JP2005081487A - High polymer actuator - Google Patents

High polymer actuator Download PDF

Info

Publication number
JP2005081487A
JP2005081487A JP2003315810A JP2003315810A JP2005081487A JP 2005081487 A JP2005081487 A JP 2005081487A JP 2003315810 A JP2003315810 A JP 2003315810A JP 2003315810 A JP2003315810 A JP 2003315810A JP 2005081487 A JP2005081487 A JP 2005081487A
Authority
JP
Japan
Prior art keywords
axis
actuator element
actuator
conductive polymer
members
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003315810A
Other languages
Japanese (ja)
Inventor
Masanori Watanabe
正憲 渡邉
Hajime Kajiwara
肇 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003315810A priority Critical patent/JP2005081487A/en
Publication of JP2005081487A publication Critical patent/JP2005081487A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)
  • External Artificial Organs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high polymer actuator, generating output and stroke of enough magnitude both in the extending direction and in the contracting direction. <P>SOLUTION: An actuator element 14 formed of conductive high polymer material extended and contracted by application of voltage is wound round the outer periphery of two plate springs 26, both end parts of which are pivoted on a first casing 21 and a second casing 22 relatively moved in the direction of an axis L by hinges 27, the middle part thereof being curved in the direction of separating from the axis L. The plate springs 26 are deformed in the direction of approaching the axis L by contraction of the actuator element 14 to separate the first and second casings 21, 22 from each other, and the plate springs 26 are deformed in the direction of separating from the axis L by resilient force of the plate springs 16 due to extension of the actuator element 14 to make the first and second casings 21, 22 approach each other. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電圧を加えることで伸縮する導電性高分子材料を用いた高分子アクチュエータに関する。   The present invention relates to a polymer actuator using a conductive polymer material that expands and contracts when a voltage is applied.

かかる高分子アクチュエータは、下記特許文献1により公知である。この特許文献1の図7の実施例に示されたものは、コイルスプリングの外周を電解質部を挟んで導電性高分子材料で覆って導電性高分子チューブを構成し、この導電性高分子チューブの導電性高分子材料および電解質部間に電圧を加えることで、導電性高分子チューブをコイルスプリングの軸線に沿う方向に伸縮させて高分子アクチュエータとしての機能を発揮させるようになっている。
特開2000−133854号公報
Such a polymer actuator is known from Patent Document 1 below. The example shown in FIG. 7 of this Patent Document 1 is to form a conductive polymer tube by covering the outer periphery of a coil spring with a conductive polymer material with an electrolyte portion interposed therebetween, and this conductive polymer tube. By applying a voltage between the conductive polymer material and the electrolyte part, the conductive polymer tube expands and contracts in the direction along the axis of the coil spring to exhibit the function as a polymer actuator.
JP 2000-133854 A

ところで、導電性高分子材料の伸縮率は15%程度に過ぎず、高分子アクチュエータの出力を往復動として取り出す場合に充分なストロークが得られない問題がある。また導電性高分子チューブは収縮時に引張荷重を受け、伸長時に圧縮荷重を受けることになるが、細長い導電性高分子チューブは大きな圧縮荷重を支持することができずに座屈してしまう問題がある。   By the way, the expansion / contraction rate of the conductive polymer material is only about 15%, and there is a problem that a sufficient stroke cannot be obtained when the output of the polymer actuator is taken out as a reciprocating motion. In addition, the conductive polymer tube receives a tensile load at the time of contraction and a compressive load at the time of expansion, but the elongated conductive polymer tube has a problem of buckling because it cannot support a large compressive load. .

本発明は前述の事情に鑑みてなされたもので、伸長方向および収縮方向の両方に充分な大きさの出力およびストロークを発生することが可能な高分子アクチュエータを提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a polymer actuator capable of generating a sufficiently large output and stroke in both the extension direction and the contraction direction.

