JP2005080344A - Permanent magnet type rotor - Google Patents

Permanent magnet type rotor Download PDF

Info

Publication number
JP2005080344A
JP2005080344A JP2003305226A JP2003305226A JP2005080344A JP 2005080344 A JP2005080344 A JP 2005080344A JP 2003305226 A JP2003305226 A JP 2003305226A JP 2003305226 A JP2003305226 A JP 2003305226A JP 2005080344 A JP2005080344 A JP 2005080344A
Authority
JP
Japan
Prior art keywords
permanent magnet
rotor
laminated core
magnet
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003305226A
Other languages
Japanese (ja)
Inventor
Norio Yamaguchi
憲隆 山口
Kazumi Watanabe
一美 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003305226A priority Critical patent/JP2005080344A/en
Publication of JP2005080344A publication Critical patent/JP2005080344A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a permanent magnet type rotor which can reduce an eddy current loss. <P>SOLUTION: The permanent magnet type rotor includes an insulating film 31 made of an electric insulator provided on a surface of a split magnet 12a, and a metal plating layer 32 covering only a predetermined region brought into contact with a laminated core formed of a magnetic steel sheet or a predetermined region brought into contact with the laminated core and only a predetermined peripheral region of the predetermined region. The predetermined region brought into contact with the laminated core on the front surface 31A of the insulating film 31 is formed as a contact part 31a brought into contact with a magnet holding pawl part 22a of a salient pole 22 when the split magnet 12a is mounted between the adjacent salient poles 22 and 22 in a circumferential direction and a bent part 31b bent in a substantially protruding part in a direction toward an outer part from an inner part of the split magnet 12a. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、永久磁石式回転子に関する。   The present invention relates to a permanent magnet type rotor.

従来、例えば珪素鋼板等の電磁鋼板を積層してロータヨークを形成し、このロータヨークの外周部において周方向の所定位置に回転軸方向に貫通する複数のスロットを設け、各スロットに界磁用永久磁石を挿入した永久磁石式回転子において、界磁用永久磁石の表面の全面を被覆する金属めっき層を設け、界磁用永久磁石の耐摩耗性を向上させた永久磁石式回転子が知られている(例えば、特許文献1参照)。
国際公開第95/33298号パンフレット
Conventionally, a rotor yoke is formed by laminating electromagnetic steel plates such as silicon steel plates, and a plurality of slots penetrating in the rotational axis direction are provided at predetermined positions in the circumferential direction at the outer peripheral portion of the rotor yoke, and field permanent magnets are provided in the respective slots. Permanent magnet type rotors that have a metal plating layer covering the entire surface of the field permanent magnets to improve the wear resistance of the field permanent magnets are known. (For example, refer to Patent Document 1).
International Publication No. 95/33298 Pamphlet

ところで、上述した従来技術に係る永久磁石式回転子においては、この永久磁石式回転子を具備するモータの運転時に、界磁用永久磁石の表面に形成された金属めっき層を貫く磁束の磁束密度の変動に伴って金属めっき層内に渦電流が発生し、この渦電流に起因する渦電流損によって永久磁石式回転子の温度が上昇する。
しかしながら、上述した従来技術に係る永久磁石式回転子においては、界磁用永久磁石の表面の全面を被覆する金属めっき層において渦電流損が過剰に増大してしまい、永久磁石式回転子の温度が過剰に上昇してしまうと共に、モータでの損失が増大して運転効率が低下してしまうという問題が生じる。
本発明は上記事情に鑑みてなされたもので、渦電流に起因する渦電流損を低減することが可能な永久磁石式回転子を提供することを目的とする。
By the way, in the permanent magnet type rotor which concerns on the prior art mentioned above, the magnetic flux density of the magnetic flux which penetrates the metal plating layer formed in the surface of the permanent magnet for fields at the time of operation of the motor which comprises this permanent magnet type rotor With the fluctuation, an eddy current is generated in the metal plating layer, and the temperature of the permanent magnet type rotor rises due to the eddy current loss caused by the eddy current.
However, in the above-described permanent magnet rotor according to the prior art, eddy current loss excessively increases in the metal plating layer covering the entire surface of the field permanent magnet, and the temperature of the permanent magnet rotor is increased. Increases excessively, and the loss in the motor increases, resulting in a decrease in operating efficiency.
The present invention has been made in view of the above circumstances, and an object thereof is to provide a permanent magnet rotor that can reduce eddy current loss due to eddy current.

上記課題を解決して係る目的を達成するために、請求項1に記載の本発明の永久磁石式回転子は、複数の電磁鋼板が積層された積層コア(後述する実施の形態での積層コア11)に具備される複数の磁石保持部(後述する実施の形態でのロータ鉄心21および突極部22および磁石保持爪部22a、磁石装着孔41)に複数の永久磁石片(後述する実施の形態での分割磁石12a)が装着された永久磁石式回転子であって、前記永久磁石片の表面上のうち、前記磁石保持部に当接する所定領域(後述する実施の形態での当接部31a、屈曲部31b、端面部31c)にのみ、あるいは、前記所定領域および該所定領域の周辺領域にのみ、前記積層鋼板よりも高硬度のめっき層(後述する実施の形態での金属めっき層32)を備えることを特徴としている。   In order to solve the above-described problems and achieve the object, the permanent magnet rotor according to the first aspect of the present invention includes a laminated core in which a plurality of electromagnetic steel plates are laminated (a laminated core in an embodiment described later). 11) a plurality of permanent magnet pieces (an embodiment to be described later) in the plurality of magnet holding portions (the rotor core 21, the salient pole portion 22, the magnet holding claw portion 22a, and the magnet mounting hole 41 in the embodiment described later). A permanent magnet rotor to which the divided magnets 12a) in the form are mounted, and a predetermined region that contacts the magnet holding portion on the surface of the permanent magnet piece (the contact portion in the embodiment described later) 31a, bent portion 31b, end surface portion 31c), or only in the predetermined region and a peripheral region of the predetermined region, a plating layer having a hardness higher than that of the laminated steel plate (metal plating layer 32 in the embodiment described later). ) It is.

上記構成の永久磁石式回転子によれば、永久磁石片の表面はめっき層を介して磁石保持部に当接することから、例えば永久磁石片の表面が磁石保持部に直接的に当接して損傷や摩耗等が生じることを防止することができると共に、この永久磁石式回転子を具備するモータの運転時においてめっき層に生じる渦電流に起因する渦電流損が過剰に増大することを防止することができる。   According to the permanent magnet type rotor having the above configuration, the surface of the permanent magnet piece comes into contact with the magnet holding part via the plating layer. For example, the surface of the permanent magnet piece comes into direct contact with the magnet holding part and is damaged. And the occurrence of excessive eddy current loss due to eddy currents generated in the plating layer during operation of a motor equipped with this permanent magnet rotor. Can do.

さらに、請求項2に記載の本発明の永久磁石式回転子では、前記磁石保持部は、前記積層コアに設けられた磁石装着孔(後述する実施の形態での磁石装着孔41)、あるいは、前記積層コアを構成する略円筒状のロータ鉄心(後述する実施の形態でのロータ鉄心21)および該ロータ鉄心の周面上から径方向に突出する複数の突極部(後述する実施の形態での突極部22)および該突極部から略周方向に延出する延出部(後述する実施の形態での磁石保持爪部22a)を備えて構成され、前記永久磁石片は、前記磁石装着孔に装着される、あるいは、少なくとも周方向で隣り合う前記突極部によって周方向の両側から挟み込まれる又は前記ロータ鉄心と前記延出部とによって径方向の両側から挟み込まれることを特徴としている。   Furthermore, in the permanent magnet type rotor of the present invention according to claim 2, the magnet holding part is a magnet mounting hole provided in the laminated core (a magnet mounting hole 41 in an embodiment described later), or A substantially cylindrical rotor core (rotor core 21 in the embodiment described later) constituting the laminated core and a plurality of salient pole portions (in the embodiment described later) projecting radially from the circumferential surface of the rotor core. Of the salient pole part 22) and an extension part (magnet holding claw part 22a in an embodiment to be described later) extending from the salient pole part in a substantially circumferential direction. Mounted in the mounting hole, or at least sandwiched from both sides in the circumferential direction by the salient pole portions adjacent in the circumferential direction, or sandwiched from both sides in the radial direction by the rotor core and the extending portion. .

