JP2005079494A - Luminous-efficiency corrected photodetecting element - Google Patents

Luminous-efficiency corrected photodetecting element Download PDF

Info

Publication number
JP2005079494A
JP2005079494A JP2003311039A JP2003311039A JP2005079494A JP 2005079494 A JP2005079494 A JP 2005079494A JP 2003311039 A JP2003311039 A JP 2003311039A JP 2003311039 A JP2003311039 A JP 2003311039A JP 2005079494 A JP2005079494 A JP 2005079494A
Authority
JP
Japan
Prior art keywords
light
receiving element
epitaxial layer
corrected
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003311039A
Other languages
Japanese (ja)
Inventor
Taku Washimi
卓 鷲見
Takashi Sato
崇志 佐藤
Yuuki Murayama
勇樹 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MORIRIKA KK
Original Assignee
MORIRIKA KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MORIRIKA KK filed Critical MORIRIKA KK
Priority to JP2003311039A priority Critical patent/JP2005079494A/en
Publication of JP2005079494A publication Critical patent/JP2005079494A/en
Pending legal-status Critical Current

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost photodetecting element having a spectral sensitivity curve that resembles the luminous-efficiency curve of human beings without using any heavy metal nor any infrared filter. <P>SOLUTION: The luminous-efficiency corrected photodetecting element comprises (a) a silicon substrate layer having a high impurity concentration with specific resistivity of 0.1 Ωcm or lower, (b) an epitaxial layer formed on the silicon substrate layer, having a thickness of 0.1 μm or thicker and 10 μm or thinner, and having a low impurity concentration with specific resistivity of 1 Ωcm or higher, and (c) a PN junction formed on the epitaxial layer. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、カメラの露出計、街路灯の自動点滅器及び濃度計などに用いられる視感度補正された受光素子(フォトダイオード)に関する。   The present invention relates to a light receiving element (photodiode) whose visibility has been corrected, which is used for an exposure meter of a camera, an automatic flasher of a street light, a densitometer and the like.

視感度補正された受光センサを作製するには、人間の視感度に類似した感度を有する物質を用いた手段が広く採用されている。例えば、光導電セルを構成する半導体として硫化カドミウムを用いることで、受光センサに視感度に類似した感度を持たせることができる。硫化カドミウムを用いた光導電セル(CDSセル)は、照射された光のエネルギーで励起されたキャリアによって光導電性を有するようになり、電気抵抗が変化する。照射光のエネルギーが強い(波長が短い)と抵抗が低くなり、逆に照射光のエネルギーが弱い(波長が長い)と抵抗が高くなる傾向を利用して、人間の視感度に類似した分光曲線を与えるものである。   In order to produce a light-receiving sensor whose visibility has been corrected, means using a substance having a sensitivity similar to human visibility has been widely adopted. For example, by using cadmium sulfide as a semiconductor constituting the photoconductive cell, the light receiving sensor can have sensitivity similar to visual sensitivity. A photoconductive cell (CDS cell) using cadmium sulfide has photoconductivity due to carriers excited by the energy of irradiated light, and its electric resistance changes. Spectral curves resembling human visual sensitivity using the tendency that resistance is low when the energy of the irradiation light is strong (short wavelength), and resistance is high when the energy of the irradiation light is weak (long wavelength). Is to give.

しかしながら、硫化カドミウムは、人間及び生態系にとって有害な重金属であり、環境に悪影響を及ぼすという問題がある。特に最近の地球環境に対する世論を考えても、受光素子の製造工程からカドミウムの使用を縮小する流れが目立つ。従って、カドミウムを用いず、環境に悪影響を与えない、CDSセルに代わる視感度補正された受光素子が求められている。   However, cadmium sulfide is a heavy metal harmful to humans and ecosystems, and has a problem of adversely affecting the environment. In particular, even with the recent public opinion on the global environment, there is a noticeable trend to reduce the use of cadmium from the manufacturing process of the light receiving element. Accordingly, there is a need for a light-sensitive element that does not use cadmium and that does not adversely affect the environment and that has been corrected for visibility instead of a CDS cell.