上記目的を達成するために、請求項1に記載された発明によれば、軸線方向に相対移動可能な第1出力部材および第2出力部材と、両端部が軸線の近傍で第1、第2出力部材に接続され、中間部が軸線から離反する方向に湾曲するように弾発力で付勢された複数の駆動力変換部材と、電圧を加えることで伸縮する導電性高分子材料で構成されて複数の駆動力変換部材の周囲に巻き付けられたアクチュエータエレメントとを備え、アクチュエータエレメントの収縮により複数の駆動力変換部材を軸線に接近する方向に変形させて第1、第2出力部材を相互に離反させるとともに、アクチュエータエレメントの伸長により前記弾発力で複数の駆動力変換部材を軸線から離反する方向に変形させて第1、第2出力部材を相互に接近させることを特徴とする高分子アクチュエータが提案される。   In order to achieve the above object, according to the first aspect of the present invention, the first output member and the second output member that are relatively movable in the axial direction, and the first and second output members whose end portions are close to the axial line. It is composed of a plurality of driving force conversion members connected to the output member and energized by a resilient force so that the intermediate portion is curved away from the axis, and a conductive polymer material that expands and contracts when a voltage is applied. An actuator element wound around the plurality of driving force conversion members, and the first and second output members are mutually deformed by deforming the plurality of driving force conversion members in a direction approaching the axis by contraction of the actuator element. The first output member and the second output member are moved closer to each other by causing the plurality of driving force conversion members to be deformed in a direction away from the axis by the elastic force by extending the actuator element. Polymer actuator that is proposed.

また請求項2に記載された発明によれば、請求項1の構成に加えて、駆動力変換部材が板ばねで構成され、自己の弾性で前記弾発力を発生することを特徴とする高分子アクチュエータが提案される。   According to the invention described in claim 2, in addition to the structure of claim 1, the driving force conversion member is constituted by a leaf spring and generates the elastic force by its own elasticity. A molecular actuator is proposed.

尚、実施例の第1、第2ケーシング21,22は本発明の第1、第2出力部材に対応し、実施例の板ばね26およびリンク部材34は本発明の駆動力変換部材に対応する。   The first and second casings 21 and 22 of the embodiment correspond to the first and second output members of the present invention, and the leaf spring 26 and the link member 34 of the embodiment correspond to the driving force conversion member of the present invention. .

請求項1の構成によれば、中間部が軸線から離反する方向に湾曲するように弾発力で付勢された複数の駆動力変換部材の両端部を第1、第2出力部材に接続し、電圧を加えることで伸縮する導電性高分子材料で構成されたアクチュエータエレメントを複数の駆動力変換部材の周囲に巻き付けたので、アクチュエータエレメントを収縮させると複数の駆動力変換部材が軸線に接近する方向に変形して第1、第2出力部材を相互に離反させることができ、またアクチュエータエレメントを伸長させると前記弾発力で複数の駆動力変換部材が軸線から離反する方向に変形して第1、第2出力部材を相互に接近させることができる。   According to the configuration of the first aspect, the both ends of the plurality of driving force conversion members biased by the elastic force so that the intermediate portion curves in a direction away from the axis are connected to the first and second output members. Since the actuator element made of a conductive polymer material that expands and contracts when voltage is applied is wound around the plurality of driving force conversion members, the plurality of driving force conversion members approach the axis when the actuator element is contracted The first and second output members can be separated from each other by deforming in the direction, and when the actuator element is extended, the plurality of driving force conversion members are deformed in the direction away from the axis by the elastic force. 1. The 2nd output member can be made to approach mutually.

アクチュエータエレメントと第1、第2出力部材との間に駆動力変換部材を介在させたことで、アクチュエータエレメントの伸縮量を拡大して第1、第2出力部材に大きなストロークを与えることができ、しかも複数の駆動力変換部材の外周に充分に長いアクチュエータエレメントを巻き付けたので、アクチュエータエレメントの収縮力を駆動力変換部材に効果的に伝達して大きな出力を発生することができる。更に、アクチュエータエレメントの伸長時に駆動力変換部材を前記弾発力で付勢するので、アクチュエータエレメントの座屈を防止しながら第1、第2出力部材を接近させることができる。   By interposing the driving force converting member between the actuator element and the first and second output members, the expansion and contraction amount of the actuator element can be expanded and a large stroke can be given to the first and second output members, In addition, since a sufficiently long actuator element is wound around the outer periphery of the plurality of driving force conversion members, the contraction force of the actuator element can be effectively transmitted to the driving force conversion member to generate a large output. Furthermore, since the driving force conversion member is biased by the elastic force when the actuator element is extended, the first and second output members can be brought close to each other while preventing the actuator element from buckling.

