332B2 (en) Vehicle tilt angle adjusting device and optical axis adjusting method
US8744680B2 (en) Method for determining a movement of a vehicle body
US6408247B1 (en) Obstacle detecting system
US6302553B1 (en) Radiating direction control unit of lighting device for vehicle use
JPH09145737A (en) Collision-preventing device for vehicle
US20070027599A1 (en) Headrest apparatus for vehicle
JPH11105620A (en) Optical axis adjustment device for head lamp for vehicle
KR20020059636A (en) Distributed electronic acceleration sensing for crash severity recognition
JP4184159B2 (en) Vehicle headlight optical axis control device
JP4449443B2 (en) LED lamp device with radar function
US9421903B2 (en) Controlling exterior vehicle lights
KR19990036787A (en) A device for adjusting the width of the headlights of a vehicle
JP2000121730A (en) Obstacle detecting device for vehicle
JP2004138605A (en) Method and apparatus for deciding float angle of vehicle
JP2005140749A (en) Curve-estimating apparatus and travel control apparatus using the same
JP4382448B2 (en) Method and apparatus for determining offset value of longitudinal acceleration sensor
US8504296B2 (en) Method for determining an item of travel direction information for a vehicle, and sensor device for a vehicle
JPH07172208A (en) Speed controller for automobile
JP2000131433A (en) Body detecting device of vehicle
JP2006290005A (en) Headlight optical axis control device for vehicle
CN111344534A (en) Detecting misalignment
JP2000009842A (en) Measuring method for relative speed in transverse direction of preceding vehicle
US20090063001A1 (en) Brake force control apparatus
KR100769525B1 (en) vehicle stability control system and method for the same
JP5638168B2 (en) Headlight optical axis control device, headlight optical axis control system, and test method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060322

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071018

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090804

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090812

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4361332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120821

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130821

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250