JP2005081379A - Arc welder - Google Patents

Arc welder Download PDF

Info

Publication number
JP2005081379A
JP2005081379A JP2003316132A JP2003316132A JP2005081379A JP 2005081379 A JP2005081379 A JP 2005081379A JP 2003316132 A JP2003316132 A JP 2003316132A JP 2003316132 A JP2003316132 A JP 2003316132A JP 2005081379 A JP2005081379 A JP 2005081379A
Authority
JP
Japan
Prior art keywords
power
circuit
main
input current
main transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003316132A
Other languages
Japanese (ja)
Inventor
Kiyoshi Kusano
潔 草野
Masashi Horii
正志 堀井
Katsumi Nishimura
克己 西村
Junji Setoguchi
淳二 瀬戸口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP2003316132A priority Critical patent/JP2005081379A/en
Publication of JP2005081379A publication Critical patent/JP2005081379A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that, in an arc welder provided with a plurality of main transformers arranged in parallel, when a difference arises in electric current flowing in the main transformers, the current flows biasedly to one side and a transformer bearing a larger load is burnt due to overloading. <P>SOLUTION: In an arc welder, 1st and 2nd main transformers are arranged in parallel and connected to a commercial AC power source, 1st and 2nd power main circuits are connected to the secondary sides of the 1st and 2nd main transformers to rectify a secondary voltage and to conduct power control, a power control circuit controls an output of the 1st and 2nd power main circuits according to a set value of output current, and a DC reactor smoothes the output. In the arc welder, there are provided an electric current difference detecting circuit, which calculates a difference value of input current of the 1st and 2nd main transformers, and a warning circuit, which determining that a uniform state of the input current of the 1st and 2nd main transformers is collapsed when the calculated value is a reference value or more, stops the operation of the power control circuit, and which determining that the uniform state is kept when the calculated value is smaller than the reference value, actuates the operation of the power control circuit. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、主変圧器を複数並列接続し、上記並列接続した各主変圧器の入力電流の差分を算出し、上記算出した差分値が予め定めた基準値を越えたときに出力を停止するアーク溶接機に関するものである。   The present invention connects a plurality of main transformers in parallel, calculates the difference between the input currents of the main transformers connected in parallel, and stops the output when the calculated difference value exceeds a predetermined reference value. The present invention relates to an arc welding machine.

従来では、図8に示すように商用交流電源に接続して入力開閉する第1の主回路開閉器MS1及び第2の主回路開閉器MS2と、上記第1の主回路開閉器MS1に接続され商用交流電源をアーク溶接に適した電圧に変換する第1の主変圧器INT1と、上記第2の主回路開閉器MS2に接続され商用交流電源をアーク溶接に適した電圧に変換する第2の主変圧器INT2と、上記第1の主変圧器INT1の2次側に接続され1次側電圧を整流及び電力制御する第1の電力主回路SCR1と、上記第2の主変圧器INT2の2次側に接続され2次側電圧を整流及び電力制御する第2の電力主回路SCR2と、商用交流電源を投入する指令信号を制御する電源投入スイッチSW1と、上記電源投入スイッチSW1がオンになって上記商用交流電源が入力すると直ちに第1の開閉器駆動信号Mf1を出力して上記第1の主回路開閉器MS1を閉路し、その後、予め定めた開閉器遅れ時間が経過した後に第2の開閉器駆動信号Mf2を出力して上記第2の主回路開閉器MS2を閉路させる開閉器制御回路MKTと、外部から起動信号Tsが入力すると上記第1の電力主回路SCR1及び上記第2の電力主回路SCR2の出力を制御する電力制御回路SCTと、上記第1の電力主回路SCR1及び前記第2の電力主回路SCR2の出力側に接続され出力を平滑する直流リアクトルDCLとを具備している。   Conventionally, as shown in FIG. 8, the first main circuit switch MS1 and the second main circuit switch MS2 that are connected to a commercial AC power source to open and close the input and the first main circuit switch MS1 are connected. A first main transformer INT1 that converts a commercial AC power source into a voltage suitable for arc welding, and a second main transformer INT2 that is connected to the second main circuit switch MS2 and converts the commercial AC power source into a voltage suitable for arc welding. A main transformer INT2, a first power main circuit SCR1 connected to the secondary side of the first main transformer INT1 and rectifying and controlling the primary side voltage; and 2 of the second main transformer INT2 The second power main circuit SCR2, which is connected to the secondary side and rectifies and power-controls the secondary side voltage, the power-on switch SW1 that controls the command signal to turn on the commercial AC power, and the power-on switch SW1 are turned on. The above commercial AC power supply As soon as it is input, the first switch drive signal Mf1 is output to close the first main circuit switch MS1, and then the second switch drive signal Mf2 is output after a predetermined switch delay time elapses. A switch control circuit MKT that outputs and closes the second main circuit switch MS2, and outputs of the first power main circuit SCR1 and the second power main circuit SCR2 when an activation signal Ts is input from the outside. A power control circuit SCT to be controlled and a DC reactor DCL connected to the output side of the first power main circuit SCR1 and the second power main circuit SCR2 to smooth the output are provided.