請求項2の構成によれば、板ばね製の駆動力変換部材が自己の弾性で前記弾発力を発生するので、特別の弾発部材を不要にして部品点数を削減することができる。   According to the configuration of the second aspect, since the driving force converting member made of a leaf spring generates the elastic force by its own elasticity, a special elastic member is not required and the number of parts can be reduced.

以下、本発明の実施の形態を、添付の図面に示した本発明の実施例に基づいて説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on examples of the present invention shown in the accompanying drawings.

図1〜図6は本発明の第1実施例を示すもので、図1は導電性高分子チューブの構造を示す図、図2はアクチュエータエレメントの全体図、図3は図2の3−3線拡大断面図、図4は高分子アクチュエータの鉛直断面図、図5は高分子アクチュエータの水平断面図、図6は図4に対応する作用説明図である。   1 to 6 show a first embodiment of the present invention. FIG. 1 is a view showing a structure of a conductive polymer tube, FIG. 2 is an overall view of an actuator element, and FIG. 4 is an enlarged sectional view, FIG. 4 is a vertical sectional view of the polymer actuator, FIG. 5 is a horizontal sectional view of the polymer actuator, and FIG. 6 is an operation explanatory view corresponding to FIG.

先ず、高分子アクチュエータに使用されるアクチュエータエレメントの構造を図1〜図3に基づいて説明する。   First, the structure of an actuator element used for a polymer actuator will be described with reference to FIGS.

高分子アクチュエータAに使用する導電性高分子材料は、例えばポリピロール、ポリアニリン、ポリチオフェンおよびこれらの誘導体のうちの一種、あるいは複数種の混合物で構成される。導電性高分子材料を電解液に浸し、導電性高分子材料および電解液にそれぞれプラス電位およびマイナス電位を与えると、導電性高分子材料に電解液中のマイナスイオンが吸収されて膨張し、逆に導電性高分子材料および電解液にそれぞれマイナス電位およびプラス電位を与えると、導電性高分子材料から電解液中のマイナスイオンが放出されて収縮する性質がある。このとき、僅かに1V〜3Vの電圧を加えるだけで導電性高分子材料は15%程度の伸縮率と22MPa程度の出力を発生することができ、かつ0.2秒程度の応答時間で伸長状態および収縮状態を切り替えることができる。   The conductive polymer material used for the polymer actuator A is composed of, for example, one or a mixture of polypyrrole, polyaniline, polythiophene and derivatives thereof. When a conductive polymer material is immersed in an electrolytic solution and a positive potential and a negative potential are applied to the conductive polymer material and the electrolytic solution, respectively, negative ions in the electrolytic solution are absorbed and expanded by the conductive polymer material. When a negative potential and a positive potential are applied to the conductive polymer material and the electrolytic solution, negative ions in the electrolytic solution are released from the conductive polymer material and contract. At this time, the conductive polymer material can generate an expansion ratio of about 15% and an output of about 22 MPa by applying a voltage of 1 V to 3 V, and it can be stretched with a response time of about 0.2 seconds. And the contraction state can be switched.

図1に示すように、細い金属線をコイル状に巻いたコイル部材11を導電性高分子材料12で覆うことにより導電性高分子チューブ13を構成する。導電性高分子材料12をコイル部材11と一体化することで、その径方向の伸縮を抑制して軸方向の伸縮を促進することができる。1本の導電性高分子チューブ13が発生する出力には限界があるため、それを複数本束ねてアクチュエータエレメント14を構成する。   As shown in FIG. 1, a conductive polymer tube 13 is formed by covering a coil member 11 obtained by winding a thin metal wire in a coil shape with a conductive polymer material 12. By integrating the conductive polymer material 12 with the coil member 11, the expansion and contraction in the axial direction can be promoted by suppressing the expansion and contraction in the radial direction. Since there is a limit to the output generated by one conductive polymer tube 13, a plurality of them are bundled to constitute the actuator element 14.

