JP2007202293A - Generating set - Google Patents
Generating set Download PDFInfo
- Publication number
- JP2007202293A JP2007202293A JP2006017527A JP2006017527A JP2007202293A JP 2007202293 A JP2007202293 A JP 2007202293A JP 2006017527 A JP2006017527 A JP 2006017527A JP 2006017527 A JP2006017527 A JP 2006017527A JP 2007202293 A JP2007202293 A JP 2007202293A
- Authority
- JP
- Japan
- Prior art keywords
- piezoelectric element
- circle
- piezoelectric
- power generation
- piezoelectric elements
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010248 power generation Methods 0.000 claims abstract description 34
- 238000005192 partition Methods 0.000 claims description 7
- 239000012530 fluid Substances 0.000 claims description 2
- 230000001747 exhibiting effect Effects 0.000 abstract 1
- 238000005452 bending Methods 0.000 description 15
- 238000006073 displacement reaction Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 4
- 229920003023 plastic Polymers 0.000 description 4
- 239000004033 plastic Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000012790 adhesive layer Substances 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 229920002457 flexible plastic Polymers 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
Description
本発明は、圧電素子を用いて構成される発電装置に関する。 The present invention relates to a power generation device configured using a piezoelectric element.
近年、可撓性を有し、外力を受けて屈曲することで発電するバイモルフ型等の圧電素子等を用いた発電装置の用途開発が盛んに行われている。例えば、特許文献1に開示された圧電式発電機には、あらかじめ一定の方向に屈曲した形状に成形する、もしくは座屈変形した板バネと圧電素子を組み合わせたる圧電式発電器であって、跳ね板バネの屈曲を元に戻す方向に一定の外力を作用させるとき、屈曲方向が瞬時に反転することを利用して、この時に発生する跳ね板バネの振動を圧電素子に伝えて発電し、更に圧電発電素子の構成において、屈曲方向が反転する跳ね板バネに圧電材料を直接張り合わせた圧電バイモルフ素子、もしくは圧電ユニモルフである圧電式発電器が開示されている。 2. Description of the Related Art In recent years, application development of power generation apparatuses using a piezoelectric element such as a bimorph type that has flexibility and generates electric power by bending under external force has been actively performed. For example, the piezoelectric generator disclosed in Patent Document 1 is a piezoelectric generator that is formed in a shape bent in a predetermined direction in advance or combined with a buckled and deformed leaf spring and a piezoelectric element. When a constant external force is applied in the direction to return the bending of the leaf spring, utilizing the fact that the bending direction is instantaneously reversed, the vibration of the spring spring generated at this time is transmitted to the piezoelectric element to generate power, and In the configuration of the piezoelectric power generation element, a piezoelectric power generator that is a piezoelectric bimorph element or a piezoelectric unimorph in which a piezoelectric material is directly bonded to a spring plate spring whose bending direction is reversed is disclosed.
しかしながら、瞬間的な反転変位を得るために、圧縮力を板バネに内在させるように、あらかじめ屈曲させて成型し、或いは、座屈変形させた跳ね板バネを用いている。従って、支持部材により、屈曲させるものでないので、小さな外力で反転しないものからは、起電力がとりだせず、大きな起電力を得る為には、屈曲が大きく曲率が比較的おおきな形状で大きな外力を必要とする。外力の印加された場所から屈曲がはじまり、全体が一斉に反転する形状を作りにくい。曲率の大きな楕円球状等であるため、このままでは、必然的に壊れやすい形状であり、大型化、積層化もしにくい構造であった。 However, in order to obtain an instantaneous reversal displacement, a spring leaf spring that is bent or molded in advance or buckled and deformed so that a compression force is inherent in the leaf spring is used. Therefore, since the support member is not bent, the electromotive force cannot be taken out from those that do not reverse with a small external force, and in order to obtain a large electromotive force, a large external force is applied with a large bending and a relatively large curvature. I need. It is difficult to create a shape in which bending starts from a place where an external force is applied and the whole is reversed at once. Since it has an elliptical sphere with a large curvature, it is a shape that is fragile as it is, and it has a structure that is difficult to increase in size and stack.
また、この形式の発電装置では、大型化、積層化が、難しいので大電力を取り出すのができないので、潮流、水流、風等の自然のエネルギーを効率良く電気エネルギーに変換することができなかった。また、小型装置においても回数押されるために、この押圧力を利用したコンパクトな発電装置を実現することができれば、電源電池の補助にきわめて有用になると考えられる。携帯電話のみならず、携帯型の電子機器、例えば、ノートパソコン等においても、キーボードを叩くことによって発電することができれば、電源電池の補助に有効に利用することができる。さらに、キーボードを有さない携帯機器においても、日常生活で放出している人力が、電圧として有効に取り出せれば、携帯装置の電源として有効に活用できることとなる。
本発明はかかる事情に鑑みてなされたものであり、発電効率の高い発電装置を提供することを目的とする。また、本発明は、人による押圧力、例えば、手によるキー操作、ボタン押し操作、あるいは足による靴のかかとを踏む操作、ボタン押し操作が行われた場合、或いは、潮流等の自然エネルギーを用いて効率の良い発電装置を提供することを目的とする。 The present invention has been made in view of such circumstances, and an object thereof is to provide a power generation device having high power generation efficiency. The present invention also uses natural energy such as pressing force by a person, for example, a key operation by a hand, a button pressing operation, an operation of stepping on a heel of a shoe by a foot, a button pressing operation, or a tidal current. An object is to provide a highly efficient power generator.