一方、環境に悪影響を与えないシリコンを利用した受光素子(フォトダイオード)が広く実用化されている。しかしながら、シリコンは、硫化カドミウムと比較して幅広い感度領域を有しており、人間の視感度曲線に近似させるためには、赤外領域の感度をカットするフィルターを、受光素子表面に被せる必要が有る。すなわち、シリコンを利用した受光素子に視感度補正機能を持たせるためには、赤外領域の光に対する感度をカットするためのフィルターが必要となり、このフィルター分のコストが発生することとなり、受光素子が高額になってしまうという問題があった。   On the other hand, light receiving elements (photodiodes) using silicon that do not adversely affect the environment have been widely put into practical use. However, silicon has a wider sensitivity range than cadmium sulfide, and in order to approximate the human visual sensitivity curve, it is necessary to cover the surface of the light receiving element with a filter that cuts the sensitivity in the infrared region. Yes. In other words, in order to provide a light-receiving element using silicon with a visibility correction function, a filter for cutting the sensitivity to light in the infrared region is necessary, and the cost for this filter is generated. There was a problem that would become expensive.

上記現状に鑑み、本発明は、地球の環境に対し悪影響を及ぼすとされるカドミウム等の重金属を使用せず、また、赤外フィルターを用いることなく、人間の視感度曲線に類似した感度を有する安価な受光素子を提供することを目的とする。   In view of the above situation, the present invention does not use heavy metals such as cadmium, which are considered to have an adverse effect on the environment of the earth, and has a sensitivity similar to a human visibility curve without using an infrared filter. An object is to provide an inexpensive light receiving element.

上記目的を達成するため、本発明者らは鋭意研究を行った結果、受光素子の基板に、比抵抗の小さい、すなわち不純物を高濃度に含有するシリコンを用い、その上に比抵抗が大きい、すなわち不純物濃度の低い厚さ1μm程度のエピタキシャル層を作製し、その上にPN接合を形成すれば、人間の視感度曲線に近似した感度を有する受光素子が得られることを見出し本発明に到達した。   In order to achieve the above object, as a result of intensive studies, the present inventors have used a substrate having a low specific resistance, that is, silicon containing a high concentration of impurities, and a high specific resistance on the substrate. That is, when an epitaxial layer having a low impurity concentration of about 1 μm is fabricated and a PN junction is formed thereon, a light receiving element having a sensitivity approximate to a human visibility curve can be obtained, and the present invention has been achieved. .

すなわち、本発明は、(a)高不純物濃度(比抵抗が0.1Ω・cm以下)を有するシリコン基板層、(b)該シリコン基板層の上に形成された厚さ0.1μm以上10μm以下のの低不純物濃度(比抵抗が1Ω・cm以上)を有するエピタキシャル層、及び(c)該エピタキシャル層の上に形成されたPN接合を有する視感度補正された受光素子(フォトダイオード)を提供する。   That is, the present invention includes (a) a silicon substrate layer having a high impurity concentration (specific resistance is 0.1 Ω · cm or less), and (b) a thickness of 0.1 μm or more and 10 μm or less formed on the silicon substrate layer. And (c) a light-sensitive element (photodiode) whose visibility is corrected, comprising an epitaxial layer having a low impurity concentration (specific resistance of 1 Ω · cm or more), and (c) a PN junction formed on the epitaxial layer. .

本発明の視感度補正された受光素子において、シリコン基板層の比抵抗は好ましくは0.0001〜0.1Ω・cmの範囲であり、より好ましくは0.05〜0.1Ω・cmの範囲であり、エピタキシャル層の比抵抗は好ましくは1〜1000Ω・cmの範囲であり、より好ましくは1〜5Ω・cmの範囲である。エピタキシャル層の膜厚は好ましくは0.1〜10μmの範囲であり、より好ましくは0.1〜1μmの範囲である。   In the light-receiving element with corrected visibility according to the present invention, the specific resistance of the silicon substrate layer is preferably in the range of 0.0001 to 0.1 Ω · cm, more preferably in the range of 0.05 to 0.1 Ω · cm. The specific resistance of the epitaxial layer is preferably in the range of 1 to 1000 Ω · cm, more preferably in the range of 1 to 5 Ω · cm. The thickness of the epitaxial layer is preferably in the range of 0.1 to 10 μm, more preferably in the range of 0.1 to 1 μm.