図2および図3に示すように、本実施例のアクチュエータエレメント14は6本の導電性高分子チューブ13…を束ね、その両端部で一体に締結したものである。即ち、アクチュエータエレメント14の端部において、金属等の硬質材料で形成した円柱状の芯材15の外周にゴム等の緩衝材16を被せ、その外周に複数本(実施例では6本)の導電性高分子チューブ13…の端部を束ねた後、それらの外周にゴム等の緩衝材17を介して金属で形成した円筒状の締結リング18を嵌合させる。そして締結リング18を隣接する導電性高分子チューブ13…の間の6カ所で、図3(B)の状態から図3(A)の状態に径方向内側にかしめることにより、芯材15と締結リング18との間に6本の導電性高分子チューブ13…を締結する。   As shown in FIGS. 2 and 3, the actuator element 14 of the present embodiment is formed by bundling six conductive polymer tubes 13 and integrally fastening them at both ends thereof. That is, at the end of the actuator element 14, the outer periphery of a cylindrical core material 15 formed of a hard material such as metal is covered with a cushioning material 16 such as rubber, and a plurality of (in the embodiment, six) conductive materials are provided on the outer periphery. After bundling the ends of the conductive polymer tubes 13..., A cylindrical fastening ring 18 formed of metal is fitted to the outer periphery of the ends through a buffer material 17 such as rubber. And by crimping the fastening ring 18 radially inward from the state of FIG. 3 (B) to the state of FIG. 3 (A) at six locations between the adjacent conductive polymer tubes 13. Six conductive polymer tubes 13 are fastened between the fastening ring 18.

また一方の締結リング18をかしめ加工する際に、その内側に延びる1本の電極線20を何れか1本の導電性高分子チューブ13に電気的に接続しておく。6本の導電性高分子チューブ13…は相互に接触しているため、1本の電極線20を介して6本の導電性高分子チューブ13に電圧を印加することができる。   Further, when the one fastening ring 18 is caulked, one electrode wire 20 extending inward is electrically connected to any one of the conductive polymer tubes 13. Since the six conductive polymer tubes 13 are in contact with each other, a voltage can be applied to the six conductive polymer tubes 13 via one electrode wire 20.

次に、図4および図5に基づいて前記アクチュエータエレメント14を用いた高分子アクチュエータAの構造を説明する。   Next, the structure of the polymer actuator A using the actuator element 14 will be described with reference to FIGS.

軸線L上に配置された有底円筒状の第1ケーシング21および第2ケーシング22が摺動自在に嵌合しており、第2ケーシング22の内周面に摺動自在に支持された円筒部材23の両端部と第1、第2ケーシング21,22とをジャバラ状のブーツ24,24で接続することで、電解液が充填された電解液室25が区画される。弧状に湾曲させた矩形状の板ばね26を2枚組み合わせ、それらの両端部をヒンジ27…を介して第1、第2ケーシング21,22の端板21a,22aの内面に枢支する。このとき、板ばね26,26の中間部は軸線Lを挟んで相互に離反する方向に湾曲する。   A cylindrical member having a bottomed cylindrical first casing 21 and a second casing 22 arranged on the axis L are slidably fitted, and are slidably supported on the inner peripheral surface of the second casing 22. 23 is connected to the first and second casings 21 and 22 by bellows-like boots 24 and 24, so that the electrolyte chamber 25 filled with the electrolyte is defined. Two rectangular leaf springs 26 that are curved in an arc are combined, and both end portions thereof are pivotally supported on the inner surfaces of the end plates 21a and 22a of the first and second casings 21 and 22 via hinges 27. At this time, the intermediate portions of the leaf springs 26 and 26 are curved in directions away from each other across the axis L.