複数の略同一寸法の矩形状又は扇形状のシムに貼着されてなる圧電素子を、前記矩形状圧電素子の長尺方向又は前記扇形状圧電素子の半径方向が、想定したひとつの円の半径方向となるように配置した圧電装置であって、前記圧電素子の円中心部に近い端部を統合して支持する支持部と、隣接する前記圧電素子の円周部の他端の間隔を狭めて、前記円を含む平面の同一側に屈曲させるように、前記圧電素子の前記他端を屈曲自在に固定する他の支持部と、を含み、前記ひとつの支持部を前記円を含む平面に垂直な方向に前記他の支持部に対して相対的に往復運動をさせることにより、前記圧電素子を屈曲および前記円を含む平面の反対側への反転を繰り返して発電することを特徴とする発電装置(請求項1)、前記他の支持部に替えて、又は他の支持部とともに、前記圧電素子間に張力を生じさせる連結部が装着されていることを特徴とする請求項1記載の発電装置(請求項2)、請求項1又は2記載の発電装置が、前記円を含む平面の垂直方向に前記ひとつの支持部が連結されて、複数個積層され、円周部に近い他端の一部又は全部が、共通の他の支持部材で支持され、前記積層された支持部が連動して往復運動することにより発電することを特徴とする発電装置(請求項3)、前記他の支持部材が、シリンダー内の隔壁であるか、又は該シリンダーに接続され、該シリンダー内に導いた流体の移動による圧力変化によって駆動することを特徴とする請求項1乃至3記載の発電装置(請求項4)を提供する。請求項2の発電装置の連結部には、更に張力調整の弾性体、たとえば、弾性体であるコイルバネ等を取り付けると、起電力の調節、圧電素子のストレス調整が可能となる。 A piezoelectric element that is attached to a plurality of rectangular or fan-shaped shims having substantially the same dimensions is assumed to have a radius of one circle in which the longitudinal direction of the rectangular piezoelectric element or the radial direction of the sector-shaped piezoelectric element is assumed. The piezoelectric device is arranged so as to be in a direction, and a gap between a support portion that integrally supports an end portion of the piezoelectric element close to a circular center portion and a circumferential end portion of the adjacent piezoelectric element is narrowed. The other end of the piezoelectric element so as to be bent so as to be bent on the same side of the plane including the circle, and the one support portion on the plane including the circle. By generating reciprocal motion relative to the other support portion in a vertical direction, the piezoelectric element is repeatedly bent and inverted to the opposite side of the plane including the circle to generate power. An apparatus (Claim 1), in place of the other support, or The power generation device according to claim 1 (Claim 2), the power generation device according to Claim 1 or 2, wherein a connecting portion that generates tension between the piezoelectric elements is mounted together with the support portion. A plurality of the one support portions are connected in a direction perpendicular to a plane including the circle, and a plurality of the support portions are stacked, and a part or all of the other end close to the circumferential portion is supported by another common support member. And the other support member is a partition wall in the cylinder or connected to the cylinder, wherein the generated power is generated by the reciprocating motion of the supported support portion. The power generator (Claim 4) according to any one of claims 1 to 3, wherein the power generator is driven by a pressure change caused by movement of a fluid guided into the cylinder. If an elastic body for tension adjustment, for example, a coil spring or the like, which is an elastic body, is further attached to the connecting portion of the power generator according to the second aspect, the electromotive force can be adjusted and the stress of the piezoelectric element can be adjusted.
請求項1の発電装置は、前記ひとつの支持部を前記円に垂直な方向に往復運動をさせ、前記圧電素子の反転を繰り返す際に、圧電素子が前記想定したひとつの円の平面に含まれ平坦になる状態から急激に変位するために、圧電素子から、効率よく、大きな電気エネルギーを発生させることができる。請求項2の発電装置は、隣接、対向等する圧電素子が相互に連結部による張力により屈曲されているので、屈曲、反転の制御が可能となる。その結果、個々の圧電素子からの起電力をより均一なものとし、併せて発電量の制御が可能となる。また、他端支持部のみでの支持による屈曲が一定で調整が困難なときは、たとえば、他端支持部での屈曲を小さなものとし、連結部で屈曲を大きくするよう調整し、更に弾性体で連結による張力を加減することができる。反転時に圧電素子に過度のストレスが加わらず、適度な張力を連結部及び弾性体で付与して、装置の耐久性及び屈曲、反転制御を調整することができる。 In the power generation device according to claim 1, when the one supporting portion is reciprocated in a direction perpendicular to the circle and the piezoelectric element is repeatedly inverted, the piezoelectric element is included in the assumed plane of the circle. Due to the sudden displacement from the flat state, large electric energy can be efficiently generated from the piezoelectric element. In the power generation device according to the second aspect, adjacent and facing piezoelectric elements are bent by the tension of the connecting portion, so that bending and reversal can be controlled. As a result, the electromotive force from each piezoelectric element can be made more uniform, and the amount of power generation can be controlled. In addition, when the bending by the support only at the other end support portion is constant and adjustment is difficult, for example, the bending at the other end support portion is made small and the bending is adjusted at the connecting portion, and further the elastic body The tension due to the connection can be adjusted. Excessive stress is not applied to the piezoelectric element at the time of reversal, and appropriate tension can be applied by the connecting portion and the elastic body to adjust the durability, bending and reversal control of the device.