上記構成の永久磁石式回転子によれば、永久磁石片が積層コアに設けられた磁石装着孔に装着される場合には、永久磁石片の表面上の所定領域を例えば磁石装着孔の内壁面に当接する領域とする。
また、永久磁石片が、少なくとも周方向で隣り合う突極部によって周方向の両側から挟み込まれる又はロータ鉄心と延出部とによって径方向の両側から挟み込まれる場合には、永久磁石片の表面上の所定領域を、少なくとも周方向で隣り合う突極部に当接する領域又はロータ鉄心と延出部とに当接する領域とする。
これにより、永久磁石片の磁石保持部に対する所望の耐摩耗性を確保しつつ、この永久磁石式回転子を具備するモータの運転時においてめっき層に生じる渦電流に起因する渦電流損によって永久磁石式回転子の温度が過剰に上昇してしまうことを防止することができる。
According to the permanent magnet type rotor having the above-described configuration, when the permanent magnet piece is attached to the magnet attachment hole provided in the laminated core, the predetermined region on the surface of the permanent magnet piece is set, for example, as the inner wall surface of the magnet attachment hole. It is set as the area | region which contact | abuts.
Further, when the permanent magnet piece is sandwiched from both sides in the circumferential direction by at least the salient pole portions adjacent in the circumferential direction or sandwiched from both sides in the radial direction by the rotor iron core and the extending portion, the surface of the permanent magnet piece The predetermined region is defined as a region that contacts at least the salient pole portion adjacent in the circumferential direction or a region that contacts the rotor core and the extension portion.
Thereby, while ensuring the desired wear resistance for the magnet holding portion of the permanent magnet piece, the permanent magnet is caused by the eddy current loss caused by the eddy current generated in the plating layer during operation of the motor having the permanent magnet type rotor. It is possible to prevent the temperature of the rotary rotor from rising excessively.

さらに、請求項3に記載の本発明の永久磁石式回転子では、前記所定領域は、前記永久磁石片の表面上のうち、前記永久磁石片の内部から外部に向かい突出する略凸状の屈曲部(後述する実施の形態での屈曲部31b)であることを特徴としている。   Furthermore, in the permanent magnet rotor according to the third aspect of the present invention, the predetermined region is a substantially convex bent protruding from the inside of the permanent magnet piece to the outside of the surface of the permanent magnet piece. It is a part (bending part 31b in embodiment mentioned later).

上記構成の永久磁石式回転子によれば、永久磁石片の表面上の所定領域を、相対的に磁石保持部に当接し易い屈曲部とすることで、永久磁石片の磁石保持部に対する所望の耐摩耗性を確保しつつ、めっき層に生じる渦電流に起因する渦電流損が過剰に増大することを防止することができる。   According to the permanent magnet type rotor having the above-described configuration, a predetermined region on the surface of the permanent magnet piece is a bent portion that is relatively easy to contact the magnet holding portion, so that a desired magnet holding portion for the permanent magnet piece can be obtained. While ensuring wear resistance, it is possible to prevent an excessive increase in eddy current loss due to eddy current generated in the plating layer.

さらに、請求項4に記載の本発明の永久磁石式回転子では、前記積層コアは、回転軸方向の所定位置で分割された複数の積層コア部(後述する実施の形態での第1コア部11aと第2コア部11b)を備えて構成され、回転軸方向で隣り合う前記積層コア部同士は、回転軸周りに所定角度だけずれた状態で接続され、前記積層コア部同士に具備される互いの前記磁石保持部および該磁石保持部に装着される前記永久磁石片が周方向に前記所定角度だけずれており、適宜の前記積層コア部に具備される前記永久磁石片の表面上における前記所定領域は、前記適宜の前記積層コア部に具備される前記磁石保持部に当接する領域(後述する実施の形態での当接部31a、屈曲部31b)に加えて、前記適宜の前記積層コア部に隣接する他の前記積層コア部に具備される前記磁石保持部に当接する領域(後述する実施の形態での端面部31c)を備えることを特徴としている。   Furthermore, in the permanent magnet rotor according to a fourth aspect of the present invention, the laminated core includes a plurality of laminated core portions (first core portions in the embodiments described later) divided at predetermined positions in the rotation axis direction. 11a and the second core portion 11b), and the laminated core portions adjacent in the rotation axis direction are connected to each other at a predetermined angle around the rotation axis, and are provided in the laminated core portions. The magnet holding part and the permanent magnet piece attached to the magnet holding part are shifted by the predetermined angle in the circumferential direction, and the surface of the permanent magnet piece provided in the appropriate laminated core part The predetermined region includes the appropriate laminated core in addition to the regions (abutting portions 31a and bent portions 31b in the embodiments described later) that are in contact with the magnet holding portion provided in the appropriate laminated core portion. Other said laminate adjacent to the part Is characterized in that the magnet holding portion is provided in the A section comprises a contacting area (end face 31c in the embodiment described below).

上記構成の永久磁石式回転子によれば、回転軸方向で隣り合う積層コア部同士が回転軸周りに所定角度だけずれた状態で接続されることに伴い、これらの積層コア部同士の接続部において、一方の積層コア部に具備される永久磁石片の回転軸方向の端部に他方の積層コア部に具備される磁石保持部の回転軸方向の端部が当接する場合であっても、例えば永久磁石片の表面が磁石保持部に直接的に当接して損傷や摩耗等が生じることを防止することができると共に、この永久磁石式回転子を具備するモータの運転時においてめっき層に生じる渦電流に起因する渦電流損が過剰に増大することを防止することができる。   According to the permanent magnet type rotor of the above configuration, the laminated core portions adjacent in the rotation axis direction are connected in a state shifted by a predetermined angle around the rotation axis. In the case where the end portion in the rotation axis direction of the magnet holding portion provided in the other laminated core portion is in contact with the end portion in the rotation axis direction of the permanent magnet piece provided in the one laminated core portion, For example, it is possible to prevent the surface of the permanent magnet piece from coming into direct contact with the magnet holding portion to cause damage, wear, or the like, and to occur in the plating layer during operation of the motor having the permanent magnet rotor. An excessive increase in eddy current loss due to eddy current can be prevented.

さらに、請求項5に記載の本発明の永久磁石式回転子は、前記永久磁石片の表面上を電気的絶縁体により被覆する絶縁層(後述する実施の形態での絶縁被膜31)を備え、前記めっき層は、前記絶縁層の表面上に設けられていることを特徴としている。   Furthermore, the permanent magnet type rotor of the present invention according to claim 5 includes an insulating layer (insulating film 31 in an embodiment described later) that covers the surface of the permanent magnet piece with an electrical insulator, The plating layer is provided on the surface of the insulating layer.