アクチュエータエレメント14の両端部は円筒部材23の両端部に固定され、アクチュエータエレメント14の中間部が2枚の板ばね26,26の外周にらせん状に巻き付けられる。このとき、アクチュエータエレメント14が軸線L方向に滑らないように、板ばね26,26の側縁にアクチュエータエレメント14が係合する切欠が形成される。そして電解液室25の内部に延びる電極棒28と、アクチュエータエレメント14から延びる電極線20とが、第1ケーシング21を通してバッテリに接続される。   Both end portions of the actuator element 14 are fixed to both end portions of the cylindrical member 23, and an intermediate portion of the actuator element 14 is spirally wound around the outer periphery of the two leaf springs 26, 26. At this time, a notch for engaging the actuator element 14 is formed on the side edges of the leaf springs 26 and 26 so that the actuator element 14 does not slide in the direction of the axis L. The electrode rod 28 extending into the electrolyte chamber 25 and the electrode wire 20 extending from the actuator element 14 are connected to the battery through the first casing 21.

しかして、アクチュエータエレメント14に電極線20を介してバッテリのマイナス極を接続し、電解液に電極棒28を介してバッテリのプラス極を接続すると、導電性高分子チューブ13…から電解液中にマイナスイオンが放出されることで該導電性高分子チューブ13…、即ちアクチュエータエレメント14…が収縮する。すると、図6に示すように、アクチュエータエレメント14が収縮して相互に離反する方向に湾曲していた2枚の板ばね26,26が相互に接近する方向に変形し、その湾極度が減少して直線に近づくことで板ばね26,26の両端間の距離が増加し、第1、第2ケーシング21,22が軸線L方向に伸長するように駆動される。このとき、電解液室25の一部を区画するブーツ24,24が軸線L方向に引き延ばされる同時に軸線Lに接近する方向に撓むことで、電解液室25の容積は一定に保持される。   Thus, when the negative electrode of the battery is connected to the actuator element 14 via the electrode wire 20 and the positive electrode of the battery is connected to the electrolytic solution via the electrode rod 28, the conductive polymer tube 13 ... enters the electrolytic solution. When the negative ions are released, the conductive polymer tubes 13, that is, the actuator elements 14 are contracted. Then, as shown in FIG. 6, the two leaf springs 26, 26, which are bent in the direction in which the actuator element 14 contracts and separates from each other, are deformed in a direction approaching each other, and the bay extreme is reduced. By approaching the straight line, the distance between both ends of the leaf springs 26 and 26 increases, and the first and second casings 21 and 22 are driven to extend in the axis L direction. At this time, the boots 24 and 24 that define a part of the electrolyte chamber 25 are stretched in the direction of the axis L, and at the same time bend in the direction of approaching the axis L, so that the volume of the electrolyte chamber 25 is kept constant. .

逆に、アクチュエータエレメント14に電極線20を介してバッテリのプラス極を接続し、電解液に電極棒28を介してバッテリのマイナス極を接続すると、電解液中のマイナスイオンが導電性高分子チューブ13…に吸収されることでアクチュエータエレメント14…が伸長する。アクチュエータエレメント14が伸長すると2枚の板ばね26,26が自己の弾性で元の湾曲形状に復帰することで、板ばね26,26の両端間の距離が減少して第1、第2ケーシング21,22が軸線L方向に収縮するように駆動される。このとき、電解液室25の一部を区画するブーツ24,24が軸線L方向に収縮すると同時に軸線Lから離反する方向に撓むことで、電解液室25の容積は一定に保持される。   On the contrary, when the positive electrode of the battery is connected to the actuator element 14 via the electrode wire 20 and the negative electrode of the battery is connected to the electrolyte solution via the electrode rod 28, the negative ions in the electrolyte solution become conductive polymer tubes. The actuator elements 14 are extended by being absorbed by 13. When the actuator element 14 is extended, the two leaf springs 26 and 26 are restored to their original curved shape by their own elasticity, whereby the distance between both ends of the leaf springs 26 and 26 is reduced and the first and second casings 21 are reduced. , 22 are driven to contract in the direction of the axis L. At this time, the boots 24 and 24 that define a part of the electrolyte chamber 25 contract in the direction of the axis L and bend in a direction away from the axis L, so that the volume of the electrolyte chamber 25 is kept constant.