請求項3の発電装置は、上記発電装置が、複数積層され、これらが、連動して駆動するので、単位時間あたりの発電量を増加させ、或いは、発電量の均一化が図れる。請求項4の発明では、潮流等の自然エネルギーを用いて効率の良い発電装置を実現できる。さらに、圧電素子とシムが押圧力の印加方向に重なるように配置するとコンパクトな構成とすることができるという効果を奏する。また、本発明は、シムは、弾性体と当接するのでシムに押圧力を加えて反転させると、弾性体がシムに対して再反転の力を加えることとなる。従って、この力によって再反転したときは、繰り返して、外力を印加することで、連続的に発電が可能となる。 According to a third aspect of the present invention, a plurality of the power generation devices are stacked and driven in conjunction with each other, so that the power generation amount per unit time can be increased or the power generation amount can be made uniform. In invention of Claim 4, an efficient electric power generating apparatus is realizable using natural energy, such as a tidal current. Furthermore, when the piezoelectric element and the shim are arranged so as to overlap in the direction in which the pressing force is applied, there is an effect that a compact configuration can be obtained. In the present invention, since the shim abuts against the elastic body, when the shim is reversed by applying a pressing force to the shim, the elastic body applies a re-inversion force to the shim. Therefore, when the force is reversed again by this force, it is possible to continuously generate power by repeatedly applying an external force.
以下、図面を参照しながら本発明の実施の形態について詳細に説明する。図1に発電装置10の概略構造の平面図と動作状態を表す正面図を示す。図1(a)に示されるように、発電装置10は、シム13(13a、13b、13c等を纏めて表現)と、これに貼着された圧電板を含む複数の圧電素子11(11a、11b、11c等を纏めて表現)を、その長尺方向が、想定したひとつの円の半径方向となるように放射状に配置し、円の中心部に近い端部をひとつの支持部14で統合支持し、円周部に近い他の端部を他の支持部材16で支持する。図1では、相対する一対の圧電素子11の他の端部を他の支持部材16で支持する構造としているが、他の支持部を例えば円筒状支持部(図1(b)の支持部17を「正面の断面図」として表現できる)とし、その内側に円状のV字溝を設けすべての圧電素子11を支持する構造としても良い。このとき、隣接する前記圧電素子の円周側の他端の間隔を狭めて、前記円を含む平面の同一側に屈曲させるように、前記他端を支持部材で保持することとなる。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a plan view of a schematic structure of the power generation apparatus 10 and a front view showing an operation state. As shown in FIG. 1 (a), the power generation device 10 includes a plurality of piezoelectric elements 11 (11a, 11a, 13) including a shim 13 (represented collectively as 13a, 13b, 13c, etc.) and a piezoelectric plate attached thereto. 11b, 11c, etc.) are arranged radially so that the longitudinal direction is the radial direction of one assumed circle, and the end close to the center of the circle is integrated with one support 14 The other end near the circumference is supported by another support member 16. In FIG. 1, the other end of the pair of opposing piezoelectric elements 11 is supported by another support member 16, but the other support is, for example, a cylindrical support (the support 17 of FIG. 1B). May be expressed as a “front sectional view”), and a circular V-shaped groove may be provided on the inside to support all the piezoelectric elements 11. At this time, the other end on the circumferential side of the adjacent piezoelectric element is narrowed, and the other end is held by the support member so as to be bent to the same side of the plane including the circle.
本例では、さらに、前記圧電素子間に張力を生じさせる連結部として、ワイヤー15を使用している。ワイヤー15は、隣接する圧電素子をその他の端部を狭めるように連結する。ワイヤー15は、隣接する圧電素子の他の端部の穴をくぐり、これらの連結を順次おこないながら、一周し、円状を形成し、最後に張力調整して一周の円を完結するものであってもよい。連結部は、ワイヤー、細長円柱棒等の紐状のものに限定されず、面状であっても良く、他の端部を含む隣接圧電素子の間を連結する折りたたみや収縮可能な部材であっても良い。雨傘の布部を形成するような態様であっても良い。図2に示すとおり、ワイヤー15には、弾性体としてコイルバネ18を設けて張力調整をしてもよい。圧電素子11は、シムに貼着されて構成される。圧電素子の圧電効果を奏する部分(圧電部)は、圧電板又は、圧電板とこれに貼着した金属性圧電素子シム板(図示せず)とその間の接着層(図示せず)を有するものも好適に用いられる。 In this example, a wire 15 is further used as a connecting portion for generating tension between the piezoelectric elements. The wire 15 connects adjacent piezoelectric elements so as to narrow the other end. The wire 15 passes through the hole at the other end of the adjacent piezoelectric element, and makes a circle while forming these circles in order. Finally, the tension is adjusted to complete the circle. May be. The connecting portion is not limited to a string-like member such as a wire or an elongated cylindrical rod, but may be a planar shape, and is a member that can be folded or contracted to connect adjacent piezoelectric elements including other end portions. May be. An aspect in which a cloth part of an umbrella is formed may be used. As shown in FIG. 2, the wire 15 may be provided with a coil spring 18 as an elastic body to adjust the tension. The piezoelectric element 11 is configured by being attached to a shim. The part (piezoelectric part) which exhibits the piezoelectric effect of a piezoelectric element has a piezoelectric plate or a piezoelectric plate and a metallic piezoelectric element shim plate (not shown) adhered thereto and an adhesive layer (not shown) between them. Are also preferably used.
図1において、圧電板12は、例えば、チタン酸ジルコン酸鉛系の圧電材料からなり、その厚み方向に分極され、図1における半径方向を長手方向とする矩形状を有している。圧電材料は、これに限定されるものではない。ここでは、圧電素子11として、所謂、ユニモルフ型の構造のものを用いているが、これに限定されるものではなく、モノモルフ素子、バイモルフ素子、積層型バイモルフ素子等、種々の可撓性を有する圧電素子を用いることができる。圧電素子シム板及びシムは通常の金属製、プラスチック製の弾性を有する材料を用いて行われが、耐久性の面からも金属製が好ましい。 In FIG. 1, a piezoelectric plate 12 is made of, for example, a lead zirconate titanate piezoelectric material, is polarized in the thickness direction, and has a rectangular shape with the radial direction in FIG. 1 as the longitudinal direction. The piezoelectric material is not limited to this. Here, a so-called unimorph type structure is used as the piezoelectric element 11, but the piezoelectric element 11 is not limited to this, and has various flexibility such as a monomorph element, a bimorph element, and a laminated bimorph element. A piezoelectric element can be used. The piezoelectric element shim plate and shim are made of an ordinary metal or plastic material having elasticity, but metal is preferable from the viewpoint of durability.
