JP2005080856A - Passive type movable carriage - Google Patents

Passive type movable carriage Download PDF

Info

Publication number
JP2005080856A
JP2005080856A JP2003315912A JP2003315912A JP2005080856A JP 2005080856 A JP2005080856 A JP 2005080856A JP 2003315912 A JP2003315912 A JP 2003315912A JP 2003315912 A JP2003315912 A JP 2003315912A JP 2005080856 A JP2005080856 A JP 2005080856A
Authority
JP
Japan
Prior art keywords
wheel
brake
target
vehicle body
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003315912A
Other languages
Japanese (ja)
Other versions
JP4411415B2 (en
Inventor
Kazuhiro Kosuge
一弘 小菅
Yasuhisa Hirata
泰久 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Techno Arch Co Ltd
Original Assignee
Tohoku Techno Arch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Techno Arch Co Ltd filed Critical Tohoku Techno Arch Co Ltd
Priority to JP2003315912A priority Critical patent/JP4411415B2/en
Publication of JP2005080856A publication Critical patent/JP2005080856A/en
Application granted granted Critical
Publication of JP4411415B2 publication Critical patent/JP4411415B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a passive type movable carriage with a simple structure and high safety, which can arbitrarily change motion characteristics of a carriage body in accordance with a human intention and environmental information by changing a braking force of a brake built into a wheel. <P>SOLUTION: The brakes, whose braking torque can be controlled, are built into at least two of a plurality of wheels of the movable carriage; and the braking force of the brake of each wheel is controlled according to a force applied by humans etc., in accordance with the set target angular acceleration, angular velocity and rotational angle of each wheel, so that the motion characteristics including the travel direction and travel velocity of the carriage body can be changed. This makes the motion characteristics of the movable carriage arbitrarily changed according to the human intention and the environmental information, so as to enable an assistance suitable for a user. Additionally, the use of the brake alone enables the constitution of a structurally simple and highly safe system. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、利用者を目的の場所に誘導する為の支援、或いは利用者や環境の状態に基づいた支援等に好適なパッシブ型移動台車に関し、詳しくは少なくとも2個の車輪に組み込まれたブレーキのブレーキ力を人間などが加える力に基づいて変化させることにより安全性を確保しかつ運動特性を変えることができるパッシブ型移動台車に関する。   The present invention relates to a passive mobile trolley suitable for assistance for guiding a user to a target place or assistance based on the state of the user or the environment, and more particularly, a brake incorporated in at least two wheels. The present invention relates to a passive type mobile carriage that can ensure safety and change motion characteristics by changing the braking force of the vehicle based on the force applied by a human or the like.

高齢者や障害者の生活を支援し自立を促すため、様々な福祉機器が開発されている。中でも日常生活において不可欠な移動を補助する移動補助具は現在多数存在する。杖・歩行器・車椅子がこれに該当し、これらは歩行機能の障害の程度・性質によって使い分けられている。この中で歩行器は、全く歩行が不可能ではないが、杖では安定性に欠けるという歩行機能の低下した人によく利用される。   Various welfare devices have been developed to support the lives of the elderly and persons with disabilities and promote independence. Among them, there are currently a large number of mobility aids that assist in movement that is essential in daily life. This includes walking sticks, walker, and wheelchairs, which are properly used depending on the degree and nature of walking function impairment. Of these, the walker is often used by people who have a poor walking function, although walking is not impossible at all, but the cane lacks stability.

最も簡単な歩行器はフレームに車輪を取り付けるだけという非常にシンプルなものであり、現在主流となっているが、キャスタの転がり抵抗の小ささにより、歩行速度が増加し、転倒事故に及ぶ危険性がある。同時に、運動特性が不変であるため、利用者の障害によっては目的の運動が困難という問題もある。   The simplest walker is a very simple one that simply attaches a wheel to the frame, and it is currently mainstream, but due to the low rolling resistance of the casters, the walking speed increases and the risk of falling accidents There is. At the same time, since the movement characteristics are unchanged, there is a problem that the target movement is difficult depending on the user's disability.

一方で、ブレーキを歩行器に組み込む研究もなされている。ブレーキを付けることで速度超過による転倒を防ぐことが可能となり、安全性や安定感が確保できる。例えば、特許文献1には機能性流体として電気粘性流体あるいは磁気粘性流体等の機能性流体を用いたブレーキ機構を有する車輪を、補助車の脚輪の一部あるいは全部に取り付け、補助車本体に取り付けられた加速度センサの検出信号に基づいて機能性流体の状態を変化させて、ブレーキ機構が作動するようにした福祉医療用補助車が提案されている。また、特許文献2には歩行車の走行速度が所定値に満たないときは動作せず、所定値以上になると、車体左右の発電装置によって発電制動力が生じ、所定値以上の走行速度での走行が抑止されるようにした歩行車の制動装置が提案されている。更に、特許文献3には支持部により使用者を支持し、力センサ,距離センサ,速度センサの出力および設定器により設定されたパラメータに従って、左右のモータの速度あるいはトルクを制御して駆動車輪を駆動し、基体の前進,後退,旋回の移動を制御するようにした歩行補助装置が提案されている。   On the other hand, research into incorporating a brake into a walker has also been made. By attaching a brake, it is possible to prevent a fall due to excessive speed, ensuring safety and stability. For example, in Patent Document 1, a wheel having a brake mechanism using a functional fluid such as an electrorheological fluid or a magnetorheological fluid as a functional fluid is attached to a part or all of a leg wheel of an auxiliary vehicle, and attached to the auxiliary vehicle body. A welfare medical auxiliary vehicle has been proposed in which the state of the functional fluid is changed based on the detection signal of the attached acceleration sensor so that the brake mechanism operates. Further, Patent Document 2 does not operate when the running speed of the walking vehicle is less than a predetermined value, and when it exceeds the predetermined value, a power generation braking force is generated by the power generators on the left and right of the vehicle body. A braking device for a walking vehicle has been proposed in which traveling is suppressed. Furthermore, in Patent Document 3, the user is supported by a support portion, and the driving wheels are controlled by controlling the speed or torque of the left and right motors according to the output of the force sensor, the distance sensor, the speed sensor and the parameters set by the setting device. There has been proposed a walking assist device that is driven to control the movement of the base body forward, backward, and swivel.