以上のように、アクチュエータエレメント14自体の伸縮率が小さくても、そのアクチュエータエレメント14を板ばね26,26の外周に巻き付けることで全長を増加させ、かつ湾曲した板ばね26,26を直線状に延ばすことで高分子アクチュエータAに伸縮ストロークを発生させるので、収縮率の限られたアクチュエータエレメント14を使用しながら大きなストロークを発生させることができる。   As described above, even if the expansion / contraction ratio of the actuator element 14 itself is small, the entire length is increased by winding the actuator element 14 around the outer periphery of the leaf springs 26, 26, and the curved leaf springs 26, 26 are linearly formed. By extending the length, an expansion / contraction stroke is generated in the polymer actuator A. Therefore, a large stroke can be generated while using the actuator element 14 having a limited contraction rate.

またアクチュエータエレメント14…は引張荷重を伝達するのみで圧縮荷重を伝達できないが、板ばね26,26が自己の弾性で元の湾曲形状に復帰することで、アクチュエータエレメント14を座屈させることなく高分子アクチュエータAを収縮駆動することができる。更に、高分子アクチュエータAは1V〜3Vの極めて低い電圧で作動可能であるために消費電力が小さく、しかも騒音を発生しないので静粛な作動が可能である。   Further, the actuator elements 14... Transmit only the tensile load and cannot transmit the compressive load. However, the leaf springs 26 and 26 return to the original curved shape by their own elasticity, so that the actuator elements 14 do not buckle. The molecular actuator A can be driven to contract. Furthermore, since the polymer actuator A can be operated at an extremely low voltage of 1V to 3V, the power consumption is small and noise is not generated, so that it can be operated silently.

またアクチュエータエレメント14自体も以下のような優れた特性を有している。即ち、6本の導電性高分子チューブ13…の端部を束ねる際に、硬質の芯材15の周囲を囲むように配置した導電性高分子チューブ13…の外周を環状の締結リング18をかしめることで一体に締結するので、6本の導電性高分子チューブ13…を整然とした形状に束ねて円筒部材23に精度良く固定できる。   The actuator element 14 itself has the following excellent characteristics. That is, when the ends of the six conductive polymer tubes 13... Are bundled, the outer periphery of the conductive polymer tubes 13. Since they are fastened together by tightening, the six conductive polymer tubes 13 can be bundled in an orderly shape and fixed to the cylindrical member 23 with high accuracy.

次に、図7および図8に基づいて本発明の第2実施例を説明する。   Next, a second embodiment of the present invention will be described with reference to FIGS.

第1実施例では動力変換部材として弧状に湾曲した一対の板ばね26を用いているが、第2実施例では中央部をヒンジ31で枢支された2枚のリンク板32,33よりなる一致のリンク部材34を用いており、各々のリンク部材34の両端部はヒンジ27,27を介して第1、第2ケーシング21,22の端板21a,22aに枢支される。そして両リンク部材34,34は全体として菱形に構成されており、それらの中間部どうしが圧縮コイルばね35で相互に離反する方向に付勢される。第2実施例のその他の構成は、上述した第1実施例の構成と同じである。   In the first embodiment, a pair of leaf springs 26 that are curved in an arc shape are used as power conversion members. In the second embodiment, however, the center portion is composed of two link plates 32 and 33 pivotally supported by a hinge 31. These link members 34 are used, and both end portions of each link member 34 are pivotally supported by end plates 21a and 22a of the first and second casings 21 and 22 via hinges 27 and 27, respectively. Both link members 34 and 34 are formed in a rhombus shape as a whole, and their intermediate portions are biased by the compression coil spring 35 in a direction away from each other. Other configurations of the second embodiment are the same as those of the first embodiment described above.