また、上記開閉器制御回路MKTは、上記第1の開閉器駆動信号Mf1及び上記第2の開閉器駆動信号Mf2の順に出力し、上記第2の開閉器駆動信号Mf2が出力した後、予め定めた時間T2が経過した後に電力制御回路開始信号Mscを出力し、上記電力制御回路SCTは、上記電力制御回路開始信号Msc及び上記起動信号Tsのどちらも入力されると上記第1の電力主回路SCR1及び上記第2の電力主回路SCR2の出力を制御する。上述より、商用交流電源が投入されたとき励磁突入電流が時分割されて流れるので、上記励磁突入電流の値を小さくできる。しかし、並列運転しているにもかかわらず、その合成出力電流は一方の主変圧器に偏って流れる傾向が強くなると、過負荷となって焼損を起こしてしまう。   The switch control circuit MKT outputs the first switch drive signal Mf1 and the second switch drive signal Mf2 in this order, and after the second switch drive signal Mf2 is output, the switch control circuit MKT determines in advance. When the time T2 has elapsed, the power control circuit start signal Msc is output, and the power control circuit SCT receives the first power main circuit when both the power control circuit start signal Msc and the start signal Ts are input. The outputs of SCR1 and the second power main circuit SCR2 are controlled. As described above, since the magnetizing inrush current flows in a time-sharing manner when the commercial AC power is turned on, the value of the magnetizing inrush current can be reduced. However, if the combined output current tends to flow biased to one of the main transformers in spite of parallel operation, it becomes overloaded and burns out.

特願平2002−341696号公報Japanese Patent Application No. 2002-341696

主変圧器及び電力主回路を複数個並列してなるアーク溶接機において、電力主回路のサイリスタ素子等の不良によって上記各主変圧器に流れる電流に差が生じ、並列運転しているにもかかわらず、その合成出力電流は一方の主変圧器に偏って流れる傾向が強くなると、負荷の大きい方が過負荷となって焼損したりする。   In an arc welding machine with a plurality of main transformers and power main circuits in parallel, a difference occurs in the currents flowing through the main transformers due to defects in the thyristor elements etc. of the power main circuit, even though they are operating in parallel. However, if the combined output current has a strong tendency to flow biased to one of the main transformers, the larger load becomes overloaded and burns out.

上述した課題を解決するために、第1の発明は、商用交流電源に接続してアーク溶接に適した電圧に変換する第1の主変圧器INT1と、上記商用交流電源に接続し上記第1の主変圧器INT1に並列に配設して上記商用交流電源をアーク溶接に適した電圧に変換する第2の主変圧器INT2と、上記第1の主変圧器INT1の2次側に接続され2次側電圧を整流及び電力制御するスイッチング素子からなる第1の電力主回路SCR1と、上記第2の主変圧器INT2の2次側に接続され2次側電圧を整流及び電力制御するスイッチング素子からなる第2の電力主回路SCR2と、外部から起動信号Tsがオンすると動作を開始し予め定めた出力電流設定値Rvの値に応じて上記第1の電力主回路SCR1及び上記第2の電力主回路SCR2の出力を制御する電力制御回路SCと、上記第1の電力主回路SCR1の出力と上記第2の電力主回路SCR2の出力とを接続し直流リアクトルDCLによって平滑するアーク溶接機において、上記第1の主変圧器INT1の1次側入力電流i1と上記第2の主変圧器INT2の1次側入力電流i2との差分値(i1−i2)を算出して電流差分検出信号Wcとして出力する電流差分検出回路と、上記電流差分検出信号Wcの値が予め定めた基準値Ir以上のとき上記第1の主変圧器INT1と上記第2の主変圧器INT2との1次側入力電流の均一状態が崩れたと判別して入力電流警報信号Cpを出力して上記電力制御回路SCの動作を停止させ、上記電流差分検出信号Wcの値が上記基準値Ir未満のとき上記1次側入力電流が均一状態にあると判別して入力電流警報信号Cpの出力を停止させ上記電力制御回路SCの動作を継続させる入力電流警報回路CPとを備えたことを特徴とするアーク溶接機である。   In order to solve the above-mentioned problems, the first invention is connected to a commercial AC power source and converted to a voltage suitable for arc welding, and connected to the commercial AC power source and the first main transformer INT1. The main transformer INT1 is connected in parallel to the second main transformer INT2 for converting the commercial AC power source into a voltage suitable for arc welding, and is connected to the secondary side of the first main transformer INT1. A first power main circuit SCR1 composed of a switching element for rectifying and controlling the power of the secondary side voltage, and a switching element connected to the secondary side of the second main transformer INT2 for rectifying and controlling the power of the secondary side voltage When the activation signal Ts is turned on from the outside, the operation starts and the first power main circuit SCR1 and the second power according to the predetermined output current set value Rv are started. Main circuit SCR2 In the arc welding machine for connecting the output of the power control circuit SC for controlling the output, the output of the first power main circuit SCR1 and the output of the second power main circuit SCR2, and smoothing by the DC reactor DCL, the first A current difference which calculates a difference value (i1-i2) between the primary side input current i1 of the main transformer INT1 and the primary side input current i2 of the second main transformer INT2 and outputs it as a current difference detection signal Wc When the value of the detection circuit and the current difference detection signal Wc is greater than or equal to a predetermined reference value Ir, the uniform state of the primary input currents of the first main transformer INT1 and the second main transformer INT2 is It is determined that it has collapsed, the input current alarm signal Cp is output, the operation of the power control circuit SC is stopped, and the primary side input current is in a uniform state when the value of the current difference detection signal Wc is less than the reference value Ir. There a determination to stop the output of the input current alarm signal Cp is an arc welder, characterized in that an input current alarm circuit CP to continue the operation of the power control circuit SC.