なお、シム13が金属製の場合には、圧電板とシム13の電気的導通がとれる構成とすることができるので、シム13を電極として使用することができる。圧電板に替えて、圧電板とこれに貼着した金属性圧電素子シム板を有する圧電素子11では、シム13と圧電板の電気的導通をとらない構成とするときは、圧電部と支持部材16とを絶縁するために、圧電部を可撓性のプラスチック板に挟み、または、コーティングする等することが好ましい。このように圧電部をプラスチック板に挟む等の構成とすることは、圧電部を保護する観点から、また圧電素子11全体の曲げ強度を調整する観点からも、好ましい。 In the case where the shim 13 is made of metal, the piezoelectric plate and the shim 13 can be electrically connected, so that the shim 13 can be used as an electrode. In the piezoelectric element 11 having the piezoelectric plate and the metallic piezoelectric element shim plate adhered to the piezoelectric plate instead of the piezoelectric plate, when the shim 13 and the piezoelectric plate are not electrically connected, the piezoelectric portion and the support member In order to insulate 16, the piezoelectric part is preferably sandwiched between flexible plastic plates or coated. Such a configuration in which the piezoelectric portion is sandwiched between plastic plates is preferable from the viewpoint of protecting the piezoelectric portion and from the viewpoint of adjusting the bending strength of the entire piezoelectric element 11.
図1(b)に示すとおり圧電素子11は、外力が作用していない状態で、外力Fの加えられる方向に対して凸状となるように支持部材16、ワイヤー部材15によって隣接する圧電素子の円周部に近い他の端部の間隔を狭めて、前記円を含む平面の同一側に屈曲させるように、前記他端を屈曲自在に支持している。更に、圧電素子11を貼付したシム13は、その一部又は全部の圧電素子の他の端部を屈曲状態で、リング等の支持部材で屈曲自在に支持しても良い。 As shown in FIG. 1B, the piezoelectric element 11 has a piezoelectric element 11 adjacent to each other by the support member 16 and the wire member 15 so as to be convex in the direction in which the external force F is applied in a state where no external force is applied. The other end is bent and supported so as to bend to the same side of the plane including the circle by narrowing the interval between the other ends close to the circumference. Further, the shim 13 to which the piezoelectric element 11 is attached may be supported by a supporting member such as a ring so that the other end of the piezoelectric element 11 is partially bent or bent.
シム13の反転の前後で支持部材16でのシム13を支持することを容易とするために、支持部材16の支持端部に溝形成している。支持部材16の前記溝17は、正面図では、V字谷の形状であり、側面では、反転変形による幅をもたせた平行線であらわされる形状となる。 In order to facilitate the support of the shim 13 by the support member 16 before and after the inversion of the shim 13, a groove is formed in the support end portion of the support member 16. The groove 17 of the support member 16 has a V-shaped valley shape in the front view, and a side surface having a shape represented by a parallel line having a width due to reverse deformation.
上述の通りに構成された発電装置10では、支持部14に外力Fが作用すると、圧電素子11が屈曲する。この外力Fが圧電素子11を反転させることができる大きさである場合に、図1(b)に示す状態から図1(c)に示す状態に移行する。図1(c)に示すように、圧電素子11は屈曲後、反転変形する。このとき、圧電素子11は、比較的短時間に撓むこととなる。 In the power generation apparatus 10 configured as described above, when the external force F acts on the support portion 14, the piezoelectric element 11 bends. When the external force F is large enough to reverse the piezoelectric element 11, the state shown in FIG. 1 (b) is shifted to the state shown in FIG. 1 (c). As shown in FIG. 1 (c), the piezoelectric element 11 is inverted and deformed after being bent. At this time, the piezoelectric element 11 bends in a relatively short time.
これらが屈曲する際に発生する電圧は、屈曲する時間差、圧電素子11の屈曲する向きに依存して極性が変わるために、各圧電素子11からの電気エネルギーを効率良く取り出すために、別個の電気回路を用いる。図4は、別個の圧電素子11a、11b、11cが、別個に電気エネルギーを取り出す回路を有し、前記回路が共通の整流回路に導かれている例である。また、図5は、圧電素子11a、11b、11cからの電気エネルギーが、個別のブリッジ整流回路を用いて処理される例であり、この処理を行うことが好ましい。これにより負荷や蓄電池等に逆の極性の電圧が印加されることを防止し、更に効率良く起電力を得ることができる。弾性体18は、収縮変位し、変位が増大するとともに反発力が増加し、反転による変位は許容し、しかも反転後にシムを逆方向に逆反転することができる。この弾性率のものを選定する。弾性体18としては、つるまきばね(コイルバネ)以外にも、座屈ばね、プラスチック球、ゴム弾性球、サラバネ等が用いられる。これらを組み合わせて用いることもできる。 The voltage generated when these are bent changes in polarity depending on the time difference of bending and the direction in which the piezoelectric element 11 bends. Therefore, in order to efficiently extract the electric energy from each piezoelectric element 11, a separate electric Use a circuit. FIG. 4 shows an example in which the separate piezoelectric elements 11a, 11b, and 11c have a circuit for taking out electrical energy separately, and the circuit is led to a common rectifier circuit. FIG. 5 shows an example in which the electrical energy from the piezoelectric elements 11a, 11b, and 11c is processed using an individual bridge rectifier circuit, and this processing is preferably performed. As a result, it is possible to prevent a reverse polarity voltage from being applied to a load, a storage battery or the like, and to obtain an electromotive force more efficiently. The elastic body 18 is contracted and displaced, the displacement increases, the repulsive force increases, the displacement due to inversion is allowed, and the shim can be reversed in the reverse direction after the reversal. Select one with this elastic modulus. As the elastic body 18, besides a helical spring (coil spring), a buckling spring, a plastic ball, a rubber elastic ball, a flat spring, or the like is used. A combination of these can also be used.