特開2000−157585号JP 2000-157585 A 特開2001−104418号JP 2001-104418 A 特開2001−170119号JP 2001-170119 A

しかしながら、上記の提案では、速度超過の防止や緊急停止のみを考えており、利用者を目的の場所に誘導する為の支援や、利用者の障害の状態や環境の状態に基づいた支援等については考慮されていない。   However, in the above proposal, only the prevention of overspeed and emergency stop are considered, and support for guiding the user to the target location, support based on the user's failure status and environmental status, etc. Is not considered.

また、歩行機の車輪にモータを搭載し、システムが利用者を能動的に支援する研究も行われている。これらの歩行機には力センサや環境情報センサ等が搭載され、利用者の運動能力や環境情報等に応じて運動特性を変えることができる。しかし、モータの使用により高コスト化・大型化する傾向があり、またモータの誤作動を考慮した安全性への対策が重要となる。   In addition, research is also being carried out in which a motor is mounted on the wheel of a walker and the system actively supports the user. These walkers are equipped with force sensors, environmental information sensors, and the like, and can change exercise characteristics according to the user's exercise ability, environmental information, and the like. However, the use of motors tends to increase the cost and size, and it is important to take safety measures in consideration of motor malfunction.

本発明は車輪に組み込まれたブレーキのブレーキ力を変化させることによって、車体の運動特性を人の意思や環境情報に基づいて任意に変化させることができる、構造が簡単でかつ高い安全性を有するパッシブ型移動台車を提供することを目的とする。
また、本発明は車輪に組み込まれたブレーキのブレーキ力を変化させることによって、設定した目標経路に沿って車体を進行させ、目的場所に誘導することができるパッシブ型移動台車を提供することを目的とする。
The present invention has a simple structure and high safety, in which the motion characteristics of the vehicle body can be arbitrarily changed based on a person's intention and environmental information by changing the braking force of the brake incorporated in the wheel. It aims at providing a passive type mobile trolley.
It is another object of the present invention to provide a passive mobile carriage that can move a vehicle body along a set target route and guide it to a destination by changing a braking force of a brake incorporated in a wheel. And

上記の目的を解決するために、請求項1に記載された発明のパッシブ型移動台車は、複数の車輪によって安定に支持された車体と、複数の車輪のうち少なくとも2個の車輪に組み込まれた制動トルクが制御可能なブレーキと、ブレーキが組み込まれた各車輪の目標角加速度や角速度や回転角度を設定する手段と、設定された各車輪の目標角加速度や角速度や回転角度に従って、ブレーキのブレーキ力を独立に制御する制御手段とを備え、制御手段は人間などが加える力や環境情報に基づいて各車輪のブレーキのブレーキ力を制御し、車体の移動方向及び移動速度を含む運動特性を変化させることを特徴としている。   In order to solve the above-described object, the passive mobile carriage according to the first aspect of the present invention is incorporated in a vehicle body stably supported by a plurality of wheels and at least two of the plurality of wheels. A brake that can control the braking torque, a means for setting the target angular acceleration, angular velocity, and rotation angle of each wheel in which the brake is incorporated, and a brake brake according to the set target angular acceleration, angular velocity, and rotation angle of each wheel. Control means that controls the force independently, and the control means controls the braking force of each wheel brake based on the force applied by humans etc. and environmental information, and changes the motion characteristics including the moving direction and moving speed of the vehicle body It is characterized by letting.

請求項2に記載された発明のパッシブ型移動台車は、複数の車輪によって安定に支持された車体と、複数の車輪のうち少なくとも2個の車輪に組み込まれた制動トルクが制御可能なブレーキと、目標経路を指定する手段と、目標経路と車体の進行方向との間の相対角度、目標経路と車体との距離、実際の車体の角速度等から各車輪の目標角速度を導出し、該目標角速度に基づいて各車輪のブレーキのブレーキ力を決定して独立に制御する制御手段とを備え、制御手段は人間などが加える力に基づいて各車輪のブレーキのブレーキ力を制御し、車体を目標経路に沿って運動させることを特徴としている。   The passive type mobile carriage of the invention described in claim 2 is a vehicle body that is stably supported by a plurality of wheels, a brake that can control braking torque incorporated in at least two of the plurality of wheels, The target angular velocity of each wheel is derived from the means for specifying the target route, the relative angle between the target route and the traveling direction of the vehicle body, the distance between the target route and the vehicle body, the actual vehicle angular velocity, and the like. Control means for determining and independently controlling the brake force of each wheel brake based on the force applied by a person or the like, and controlling the brake force of each wheel brake based on the force applied by a person etc. It is characterized by moving along.

請求項1の発明によれば、人間などが加える力や環境情報に基づいてブレーキのブレーキ力を調整することにより、移動台車の運動特性を人の意思や環境情報に基づいて任意に変化させることができ、利用者の適切な支援が可能となると共に、ブレーキのみを用いることから、構造が簡単でかつ安全性が向上される。   According to the invention of claim 1, by adjusting the braking force of the brake based on the force applied by a human or the like or the environmental information, the movement characteristics of the mobile carriage can be arbitrarily changed based on the human intention or the environmental information. Thus, appropriate support for the user is possible, and only the brake is used, so that the structure is simple and the safety is improved.

請求項2の発明によれば、設定した目標経路に対する車体のずれを修正するよう人間などが加える力に基づいて各車輪のブレーキのブレーキ力を調整するので、目標経路に沿って車体を進行させることができ、利用者の適切な支援が可能となる。特に、歩行機に適用した場合には、従来ブレーキを有した歩行機において考慮されていなかった高齢者や障害者、目の不自由な利用者を目的地まで誘導する機能や、利用者の障害の程度に基づいた支援、環境に合わせた支援等が可能となる。   According to the invention of claim 2, since the braking force of the brakes of each wheel is adjusted based on the force applied by a human or the like so as to correct the deviation of the vehicle body with respect to the set target route, the vehicle body is advanced along the target route. It is possible to support users appropriately. In particular, when applied to walker, functions that guide elderly people, disabled people, and blind users to destinations that have not been considered in walker with brakes in the past. It is possible to provide support based on the degree of support and support in accordance with the environment.

以下に本発明の実施例を説明する。   Examples of the present invention will be described below.