また、第2の発明は、上記電流差分検出回路は、入力電流検出器Ctに上記第1の主変圧器INT1の1次側配線U相を遊挿させ、上記第2の主変圧器INT2の1次側配線U相を前記遊挿させた配線と逆方向に遊挿させて1次側入力電流iの差分値(i1−i2)を算出することを特徴とする請求項1記載のアーク溶接機である。   In the second invention, the current difference detection circuit causes the primary current U phase of the first main transformer INT1 to be loosely inserted into the input current detector Ct, and the second main transformer INT2 The arc welding according to claim 1, wherein a difference value (i1-i2) of the primary side input current i is calculated by loosely inserting a primary side wiring U phase in a direction opposite to the loosely inserted wiring. Machine.

第1の発明及び第2の発明のアーク溶接機では、複数の主変圧器を並列接続し、その各入力電流の差分値を逐次監視して、一方の主変圧器に偏って電流が流れると、異常と判別して動作を停止するために、上記主変圧器等の過負荷となって焼損するのを防止できる。   In the arc welding machines of the first and second inventions, when a plurality of main transformers are connected in parallel, the difference values of the respective input currents are sequentially monitored, and current flows biased to one of the main transformers. In order to stop the operation after determining that it is abnormal, it is possible to prevent the main transformer or the like from being overloaded and burned out.

[実施の形態1]
図1は、本発明のアーク溶接機の電気接続図であり、第1の電力主回路SCR1と第2の電力主回路SCR2とを出力制御素子(サイリスタ素子及びチョッパ用トランジスタ等からなるスイッチング素子)として、溶接トーチTHと被加工物CWとの間に発生するアーク負荷に対して直流電力を供給するアーク溶接機である。図1において、第1の主変圧器INT1と第2の主変圧器INT2と(例えば、定格1000A)を並列に配設して、上記第1の主変圧器INT1及び第2の主変圧器INT2の2次側には第1の電力主回路SCR1及び第2の電力主回路SCR2を接続し、上記第1の電力主回路SCR1及び第2の電力主回路SCR2の出力に直流リアクトルDCLを接続して主回路部を形成している。
[Embodiment 1]
FIG. 1 is an electrical connection diagram of the arc welder of the present invention, in which a first power main circuit SCR1 and a second power main circuit SCR2 are output control elements (switching elements composed of thyristor elements, chopper transistors, and the like). As an arc welding machine for supplying DC power to an arc load generated between the welding torch TH and the workpiece CW. In FIG. 1, a first main transformer INT1 and a second main transformer INT2 (for example, rated at 1000 A) are arranged in parallel, and the first main transformer INT1 and the second main transformer INT2 are arranged. The first power main circuit SCR1 and the second power main circuit SCR2 are connected to the secondary side of the first power main circuit SCR2, and a DC reactor DCL is connected to the outputs of the first power main circuit SCR1 and the second power main circuit SCR2. Main circuit portion is formed.

図1に示す第1の主変圧器INT1と第2の主変圧器INT2とは、商用交流電源をアーク溶接に適した電圧に変換する。また、第1の電力主回路SCR1は上記第1の主変圧器INT1の2次側電圧を整流及び電力制御し、第2の電力主回路SCR2は、上記第2の主変圧器INT2の2次側電圧を整流及び電力制御する。   The first main transformer INT1 and the second main transformer INT2 shown in FIG. 1 convert the commercial AC power source into a voltage suitable for arc welding. The first power main circuit SCR1 rectifies and power-controls the secondary side voltage of the first main transformer INT1, and the second power main circuit SCR2 controls the secondary voltage of the second main transformer INT2. Side voltage is rectified and power controlled.

出力電流設定回路RVは予め定めた出力電流設定値Rvを設定して出力し、起動スイッチTSは起動信号Tsをオン、オフ制御する。また、主制御回路部MCは、図2に示す入力電流警報回路CP、基準値設定回路IR及び電力制御回路SCによって形成している。   The output current setting circuit RV sets and outputs a predetermined output current set value Rv, and the start switch TS controls the start signal Ts on and off. The main control circuit MC is formed by the input current alarm circuit CP, the reference value setting circuit IR, and the power control circuit SC shown in FIG.

電流差分検出回路は、入力電流検出器CTと全波整流回路WCとで形成され、上記入力電流検出器CTは、第1の主変圧器INT1の入力側の1つの相(例えば、U相)入力電流i1と第2の主変圧器INT2の入力側の1つの相(例えば、U相)の入力電流i2との差分を算出して入力電流検出信号Ctとして出力する。また、上記全波整流回路WCは上記入力電流検出信号Ctを全波整流して電流差分検出信号Wcとして出力する。   The current difference detection circuit is formed by an input current detector CT and a full-wave rectifier circuit WC, and the input current detector CT is one phase (for example, U phase) on the input side of the first main transformer INT1. The difference between the input current i1 and the input current i2 of one phase (for example, U phase) on the input side of the second main transformer INT2 is calculated and output as the input current detection signal Ct. The full-wave rectifier circuit WC performs full-wave rectification on the input current detection signal Ct and outputs it as a current difference detection signal Wc.