上記構成の永久磁石式回転子によれば、積層コアを構成する各電磁鋼板やめっき層内で独立に発生した渦電流が永久磁石を介して互いに導通されることを防止し、渦電流の導通経路が相対的に長くなることで渦電流に起因する渦電流損が過剰に増大してしまうことを防止することができる。   According to the permanent magnet type rotor having the above-described configuration, eddy currents independently generated in each electromagnetic steel sheet and plating layer constituting the laminated core are prevented from being conducted to each other via the permanent magnet, and eddy current conduction is achieved. It can be prevented that the eddy current loss due to the eddy current is excessively increased due to the relatively long path.

請求項1に記載の本発明の永久磁石式回転子によれば、永久磁石片の表面が磁石保持部に直接的に当接して損傷や摩耗等が生じることを防止することができると共に、この永久磁石式回転子を具備するモータの運転時においてめっき層に生じる渦電流に起因する渦電流損が過剰に増大することを防止することができる。
さらに、請求項2に記載の本発明の永久磁石式回転子によれば、永久磁石片の磁石保持部に対する所望の耐摩耗性を確保しつつ、この永久磁石式回転子を具備するモータの運転時においてめっき層に生じる渦電流に起因する渦電流損によって永久磁石式回転子の温度が過剰に上昇してしまうことを防止することができる。
さらに、請求項3に記載の本発明の永久磁石式回転子によれば、永久磁石片の表面上の所定領域を、相対的に磁石保持部に当接し易い屈曲部とすることで、永久磁石片の磁石保持部に対する所望の耐摩耗性を確保しつつ、この永久磁石式回転子を具備するモータの運転時においてめっき層に生じる渦電流に起因する渦電流損が過剰に増大することを防止することができる。
さらに、請求項4に記載の本発明の永久磁石式回転子によれば、回転軸方向で隣り合う積層コア部同士が回転軸周りに所定角度だけずれた状態で接続されることに伴い、これらの積層コア部同士の接続部において、一方の積層コア部に具備される永久磁石片の回転軸方向の端部に他方の積層コア部に具備される磁石保持部の回転軸方向の端部が当接する場合であっても、永久磁石片の磁石保持部に対する所望の耐摩耗性を確保しつつ、この永久磁石式回転子を具備するモータの運転時においてめっき層に生じる渦電流に起因する渦電流損が過剰に増大することを防止することができる。
さらに、請求項5に記載の本発明の永久磁石式回転子によれば、積層コアを構成する各電磁鋼板やめっき層内で独立に発生した渦電流が永久磁石を介して互いに導通されることを防止し、渦電流の導通経路が相対的に長くなることで渦電流に起因する渦電流損が過剰に増大してしまうことを防止することができる。
According to the permanent magnet type rotor of the present invention as set forth in claim 1, it is possible to prevent the surface of the permanent magnet piece from coming into direct contact with the magnet holding portion and causing damage, wear, etc. It is possible to prevent an excessive increase in eddy current loss due to eddy current generated in the plating layer during operation of a motor including a permanent magnet rotor.
Furthermore, according to the permanent magnet type rotor of the present invention as set forth in claim 2, the operation of the motor including the permanent magnet type rotor is ensured while ensuring the desired wear resistance to the magnet holding portion of the permanent magnet piece. It is possible to prevent the temperature of the permanent magnet rotor from excessively rising due to eddy current loss caused by eddy current generated in the plating layer.
Furthermore, according to the permanent magnet type rotor of the present invention as set forth in claim 3, the predetermined region on the surface of the permanent magnet piece is a bent portion that is relatively easy to come into contact with the magnet holding portion. Preventing excessive increase in eddy current loss due to eddy current generated in the plating layer during operation of a motor equipped with this permanent magnet type rotor while ensuring the desired wear resistance for the magnet holding part of the piece can do.
Furthermore, according to the permanent magnet type rotor of the present invention as set forth in claim 4, the laminated core portions adjacent in the rotational axis direction are connected in a state of being shifted by a predetermined angle around the rotational axis. In the connection part between the laminated core parts, the end part in the rotational axis direction of the magnet holding part provided in the other laminated core part is at the end part in the rotational axis direction of the permanent magnet piece provided in one laminated core part. Even in the case of contact, eddy currents caused by eddy currents generated in the plating layer during operation of the motor having the permanent magnet type rotor while ensuring the desired wear resistance to the magnet holding portion of the permanent magnet piece. An excessive increase in current loss can be prevented.
Furthermore, according to the permanent magnet type rotor of the present invention as set forth in claim 5, eddy currents independently generated in each electromagnetic steel sheet and plating layer constituting the laminated core are conducted to each other through the permanent magnet. It is possible to prevent the eddy current loss due to the eddy current from excessively increasing due to the relatively long eddy current conduction path.

以下、本発明の実施の形態に係る永久磁石式回転子について添付図面を参照しながら説明する。
この実施の形態による永久磁石式回転子1は、略円筒状のステータ2の内部に配置されて回転軸線O周りに回転可能とされ、例えば、略円柱状のロータシャフト10と、ロータシャフト10の外周面上に装着された積層コア11と、複数の永久磁石12,…,12と、端面板13,13とを備えて構成されている。
積層コア11は、例えば珪素鋼板等の複数の電磁鋼板が回転軸O方向に積層されて形成され、例えば図1および図2に示すように、略円筒状のロータ鉄心21と、このロータ鉄心21の周方向の所定位置において外周面上から径方向外方に向かい断面視略矩形状に突出する複数の突極部22,…,22とを備え、周方向で隣り合う突極部22,22の間には、これらの突極部22,22によって両側から挟み込まれるようにして略長方形板状の永久磁石12が装着されている。突極部22の外周側端部には周方向外方に向かい突出する2つの磁石保持爪部22a,22aが形成され、周方向で隣り合う突極部22,22から突出する互いの磁石保持爪部22a,22aは、これらの突極部22,22の間に装着された永久磁石12の外周面に当接して、永久磁石12が径方向外方に向かい移動することを規制している。つまり、この永久磁石式回転子1においては、永久磁石12の外周面の一部がステータ2に向かって露出している。
積層コア11は、例えば図1に示すように、複数の突極部22,…,22の周方向での配置位置が異なる複数、例えば2つの第1コア部11aと第2コア部11bとを備えて構成され、例えば、第1コア部11aに具備される複数の突極部22,…,22は、第2コア部11bに具備される複数の突極部22,…,22に対して、回転軸O周りに所定角度だけずれた位置に配置され、コギングトルクの発生を低減するように設定されている。これに伴い、第1コア部11aと第2コア部11bとの接続部においては、互いの永久磁石12の回転軸O方向の端面の一部に、互いの突極部22の回転軸O方向の端面の一部が当接するようになっている。
Hereinafter, a permanent magnet type rotor according to an embodiment of the present invention will be described with reference to the accompanying drawings.
A permanent magnet type rotor 1 according to this embodiment is disposed inside a substantially cylindrical stator 2 and is rotatable around a rotation axis O. For example, a substantially cylindrical rotor shaft 10 and a rotor shaft 10 are provided. The laminated core 11 mounted on the outer peripheral surface, a plurality of permanent magnets 12,..., 12 and end face plates 13 and 13 are provided.
The laminated core 11 is formed by laminating a plurality of electromagnetic steel plates such as silicon steel plates in the direction of the rotation axis O. For example, as shown in FIGS. 1 and 2, the substantially cylindrical rotor core 21 and the rotor core 21 are formed. And a plurality of salient pole portions 22,... 22 projecting in a substantially rectangular shape in cross-section from the outer peripheral surface toward the radially outer side at a predetermined position in the circumferential direction, and adjacent salient pole portions 22, 22 adjacent in the circumferential direction. A substantially rectangular plate-like permanent magnet 12 is mounted between the salient pole portions 22 and 22 so as to be sandwiched from both sides. Two magnet holding claws 22a and 22a projecting outward in the circumferential direction are formed on the outer peripheral side end of the salient pole part 22, and the magnets holding each other projecting from the salient pole parts 22 and 22 adjacent in the circumferential direction are formed. The claw portions 22a and 22a abut against the outer peripheral surface of the permanent magnet 12 mounted between the salient pole portions 22 and 22, and restrict the permanent magnet 12 from moving outward in the radial direction. . That is, in this permanent magnet type rotor 1, a part of the outer peripheral surface of the permanent magnet 12 is exposed toward the stator 2.
For example, as shown in FIG. 1, the laminated core 11 includes a plurality of, for example, two first core portions 11 a and two second core portions 11 b in which the plurality of salient pole portions 22,. For example, the plurality of salient pole portions 22,..., 22 included in the first core portion 11 a are in contrast to the plurality of salient pole portions 22,. These are arranged at positions shifted by a predetermined angle around the rotation axis O, and are set so as to reduce the occurrence of cogging torque. In connection with this, in the connection part of the 1st core part 11a and the 2nd core part 11b, in the rotating shaft O direction of the salient pole part 22 of each other in a part of end surface of the rotating shaft O direction of the mutual permanent magnet 12 A part of the end face of this is in contact.