本発明に係るパッシブ型移動台車の実施例としてパッシブ型知的歩行支援システムを図面に基づいて説明する。図1はプロトタイプの歩行機の斜視図、図2は一方側の後輪部の正面図、図3はパウダーブレーキの動作原理を説明する図である。   A passive intelligent walking support system will be described with reference to the drawings as an embodiment of a passive mobile carriage according to the present invention. FIG. 1 is a perspective view of a prototype walking machine, FIG. 2 is a front view of a rear wheel portion on one side, and FIG. 3 is a diagram for explaining the operating principle of a powder brake.

移動台車としての歩行機1は後車輪2、前車輪3、パウダーブレーキ4、フレーム5、制御装置6から構成されている。後車輪2は二輪で構成し、図2に示すように、各車輪の車軸にはパウダーブレーキ4とギア7が組み込まれている。ギア7にはギア8が噛み合っており、このギア8軸上にエンコーダ9が設けられている。前車輪3は二輪で構成し、例えばキャスタ、或いはオムニホイールやメカナムホイールで構成されている。   A walking machine 1 as a moving carriage includes a rear wheel 2, a front wheel 3, a powder brake 4, a frame 5, and a control device 6. The rear wheel 2 is composed of two wheels, and as shown in FIG. 2, a powder brake 4 and a gear 7 are incorporated in the axle of each wheel. A gear 8 meshes with the gear 7, and an encoder 9 is provided on the gear 8 axis. The front wheel 3 is composed of two wheels, for example, a caster, an omni wheel or a mecanum wheel.

パウダーブレーキ4は、図3に示されているように励磁したコイル40の磁束で磁性粉体41を鎖状に連結させ、パウダ間の連結力や摩擦力によりブレーキトルクを発生させる。パウダーブレーキ4の励磁電流と出力トルクはほぼ比例関係にあり、連続的なトルク制御が可能である。トルク制御はエンコーダ9から車速に応じた電気信号を取り出し、この電気信号に基づいてパウダーブレーキ4の励磁コイルの励磁電流を調節して行う。   As shown in FIG. 3, the powder brake 4 connects the magnetic powder 41 in a chain shape with the magnetic flux of the coil 40 that is excited, and generates a brake torque by the connecting force or frictional force between the powders. The excitation current of the powder brake 4 and the output torque are in a substantially proportional relationship, and continuous torque control is possible. Torque control is performed by taking out an electric signal corresponding to the vehicle speed from the encoder 9 and adjusting the exciting current of the exciting coil of the powder brake 4 based on this electric signal.

図4は歩行機の運動学モデルを示す図である。図5は速度制御系のブロック線図である。ここでは人間の力に基づいて歩行機がある運動を生成する制御系の一例を示す。   FIG. 4 is a diagram showing a kinematic model of the walking machine. FIG. 5 is a block diagram of the speed control system. Here, an example of a control system that generates a certain motion based on human power is shown.

Figure 2005080856
ただし、νは歩行機の並進速度、ωは歩行機の回転速度、dθ/dt(θドット),dθ/dt(θドット)は右・左後輪の角速度、Rwは車輪の半径、Tは左右車輪の間隔である。ここで、逆運動学は以下で表される。
Figure 2005080856
Where ν is the translation speed of the walking machine, ω is the rotational speed of the walking machine, dθ r / dt (θ r dot), dθ l / dt (θ l dot) are the angular velocities of the right and left rear wheels, and R w is the wheel. , T is the distance between the left and right wheels. Here, inverse kinematics is expressed as:

Figure 2005080856
ここで、ブレーキがかかっていないときのある車輪の運動方程式を求めると次式になる。
Figure 2005080856
Here, the equation of motion of a certain wheel when the brake is not applied is obtained as follows.

Figure 2005080856
ただし、τは人が歩行機を押したことによって発生する車軸回りのトルク、dθwheel/dt,(θwheelツードット)は車輪の角加速度、dθwheel/dt(θwheelドット)は車輪の速度、Jは車軸周りの慣性モーメント、Dは粘性摩擦抵抗である。これにパウダーブレーキ等によりブレーキ力τが加わると次式になる。
Figure 2005080856
Where τ k is the torque around the axle generated by the person pushing the walker, d 2 θ wheel / dt 2 , (θ wheel two dots) is the angular acceleration of the wheel , and dθ wheel / dt (θ wheel dots) is Wheel speed, J is the moment of inertia around the axle, and D is viscous frictional resistance. When a braking force τ b is applied to this by a powder brake or the like, the following equation is obtained.

Figure 2005080856
人の力によるトルクτを外乱としてみることで、通常のサーボ系と同様のPI制御系を構成することができる。そこで、u=dθwheel/dtとして、次式の特性を有する補償器を設ける。
Figure 2005080856
A PI control system similar to a normal servo system can be configured by considering the torque τ k due to human power as a disturbance. Therefore, the u g = d 2 θ wheel / dt 2, provided with a compensator having the characteristics of the following equation.

Figure 2005080856
ただし、dθwheel−d/dt,dθwheel−d/dtは車輪の目標角加速度、角速度である。
最終的なブレーキトルクは以下の式で与えられる。
Figure 2005080856
Here, d 2 θ wheel-d / dt 2 and dθ wheel-d / dt are the target angular acceleration and angular velocity of the wheel.
The final brake torque is given by:

Figure 2005080856
ここで、車輪の目標角加速度、角速度を車輪ごとに適切に指定することにより歩行機の運動特性を様々に変えることができる。ただし、この制御系はdθwheel−d/dt≦dθwheel/dtの時のみ有効である。dθwheel−d/dt>dθwheel/dtのときは目標速度を満足することは不可能である。また積分動作における誤差は人が歩行機を押していないとき、もしくは人が一定の力以下で押しているときも時々刻々と増加するため、過制動の原因となる。そこで、dθwheel−d/dt>dθwheel/dtのときは積分要素を0とする。
Figure 2005080856
Here, the motion characteristics of the walker can be variously changed by appropriately designating the target angular acceleration and angular velocity of the wheel for each wheel. However, this control system is effective only when dθ wheel-d / dt ≦ dθ wheel / dt. When dθ wheel-d / dt> dθ wheel / dt, it is impossible to satisfy the target speed. In addition, the error in the integral operation increases every moment when the person is not pushing the walking machine or when the person is pushing below a certain force, which causes overbraking. Therefore, when dθ wheel-d / dt> dθ wheel / dt, the integral element is set to zero.

次に歩行機にあらかじめ与えられた軌道(目標経路)に沿って、その歩行機が運動を生成する軌道追従制御の一例を説明する。   Next, an example of trajectory tracking control in which the walker generates motion along a trajectory (target route) given in advance to the walker will be described.