図2に示す入力電流警報回路CPは、起動信号Tsがオンすると動作を開始し、電流差分検出信号Wcの値と基準値設定回路IRによって予め定めた基準値Irとを比較し、上記電流差分検出信号Wcの値が上記基準値Ir未満であれば、第1の主変圧器INT1の入力電流i1と第2の主変圧器INT2の入力電流i2とが均一状態(i1=i2)にあると判別して入力電流警報信号CpをLowレベルにし、上記電流差分検出信号Wcの値が上記基準値Ir以上のとき均一状態が崩れたと判別して入力電流警報信号CpをHighレベルにして出力する。   The input current alarm circuit CP shown in FIG. 2 starts to operate when the activation signal Ts is turned on, compares the value of the current difference detection signal Wc with the reference value Ir predetermined by the reference value setting circuit IR, and compares the current difference. If the value of the detection signal Wc is less than the reference value Ir, the input current i1 of the first main transformer INT1 and the input current i2 of the second main transformer INT2 are in a uniform state (i1 = i2). The input current alarm signal Cp is set to the Low level, and when the value of the current difference detection signal Wc is equal to or greater than the reference value Ir, it is determined that the uniform state has collapsed, and the input current alarm signal Cp is set to the High level and output.

電力制御回路SCは、起動信号Tsがオンすると動作を開始し、出力電流設定値Rvの値に応じて第1の電力制御信号Sc1と第2の電力制御信号Sc2とを出力制御する。また、入力電流警報信号CpがHighレベルになると上記第1の電力制御信号Sc1及び第2の電力制御信号Sc2の出力を停止する。   The power control circuit SC starts operating when the activation signal Ts is turned on, and performs output control of the first power control signal Sc1 and the second power control signal Sc2 according to the value of the output current set value Rv. Further, when the input current alarm signal Cp becomes High level, the output of the first power control signal Sc1 and the second power control signal Sc2 is stopped.

図1に示す第1の電力主駆動回路SD1は第1の電力制御信号Sc1をレベル変換し、第1の電力主駆動信号Sd1として出力し第1の電力主回路SCR1を電力制御する。また、第2の電力主駆動回路SD2は第2の電力制御信号Sc2をレベル変換し、第2の電力主駆動信号Sd2として出力し第2の電力主回路SCR2を電力制御する。   The first power main drive circuit SD1 shown in FIG. 1 converts the level of the first power control signal Sc1, outputs it as the first power main drive signal Sd1, and controls the power of the first power main circuit SCR1. The second power main drive circuit SD2 converts the level of the second power control signal Sc2, outputs it as the second power main drive signal Sd2, and controls the power of the second power main circuit SCR2.

図3は、図1に示す入力電流検出器CTの詳細図である。上記入力電流検出器CTは、第1の主変圧器INT1の1次側配線(例えば U相)を遊挿させて入力電流i1を検出し、第2の主変圧器INT2の1次側配線(例えば U相)を前記と逆方向に遊挿させて反転した入力電流i2を検出し、前記検出した入力電流の差分値が均一状態にあると、i1=i2の関係が成立する。よって、入力電流検出器CTの差分値はi1−i2=0となり、入力電流検出信号Ctの値は0として出力する。   FIG. 3 is a detailed view of the input current detector CT shown in FIG. The input current detector CT detects the input current i1 by loosely inserting the primary side wiring (for example, U phase) of the first main transformer INT1, and detects the primary side wiring ( For example, when the input current i2 that is reversed by loose insertion of the U phase in the opposite direction is detected and the difference value of the detected input current is in a uniform state, the relationship of i1 = i2 is established. Therefore, the difference value of the input current detector CT is i1-i2 = 0, and the value of the input current detection signal Ct is output as 0.

図1に示す本発明の動作を図4の波形タイミング図を参照して説明する。図4(A)は第1の主変圧器INT1のU相の入力電流波形i1を示し、図4(B)は第2の主変圧器INT2のU相の入力電流波形i2の反転した波形を示す。図4(C)は、入力電流検出信号Ctを示し、図4(D)は、入力電流検出信号Ctを全波整流した電流差分検出信号Wcを示し、図4(E)は起動信号Tsを示し、図4(F)は入力電流警報信号Cpを示し、図4(G)は第1の電力制御信号Sc1を示し、図4(H)は第2の電力制御信号Sc2を示す。   The operation of the present invention shown in FIG. 1 will be described with reference to the waveform timing chart of FIG. 4A shows the U-phase input current waveform i1 of the first main transformer INT1, and FIG. 4B shows the inverted waveform of the U-phase input current waveform i2 of the second main transformer INT2. Show. 4 (C) shows the input current detection signal Ct, FIG. 4 (D) shows the current difference detection signal Wc obtained by full-wave rectification of the input current detection signal Ct, and FIG. 4 (E) shows the start signal Ts. 4 (F) shows the input current alarm signal Cp, FIG. 4 (G) shows the first power control signal Sc1, and FIG. 4 (H) shows the second power control signal Sc2.