永久磁石12は、例えば図1に示すように、回転軸線O方向に沿った所定位置で分割された複数の分割磁石12a,…,12aを備えて構成され、永久磁石12は径方向に磁化されている。そして、周方向で隣り合う永久磁石12,11の磁化方向が互いに反対方向となるように、すなわち外周側がN極とされた永久磁石12には、外周側がS極とされた永久磁石12が隣り合うように配置されている。なお、複数の永久磁石12,…,12の個数は偶数個とされている。
2つの端面板13,13は、例えばオーステナイト系ステンレス鋼SUS等の非磁性体により形成され、積層コア11を回転軸O方向の両側から挟み込むようにして配置されている。各端面板13は、ロータ鉄心21の回転軸O方向の端面に当接する略円環板状のロータ鉄心保持部13aと、ロータ鉄心保持部13aの周方向の所定位置において外周面上から径方向外方に向かい突出する略矩板形状の複数の永久磁石保持部13b,…,13bとを備えて構成され、永久磁石保持部13bは永久磁石12の回転軸O方向の端面に当接して、永久磁石12が回転軸O方向外方に向かい移動することを規制している。
For example, as shown in FIG. 1, the permanent magnet 12 includes a plurality of divided magnets 12 a,..., 12 a divided at predetermined positions along the rotation axis O direction, and the permanent magnet 12 is magnetized in the radial direction. ing. The permanent magnets 12 and 11 that are adjacent in the circumferential direction are opposite to each other, that is, the permanent magnet 12 that has the N pole on the outer peripheral side is adjacent to the permanent magnet 12 that has the S pole on the outer peripheral side. It is arranged to fit. The number of the plurality of permanent magnets 12, ..., 12 is an even number.
The two end face plates 13 and 13 are made of a nonmagnetic material such as austenitic stainless steel SUS, for example, and are disposed so as to sandwich the laminated core 11 from both sides in the direction of the rotation axis O. Each end face plate 13 has a substantially annular plate-like rotor core holding part 13a that contacts the end face of the rotor core 21 in the rotation axis O direction, and a radial direction from the outer peripheral surface at a predetermined position in the circumferential direction of the rotor core holding part 13a. A plurality of substantially magnet-shaped permanent magnet holding portions 13b,..., 13b projecting outward, and the permanent magnet holding portion 13b is in contact with the end surface of the permanent magnet 12 in the direction of the rotation axis O, The permanent magnet 12 is restricted from moving outward in the direction of the rotation axis O.

そして、例えば図3に示すように、永久磁石12を構成する複数の分割磁石12a,…,12aの各表面上には、各表面を被覆するようにして、例えば電気的絶縁性を有する耐熱性の樹脂等の電気的絶縁材からなる絶縁被膜31が形成されている。
さらに、絶縁被膜31の表面31A上において、電磁鋼板により形成された積層コア11と当接する所定領域のみ、あるいは、積層コア11と当接する所定領域および積層コア11と当接する所定領域の所定周辺領域のみを被覆するようにして、金属めっき層32が設けられている。
金属めっき層32は、例えばNi等の金属からなり、電磁鋼板により形成された積層コア11よりも高硬度となるように形成されている。
絶縁被膜31の表面31A上において積層コア11と当接する所定領域は、例えば図3に示すように、周方向で隣り合う突極部22,22の間に分割磁石12aを装着した際に突極部22の磁石保持爪部22aが当接する当接部31aや、周方向で隣り合う突極部22,22およびロータ鉄心21により取り囲まれる領域において分割磁石12aの内部から外部に向かう方向に略凸状に屈曲した屈曲部31bや、例えば図4に示すように、第1コア部11aと第2コア部11bとの接続部において、第1コア部11aまたは第2コア部11bの何れか一方に具備される分割磁石12a(例えば図4に示す第1コア部11aの分割磁石12a(11a))の絶縁被膜31(例えば図4に示す第1コア部11aの絶縁被膜31(11a))に対して、第1コア部11aまたは第2コア部11bの何れか他方に具備される突極部22(例えば図4に示す第2コア部11bの突極部22(11b))が当接する端面部31c等とされている。これにより、絶縁被膜31の表面31A上において、当接部31aや屈曲部31bや端面部31c、あるいは、当接部31aや屈曲部31bや端面部31c、および、当接部31aや屈曲部31bや端面部31cの各周辺領域に金属めっき層32が形成されている。
そして、絶縁被膜31の表面31A上に形成された金属めっき層32の表面が積層コア11と当接することによって、絶縁被膜31の表面31Aと、この絶縁被膜31の表面31Aに対向する積層コア11の表面との間には、適宜の寸法の空隙部33が形成される。例えば図3および図4に示すように、絶縁被膜31の表面31A上の当接部31aおよび屈曲部31bおよび端面部31cを被覆する各金属めっき層32が一体に形成されている場合には、ロータ鉄心21の外周面21Aと、このロータ鉄心21の外周面21Aに対向する絶縁被膜31の表面31Aとの間に空隙部33が形成される。
And, for example, as shown in FIG. 3, the respective surfaces of the plurality of divided magnets 12a,..., 12a constituting the permanent magnet 12 are covered with the respective surfaces, for example, heat resistance having electrical insulation. An insulating coating 31 made of an electrical insulating material such as resin is formed.
Further, on the surface 31 A of the insulating coating 31, only a predetermined area that comes into contact with the laminated core 11 made of electromagnetic steel plates, or a predetermined area that comes into contact with the laminated core 11 and a predetermined peripheral area that comes into contact with the laminated core 11. Only the metal plating layer 32 is provided so as to cover only.
The metal plating layer 32 is made of a metal such as Ni, for example, and is formed to have a higher hardness than the laminated core 11 formed of an electromagnetic steel plate.
The predetermined region in contact with the laminated core 11 on the surface 31A of the insulating coating 31 is a salient pole when the divided magnet 12a is mounted between the salient pole portions 22 and 22 adjacent in the circumferential direction as shown in FIG. 3, for example. In the region surrounded by the contact portion 31a with which the magnet holding claw portion 22a of the portion 22 abuts, the salient pole portions 22 and 22 adjacent to each other in the circumferential direction, and the rotor core 21 are substantially convex in the direction from the inside of the divided magnet 12a to the outside. In the bent part 31b bent in a shape, for example, as shown in FIG. 4, in the connection part between the first core part 11a and the second core part 11b, either the first core part 11a or the second core part 11b With respect to the insulating film 31 (for example, the insulating film 31 (11a) of the first core portion 11a shown in FIG. 4) of the divided magnet 12a (for example, the divided magnet 12a (11a) of the first core portion 11a shown in FIG. 4)). The end face part 31c with which the salient pole part 22 (for example, the salient pole part 22 (11b) of the second core part 11b shown in FIG. 4) provided on either the first core part 11a or the second core part 11b abuts. Etc. Thereby, on the surface 31A of the insulating coating 31, the contact part 31a, the bending part 31b, the end surface part 31c, the contact part 31a, the bending part 31b, the end surface part 31c, and the contact part 31a or the bending part 31b. Further, a metal plating layer 32 is formed in each peripheral region of the end face portion 31c.
The surface of the metal plating layer 32 formed on the surface 31A of the insulating coating 31 comes into contact with the laminated core 11, whereby the surface 31A of the insulating coating 31 and the laminated core 11 facing the surface 31A of the insulating coating 31 are contacted. A gap 33 having an appropriate size is formed between the surface and the surface. For example, as shown in FIGS. 3 and 4, when the metal plating layers 32 covering the contact portion 31 a, the bent portion 31 b, and the end surface portion 31 c on the surface 31 </ b> A of the insulating coating 31 are integrally formed, A gap 33 is formed between the outer peripheral surface 21A of the rotor core 21 and the surface 31A of the insulating coating 31 facing the outer peripheral surface 21A of the rotor core 21.