軌道追従制御の前提として、人の力とブレーキ力を用いた場合の車輪の目標速度を正確に制御することは困難である。なぜなら、目標速度を与えても人がそれ以下の速度で歩行機を押した場合、目標速度は実現されない。目標速度の実現が不確実ということは、目標経路を設定しても、その経路から外れる可能性があることを示している。従って、本システムで軌道追従制御を行うためには、たとえ経路から外れた場合でも目標経路に戻るような追従法を考えなければならない。この追従法として、”車輪移動体の制御”飯田重喜著、筑波大学大学院博士課程工学研究科学位請求論文,1991発行、を本システムにおいて適用した。この手法は目標経路からの位置・姿勢誤差から移動ロボットの回転角度速度を生成し目標経路を実現するものである。   As a premise of the trajectory tracking control, it is difficult to accurately control the target speed of the wheel when using human force and braking force. This is because even if the target speed is given, if the person pushes the walker at a speed lower than that, the target speed is not realized. The fact that the target speed is uncertain indicates that even if a target route is set, there is a possibility that the target speed is not met. Therefore, in order to perform the trajectory tracking control with this system, it is necessary to consider a tracking method that returns to the target path even if it is off the path. As this tracking method, "Control of wheel moving body" by Shigeki Iida, University of Tsukuba Graduate School of Engineering Research Science Request Paper, 1991, was applied in this system. This method realizes the target path by generating the rotational angular velocity of the mobile robot from the position / posture error from the target path.

直線を走行中において、図6に示すように何らかの外乱によって目標経路から外れたとする。目的の経路を追従するため、目標経路と歩行機の進行方向との間の相対角度(姿勢誤差)θと、目標経路と歩行機との距離(位置誤差)ηとし、歩行機の角速度ωの目標値(dωd/dt)を次のように決める。 It is assumed that the vehicle deviates from the target route due to some disturbance as shown in FIG. In order to follow the target path, the relative angle (posture error) θ e between the target path and the direction of travel of the walker is set as the distance (position error) η e between the target path and the walker, and the angular velocity of the walker The target value (dω d / dt) of ω d is determined as follows.

Figure 2005080856
kθ,kω,kηは比例定数(>0)である。ただしωは歩行機の実際の角速度を表す。ここでωから各車輪の目標角速度を導出し、ブレーキ力を決定する式に代入することにより、軌道追従制御が実現できる。
Figure 2005080856
k θ , k ω , and k η are proportional constants (> 0). Where ω represents the actual angular velocity of the walker. Here derives a target angular velocity of each wheel from the omega d, by substituting the equation for determining the braking force, trajectory tracking control can be realized.

本実施例の手法は目標経路に関する変位からその変位とは逆向きの方向に回転方向を決定するものである。従って、目標経路は直線だけではなく、円のような曲線を目標経路とした場合でも同様の制御が可能となる。   In the method of this embodiment, the rotation direction is determined in the direction opposite to the displacement from the displacement relating to the target path. Therefore, the same control is possible even when the target route is not only a straight line but also a curved line such as a circle.

本実施例のパッシブ型知的歩行支援システムの有効性を確認するため、2つの実験を行った。   Two experiments were conducted to confirm the effectiveness of the passive intelligent walking support system of this example.

第1の実験は、緩やかな傾斜上に歩行機を配置し、重力によって走行させ、その挙動を測定する(図7A)。同様に、緩やかな傾斜上に歩行機を配置し、ブレーキを全くかけない、つまりフリーブレーキ状態で、制御を適用した場合と比較する(図7B)。   In the first experiment, a walking machine is placed on a gentle slope, and is driven by gravity, and its behavior is measured (FIG. 7A). Similarly, a walking machine is arranged on a gentle slope and no brake is applied, that is, in a free brake state, the control is applied (FIG. 7B).

傾斜角Θ=6.8[deg]の下り傾斜を用意して、等速度制御実験を行った。同時に、式(1)の直線経路追従制御も適用した。このときのτは歩行機の自重をmとしたときのmgsinΘに相当したトルクとなる。目標等速度は0.1[m/sec]とし、目標経路はy=0[m]の直線である。また、比較のため制御していない状態、つまりフリーブレーキ状態についても同様の測定を行った。図8および図9に実験結果を示す。フリーブレーキ状態では速度は時間を増すにつれ増加し、軌跡も目標経路から脱線している。それに対し、経路追従制御を行った場合ではほぼ等速走行が実現されており、かつ目標直線経路上をほぼ追従していることが確認できた。 A constant-velocity control experiment was performed with a downward slope having an inclination angle Θ = 6.8 [deg]. At the same time, the linear path following control of equation (1) was also applied. At this time, τ h is a torque corresponding to mg sin Θ where m is the weight of the walker. The target constant velocity is 0.1 [m / sec], and the target route is a straight line with y = 0 [m]. For comparison, the same measurement was performed for an uncontrolled state, that is, a free brake state. 8 and 9 show the experimental results. In the free brake state, the speed increases as the time increases, and the locus derails from the target route. On the other hand, when the path following control was performed, it was confirmed that substantially constant speed traveling was realized and the target linear path was substantially followed.

第2の実験は、図10に示すように直線と円を組み合わせたS字状の目標経路10を生成し、歩行機1を人間11に押してもらうことで、やや複雑な目標経路の追従性を確認する。目標経路を全く知らない5人の健常者に歩行機を押してもらった。目標速度は0.3[m/sec]とした。図11に実験結果を示す。目標経路と歩行機の軌跡との間に、ずれはほとんど無いことがわかる。   In the second experiment, as shown in FIG. 10, an S-shaped target route 10 combining a straight line and a circle is generated, and the walking ability of a slightly complicated target route is obtained by pushing the walker 1 by a human 11. Confirm. Five healthy people who didn't know the target route were asked to push the walker. The target speed was set to 0.3 [m / sec]. FIG. 11 shows the experimental results. It can be seen that there is almost no deviation between the target route and the locus of the walker.

利用者の運動能力に合わせて歩行機の運動特性を変えることが可能な制御アルゴリズム、および利用者を目的地までナビゲートすることを考え、目標経路を設定し、その経路に追従する制御について説明する。   Explains the control algorithm that can change the motion characteristics of the walker according to the motor ability of the user, and the control that sets the target route and follows the route, considering that the user navigates to the destination To do.