図4に示す時刻t=t1において、起動信号Tsがオンすると、図4(A)に示す入力電流波形i1と図4(B)に示す反転した入力電流波形i2とが入力電流検出器CTによって検出され、上記入力電流検出器CTは上記入力電流波形i1と上記入力電流波形i2との差分値(i1−i2)を求めて、図4(C)に示す入力電流検出信号Ctとして出力する。また、全波整流回路WCは上記入力電流検出信号Ctを全波整流して電流差分検出信号Wcとして出力する。   When the activation signal Ts is turned on at time t = t1 shown in FIG. 4, the input current waveform i1 shown in FIG. 4A and the inverted input current waveform i2 shown in FIG. The input current detector CT detects the difference value (i1-i2) between the input current waveform i1 and the input current waveform i2, and outputs it as an input current detection signal Ct shown in FIG. The full-wave rectifier circuit WC performs full-wave rectification on the input current detection signal Ct and outputs it as a current difference detection signal Wc.

入力電流警報回路CPは、電流差分検出信号Wcの値と基準値設定回路IRによって設定された基準値Irとを比較し、上記電流差分検出信号Wcの値が上記基準値Ir未満のために、第1の主変圧器INT1の入力電流i1と第2の主変圧器INT2の入力電流i2とが均一状態にあると判別して入力電流警報信号CpをLowレベルにする。   The input current alarm circuit CP compares the value of the current difference detection signal Wc with the reference value Ir set by the reference value setting circuit IR, and because the value of the current difference detection signal Wc is less than the reference value Ir, It is determined that the input current i1 of the first main transformer INT1 and the input current i2 of the second main transformer INT2 are in a uniform state, and the input current alarm signal Cp is set to the low level.

電力制御回路SCは、入力電流警報信号CpがLowレベルで起動信号がオンのとき、動作を行い、出力電流設定値Rvに応じて、図4(G)に示す第1の電力制御信号Sc1と図4(H)に示す第2の電力制御信号Sc2とを出力制御する。また、第1の電力主駆動回路SD1は、上記第1の電力制御信号Sc1が入力するとレベル変換し、第1の電力主駆動信号Sd1として出力し第1の電力主回路SCR1を電力制御し、第2の電力主駆動回路SD2は、第2の電力制御信号Sc2が入力するとレベル変換し、第2の電力主駆動信号Sd2として出力し第2の電力主回路SCR2を電力制御する。   The power control circuit SC operates when the input current alarm signal Cp is at the low level and the activation signal is on, and according to the output current set value Rv, the first power control signal Sc1 shown in FIG. Output control of the second power control signal Sc2 shown in FIG. Further, the first power main drive circuit SD1 performs level conversion when the first power control signal Sc1 is input, and outputs the first power main drive signal Sd1 to control the power of the first power main circuit SCR1, When the second power control signal Sc2 is input, the second power main drive circuit SD2 performs level conversion and outputs the second power main drive signal Sd2 to control the power of the second power main circuit SCR2.

時刻t=t2において、図4(A)に示す入力電流i1と図4(B)に示す反転された入力電流i2との均一が崩れると、図4(D)に示す電流差分検出信号Wcが増加する。その結果、時刻t=t3において、上記電流差分検出信号Wcの値が上記基準値Irを越えると入力電流警報回路CPは、第1の主変圧器INT1の入力電流と第2の主変圧器INT2の入力電流との均一状態が崩れたと判別して入力電流警報信号CpをHighレベルにして出力する。   At time t = t2, when the uniformity of the input current i1 shown in FIG. 4A and the inverted input current i2 shown in FIG. 4B is lost, the current difference detection signal Wc shown in FIG. To increase. As a result, when the value of the current difference detection signal Wc exceeds the reference value Ir at time t = t3, the input current alarm circuit CP determines that the input current of the first main transformer INT1 and the second main transformer INT2 It is determined that the uniform state with the input current of the input current has collapsed, and the input current alarm signal Cp is set to High level and output.

電力制御回路SCは、入力電流警報信号CpがHighレベルになると、図4(G)に示す第1の電力制御信号Sc1及び図4(H)に示す第2の電力制御信号Sc2の出力を停止する。また、異常表示ランプLEDは、入力電流警報信号CpがHighレベルになると点燈する。続いて、入力電流警報回路CPは、起動信号Tsがオフになると上記入力電流警報信号CpをLowレベルにして上記異常表示ランプLEDを消灯させる。   When the input current alarm signal Cp becomes High level, the power control circuit SC stops outputting the first power control signal Sc1 shown in FIG. 4 (G) and the second power control signal Sc2 shown in FIG. 4 (H). To do. Further, the abnormality display lamp LED is turned on when the input current alarm signal Cp becomes High level. Subsequently, when the activation signal Ts is turned off, the input current alarm circuit CP sets the input current alarm signal Cp to Low level and turns off the abnormality display lamp LED.

時刻t=t4において、図4(D)に示す起動信号Tsがオフになると、上記入力電流警報回路CP及び電力制御回路SCは動作を停止し、各出力信号をLowレベルにする。   When the activation signal Ts shown in FIG. 4D is turned off at time t = t4, the input current alarm circuit CP and the power control circuit SC stop operating, and each output signal is set to a low level.

上述では、商用交流電源のU相の入力電流を使用しているが、V相及びW相を使用してもよい。また、図2に示す入力電流警報回路CPは、起動信号Tsのオン、オフに関係なく動作を行い、上記電流差分検出信号Wcの値が上記基準値Ir以上のとき入力電流警報信号CpをHighレベルにして出力してもよい。   In the above description, the U-phase input current of the commercial AC power supply is used, but the V-phase and the W-phase may be used. Also, the input current alarm circuit CP shown in FIG. 2 operates regardless of whether the activation signal Ts is on or off. When the value of the current difference detection signal Wc is equal to or higher than the reference value Ir, the input current alarm signal Cp is set to High. It may be output as a level.