本実施の形態による永久磁石式回転子1は上記構成を備えており、次に、この永久磁石式回転子1を具備するモータの運転時における動作について説明する。
ステータ2のステータ巻線(図示略)に対する通電によって回転磁界を発生させ、永久磁石式回転子1を回転軸O周りに回転させると、絶縁被膜31の表面31A上に形成された金属めっき層32を貫く磁束の磁束密度の変動に伴い、金属めっき層32内に渦電流が発生する。そして、この渦電流に起因する渦電流損によって永久磁石式回転子1の温度上昇の度合が増大する。
例えば図5に示すように、上述した実施の形態による永久磁石式回転子1(例えば図5に示す実施例)では、例えば金属めっき層32を省略した場合(例えば図5に示す比較例1)に比べて、金属めっき層32内に発生した渦電流に起因する渦電流損分だけ、モータの運転時間に応じた永久磁石式回転子1の温度上昇の度合がより大きくなる。
そして、上述した実施の形態による永久磁石式回転子1(例えば図5に示す実施例)では、絶縁被膜31の表面31A上の所定領域のみに金属めっき層32が形成されていることから、例えば絶縁被膜31の表面31Aの全面を被覆する金属めっき層32を形成した場合(例えば図5に示す比較例2)に比べて、金属めっき層32内に発生した渦電流に起因する渦電流損がより小さくなり、モータの運転時間に応じた永久磁石式回転子1の温度上昇の度合がより小さくなる。
The permanent magnet type rotor 1 according to the present embodiment has the above-described configuration. Next, the operation during operation of the motor including the permanent magnet type rotor 1 will be described.
When a rotating magnetic field is generated by energizing a stator winding (not shown) of the stator 2 and the permanent magnet rotor 1 is rotated about the rotation axis O, a metal plating layer 32 formed on the surface 31A of the insulating coating 31 is formed. An eddy current is generated in the metal plating layer 32 as the magnetic flux density fluctuates. And the degree of the temperature rise of the permanent magnet type rotor 1 increases by the eddy current loss resulting from this eddy current.
For example, as shown in FIG. 5, in the permanent magnet rotor 1 according to the above-described embodiment (for example, the example shown in FIG. 5), for example, when the metal plating layer 32 is omitted (for example, comparative example 1 shown in FIG. 5). As compared with the above, the degree of temperature rise of the permanent magnet rotor 1 corresponding to the motor operating time is increased by the eddy current loss caused by the eddy current generated in the metal plating layer 32.
In the permanent magnet rotor 1 according to the above-described embodiment (for example, the example shown in FIG. 5), the metal plating layer 32 is formed only in a predetermined region on the surface 31A of the insulating coating 31. Compared with the case where the metal plating layer 32 covering the entire surface 31A of the insulating coating 31 is formed (for example, Comparative Example 2 shown in FIG. 5), the eddy current loss due to the eddy current generated in the metal plating layer 32 is reduced. It becomes smaller and the degree of temperature rise of the permanent magnet rotor 1 corresponding to the operation time of the motor becomes smaller.

上述した実施の形態による永久磁石式回転子1を製造する方法、特に、積層コア11に永久磁石12を装着する方法としては、例えば、絶縁被膜31および金属めっき層32を具備する分割磁石12aの周方向の寸法(幅)を、周方向で隣り合う突極部22,22間の距離よりも僅かに大きく形成し、さらに、分割磁石12aの径方向の寸法(厚さ)を、突極部22の磁石保持爪部22aとロータ鉄心21との間の距離よりも僅かに大きく形成し、周方向で隣り合う突極部22,22およびロータ鉄心21により取り囲まれる領域内に複数の分割磁石12a,…,12aを圧入する。
この圧入時においては、絶縁被膜31の表面31A上で積層コア11と当接する領域に金属めっき層32が設けられていることから、絶縁被膜31が直接的に突極部22およびロータ鉄心21に当接することが防止され、絶縁被膜31を損傷させること無しに分割磁石12aを装着することができる。
As a method for manufacturing the permanent magnet type rotor 1 according to the above-described embodiment, in particular, as a method for mounting the permanent magnet 12 on the laminated core 11, for example, the split magnet 12a including the insulating coating 31 and the metal plating layer 32 is used. The circumferential dimension (width) is formed to be slightly larger than the distance between the salient pole parts 22 adjacent to each other in the circumferential direction, and the radial dimension (thickness) of the segmented magnet 12a is set to the salient pole part. A plurality of divided magnets 12a are formed in a region surrounded by the salient pole portions 22 and 22 and the rotor core 21 that are adjacent to each other in the circumferential direction. , ..., 12a are press-fitted.
At the time of press-fitting, since the metal plating layer 32 is provided on the surface 31 A of the insulating coating 31 in the region that contacts the laminated core 11, the insulating coating 31 is directly applied to the salient pole portion 22 and the rotor core 21. The abutting is prevented, and the split magnet 12a can be mounted without damaging the insulating coating 31.

上述したように、本実施の形態による永久磁石式回転子1によれば、永久磁石12を構成する複数の分割磁石12a,…,12aの各表面を被覆する絶縁被膜31の表面31A上で積層コア11と当接する領域にのみ金属めっき層32を設けたことにより、例えば絶縁被膜31の表面31Aの全面を被覆する金属めっき層を設ける場合に比べて、永久磁石12が装着される積層コア11に対する耐摩耗性を損なうこと無しに、金属めっき層32内で生じる渦電流に起因した渦電流損を低減することができ、永久磁石式回転子1の温度上昇や鉄損を低減することができ、永久磁石式回転子1を具備するモータを低損失、かつ高効率にて運転することができる。   As described above, according to the permanent magnet type rotor 1 according to the present embodiment, lamination is performed on the surface 31A of the insulating coating 31 that covers the surfaces of the plurality of divided magnets 12a,. By providing the metal plating layer 32 only in the region in contact with the core 11, for example, the laminated core 11 to which the permanent magnet 12 is mounted is provided as compared with the case where a metal plating layer covering the entire surface 31 </ b> A of the insulating coating 31 is provided. Eddy current loss due to eddy current generated in the metal plating layer 32 can be reduced without impairing the wear resistance against the temperature, and the temperature rise and iron loss of the permanent magnet rotor 1 can be reduced. The motor having the permanent magnet rotor 1 can be operated with low loss and high efficiency.