弾性体18につるまきばね(コイルバネ)を使用した場合、圧電素子11反転後に、印加された外力Fが取り除かれ、つるまきばね(コイルバネ)に作用する力が一定の大きさよりも小さくなったときに、つるまきばね(コイルバネ)は元の形状に瞬時に戻ろうとする。その際、圧電素子11も図1(c)の形状から図1(b)に示す元の形状に戻る。このように、つるまきばね(コイルバネ)が元の形状に戻る際にもシムの逆反転により、圧電素子11は急激に撓み、これにより圧電素子11に大きな電気エネルギーを発生させ、取り出すことができる。 When a helical spring (coil spring) is used for the elastic body 18, the applied external force F is removed after the piezoelectric element 11 is reversed, and the force acting on the helical spring (coil spring) becomes smaller than a certain level. In addition, the helical spring (coil spring) tries to return to its original shape instantly. At that time, the piezoelectric element 11 also returns from the shape shown in FIG. 1C to the original shape shown in FIG. Thus, even when the helical spring (coil spring) returns to its original shape, the piezoelectric element 11 is bent suddenly by reverse reversal of the shim, thereby generating a large electric energy in the piezoelectric element 11 and taking it out. .
図1(c)から図1(b)に示す状態に戻る場合の構成としては、支持部材14の上側に圧電素子全体に外力を作用させるためのボタン類を取り付け、そのボタン類が一定の範囲で動くように位置決めするときは、支持部材14が初期の位置に復元することができるように決めることが望ましい。 In the case of returning to the state shown in FIG. 1C from FIG. 1C, buttons for applying external force to the entire piezoelectric element are attached on the upper side of the support member 14, and the buttons are within a certain range. It is desirable to determine so that the support member 14 can be restored to the initial position.
図3に発電装置20の概略構造の平面図とその動作状態を表す正面図を示す。発電装置20は、扇形状の複数の略同一寸法の扇形状の圧電素子21を、前記扇形状圧電素子の半径方向が、想定したひとつの円の半径方向となるように8枚配置し、前記圧電素子の円中心部に近い端部を統合して支持する円柱状支持部24と、隣接する前記圧電素子の円周部の他端の間隔を狭めて、前記円の同一側に屈曲させるように、前記他端を前記圧電素子を屈曲自在に支持する他のリング状支持部26と、を含む。更に、隣接する扇型圧電素子21を連結部25で連結し、各圧電素子21の屈曲を補強し、屈曲・反転時の張力調整を可能としている。連結部25は鋼製である。前記ひとつの支持部24を、前記円に垂直な方向に往復運動をさせることにより、前記圧電素子21を屈曲および反転を繰り返して発電する。圧電素子21は、シムに貼着されて構成される。圧電素子の圧電効果を奏する部分(圧電部)は、圧電板又は、圧電板とこれに貼着した金属性圧電素子シム板(図示せず)とその間の接着層(図示せず)を有するものも好適に用いられる。 FIG. 3 shows a plan view of the schematic structure of the power generation device 20 and a front view showing its operating state. The power generation device 20 arranges a plurality of fan-shaped piezoelectric elements 21 having substantially the same size so that the radial direction of the fan-shaped piezoelectric elements is the radial direction of one assumed circle, The cylindrical support portion 24 that integrally supports the ends close to the center of the circle of the piezoelectric element and the other end of the circumferential portion of the adjacent piezoelectric element are narrowed to be bent to the same side of the circle. And another ring-shaped support portion 26 that flexibly supports the piezoelectric element at the other end. Further, adjacent fan-shaped piezoelectric elements 21 are connected by a connecting portion 25, the bending of each piezoelectric element 21 is reinforced, and the tension can be adjusted during bending and reversal. The connecting portion 25 is made of steel. By causing the one support portion 24 to reciprocate in a direction perpendicular to the circle, the piezoelectric element 21 is repeatedly bent and inverted to generate electric power. The piezoelectric element 21 is configured by being attached to a shim. The part (piezoelectric part) which exhibits the piezoelectric effect of a piezoelectric element has a piezoelectric plate or a piezoelectric plate and a metallic piezoelectric element shim plate (not shown) adhered thereto and an adhesive layer (not shown) between them. Are also preferably used.
図3(b)に示すとおり圧電素子21に外力が作用していない状態で、圧電素子21は、この支持部24を含めた形状として凸状となっている。圧電素子21は、屈曲され、反転可能な状態とされている。更に、圧電素子21を統合支持した支持部24の外力が直接作用しない反対側は、つるまきばね(コイルバネ)が接し、つるまきばね(コイルバネ)の底部は、支持部材26に接し支持部及び圧電素子全体に復元力を与える構造を有している。 As shown in FIG. 3B, the piezoelectric element 21 has a convex shape including the support portion 24 in a state where no external force is applied to the piezoelectric element 21. The piezoelectric element 21 is bent and invertible. Furthermore, the opposite side where the external force of the support portion 24 that integrally supports the piezoelectric element 21 does not directly act is in contact with a helical spring (coil spring), and the bottom portion of the helical spring (coil spring) is in contact with the support member 26 and the support portion and the piezoelectric element. It has a structure that gives a restoring force to the entire element.