[実施の形態2]
図5は、第2の実施の形態のアーク溶接機の電気接続図である。同図において、図1に示す本発明のアーク溶接機の電気接続図と同一符号は、同一動作を行なうので相違する点について説明する。
[Embodiment 2]
FIG. 5 is an electrical connection diagram of the arc welder according to the second embodiment. In the figure, the same reference numerals as those in the electrical connection diagram of the arc welder of the present invention shown in FIG.

図5に示す第1の電力主回路SCR1、第2の電力主回路SCR2及び第3の電力主回路SCR3は、出力制御素子(サイリスタ素子及びチョパ用トランジスタ等からなるスイッチング素子)として溶接トーチTHと被加工物CWとの間に発生するアーク負荷に対し、直流電力を供給する。図5において、第1の主変圧器INT1、第2の主変圧器INT2及び第3の主変圧器INT3(例えば、定格1000A)を複数並列に配設し、上記第1の主変圧器INT1、第2の主変圧器INT2及第3の主変圧器INT3の2次側には第1の電力主回路SCR1、第2の電力主回路SCR2及び第3の電力主回路SCR3を接続し、上記第1の電力主回路SCR1、第2の電力主回路SCR2及び第3の電力主回路SCR3の出力に直流リアクトルDCLを接続して主回路部を形成している。   The first power main circuit SCR1, the second power main circuit SCR2, and the third power main circuit SCR3 shown in FIG. 5 are connected to the welding torch TH as an output control element (a switching element including a thyristor element and a chopper transistor). DC power is supplied to the arc load generated between the workpiece CW. In FIG. 5, a plurality of first main transformers INT1, second main transformers INT2, and third main transformers INT3 (for example, rated at 1000A) are arranged in parallel, and the first main transformers INT1, A first power main circuit SCR1, a second power main circuit SCR2, and a third power main circuit SCR3 are connected to the secondary side of the second main transformer INT2 and the third main transformer INT3, A DC reactor DCL is connected to the outputs of one power main circuit SCR1, second power main circuit SCR2, and third power main circuit SCR3 to form a main circuit section.

図6に示す第2の主制御回路部MC2は、入力電流警報回路CP、基準値設定回路IR及び第2の電力制御回路SC2によって形成している。   The second main control circuit unit MC2 shown in FIG. 6 is formed by an input current alarm circuit CP, a reference value setting circuit IR, and a second power control circuit SC2.

図7に示す第2の入力電流検出器CT2は、第1の主変圧器INT1の入力電流i1を2倍に増幅した2i2と第2の主変圧器INT2の入力電流i2と第3の主変圧器INT3の入力電流i3との差分値(2i1−i2−i3)を算出して第2の入力電流検出信号Ct2として出力する。また、第2の電流差分検出回路は上記第2の入力電流検出器CT2と全波整流回路WCとで形成され、上記全波整流回路WCは上記第2の入力電流検出信号Ct2を全波整流して電流差分検出信号Wcとして出力する。   The second input current detector CT2 shown in FIG. 7 includes 2i2 obtained by doubling the input current i1 of the first main transformer INT1, the input current i2 of the second main transformer INT2, and the third main transformer. The difference value (2i1-i2-i3) from the input current i3 of the device INT3 is calculated and output as the second input current detection signal Ct2. The second current difference detection circuit is formed by the second input current detector CT2 and the full wave rectification circuit WC, and the full wave rectification circuit WC performs the full wave rectification on the second input current detection signal Ct2. And output as a current difference detection signal Wc.

図6に示す入力電流警報回路CPは、起動信号Tsが入力すると動作を開始し、電流差分検出信号Wcの値と基準値設定回路IRによって予め定めた基準値Irとを比較し、上記電流差分検出信号Wcの値が上記基準値Ir未満であれば、第1の主変圧器INT1の入力電流i1と第2の主変圧器INT2の入力電流i2及び第3の主変圧器INT3の入力電流i3とが均一状態にあると判別して入力電流警報信号CpをLowレベルにし、上記電流差分検出信号Wcの値が上記基準値Ir以上のとき均一状態が崩れたと判別して入力電流警報信号CpをHighレベルにして出力する。   The input current alarm circuit CP shown in FIG. 6 starts to operate when the activation signal Ts is input, compares the value of the current difference detection signal Wc with the reference value Ir predetermined by the reference value setting circuit IR, and compares the current difference. If the value of the detection signal Wc is less than the reference value Ir, the input current i1 of the first main transformer INT1, the input current i2 of the second main transformer INT2, and the input current i3 of the third main transformer INT3. Is determined to be in a uniform state, the input current alarm signal Cp is set to a low level, and when the value of the current difference detection signal Wc is equal to or greater than the reference value Ir, it is determined that the uniform state has collapsed and the input current alarm signal Cp is determined. Output at High level.

第2の電力制御回路SC2は、起動信号Tsが入力すると動作を開始し、出力電流設定値Rvに応じて第1の電力制御信号Sc1、第2の電力制御信号Sc2及び第3の電力制御信号Sc3を出力制御する。また、入力電流警報信号CpがHighレベルになると上記第1の電力制御信号Sc1、第2の電力制御信号Sc2及び第3の電力制御信号Sc3の出力を停止する。   The second power control circuit SC2 starts to operate when the activation signal Ts is input, and the first power control signal Sc1, the second power control signal Sc2, and the third power control signal according to the output current set value Rv. Output control of Sc3 is performed. Further, when the input current alarm signal Cp becomes High level, the output of the first power control signal Sc1, the second power control signal Sc2, and the third power control signal Sc3 is stopped.