なお、上述した実施の形態においては、絶縁被膜31の表面31A上の当接部31aおよび屈曲部31bおよび端面部31cを被覆する各金属めっき層32が一体に形成されるとしたが、これに限定されず、例えば絶縁被膜31の表面31A上の各部31a,31b,31cを被覆する各金属めっき層32を互いに独立に形成してもよいし、例えば絶縁被膜31の表面31A上の各部31a,31b,31cを被覆する各金属めっき層32を適宜の組み合わせで一体に形成してもよい。
例えば図6に示す上述した実施の形態の第1変形例に係る永久磁石式回転子1では、分割磁石12aの外周側において絶縁被膜31の表面31A上の当接部31aおよび屈曲部31bを被覆する金属めっき層32と、分割磁石12aの内周側において絶縁被膜31の表面31A上の屈曲部31bを被覆する金属めっき層32とが互いに独立に形成されている。これにより、この第1変形例に係る永久磁石式回転子1では、ロータ鉄心21の外周面21Aと絶縁被膜31の表面31Aとの間の領域に加えて、突極部22の側面22Aと、この突極部22の側面22Aに対向する絶縁被膜31の表面31Aとの間において、金属めっき層32が省略された領域に空隙部33が形成される。
また、例えば図7に示す上述した実施の形態の第2変形例に係る永久磁石式回転子1では、絶縁被膜31の表面31A上の屈曲部31bの周辺領域のうち、突極部22の磁石保持爪部22aまたはロータ鉄心21の外周面21Aに当接する領域に金属めっき層32が形成されている。これにより、この第2変形例に係る永久磁石式回転子1では、ロータ鉄心21の外周面21Aと絶縁被膜31の表面31Aとの間の領域に加えて、突極部22の側面22Aと、この突極部22の側面22Aに対向する絶縁被膜31の表面31Aとの間に空隙部33が形成される。
In the above-described embodiment, the metal plating layers 32 that cover the contact portion 31a, the bent portion 31b, and the end surface portion 31c on the surface 31A of the insulating coating 31 are integrally formed. For example, the metal plating layers 32 that cover the portions 31a, 31b, and 31c on the surface 31A of the insulating coating 31 may be formed independently of each other. For example, the portions 31a and 31a on the surface 31A of the insulating coating 31 may be formed. The metal plating layers 32 covering 31b and 31c may be integrally formed in an appropriate combination.
For example, in the permanent magnet rotor 1 according to the first modification of the above-described embodiment shown in FIG. 6, the contact portion 31a and the bent portion 31b on the surface 31A of the insulating coating 31 are covered on the outer peripheral side of the divided magnet 12a. The metal plating layer 32 to be formed and the metal plating layer 32 covering the bent portion 31b on the surface 31A of the insulating coating 31 are formed independently of each other on the inner peripheral side of the divided magnet 12a. Thereby, in the permanent magnet rotor 1 according to the first modified example, in addition to the region between the outer peripheral surface 21A of the rotor core 21 and the surface 31A of the insulating coating 31, the side surface 22A of the salient pole portion 22; Between the surface 31A of the insulating coating 31 facing the side surface 22A of the salient pole portion 22, a gap portion 33 is formed in a region where the metal plating layer 32 is omitted.
Further, for example, in the permanent magnet type rotor 1 according to the second modification of the above-described embodiment shown in FIG. 7, the magnet of the salient pole portion 22 in the peripheral region of the bent portion 31 b on the surface 31 </ b> A of the insulating coating 31. A metal plating layer 32 is formed in a region in contact with the holding claw portion 22a or the outer peripheral surface 21A of the rotor iron core 21. Thereby, in the permanent magnet type rotor 1 according to the second modification, in addition to the region between the outer peripheral surface 21A of the rotor core 21 and the surface 31A of the insulating coating 31, the side surface 22A of the salient pole portion 22; A gap portion 33 is formed between the surface 31A of the insulating coating 31 facing the side surface 22A of the salient pole portion 22.

なお、上述した実施の形態においては、周方向で隣り合う突極部22,22およびロータ鉄心21により取り囲まれる領域内に、複数の分割磁石12a,…,12aを圧入するとしたが、これに限定されず、例えば周方向で隣り合う突極部22,22およびロータ鉄心21により取り囲まれる領域内に、絶縁被膜31および金属めっき層32を具備する複数の分割磁石12a,…,12aを装着した後に、例えば液状で供給されて常温で硬化(加硫)するシリコンゴム等の接着材を空隙部33に充填して、各分割磁石12aを固定してもよい。   In the above-described embodiment, the plurality of divided magnets 12a,..., 12a are press-fitted into the region surrounded by the salient pole portions 22, 22 and the rotor core 21 adjacent in the circumferential direction. For example, after the plurality of divided magnets 12a,..., 12a having the insulating coating 31 and the metal plating layer 32 are mounted in the region surrounded by the salient pole portions 22 and 22 and the rotor core 21 adjacent in the circumferential direction, for example. For example, the divided magnets 12a may be fixed by filling the gaps 33 with an adhesive such as silicon rubber supplied in liquid form and cured (vulcanized) at room temperature.