上述の通りに構成された発電装置20では、図3(b)に示す状態から図3(c)に示す状態に移行するように、支持部24に外力Fが作用すると、この外力Fが圧電素子全体を反転させることができる大きさである場合に、図3(c)に示すように、圧電素子全体は反転変形し、つるまきばね(コイルバネ)28は収縮変形する。このとき、圧電素子全体は急速に反転するために、個々の圧電素子21に起電力が生ずる。弾性体は、収縮変位し、変位が増大するとともに反発力が増加し、反転による変位は許容し、しかも反転後に圧電素子全体を逆方向に逆反転することができる。このような作用が可能な弾性率の弾性体を選定する。弾性体としては、バネ状弾性体以外にも、ゴム弾性球、座屈ばね、プラスチック球、つるまきばね(コイルバネ)、サラバネ、等が用いられる。これらを組み合わせて用いることもできる。 In the power generator 20 configured as described above, when the external force F acts on the support portion 24 so as to shift from the state shown in FIG. 3B to the state shown in FIG. 3C, the external force F is piezoelectric. When the size is such that the entire element can be reversed, the entire piezoelectric element is inverted and deformed, and the helical spring (coil spring) 28 is contracted and deformed, as shown in FIG. At this time, since the entire piezoelectric element is rapidly inverted, an electromotive force is generated in each piezoelectric element 21. The elastic body contracts and displaces, the displacement increases, the repulsive force increases, the displacement due to reversal is allowed, and the entire piezoelectric element can be reversed in the reverse direction after reversal. An elastic body having an elastic modulus capable of such an action is selected. In addition to the spring-like elastic body, a rubber elastic ball, a buckling spring, a plastic ball, a helical spring (coil spring), a flat spring, or the like is used as the elastic body. A combination of these can also be used.
つるまきばね(コイルバネ)28を使用した場合、圧電素子の反転後に、印加された外力Fが取り除かれ、つるまきばね(コイルバネ)に作用する力が一定の大きさよりも小さくなったときに、つるまきばね(コイルバネ)は元の形状に瞬時に戻ろうとする。その際、圧電素子全体も図3(b)に示す元の形状に戻る。このように、つるまきばね(コイルバネ)が元の形状に戻る際にも圧電素子全体の逆反転により、圧電素子全体は急激に撓み、これにより圧電素子全体に大きな電気エネルギーを発生させ、取り出すことができる。発電装置20の場合も発電装置10と同様に、個々の圧電素子21に別個の電気回路を用いる。発電装置20にあっては、図4は、別個のシム23を有する圧電素子21が、別個に電気エネルギーを取り出す回路を有し、前記回路が共通の整流回路に導かれている例と読み替えることができる。また、図5は、別個のシム23を有する圧電素子21からの電気エネルギーが、別個のブリッジ整流回路を用いて処理される例と読み替えることができる。このように処理を行うことが好ましい。これにより負荷や蓄電池等に逆の極性の電圧が印加されることを防止し、更に効率良く起電力を得ることができる。 When the helical spring (coil spring) 28 is used, when the applied external force F is removed after the piezoelectric element is reversed and the force acting on the helical spring (coil spring) becomes smaller than a certain magnitude, The spring (coil spring) tries to return to its original shape instantly. At that time, the entire piezoelectric element also returns to the original shape shown in FIG. Thus, even when the helical spring (coil spring) returns to its original shape, the entire piezoelectric element bends suddenly due to reverse reversal of the entire piezoelectric element, thereby generating and taking out large electric energy in the entire piezoelectric element. Can do. In the case of the power generation apparatus 20, as in the power generation apparatus 10, separate electric circuits are used for the individual piezoelectric elements 21. In the power generation device 20, FIG. 4 is read as an example in which the piezoelectric element 21 having the separate shim 23 has a circuit for taking out electric energy separately, and the circuit is led to a common rectifier circuit. Can do. FIG. 5 can also be read as an example where electrical energy from a piezoelectric element 21 having a separate shim 23 is processed using a separate bridge rectifier circuit. It is preferable to perform the treatment in this way. As a result, it is possible to prevent a reverse polarity voltage from being applied to a load, a storage battery or the like, and to obtain an electromotive force more efficiently.
図6は、図1における発電装置10の6基を支持部材34間に連接部39を5個設け、直列に積層した構造を有する。積層端部の発電装置10の支持部34の連接部39の反対面は、弾性体37に接し、別の積層端部の発電装置10の支持部34の連接部39の反対面は、押し棒38と接している。図6は、押し棒38の加圧により、各発電装置が反転し、弾性体37の復元力が増加している状態を表している。押し棒38の加圧力が小さくなると、弾性体37からの復元力で押し棒38が反対方向に復元することになる。加圧力の繰り返しによる押し棒38ひいては、支持部34の往復運動により、繰り返し発電がおこなわれる。 6 has a structure in which the six power generation devices 10 in FIG. 1 are provided with five connecting portions 39 between support members 34 and stacked in series. The opposite surface of the connecting portion 39 of the supporting portion 34 of the power generation device 10 at the stacked end is in contact with the elastic body 37, and the opposite surface of the connecting portion 39 of the supporting portion 34 of the power generating device 10 at the other stacked end is a push rod. It is in contact with 38. FIG. 6 shows a state in which each power generation device is inverted by pressurization of the push rod 38 and the restoring force of the elastic body 37 is increased. When the pressing force of the push bar 38 is reduced, the push bar 38 is restored in the opposite direction by the restoring force from the elastic body 37. Electric power is repeatedly generated by the reciprocating motion of the push bar 38 and the support portion 34 due to repeated pressurization.