歩行機は能動的に作用する駆動系を有していないため、人や環境から加えられる力/モーメント、即ち外力がその駆動力となる。従って、歩行機の制御則は人もしくは環境が歩行機に加えることで車輪に発生する力をfhw,その車輪の制動トルクをτbwとすると、 Since the walking machine does not have a drive system that acts actively, a force / moment applied from a person or the environment, that is, an external force becomes the driving force. Therefore, the control law of the walker is that f hw is the force generated by the person or the environment applied to the walker, and τ bw is the braking torque of the wheel.

Figure 2005080856
となる条件式を導くことが出来る。ここでRwは車輪の半径を示す。
Figure 2005080856
The following conditional expression can be derived. Here, R w indicates the radius of the wheel.

次に実施例2の動的モデルに基づくブレーキ力の導出について説明する。
ブレーキ力を調節することにより、歩行機のみかけの慣性質量や粘性抵抗を変化させ、結果的に歩行機の運動特性を変化させる事を考える。
まず、議論を簡単にするため、歩行機を水平面上で用いると仮定し、その駆動力は人が加える力/モーメントのみとする。また、歩行機の質量中心は車軸中央にあるとし、全質量をm、進行方向粘性摩擦係数をD、質量中心まわりの慣性モーメントをJ、回転方向の粘性摩擦係数をDθとする。図12に示すように歩行機の進行方向に人が加える力をf,人が発生させる回転モーメントをn,進行方向ブレーキ力をf,ブレーキによって発生する回転モーメントをn,絶対座標系で表される歩行機の位置・姿勢をq,そして変換行列をE,Eとすると、歩行機の運動方程式は次式で表される。
Next, the derivation of the braking force based on the dynamic model of the second embodiment will be described.
By adjusting the braking force, we will change the apparent inertial mass and viscous resistance of the walker, and consequently change the motion characteristics of the walker.
First, in order to simplify the discussion, it is assumed that the walker is used on a horizontal plane, and the driving force is only the force / moment applied by a person. The mass center of the walking device is to be in the axle center, the total mass m, the traveling direction viscous friction coefficient D, and moment of inertia about the center of mass J, a viscous friction coefficient of the rotation direction and D theta. As shown in FIG. 12, the force applied by the person in the traveling direction of the walker is f h , the rotation moment generated by the person is n h , the braking force in the traveling direction is f b , the rotation moment generated by the brake is n b , and absolute coordinates Assuming that the position / posture of the walker represented by the system is q, and the transformation matrices are E h and E b , the equation of motion of the walker is expressed by the following equation.

Figure 2005080856
いま、使用者の運動能力に応じてMやDを任意に変える事が出来れば、使用者にとって操作性のよいシステムが構築できると考えられる。そこで、歩行機が次式の特性を満たすような制御則を考える。
Figure 2005080856
Now, if M and D can be arbitrarily changed according to a user's athletic ability, it is thought that a system with good operability for the user can be constructed. Therefore, a control law is considered so that the walker satisfies the following equation.

Figure 2005080856
ここで、Mはみかけの慣性質量、Dはみかけの粘性抵抗を示し,利用者の障害の程度等に基づいて任意に設定するパラメータである。
本システムは進行方向に対して横滑りが出来ないという、次式で表される非ホロノミック速度拘束を受ける。
Figure 2005080856
Here, M d represents the apparent inertial mass, D d represents the apparent viscous resistance, and is a parameter that is arbitrarily set based on the degree of the user's failure.
This system is subject to a nonholonomic velocity constraint expressed by the following equation that it cannot skid in the direction of travel.

Figure 2005080856
そこで、式(3)(4)で示された動的モデルに速度拘束を加え,次元の縮小化を行い
τ=[f,n]を導出すると次式のようになる。
Figure 2005080856
Therefore, when the speed constraint is applied to the dynamic model shown in the equations (3) and (4), the dimension is reduced and τ b = [f b , n b ] is derived as follows.

Figure 2005080856
また、左右両輪で実現するブレーキトルクt,tはf,nにより次式で与えられる。
Figure 2005080856
The brake torque t r to achieve the left and right wheels, t l is given by the following equation by f b, n b.

Figure 2005080856
ここで、Tは左右車輪の間隔を示す。従って式(8)を用いてブレーキトルクを指定することにより,歩行機のみかけの慣性質量M,及び粘性抵抗Dを実現することができ,歩行機の運動特性を任意に変化させることが可能となる。しかし、本システムに搭載されたエンコーダの性能上、加速度フィードバックを行うことは困難である。そこで実用的な観点からM=Mとし,粘性抵抗のみを変化させることを考え式(6)(7)を次式のように修正する。
Figure 2005080856
Here, T indicates the distance between the left and right wheels. Therefore, by specifying the brake torque using Equation (8), the apparent inertial mass M d and viscous resistance D d of the walker can be realized, and the motion characteristics of the walker can be changed arbitrarily. It becomes possible. However, it is difficult to perform acceleration feedback because of the performance of the encoder installed in this system. Therefore, from a practical point of view, M d = M and only the viscous resistance is changed, and equations (6) and (7) are corrected as follows.

Figure 2005080856
但し、高分解能のエンコーダや高精度な加速度計を用いることで、(2)式の条件を満たす状態において慣性質量と粘性抵抗の両方を変化させる事は可能である。慣性質量や粘性抵抗パラメータを使用者の運動能力や障害の程度によって変化させることで、操作性の良いシステムの実現が可能になると考えられる。
Figure 2005080856
However, by using a high-resolution encoder or a high-accuracy accelerometer, it is possible to change both the inertial mass and the viscous resistance in a state where the condition of the expression (2) is satisfied. It is considered that a system with good operability can be realized by changing the inertial mass and viscous resistance parameters according to the user's motor ability and the degree of obstacles.

次に実施例2の経路追従制御について説明する。
使用者を目的の場所まで誘導する事を考え,経路追従制御を行うことを考える。歩行機に設定された代表点が経路に追従するために,図13に示すような歩行機の代表点から経路までの最短距離に応じて発生する力として,次式に示すVirtual Attractive Forceを用いる。
Next, the path following control of the second embodiment will be described.
Consider guiding the user to the target location and performing route tracking control. In order for the representative point set in the walker to follow the route, the Virtual Attractive Force shown in the following equation is used as the force generated according to the shortest distance from the representative point of the walker to the route as shown in FIG. .