この第2実施例によれば、アクチュエータエレメント14の収縮により圧縮コイルばね35を圧縮しながらリンク部材34,34を偏平に潰すことで第1、第2ケーシング21,22が離反し、アクチュエータエレメント14の伸長により圧縮コイルばね35の弾発力でリンク部材34,34を元の形状に復帰させることで第1、第2ケーシング21,22が接近する。この第2実施例によっても、上述した第1実施例と同様の作用効果を達成することができる。   According to the second embodiment, the first and second casings 21 and 22 are separated by flattening the link members 34 and 34 while compressing the compression coil spring 35 by contraction of the actuator element 14, so that the actuator element 14 The first and second casings 21 and 22 approach each other by returning the link members 34 and 34 to the original shape by the elastic force of the compression coil spring 35 due to the extension of. Also according to the second embodiment, it is possible to achieve the same operation and effect as the first embodiment described above.

以上、本発明の実施例を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。   The embodiments of the present invention have been described above, but various design changes can be made without departing from the scope of the present invention.

例えば、実施例では6本の導電性高分子チューブ13…を束ねてアクチュエータエレメント14を構成しているが、束ねる導電性高分子チューブ13…の本数は任意である。   For example, in the embodiment, the six conductive polymer tubes 13 are bundled to constitute the actuator element 14, but the number of the conductive polymer tubes 13 to be bundled is arbitrary.

また第1実施例では2枚の板ばね26,26を組み合わせているが、軸線Lのまわりを囲むように3枚以上の板ばね26…を配置しても良い。   In the first embodiment, the two leaf springs 26 are combined, but three or more leaf springs 26 may be arranged so as to surround the axis L.

また第1実施例では弧状に湾曲させた2枚の板ばね26,26を紡錘形に組み合わせているが、平板を中央部で所定角度に屈曲させた2枚の板ばね26,26を菱形に組み合わせても良い。   In the first embodiment, the two leaf springs 26 and 26 curved in an arc are combined in a spindle shape, but the two leaf springs 26 and 26 in which a flat plate is bent at a predetermined angle at the center are combined in a diamond shape. May be.

導電性高分子チューブの構造を示す図Diagram showing the structure of a conductive polymer tube アクチュエータエレメントの全体図Overall view of actuator element 図2の3−3線拡大断面図3-3 enlarged sectional view of FIG. 高分子アクチュエータの鉛直断面図Vertical section of polymer actuator 高分子アクチュエータの水平断面図Horizontal section of polymer actuator 図4に対応する作用説明図Action explanatory diagram corresponding to FIG. 第2実施例に係る高分子アクチュエータの鉛直断面図Vertical sectional view of the polymer actuator according to the second embodiment 図7に対応する作用説明図Action explanation diagram corresponding to FIG.

符号の説明Explanation of symbols

12 導電性高分子材料
14 アクチュエータエレメント
21 第1ケーシング(第1出力部材)
22 第2ケーシング(第2出力部材
26 板ばね(駆動力変換部材)
34 リンク部材(駆動力変換部材)
L 軸線
12 Conductive polymer material 14 Actuator element 21 First casing (first output member)
22 Second casing (second output member 26 leaf spring (driving force conversion member)
34 Link member (driving force conversion member)
L axis

Claims (2)