図6は、図1における発電装置10において支持部16を円筒状支持部46とし、円中心部の支持部44に押し棒48を接するように設け、さらにこの押し棒48にスライド式隔壁49に接続した発電装置40である。円筒状支持部46は、円筒断面の内側円周部分にV字谷状等の溝切りをし、圧電素子の前記他の端部を受け入れ支持するものである。この場合、必要に応じて連結部45をワイアー等で構成することができる。スライド式隔壁49は、潮を引き入れるシリンダー50の一方の隔壁を形成する。図7の通り、シリンダー50の潮入り口から取り込まれた潮の量が増加すると、これに接するとじこめられた空気が圧縮しその圧縮力がスライド式隔壁49を押し上げる。この加圧力が、押し棒48、支持部44を介して伝達され、圧電素子全体が屈曲反転し発電する。シリンダー50の潮入り口から取り込まれた潮の量が減少すると、閉じ込められた空気が膨張し、圧力が減ずるため、スライド式隔壁49は、降下する。これにともない、押し棒48、支持部44は、降下して、圧電素子全体が逆方向に反転する。この往復運動により、発電が繰り返される。 FIG. 6 shows the power generating device 10 shown in FIG. 1 in which the support portion 16 is a cylindrical support portion 46 and a push bar 48 is provided in contact with the support portion 44 at the center of the circle. It is the connected power generator 40. The cylindrical support part 46 cuts a groove such as a V-shaped valley in the inner circumferential portion of the cylindrical cross section, and receives and supports the other end of the piezoelectric element. In this case, the connecting portion 45 can be configured with a wire or the like as necessary. The sliding partition 49 forms one partition of the cylinder 50 that draws in tide. As shown in FIG. 7, when the amount of tide taken from the tide entrance of the cylinder 50 increases, the air trapped in contact with this compresses and the compression force pushes up the sliding partition 49. This applied pressure is transmitted through the push rod 48 and the support portion 44, and the entire piezoelectric element is bent and inverted to generate power. When the amount of tide taken from the tide inlet of the cylinder 50 decreases, the trapped air expands and the pressure decreases, so that the sliding partition wall 49 descends. Along with this, the push rod 48 and the support portion 44 descend, and the entire piezoelectric element is reversed in the reverse direction. By this reciprocating motion, power generation is repeated.
本発明は、携帯電話、携帯型ゲーム機、ノート型パソコン等の携帯型電子機器から大型の潮力発電まで広範囲の用途に好適である。また、このような用途に限定されず自然の力または人的な設備等により振動が発生する場所のオンサイト発電装置としても好適である。 The present invention is suitable for a wide range of applications from portable electronic devices such as mobile phones, portable game machines, and notebook computers to large tidal power generation. Moreover, it is not limited to such a use, It is suitable also as an on-site electric power generating apparatus of the place where a vibration generate | occur | produces by natural force or human equipment.
10、10´、20、30、40;発電装置
11、 11a、11b、11c、21、31、41;圧電素子
12、22;圧電板
13、23、33;シム
14、24、34、44;支持部材(円中心側)
15、25、35、45;連結部
16、26、36、46;他の支持部材(円周側)
17;支持溝部
18、28;弾性体
19;連結部装着用弾性体
37;弾性体
38、48;押し棒
39;連接部
49;スライド式隔壁
50;シリンダー
10, 10 ', 20, 30, 40; power generator
11, 11a, 11b, 11c, 21, 31, 41; Piezoelectric element
12, 22: Piezoelectric plate
13, 23, 33; Sim
14, 24, 34, 44; support member (circular center side)
15, 25, 35, 45; connecting part
16, 26, 36, 46; Other support members (circumferential side)
17: Support groove
18, 28; elastic body
19; Elastic body for connecting parts
37; Elastic body
38, 48; push rod
39; articulated part
49; sliding partition
50; cylinder
Claims (4)
前記圧電素子の前記円中心部に近い端部を統合して支持する支持部と、
隣接する前記圧電素子の円周部の他端の間隔を狭めて、前記円を含む平面の同一側に屈曲させるように、前記圧電素子の前記他端を屈曲自在に支持する他の支持部と、
を含み、
前記ひとつの支持部を前記円に垂直な方向に前記他の支持部に対して相対的に往復運動をさせることにより、前記圧電素子の屈曲および前記円を含む平面の反対側への反転を繰り返して、発電することを特徴とする発電装置。 A piezoelectric element that is bonded to a plurality of rectangular or fan-shaped shims having substantially the same dimensions is assumed to have a radius of one circle in which the longitudinal direction of the rectangular piezoelectric element or the radial direction of the sector-shaped piezoelectric element is assumed. A piezoelectric device arranged in a direction,
A support portion that integrally supports an end portion of the piezoelectric element close to the circular center portion;
Another support portion that flexibly supports the other end of the piezoelectric element so that the other end of the circumferential portion of the adjacent piezoelectric element is narrowed and bent to the same side of the plane including the circle; ,
Including
By reciprocating the one support portion relative to the other support portion in a direction perpendicular to the circle, the piezoelectric element is repeatedly bent and inverted to the opposite side of the plane including the circle. And a power generation device characterized by generating power.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006017527A JP2007202293A (en) | 2006-01-26 | 2006-01-26 | Generating set |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006017527A JP2007202293A (en) | 2006-01-26 | 2006-01-26 | Generating set |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007202293A true JP2007202293A (en) | 2007-08-09 |
Family
ID=38456314