Figure 2005080856
Δeは代表点から目標経路までの最短距離を表す位置ベクトルを示す。ここで、代表点を図13のように車軸の中心から歩行機への進行方向への距離rにとると,このfは歩行機の質量中心に作用するよう力/モーメントとして次式で表される。
Figure 2005080856
Δe represents a position vector representing the shortest distance from the representative point to the target route. Here, when the representative point is a distance r in the direction of travel from the axle center to the walking machine as shown in FIG. 13, this f v is a force / moment w f v , w so as to act on the center of mass of the walking machine. represented by the following formula as f v.

Figure 2005080856
ここでθは代表点における歩行機の目標姿勢を示す。従って、目標経路を与え、粘性抵抗を可変としたとき、ブレーキ力τは次式で与えられる.
Figure 2005080856
Here, θ d indicates the target posture of the walking machine at the representative point. Therefore, when the target path is given and the viscous resistance is variable, the braking force τ b is given by the following equation.

Figure 2005080856
式(13)(14)で表されるf,nを式(8)に代入し,各車輪のブレーキトルクを制御することにより、粘性抵抗を変化させつつ,代表点を目標経路に追従させる事が可能となる。
Figure 2005080856
F b of the formula (13) (14), by a n b into Equation (8), to control the braking torque of each wheel, while changing the viscosity resistance, tracking the representative points to the target route It is possible to make it.

本実施例はERブレーキ、MRブレーキ、パウダーブレーキ等の制動トルクが制御可能なブレーキを用いた歩行機であり、モータ等のアクチュエータは搭載されない。したがって、歩行機の運動は人間の力、もしくは別の何らかのシステムから加えられる力のみによってしか生成されない。そのため、歩行機自体が勝手に運動することはなく、非常に安全なシステムとなる。   The present embodiment is a walking machine using a brake capable of controlling braking torque such as ER brake, MR brake, powder brake, etc., and an actuator such as a motor is not mounted. Thus, walker motion can only be generated by human forces or forces applied from some other system. Therefore, the walking machine itself does not exercise on its own, and it becomes a very safe system.

また、少なくとも2個の車輪に組み込まれたブレーキのブレーキ力を調整することにより、歩行機の加えられる力に基づく運動方向や運動速度を自由に変更することが可能となっているので、利用者や環境に基づいて、歩行の支援や重量物の搬送等の様々な用途に利用することが可能となる。更に、3個以上の車輪にブレーキを組み込むことにより、より複雑に車体の運動を制御することが可能となる。特にオムニホイール等を用いて全方向移動が可能な車体を構築した場合、その車輪の少なくとも3個にブレーキを組み込むことにより、車体の全方向への運動(回転を含む)を制御することが可能となる。また、アクチュエータを用いないことから、構造が比較的簡単になるとともに、動作に必要なバッテリ等も少なくなる。   In addition, the user can freely change the direction and speed of movement based on the force applied by the walker by adjusting the braking force of the brakes built into at least two wheels. Based on the environment, it can be used for various purposes such as walking support and transport of heavy objects. Furthermore, by incorporating brakes on three or more wheels, it becomes possible to control the movement of the vehicle body more complicatedly. In particular, when a vehicle body that can move in all directions is constructed using omni wheels, etc., it is possible to control the movement (including rotation) of the vehicle body in all directions by incorporating brakes on at least three of the wheels. It becomes. In addition, since no actuator is used, the structure is relatively simple and the number of batteries required for operation is reduced.

本発明の他の実施形態について説明する。
・移動台車に視覚システム、超音波センサ、レーザレンジファインダといった環境情報を認識するセンサシステムを組み込むことにより、障害物との衝突を事前に防ぐことが可能になる。また、車道と歩道との区別や階段等を認識することにより、利用者が安全な場所でのみシステムを利用することを可能とする。その他、これらのセンサシステムを利用し、常に利用者と移動台車との距離を把握することにより、利用者の位置に応じて、移動台車の運動を変化させ、速度の変更や停止等の制御を行ったり、利用者が移動台車から離れた場合には移動台車を停止させるといった安全機能を付加することで、より安全に移動台車を利用できる。
Another embodiment of the present invention will be described.
-By incorporating a sensor system that recognizes environmental information such as a visual system, an ultrasonic sensor, and a laser range finder into a moving carriage, it becomes possible to prevent a collision with an obstacle in advance. In addition, by recognizing the distinction between a roadway and a sidewalk, staircases, etc., the user can use the system only in a safe place. In addition, by using these sensor systems and constantly grasping the distance between the user and the moving carriage, the movement of the moving carriage is changed according to the position of the user, and control such as speed change and stop is performed. The mobile cart can be used more safely by adding a safety function to stop or stop the mobile cart when the user goes away from the mobile cart.

・移動台車の人間が接触する部分に力覚センサ等を搭載し,その情報から人間の意図や状態を推定し,それに基づいて各車輪のブレーキ力を調整することにより、適切に人間の支援を行うことが可能となる。 ・ Equipped with a force sensor, etc., on the part of the moving carriage that comes into contact with humans, estimates human intentions and conditions from the information, and adjusts the braking force of each wheel based on the information to provide appropriate human support. Can be done.

・移動台車の車輪にメカナムホイールやオムニホイールといった車輪を利用することにより全方向移動機能を実現することも可能となる。 -The omnidirectional movement function can be realized by using wheels such as a Mecanum wheel and an omni wheel as the wheels of the moving carriage.

・本システムは歩行を支援するといった目的だけでなく、例えば、目の不自由な方を目的の場所まで誘導することを目的とするシステムに適用することができる。また、例えば乳母車や小児用歩行器、シルバーカート、車椅子等にも適用可能であり、利用者の状態や環境情報に基づいてこれらの台車の各車輪のブレーキ力を制御することにより、容易にかつ安全に利用が可能なシステムを構築することができる。 This system can be applied not only to the purpose of supporting walking, but also to a system that aims to guide a blind person to a target location, for example. It can also be applied to, for example, baby carriages, children's walker, silver carts, wheelchairs, etc., by controlling the braking force of each wheel of these carts based on the user's condition and environmental information, and easily A system that can be used safely can be constructed.

・利用者の運動能力や癖等の特徴、移動台車を用いる環境、移動台車を用いた作業等に応じて、移動台車に取り付けられたブレーキ力を変化させることで、容易に利用できるようになる。 ・ It can be easily used by changing the braking force attached to the moving cart according to the characteristics of the user's athletic ability and habit, the environment using the moving cart, the work using the moving cart, etc. .