図5に示す第1の電力主駆動回路SD1は第1の電力制御信号Sc1をレベル変換して、第1の電力主駆動信号Sd1として出力し第1の電力主回路SCR1を電力制御し、第2の電力主駆動回路SD2は第2の電力制御信号Sc2をレベル変換して、第2の電力主駆動信号Sd2として出力し第2の電力主回路SCR2を電力制御し、第3の電力主駆動回路SD3は第3の電力制御信号Sc3をレベル変換して、第3の電力主駆動信号Sd3として出力し第3の電力主回路SCR3を電力制御する。また、上述の主変圧器を4台以上並列に配設するのもよい。   The first power main drive circuit SD1 shown in FIG. 5 performs level conversion on the first power control signal Sc1, outputs it as the first power main drive signal Sd1, and controls the power of the first power main circuit SCR1. The second power main drive circuit SD2 converts the level of the second power control signal Sc2, outputs it as the second power main drive signal Sd2, controls the power of the second power main circuit SCR2, and performs the third power main drive. The circuit SD3 converts the level of the third power control signal Sc3 and outputs it as a third power main drive signal Sd3 to control the power of the third power main circuit SCR3. It is also possible to arrange four or more main transformers in parallel.

本発明のアーク溶接機の電気接続図である。It is an electrical connection diagram of the arc welder of the present invention. 図1に示す、主制御回路の詳細回路図である。It is a detailed circuit diagram of the main control circuit shown in FIG. 図1に示す、入力電流検出器の詳細構成図である。It is a detailed block diagram of the input current detector shown in FIG. 本発明のアーク溶接機の動作を説明するための波形タイミング図である。It is a waveform timing diagram for demonstrating operation | movement of the arc welder of this invention. 第2の実施の形態のアーク溶接機の電気接続図である。It is an electrical connection figure of the arc welder of 2nd Embodiment. 図5に示す、第2の主制御回路の詳細回路図である。FIG. 6 is a detailed circuit diagram of a second main control circuit shown in FIG. 5. 図5に示す、第2の入力電流検出器の詳細構成図である。It is a detailed block diagram of the 2nd input current detector shown in FIG. 従来技術のアーク溶接機の電気接続図である。It is an electrical connection figure of the arc welding machine of a prior art.

符号の説明Explanation of symbols

CT 入力電流検出器
CT2 第2の入力電流検出器
CW 被加工物
CP 入力電流警報回路
DCL 直流リアクトル
IR 基準値設定回路
INT1 第1の主変圧器
INT2 第2の主変圧器
INT3 第3の主変圧器
LED 異常表示ランプ
MC 主制御回路部
MC2 第2の主制御回路部
RV 出力電流設定回路
SC 電力制御回路
SC2 第2の電力制御回路
SD1 第1の電力主駆動回路
SD2 第2の電力主駆動回路
SD3 第3の電力主駆動回路
SCR1 第1の電力主回路
SCR2 第2の電力主回路
SCR3 第3の電力主回路
TS 起動スイッチ
TH 溶接トーチ
WC 全波整流回路
Ct 入力電流検出信号
Ct2 第2の入力電流検出信号
Cp 入力電流警報信号
Rv 出力電流設定値
Sc1 第1の電力制御信号
Sc2 第2の電力制御信号
Sc3 第3の電力制御信号
Sd1 第1の電力主駆動信号
Sd2 第2の電力主駆動信号
Sd3 第3の電力主駆動信号
Ts 起動信号
Wc 電流差分検出信号
CT input current detector CT2 second input current detector CW workpiece CP input current alarm circuit DCL DC reactor IR reference value setting circuit INT1 first main transformer INT2 second main transformer INT3 third main transformer LED Abnormal display lamp MC Main control circuit part MC2 Second main control circuit part RV Output current setting circuit SC Power control circuit SC2 Second power control circuit SD1 First power main drive circuit SD2 Second power main drive circuit SD3 Third power main drive circuit SCR1 First power main circuit SCR2 Second power main circuit SCR3 Third power main circuit TS Start switch TH Welding torch WC Full-wave rectifier circuit Ct Input current detection signal Ct2 Second input Current detection signal Cp Input current alarm signal Rv Output current set value Sc1 First power control signal Sc2 Second power control Issue Sc3 third power control signals Sd1 first power main driving signal Sd2 second power main drive signal Sd3 third power main drive signal Ts activation signal
Wc Current difference detection signal

Claims (2)