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006017527A Pending JP2007202293A (en) | 2006-01-26 | 2006-01-26 | Generating set |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007202293A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011066970A (en) * | 2009-09-15 | 2011-03-31 | Sumida Corporation | Piezoelectric generator |
JP2011152004A (en) * | 2010-01-22 | 2011-08-04 | Toyota Central R&D Labs Inc | Power generation unit and power generation devic |
JP2011233630A (en) * | 2010-04-26 | 2011-11-17 | Kyocera Corp | Power generation member and power generation device using the same |
KR101090053B1 (en) | 2009-06-24 | 2011-12-07 | 전자부품연구원 | Piezoelectric power generator |
JP2013509156A (en) * | 2009-10-27 | 2013-03-07 | コリア・ユニバーシティ・リサーチ・アンド・ビジネス・ファウンデーション | Piezoelectric nanodevice |
JP2013158118A (en) * | 2012-01-30 | 2013-08-15 | Mitsuba Corp | Power generation apparatus |
CN104993295A (en) * | 2015-06-22 | 2015-10-21 | 成都赋阳技术开发有限公司 | Multi-head electric power connecting device |
CN105391339A (en) * | 2014-09-01 | 2016-03-09 | 三星电机株式会社 | Piezoelectric energy harvester and wireless switch including the same |
KR20160026636A (en) * | 2014-09-01 | 2016-03-09 | 삼성전기주식회사 | Wireless Switch |
CN105391437A (en) * | 2014-09-01 | 2016-03-09 | 三星电机株式会社 | Wireless switch |
JP2017055594A (en) * | 2015-09-10 | 2017-03-16 | 大日本印刷株式会社 | Power generation device mounting structure and power generation method |
WO2017195499A1 (en) * | 2016-05-10 | 2017-11-16 | パナソニックIpマネジメント株式会社 | Power generation device |
-
2006
- 2006-01-26 JP JP2006017527A patent/JP2007202293A/en active Pending
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101090053B1 (en) | 2009-06-24 | 2011-12-07 | 전자부품연구원 | Piezoelectric power generator |
JP2011066970A (en) * | 2009-09-15 | 2011-03-31 | Sumida Corporation | Piezoelectric generator |
JP2013509156A (en) * | 2009-10-27 | 2013-03-07 | コリア・ユニバーシティ・リサーチ・アンド・ビジネス・ファウンデーション | Piezoelectric nanodevice |
JP2011152004A (en) * | 2010-01-22 | 2011-08-04 | Toyota Central R&D Labs Inc | Power generation unit and power generation devic |
JP2011233630A (en) * | 2010-04-26 | 2011-11-17 | Kyocera Corp | Power generation member and power generation device using the same |
JP2013158118A (en) * | 2012-01-30 | 2013-08-15 | Mitsuba Corp | Power generation apparatus |
CN105391437A (en) * | 2014-09-01 | 2016-03-09 | 三星电机株式会社 | Wireless switch |
CN105391339A (en) * | 2014-09-01 | 2016-03-09 | 三星电机株式会社 | Piezoelectric energy harvester and wireless switch including the same |
KR20160026636A (en) * | 2014-09-01 | 2016-03-09 | 삼성전기주식회사 | Wireless Switch |
KR101701031B1 (en) * | 2014-09-01 | 2017-02-01 | 삼성전기주식회사 | Wireless Switch |
CN104993295A (en) * | 2015-06-22 | 2015-10-21 | 成都赋阳技术开发有限公司 | Multi-head electric power connecting device |
JP2017055594A (en) * | 2015-09-10 | 2017-03-16 | 大日本印刷株式会社 | Power generation device mounting structure and power generation method |
WO2017195499A1 (en) * | 2016-05-10 | 2017-11-16 | パナソニックIpマネジメント株式会社 | Power generation device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007202293A (en) | Generating set | |
JP3768520B1 (en) | Power generator | |
RU2705647C2 (en) | Actuating or sensor device based on electroactive polymer | |
JP5479659B2 (en) | Electroactive polymer generator powered by a living body | |
US8072121B2 (en) | Electroactive polymer transducers biased for optimal output | |
US20220109097A1 (en) | Piezoelectric actuator and microfluidic device | |
US7888846B2 (en) | Actuator | |
JP5386893B2 (en) | Piezoelectric generator | |
US20090161239A1 (en) | Camera diaphragm and lens positioning system employing a dielectrical polymer actuator | |
JP2005312269A (en) | Power generation method by vibration, vibration generator, and vibration generation device | |
WO2015126928A1 (en) | Electroactive polymer actuator with improved performance | |
JP2006262575A (en) | Generator | |
JP6657376B2 (en) | Vibration presentation device | |
JP2012191787A (en) | Power generation device | |
JP2007166881A (en) | Electric power generating apparatus | |
EP1394868A1 (en) | Piezoelectric generator | |
JP5129998B2 (en) | Electrostrictive element | |
JP2006216898A (en) | Piezoelectric generator | |
CN107408622B (en) | Piezoelectric generator, button, radio module and the method for manufacturing piezoelectric generator | |
JPWO2018056059A1 (en) | Piezoelectric generator, piezoelectric generator module and transmitter | |
JP2011024397A (en) | Piezoelectric generator | |
JP2009273201A (en) | Electric power generating apparatus using electroactive polymer | |
KR101544834B1 (en) | piezo-electric vibrator | |
Chiba et al. | Examination of factors to improve the performance of dielectric elastomer transducers and their applications | |
KR101789170B1 (en) | Piezoelectric actuator for electrical device |