・人間の力や他の何らかのシステムによって発生される力に基づく物体のハンドリングシステムにも応用することが可能であり、幅広い利用が期待できる。例えば、病院内では食事配膳車やベッド、ストレッチャ等の運動制御に利用でき、スーパー等ではショッピングカート等に適用可能である。その他、工場内や空港等での重量物のハンドリングにも応用でき、少なくとも1台の駆動力を持った移動台車が、1台もしくは複数台のパッシブ型移動台車を牽引することによって、環境情報等に基づいて障害物等に衝突することなく安全に多くの荷物等を搬送することが可能となる。 -It can also be applied to an object handling system based on human forces or forces generated by some other system, and can be expected to be widely used. For example, in hospitals, it can be used for exercise control of meal distribution vehicles, beds, stretchers, etc., and in supermarkets, it can be applied to shopping carts. In addition, it can also be applied to handling heavy objects in factories and airports, and environmental information, etc., by moving one or more passive mobile trolleys with at least one mobile trolley. Therefore, it is possible to safely transport a large amount of luggage without colliding with an obstacle or the like.

以上、本発明の実施例を図面により説明してきたが、具体的な構成はこれら実施例に限られるものではなく、本発明の要旨を逸脱しない範囲における変更や追加があっても本発明に含まれる。   Although the embodiments of the present invention have been described with reference to the drawings, the specific configuration is not limited to these embodiments, and modifications and additions within the scope of the present invention are included in the present invention. It is.

本発明に係るパッシブ型移動台車のプロトタイプの斜視図である。It is a perspective view of the prototype of the passive type mobile trolley concerning the present invention. パウダーブレーキが組み込まれた後輪部の斜視図である。It is a perspective view of the rear-wheel part in which the powder brake was integrated. パウダーブレーキの動作原理の説明図である。It is explanatory drawing of the principle of operation of a powder brake. 本発明に係るパッシブ型移動台車の実施例1における運動学モデルを示す図である。FIG. 2 is a diagram showing a kinematic model in Embodiment 1 of the passive mobile trolley according to the present invention. 速度制御系のブロック線図である。It is a block diagram of a speed control system. 経路追従制御アルゴリズムの説明図である。It is explanatory drawing of a path | route following control algorithm. 傾斜を利用した重力による直線走行においてブレーキ制御無し実験の説明図である。It is explanatory drawing of an experiment without brake control in the straight running by gravity using inclination. 傾斜を利用した重力による直線走行においてブレーキ制御有り実験の説明図である。It is explanatory drawing of an experiment with brake control in the straight running by gravity using the inclination. 速度制御の実験結果を示す図である。It is a figure which shows the experimental result of speed control. 直線経路の実験結果を示す図である。It is a figure which shows the experimental result of a linear path | route. S字経路追従実験の説明図である。It is explanatory drawing of S character path follow-up experiment. S字経路追従の実験結果を示す図である。It is a figure which shows the experimental result of S character path following. 本発明に係るパッシブ型移動台車の実施例2における運動学モデルを示す図である。It is a figure which shows the kinematic model in Example 2 of the passive type mobile trolley | bogie which concerns on this invention. 実施例2における経路追従制御アルゴリズムの説明図である。It is explanatory drawing of the path | route following control algorithm in Example 2. FIG.

符号の説明Explanation of symbols

1 移動台車
2 後車輪
3 前車輪
4 パウダーブレーキ
5 フレーム
6 制御装置
9 エンコーダ
DESCRIPTION OF SYMBOLS 1 Mobile trolley 2 Rear wheel 3 Front wheel 4 Powder brake 5 Frame 6 Control apparatus 9 Encoder

Claims (2)

複数の車輪によって安定に支持された車体と、
前記複数の車輪のうち少なくとも2個の車輪に組み込まれた制動トルクが制御可能なブレーキと、
前記ブレーキが組み込まれた各車輪の目標角加速度や角速度や回転角度を設定する手段と、
設定された各車輪の目標角加速度や角速度や回転角度に従って、前記ブレーキのブレーキ力を独立に制御する制御手段と、を備え、
前記制御手段は人間などが加える力や環境情報等に基づいて各車輪のブレーキのブレーキ力を制御し、前記車体の移動方向及び移動速度を含む運動特性を変化させることを特徴とするパッシブ型移動台車。
A vehicle body stably supported by a plurality of wheels;
A brake capable of controlling a braking torque incorporated in at least two of the plurality of wheels;
Means for setting a target angular acceleration, angular velocity, and rotation angle of each wheel incorporating the brake;
Control means for independently controlling the braking force of the brake according to the set target angular acceleration, angular velocity and rotation angle of each wheel,
The control means controls the braking force of each wheel brake based on the force applied by a person or the like, environmental information, etc., and changes the motion characteristics including the moving direction and moving speed of the vehicle body, Trolley.
複数の車輪によって安定に支持された車体と、
前記複数の車輪のうち少なくとも2個の車輪に組み込まれた制動トルクが制御可能なブレーキと、
目標経路を指定する手段と、
目標経路と車体の進行方向との間の相対角度、目標経路と車体との距離、実際の車体の角速度等から各車輪の目標角速度を導出し、該目標角速度に基づいて各車輪のブレーキのブレーキ力を決定して独立に制御する制御手段と、を備え、
前記制御手段は人間などが加える力に基づいて各車輪のブレーキのブレーキ力を制御し、車体を前記目標経路に沿って運動させることを特徴とするパッシブ型移動台車。
A vehicle body stably supported by a plurality of wheels;
A brake capable of controlling a braking torque incorporated in at least two of the plurality of wheels;
A means of specifying a target route;
The target angular velocity of each wheel is derived from the relative angle between the target route and the traveling direction of the vehicle body, the distance between the target route and the vehicle body, the actual angular velocity of the vehicle body, etc., and the brake of each wheel is braked based on the target angular velocity. Control means for determining and independently controlling the force,
The said control means controls the braking force of the brake of each wheel based on the force which a person etc. apply, and makes the vehicle body move along the said target path | route, The passive type mobile cart characterized by the above-mentioned.
JP2003315912A 2003-09-08 2003-09-08 Passive type mobile trolley Expired - Lifetime JP4411415B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003315912A JP4411415B2 (en) 2003-09-08 2003-09-08 Passive type mobile trolley