なお、上述した実施の形態においては、略円筒状のロータ鉄心21に複数の突極部22,…,22が設けられ、周方向で隣り合う突極部22,22の間に複数の分割磁石12a,…,12aによって構成される永久磁石12が装着されるとしたが、これに限定されず、例えば図8に示す上述した実施の形態の第3変形例に係る永久磁石式回転子1のように、略円筒状のロータ鉄心21の外周部近傍において、周方向の所定位置で回転軸O方向に貫通する複数の磁石装着孔41,…,41を設け、各磁石装着孔41に永久磁石12が装着されてもよい。この場合、上述した実施の形態に係る永久磁石式回転子1とは異なり、永久磁石12の外周面はステータ2に向かって露出していない。
この第3変形例に係る永久磁石式回転子1においては、例えば図9に示すように、分割磁石12aの外周側において絶縁被膜31の表面31A上の屈曲部31bを被覆する金属めっき層32と、分割磁石12aの内周側において絶縁被膜31の表面31A上の屈曲部31bを被覆する金属めっき層32とが互いに一体に形成されてもよいし、例えば図10に示すように、分割磁石12aの外周側において絶縁被膜31の表面31A上の屈曲部31bを被覆する金属めっき層32と、分割磁石12aの内周側において絶縁被膜31の表面31A上の屈曲部31bを被覆する金属めっき層32とが互いに独立に形成されてもよい。
この第3変形例に係る永久磁石式回転子1においては、磁石装着孔41の外周側内面41Aおよび内周側内面41Bと、これらの外周側内面41Aまたは内周側内面41Bに対向する絶縁被膜31の表面31Aとの間において空隙部33が形成され、さらに、例えば図10に示すように、分割磁石12aの外周側において絶縁被膜31の表面31A上の屈曲部31bを被覆する金属めっき層32と、分割磁石12aの内周側において絶縁被膜31の表面31A上の屈曲部31bを被覆する金属めっき層32とが互いに独立に形成されている場合には、磁石装着孔41の周方向内面41Cと、この周方向内面41Cに対向する絶縁被膜31の表面31Aとの間において、金属めっき層32が省略された領域に空隙部33が形成される。
In the embodiment described above, the substantially cylindrical rotor core 21 is provided with a plurality of salient pole portions 22,..., 22 and a plurality of divided magnets between the salient pole portions 22, 22 adjacent in the circumferential direction. Although the permanent magnet 12 comprised by 12a, ..., 12a was mounted | worn, it is not limited to this, For example, the permanent magnet-type rotor 1 which concerns on the 3rd modification of embodiment mentioned above shown in FIG. As described above, in the vicinity of the outer peripheral portion of the substantially cylindrical rotor core 21, a plurality of magnet mounting holes 41,... 12 may be mounted. In this case, unlike the permanent magnet rotor 1 according to the above-described embodiment, the outer peripheral surface of the permanent magnet 12 is not exposed toward the stator 2.
In the permanent magnet rotor 1 according to the third modification, for example, as shown in FIG. 9, a metal plating layer 32 that covers the bent portion 31b on the surface 31A of the insulating coating 31 on the outer peripheral side of the divided magnet 12a, The metal plating layer 32 that covers the bent portion 31b on the surface 31A of the insulating coating 31 may be formed integrally with each other on the inner peripheral side of the split magnet 12a. For example, as shown in FIG. The metal plating layer 32 that covers the bent portion 31b on the surface 31A of the insulating coating 31 on the outer peripheral side of the insulating film 31 and the metal plating layer 32 that covers the bent portion 31b on the surface 31A of the insulating coating 31 on the inner peripheral side of the divided magnet 12a. And may be formed independently of each other.
In the permanent magnet type rotor 1 according to the third modification, the outer peripheral side inner surface 41A and the inner peripheral side inner surface 41B of the magnet mounting hole 41, and the insulating coating facing these outer peripheral side inner surface 41A or inner peripheral side inner surface 41B. A gap 33 is formed between the surface 31A of the metal 31 and, further, for example, as shown in FIG. 10, a metal plating layer 32 that covers the bent portion 31b on the surface 31A of the insulating coating 31 on the outer peripheral side of the divided magnet 12a. When the metal plating layer 32 covering the bent portion 31b on the surface 31A of the insulating coating 31 is formed independently of each other on the inner peripheral side of the divided magnet 12a, the circumferential inner surface 41C of the magnet mounting hole 41 is formed. A gap 33 is formed in a region where the metal plating layer 32 is omitted between the surface 31A of the insulating coating 31 facing the circumferential inner surface 41C.

この第3変形例に係る永久磁石式回転子1を製造する際には、例えば絶縁被膜31および金属めっき層32を具備する分割磁石12aを磁石装着孔41よりも僅かに大きく形成し、磁石装着孔41に複数の分割磁石12a,…,12aを圧入してもよいし、絶縁被膜31および金属めっき層32を具備する複数の分割磁石12a,…,12aを磁石装着孔41内に装着した後に、例えば液状で供給されて常温で硬化(加硫)するシリコンゴム等の接着材を空隙部33に充填して、各分割磁石12aを磁石装着孔41内に固定してもよい。   When manufacturing the permanent magnet rotor 1 according to the third modification, for example, the divided magnet 12a including the insulating coating 31 and the metal plating layer 32 is formed slightly larger than the magnet mounting hole 41, and the magnet mounting is performed. A plurality of divided magnets 12a,..., 12a may be press-fitted into the hole 41, or after the plurality of divided magnets 12a,..., 12a having the insulating coating 31 and the metal plating layer 32 are mounted in the magnet mounting hole 41. Alternatively, for example, an adhesive such as silicon rubber supplied in liquid form and cured (vulcanized) at normal temperature may be filled in the gap 33 to fix the divided magnets 12 a in the magnet mounting holes 41.

本発明の実施の形態に係る永久磁石式回転子の要部を分解して示す斜視図である。It is a perspective view which decomposes | disassembles and shows the principal part of the permanent magnet type rotor which concerns on embodiment of this invention. 図1に示す永久磁石式回転子を具備するモータの1/4円の平面図である。FIG. 2 is a ¼ circle plan view of a motor including the permanent magnet rotor shown in FIG. 1. 図1に示す永久磁石式回転子の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the permanent magnet type rotor shown in FIG. 図1に示す永久磁石式回転子の積層コアを構成する第1コア部と第2コア部との接続部において、第1コア部の端面の要部を拡大して示す平面図である。FIG. 3 is an enlarged plan view showing a main part of an end surface of a first core part in a connection part between a first core part and a second core part that constitute a laminated core of the permanent magnet rotor shown in FIG. 1. 永久磁石式回転子に具備される永久磁石に対する金属めっき層の有無および金属めっき層の被覆状態の違いに応じたモータの運転時間に対する永久磁石式回転子の温度変化を示す図である。It is a figure which shows the temperature change of the permanent magnet type rotor with respect to the driving | running time of a motor according to the presence or absence of the metal plating layer with respect to the permanent magnet with which a permanent magnet type rotor is equipped, and the difference in the coating state of a metal plating layer. 本発明の実施の形態の第1変形例に係る永久磁石式回転子の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the permanent-magnet-type rotor which concerns on the 1st modification of embodiment of this invention. 本発明の実施の形態の第2変形例に係る永久磁石式回転子の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the permanent-magnet-type rotor which concerns on the 2nd modification of embodiment of this invention. 本発明の実施の形態の第3変形例に係る永久磁石式回転子を具備するモータの1/4円の平面図である。It is a 1/4 circle top view of the motor which comprises the permanent magnet type rotor which concerns on the 3rd modification of embodiment of this invention. 本発明の実施の形態の第3変形例に係る永久磁石式回転子の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the permanent-magnet-type rotor which concerns on the 3rd modification of embodiment of this invention. 本発明の実施の形態の第3変形例に係る永久磁石式回転子の要部を拡大して示す断面図である。It is sectional drawing which expands and shows the principal part of the permanent-magnet-type rotor which concerns on the 3rd modification of embodiment of this invention.

符号の説明Explanation of symbols

1 永久磁石式回転子
11 積層コア
11a 第1コア部(積層コア部)
11b 第2コア部(積層コア部)
12 永久磁石
12a 分割磁石(永久磁石片)
21 ロータ鉄心(磁石保持部)
22 突極部(磁石保持部)
22a 磁石保持爪部(磁石保持部、延出部)
31 絶縁被膜(絶縁層)
31a 当接部(所定領域)
31b 屈曲部(所定領域、屈曲部)
31c 端面部(所定領域)
32 金属めっき層(めっき層)
41 磁石装着孔(磁石保持部、磁石装着孔)

DESCRIPTION OF SYMBOLS 1 Permanent magnet type rotor 11 Laminated core 11a 1st core part (laminated core part)
11b 2nd core part (laminated core part)
12 Permanent magnet 12a Split magnet (permanent magnet piece)
21 Rotor core (magnet holding part)
22 Salient pole part (magnet holding part)
22a Magnet holding claw part (magnet holding part, extension part)
31 Insulating coating (insulating layer)
31a Contact part (predetermined area)
31b bent part (predetermined region, bent part)
31c End face part (predetermined area)
32 Metal plating layer (plating layer)
41 Magnet mounting hole (magnet holding part, magnet mounting hole)

Claims (5)