軸線(L)方向に相対移動可能な第1出力部材(21)および第2出力部材(22)と、
両端部が軸線(L)の近傍で第1、第2出力部材(21,22)に接続され、中間部が軸線(L)から離反する方向に湾曲するように弾発力で付勢された複数の駆動力変換部材(26,34)と、
電圧を加えることで伸縮する導電性高分子材料(12)で構成されて複数の駆動力変換部材(26,34)の周囲に巻き付けられたアクチュエータエレメント(14)と、
を備え、
アクチュエータエレメント(14)の収縮により複数の駆動力変換部材(26,34)を軸線(L)に接近する方向に変形させて第1、第2出力部材(21,22)を相互に離反させるとともに、アクチュエータエレメント(14)の伸長により前記弾発力で複数の駆動力変換部材(26,34)を軸線(L)から離反する方向に変形させて第1、第2出力部材(21,22)を相互に接近させることを特徴とする高分子アクチュエータ。
A first output member (21) and a second output member (22) capable of relative movement in the direction of the axis (L);
Both ends are connected to the first and second output members (21, 22) in the vicinity of the axis (L), and the intermediate portion is biased by a resilient force so as to bend in a direction away from the axis (L). A plurality of driving force conversion members (26, 34);
An actuator element (14) composed of a conductive polymer material (12) that expands and contracts when a voltage is applied, and is wound around a plurality of driving force conversion members (26, 34);
With
While the actuator element (14) contracts, the plurality of driving force conversion members (26, 34) are deformed in a direction approaching the axis (L) to separate the first and second output members (21, 22) from each other. The first and second output members (21, 22) are formed by deforming the plurality of driving force converting members (26, 34) away from the axis (L) by the elastic force by the extension of the actuator element (14). Polymer actuators characterized in that they are close to each other.
駆動力変換部材(26)が板ばねで構成され、自己の弾性で前記弾発力を発生することを特徴とする、請求項1に記載の高分子アクチュエータ。
The polymer actuator according to claim 1, wherein the driving force conversion member (26) is formed of a leaf spring and generates the elastic force by its own elasticity.
JP2003315810A 2003-09-08 2003-09-08 High polymer actuator Pending JP2005081487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003315810A JP2005081487A (en) 2003-09-08 2003-09-08 High polymer actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003315810A JP2005081487A (en) 2003-09-08 2003-09-08 High polymer actuator

Publications (1)

Publication Number Publication Date
JP2005081487A true JP2005081487A (en) 2005-03-31

Family

ID=34415952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003315810A Pending JP2005081487A (en) 2003-09-08 2003-09-08 High polymer actuator

Country Status (1)

Country Link
JP (1) JP2005081487A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007143307A (en) * 2005-11-18 2007-06-07 Sony Corp Actuator, and brake apparatus, fluid controller, lens position adjuster
JP2007155912A (en) * 2005-12-01 2007-06-21 Fujinon Corp Shake correcting unit and photographing device
CN104999475A (en) * 2015-08-28 2015-10-28 刘伟 Artificial muscle and application thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007143307A (en) * 2005-11-18 2007-06-07 Sony Corp Actuator, and brake apparatus, fluid controller, lens position adjuster
JP2007155912A (en) * 2005-12-01 2007-06-21 Fujinon Corp Shake correcting unit and photographing device
CN104999475A (en) * 2015-08-28 2015-10-28 刘伟 Artificial muscle and application thereof
CN104999475B (en) * 2015-08-28 2017-11-14 朱正直 A kind of artificial-muscle and its application

Similar Documents

Publication Publication Date Title
JP3939337B2 (en) Polymer actuator
JP6653557B2 (en) Dielectric elastomer operation device
JP2008277729A (en) Actuator
US20090127979A1 (en) Actuator
JP2008251833A (en) Actuator, and actuator convergence object
CN109353424B (en) Leg type jumping robot based on piezoelectric drive and control method thereof
JP5458288B2 (en) Electrostatic actuator and manufacturing method thereof
JP2007202293A (en) Generating set
WO2009084305A1 (en) Actuator array and method for driving actuator array
WO2018235658A1 (en) Dielectric elastomer transducer and dielectric elastomer driving device
JP2005081487A (en) High polymer actuator
EP2053670B1 (en) An elongated actuator structure
JP5129998B2 (en) Electrostrictive element
JP5186158B2 (en) Actuator
CN107408622B (en) Piezoelectric generator, button, radio module and the method for manufacturing piezoelectric generator
JP2007159222A (en) Polymer actuator, robot arm driven by polymer actuator, and robot having robot arm
CN107013622A (en) The buffer body of upper supporting piece
JP2012175017A (en) Piezoelectric actuator
JP6563290B2 (en) Spring assembly
JP2005086981A (en) Polymer actuator
Chiba et al. Examination of factors to improve the performance of dielectric elastomer transducers and their applications
JP2006203982A (en) Polymer actuator and articulated hand robot
JP5780261B2 (en) Actuator
CN101194095A (en) Device and method for converting energy
JPS6195586A (en) Displacement generator