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003315912A JP4411415B2 (en) 2003-09-08 2003-09-08 Passive type mobile trolley

Publications (2)

Publication Number Publication Date
JP2005080856A true JP2005080856A (en) 2005-03-31
JP4411415B2 JP4411415B2 (en) 2010-02-10

Family

ID=34416017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003315912A Expired - Lifetime JP4411415B2 (en) 2003-09-08 2003-09-08 Passive type mobile trolley

Country Status (1)

Country Link
JP (1) JP4411415B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007202924A (en) * 2006-02-03 2007-08-16 Japan Science & Technology Agency Body state determination system, exercise state determination system, and mobile carriage with these systems
JP2009195636A (en) * 2008-02-25 2009-09-03 Tokai Univ Safety against overturning for walking training and walking support device
JP2010057605A (en) * 2008-09-02 2010-03-18 Tokuei Kim Automatic braking device for walking aid
JP5704285B2 (en) * 2012-09-18 2015-04-22 株式会社村田製作所 Wheelbarrow
KR101572373B1 (en) * 2014-06-05 2015-11-26 영남대학교 산학협력단 Remote control walker and operating method thereof
JP2017158804A (en) * 2016-03-09 2017-09-14 パナソニックIpマネジメント株式会社 Life support system, walking assist robot and life support method
KR20190133838A (en) * 2018-05-24 2019-12-04 경희대학교 산학협력단 Walking assistant apparatus using driving gear of in-wheel type and control method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101305909B1 (en) * 2011-11-24 2013-09-06 한상윤 a walker with auto locomotion control
KR101638242B1 (en) * 2014-09-30 2016-07-11 가천대학교 산학협력단 Method of Controlling Motor Driven Power Assisted Safe Stroller and Apparatus for the Same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11290405A (en) * 1998-04-08 1999-10-26 Nabco Ltd Walking vehicle
JP2000157585A (en) * 1998-11-30 2000-06-13 Asahi Chem Ind Co Ltd Auxiliary vehicle for welfare and medical use
JP2001327313A (en) * 2000-05-24 2001-11-27 Inst Of Physical & Chemical Res Intelligent controlled walking stick

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11290405A (en) * 1998-04-08 1999-10-26 Nabco Ltd Walking vehicle
JP2000157585A (en) * 1998-11-30 2000-06-13 Asahi Chem Ind Co Ltd Auxiliary vehicle for welfare and medical use
JP2001327313A (en) * 2000-05-24 2001-11-27 Inst Of Physical & Chemical Res Intelligent controlled walking stick

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007202924A (en) * 2006-02-03 2007-08-16 Japan Science & Technology Agency Body state determination system, exercise state determination system, and mobile carriage with these systems
JP4665173B2 (en) * 2006-02-03 2011-04-06 独立行政法人科学技術振興機構 BODY STATE JUDGING SYSTEM, EXERCISE STATE JUDGING SYSTEM, AND MOBILE CAR WITH THESE SYSTEMS
JP2009195636A (en) * 2008-02-25 2009-09-03 Tokai Univ Safety against overturning for walking training and walking support device
JP2010057605A (en) * 2008-09-02 2010-03-18 Tokuei Kim Automatic braking device for walking aid
JP5704285B2 (en) * 2012-09-18 2015-04-22 株式会社村田製作所 Wheelbarrow
KR101572373B1 (en) * 2014-06-05 2015-11-26 영남대학교 산학협력단 Remote control walker and operating method thereof
JP2017158804A (en) * 2016-03-09 2017-09-14 パナソニックIpマネジメント株式会社 Life support system, walking assist robot and life support method
CN107174441A (en) * 2016-03-09 2017-09-19 松下知识产权经营株式会社 Life accessory system, walking auxiliary robot and life householder method
US10765585B2 (en) 2016-03-09 2020-09-08 Panasonic Intellectual Property Management Co., Ltd. Walking assistance robot for assisting smooth start of user's action after standing up from chair
KR20190133838A (en) * 2018-05-24 2019-12-04 경희대학교 산학협력단 Walking assistant apparatus using driving gear of in-wheel type and control method thereof
KR102188361B1 (en) * 2018-05-24 2020-12-08 경희대학교 산학협력단 Walking assistant apparatus using driving gear of in-wheel type and control method thereof

Also Published As

Publication number Publication date
JP4411415B2 (en) 2010-02-10

Similar Documents

Publication Publication Date Title
Ding et al. Electric powered wheelchairs
JP3156367B2 (en) Walking assistance device
JP6199380B2 (en) Electric walking assist device, control program for electric walking assist device, and control method for electric walking assist device
EP2355764B1 (en) Transportation apparatus and method for carrying a payload in a desired plane independent of 3d tilting of said apparatus
JP5099772B2 (en) Wheelchair drive device
JP4665173B2 (en) BODY STATE JUDGING SYSTEM, EXERCISE STATE JUDGING SYSTEM, AND MOBILE CAR WITH THESE SYSTEMS
Hirata et al. Passive-type intelligent walking support system" RT Walker"
Hirata et al. Motion control of intelligent passive-type walker for fall-prevention function based on estimation of user state
JP4523244B2 (en) Power-assisted mobile trolley
JP2007090019A (en) Walking support system
JP4411415B2 (en) Passive type mobile trolley
JP6984000B2 (en) Hand-push motorized mobile device
Nakajima Evaluation of the mobility performance of a personal mobility vehicle for steps
JP2017070744A (en) Electric vehicle and control method thereof
US20220062075A1 (en) Low-profile and high-load ball-balancing rolling system
Zhu et al. Admittance control based walking support and power assistance of an omnidirectional wheelchair typed robot
Morrell et al. Design of a closed loop controller for a two wheeled balancing transporter
JP2006123014A (en) Inverted two-wheel traveling robot
Nejatbakhsh et al. User-environment based navigation algorithm for an omnidirectional passive walking aid system
Suzuki et al. Development of intelligent passive cane controlled by servo brakes
Hirata et al. Steering assist system for a cycling wheelchair based on braking control
JP2005000501A (en) Guidance device for visually disabled person
Verjans et al. SEBARES-Design and Evaluation of a Controller for a novel externally guided self-balancing patient rescue aid
Jeong et al. Driving assist control of wheeled inverted pendulum wheelchair using an active seat-slider
Hwang et al. Power-assisted wheelchair with gravity compensation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090522

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091006

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121127

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4411415

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131127

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term