複数の電磁鋼板が積層された積層コアに具備される複数の磁石保持部に複数の永久磁石片が装着された永久磁石式回転子であって、
前記永久磁石片の表面上のうち、前記磁石保持部に当接する所定領域にのみ、あるいは、前記所定領域および該所定領域の周辺領域にのみ、前記積層鋼板よりも高硬度のめっき層を備えることを特徴とする永久磁石式回転子。
A permanent magnet rotor in which a plurality of permanent magnet pieces are mounted on a plurality of magnet holding portions provided in a laminated core in which a plurality of electromagnetic steel plates are laminated,
Of the surface of the permanent magnet piece, a plating layer having a hardness higher than that of the laminated steel sheet is provided only in a predetermined region that contacts the magnet holding portion, or only in the predetermined region and a peripheral region of the predetermined region. Permanent magnet type rotor characterized by
前記磁石保持部は、前記積層コアに設けられた磁石装着孔、あるいは、前記積層コアを構成する略円筒状のロータ鉄心および該ロータ鉄心の周面上から径方向に突出する複数の突極部および該突極部から略周方向に延出する延出部を備えて構成され、
前記永久磁石片は、前記磁石装着孔に装着される、あるいは、少なくとも周方向で隣り合う前記突極部によって周方向の両側から挟み込まれる又は前記ロータ鉄心と前記延出部とによって径方向の両側から挟み込まれることを特徴とする請求項1に記載の永久磁石式回転子。
The magnet holding part is a magnet mounting hole provided in the laminated core, or a substantially cylindrical rotor core constituting the laminated core, and a plurality of salient pole parts protruding in a radial direction from a peripheral surface of the rotor core. And an extension portion extending in a substantially circumferential direction from the salient pole portion,
The permanent magnet piece is mounted in the magnet mounting hole, or is sandwiched at least from both sides in the circumferential direction by the salient pole portions adjacent in the circumferential direction, or both sides in the radial direction by the rotor core and the extending portion. The permanent magnet rotor according to claim 1, wherein the permanent magnet rotor is sandwiched between the two.
前記所定領域は、前記永久磁石片の表面上のうち、前記永久磁石片の内部から外部に向かい突出する略凸状の屈曲部であることを特徴とする請求項1または請求項2に記載の永久磁石式回転子。 The said predetermined area | region is the substantially convex bending part which protrudes toward the exterior from the inside of the said permanent magnet piece among the surfaces of the said permanent magnet piece, The Claim 1 or Claim 2 characterized by the above-mentioned. Permanent magnet rotor. 前記積層コアは、回転軸方向の所定位置で分割された複数の積層コア部を備えて構成され、
回転軸方向で隣り合う前記積層コア部同士は、回転軸周りに所定角度だけずれた状態で接続され、前記積層コア部同士に具備される互いの前記磁石保持部および該磁石保持部に装着される前記永久磁石片が周方向に前記所定角度だけずれており、
適宜の前記積層コア部に具備される前記永久磁石片の表面上における前記所定領域は、前記適宜の前記積層コア部に具備される前記磁石保持部に当接する領域に加えて、前記適宜の前記積層コア部に隣接する他の前記積層コア部に具備される前記磁石保持部に当接する領域を備えることを特徴とする請求項1に記載の永久磁石式回転子。
The laminated core includes a plurality of laminated core portions divided at predetermined positions in the rotation axis direction,
The laminated core portions adjacent in the rotation axis direction are connected to each other in a state of being shifted by a predetermined angle around the rotation axis, and are attached to the magnet holding portions and the magnet holding portions provided in the laminated core portions. The permanent magnet piece is shifted in the circumferential direction by the predetermined angle,
The predetermined area on the surface of the permanent magnet piece provided in the appropriate laminated core part is not limited to the area contacting the magnet holding part provided in the appropriate laminated core part. The permanent magnet rotor according to claim 1, further comprising a region that abuts on the magnet holding portion provided in the other laminated core portion adjacent to the laminated core portion.
前記永久磁石片の表面上を電気的絶縁体により被覆する絶縁層を備え、
前記めっき層は、前記絶縁層の表面上に設けられていることを特徴とする請求項1から請求項4の何れかひとつに記載の永久磁石式回転子。

An insulating layer covering the surface of the permanent magnet piece with an electrical insulator;
The permanent magnet type rotor according to any one of claims 1 to 4, wherein the plating layer is provided on a surface of the insulating layer.

JP2003305226A 2003-08-28 2003-08-28 Permanent magnet type rotor Withdrawn JP2005080344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003305226A JP2005080344A (en) 2003-08-28 2003-08-28 Permanent magnet type rotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003305226A JP2005080344A (en) 2003-08-28 2003-08-28 Permanent magnet type rotor

Publications (1)

Publication Number Publication Date
JP2005080344A true JP2005080344A (en) 2005-03-24

Family

ID=34408703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003305226A Withdrawn JP2005080344A (en) 2003-08-28 2003-08-28 Permanent magnet type rotor

Country Status (1)

Country Link
JP (1) JP2005080344A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072622A1 (en) * 2005-12-21 2007-06-28 Honda Motor Co., Ltd. Electric motor
JP2009036825A (en) * 2007-07-31 2009-02-19 Nidec Sankyo Corp Lens drive device
CN104659939A (en) * 2015-01-28 2015-05-27 深圳市良益实业有限公司 Skewed slot anomalistic permanent magnet synchronous motor
JP2018093603A (en) * 2016-12-01 2018-06-14 日産自動車株式会社 Magnet temperature estimation system and motor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007072622A1 (en) * 2005-12-21 2007-06-28 Honda Motor Co., Ltd. Electric motor
US20090096314A1 (en) * 2005-12-21 2009-04-16 Hirofumi Atarashi Electric motor
JPWO2007072622A1 (en) * 2005-12-21 2009-05-28 本田技研工業株式会社 Electric motor
US8339010B2 (en) 2005-12-21 2012-12-25 Honda Motor Co., Ltd Dual rotor electric machine having a field-controlling rotor
JP2009036825A (en) * 2007-07-31 2009-02-19 Nidec Sankyo Corp Lens drive device
CN104659939A (en) * 2015-01-28 2015-05-27 深圳市良益实业有限公司 Skewed slot anomalistic permanent magnet synchronous motor
JP2018093603A (en) * 2016-12-01 2018-06-14 日産自動車株式会社 Magnet temperature estimation system and motor

Similar Documents

Publication Publication Date Title
JP5238231B2 (en) Rotating electrical machine rotor
JP4432616B2 (en) Axial gap type rotating electrical machine
JP2016174461A (en) Rotor
JP2007151321A (en) Rotor of rotary electric machine
JP4515236B2 (en) Embedded magnet type rotor
JP2006271057A (en) Rotor of permanent magnet synchronous motor
JP3790774B2 (en) Permanent magnet rotating electric machine and automobile
WO2014162804A1 (en) Rotating electrical machine with embedded permanent magnet
JP6748852B2 (en) Brushless motor
JP2014045634A (en) Rotor and rotary electric machine including the same
JP2008263719A (en) Insulator, stator of rotating electric machine and rotating electric machine
WO2018037455A1 (en) Consequent pole-type rotor, electric motor, and air conditioner
JP2009240109A (en) Electric motor
JP2008236866A (en) Rotor of permanent magnet embedded-type rotating electric machine, and permanent magnet embedded-type rotating electric machine
JP2009195055A (en) Rotating electric machine
WO2017212575A1 (en) Permanent magnet motor
JP2005333762A (en) Rotating electric machine and its rotor
JP2007159308A (en) Rotor
WO2023276514A1 (en) Rotor, method for manufacturing same, and electric motor
JP2005080344A (en) Permanent magnet type rotor
JP2020010539A (en) Rotor and brushless motor
JP2005057865A (en) Structure of rotor
JP2008017634A (en) Permanent magnet motor
JP3790773B2 (en) Permanent magnet rotating electric machine and automobile
JP2012244808A (en) Rotor for rotary electric machine

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20061107