商用交流電源に接続してアーク溶接に適した電圧に変換する第1の主変圧器と、前記商用交流電源に接続し前記第1の主変圧器に並列に配設して前記商用交流電源をアーク溶接に適した電圧に変換する第2の主変圧器と、前記第1の主変圧器の2次側に接続され2次側電圧を整流及び電力制御するスイッチング素子からなる第1の電力主回路と、前記第2の主変圧器の2次側に接続され2次側電圧を整流及び電力制御するスイッチング素子からなる第2の電力主回路と、外部から起動信号が入力すると動作を開始し予め定めた出力電流設定値の値に応じて前記第1の電力主回路及び前記第2の電力主回路の出力を制御する電力制御回路と、前記第1の電力主回路の出力と前記第2の電力主回路の出力とを接続し直流リアクトルによって平滑するアーク溶接機において、前記第1の主変圧器の1次側入力電流と前記第2の主変圧器の1次側入力電流との差分値を算出して電流差分検出信号として出力する電流差分検出回路と、前記電流差分検出信号の値が予め定めた基準値以上のとき前記第1の主変圧器と前記第2の主変圧器との1次側入力電流の均一状態が崩れたと判別して入力電流警報信号を出力して前記電力制御回路の動作を停止させ、前記電流差分検出信号の値が前記基準値未満のとき前記1次側入力電流が均一状態にあると判別して入力電流警報信号の出力を停止させ前記電力制御回路の動作を継続させる入力電流警報回路とを備えたことを特徴とするアーク溶接機。   A first main transformer that is connected to a commercial AC power source and converts the voltage into a voltage suitable for arc welding, and connected to the commercial AC power source and arranged in parallel with the first main transformer, A first main power comprising a second main transformer for converting to a voltage suitable for arc welding, and a switching element connected to the secondary side of the first main transformer to rectify and control the secondary side voltage. A circuit, a second power main circuit comprising a switching element connected to the secondary side of the second main transformer and rectifying and controlling the secondary side voltage, and starts when an activation signal is input from the outside. A power control circuit for controlling outputs of the first power main circuit and the second power main circuit in accordance with a predetermined output current set value; an output of the first power main circuit; Connect to the output of the main power circuit and smooth by the DC reactor In an arc welder, a current difference detection that calculates a difference value between a primary side input current of the first main transformer and a primary side input current of the second main transformer and outputs it as a current difference detection signal. When the circuit and the value of the current difference detection signal are equal to or greater than a predetermined reference value, it is determined that the uniform state of the primary side input current of the first main transformer and the second main transformer has collapsed. An input current alarm signal is output to stop the operation of the power control circuit, and when the value of the current difference detection signal is less than the reference value, it is determined that the primary side input current is in a uniform state and an input current alarm is issued. An arc welding machine comprising: an input current alarm circuit that stops signal output and continues operation of the power control circuit. 前記電流差分検出回路は、入力電流検出部に前記第1の主変圧器の1次側配線を遊挿させ、前記第2の主変圧器の1次側配線を前記遊挿させた配線と逆方向に遊挿させて1次側入力電流の差分値を算出することを特徴とする請求項1記載のアーク溶接機。




























The current difference detection circuit is configured to cause the input current detection unit to loosely insert the primary side wiring of the first main transformer and reverse the primary side wiring of the second main transformer to the loose insertion. The arc welding machine according to claim 1, wherein the difference value of the primary side input current is calculated by loose insertion in a direction.




























JP2003316132A 2003-09-09 2003-09-09 Arc welder Pending JP2005081379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003316132A JP2005081379A (en) 2003-09-09 2003-09-09 Arc welder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003316132A JP2005081379A (en) 2003-09-09 2003-09-09 Arc welder

Publications (1)

Publication Number Publication Date
JP2005081379A true JP2005081379A (en) 2005-03-31

Family

ID=34416126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003316132A Pending JP2005081379A (en) 2003-09-09 2003-09-09 Arc welder

Country Status (1)

Country Link
JP (1) JP2005081379A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014041884A (en) * 2012-08-21 2014-03-06 Art−Hikari株式会社 Transformer and device mounted with transformer
JP2020198701A (en) * 2019-06-03 2020-12-10 三菱電機株式会社 Power converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014041884A (en) * 2012-08-21 2014-03-06 Art−Hikari株式会社 Transformer and device mounted with transformer
JP2020198701A (en) * 2019-06-03 2020-12-10 三菱電機株式会社 Power converter

Similar Documents

Publication Publication Date Title
US8952293B2 (en) Welding or cutting power supply using phase shift double forward converter circuit (PSDF)
JP2007195273A (en) Power supply
JP2009050109A (en) Power supply unit, and power supply unit for arc machining
JP2010158098A (en) Power supply unit and electronic apparatus
JP2016059184A (en) Motor drive device with deposition detection function for electromagnetic contactor
JP2007150456A (en) Image forming apparatus
JP3161699B2 (en) DC power supply for arc discharge equipment
JP5124186B2 (en) Power supply device and power supply device for arc machining
JP2010075944A (en) Ac arc welding machine
JP2009273241A (en) Power supply unit
JP2005081379A (en) Arc welder
US5877952A (en) Power supply apparatus with initial arcing sustaining circuit
RU2302931C1 (en) Welding apparatus
JP3543692B2 (en) Ozone generator
JP5000919B2 (en) DC power supply
JP2005323440A (en) Inverter device
KR100900757B1 (en) Apparatus for automatic changing power of electrical welding machine
JP6782179B2 (en) Vehicle-mounted inverter control method and control device
JP2020019043A (en) Power supply device, and processing system
JP3651181B2 (en) Plasma arc machining power supply
JP5165454B2 (en) Power supply
KR20190019289A (en) Power transforming apparatus, Method for controlling the same and Air conditioner including the power transforming apparatus
JP7142313B2 (en) welding power supply
JP3638700B2 (en) Resistance welding machine control device
JP4473052B2 (en) DC power supply