本発明の視感度補正された受光素子には、視感度波長領域の光の反射を抑え、赤外波長領域の光の反射を促進する保護膜をさらに備えることが好ましい。保護膜は、シリコンの熱酸化膜であることが好ましい。   It is preferable that the light-receiving element with corrected visibility according to the present invention further includes a protective film that suppresses reflection of light in the visibility wavelength region and promotes reflection of light in the infrared wavelength region. The protective film is preferably a silicon thermal oxide film.

本発明によれば、有害な重金属を使用することなく、環境に悪影響を及ぼさない材料を用いて、ヒトの視感度曲線に近似した感度を有する受光素子(フォトダイオード)が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the light receiving element (photodiode) which has the sensitivity approximated to a human visibility curve using the material which does not have a bad influence on an environment, without using a harmful | toxic heavy metal is provided.

また、本発明によれば、従来の視感度補正された受光素子のように赤外カットフィルターを使用することなく、安価に視感度補正された受光素子を作製することができる。   Further, according to the present invention, it is possible to manufacture a light-receiving element whose visibility has been corrected at low cost without using an infrared cut filter unlike a conventional light-receiving element whose visibility has been corrected.

以下、図面を参照しながら本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the drawings.

本発明の視感度補正された受光素子(以下、本発明の受光素子という)は、(a)比抵抗が0.1Ω・cm以下の高不純物濃度を有するシリコン基板層、(b)該シリコン基板層の上に形成された、厚さ0.1μm以上10μm以下の、比抵抗が1Ω・cm以上の低不純物濃度を有するエピタキシャル層、及び(c)該エピタキシャル層の上に形成されたPN接合を有することを特徴とする。   The light-sensitive element with the corrected visibility according to the present invention (hereinafter referred to as the light-receiving element according to the present invention) includes (a) a silicon substrate layer having a high impurity concentration with a specific resistance of 0.1 Ω · cm or less, and (b) the silicon substrate. An epitaxial layer having a low impurity concentration with a specific resistance of 1 Ω · cm or more and a thickness of 0.1 μm or more and 10 μm or less formed on the layer; and (c) a PN junction formed on the epitaxial layer. It is characterized by having.

本発明の受光素子は、例えば、図1に示すように構成したものである。本発明の受光素子においては、基板に高不純物濃度を有するシリコン(1)を用いる。高不純物濃度を有するシリコンは、例えば、CZ法(Czochralski Method)などの当業界で公知の手法によってシリコン単結晶を作製する際に、所望の比抵抗値となるように、高濃度のアンチモン等の不純物を添加することによって得られる。得られたシリコンインゴットを、所望の厚さ(380〜400μm)にスライスし、片面に鏡面研磨を施して、シリコン基板(1)とする。
次に、シリコン基板(1)の上に、低不純物濃度を有するエピタキシャル層(2)を、気相エピタキシー技術などの当業界で公知の手法によって所望の厚さ(0.1μm以上10μm以下)まで成長させた後、エピタキシャル層(2)の上にPN接合を作製するため、シリコン表面に、常圧化学的気相成長法(CVD法)などの当業界で公知の手法を用い、ボロンなどの不純物拡散源を堆積させ、800〜900℃、好ましくは約900℃の電気炉中で加熱して不純物をシリコン中に拡散させる。不純物の拡散はエピタキシャル層(2)表面から0.5μm程度〜1μm未満の深さまで進み、エピタキシャル層(2)とは反対のP型の導電性を有する半導体層(空乏層)(3)を形成する。
本発明の受光素子は、視感度波長領域の光の反射を抑え、赤外波長領域の光の反射を促進する保護膜をさらに備えていることが好ましい。このような機能を有する保護膜(4)は、例えば、900〜1100℃、好ましくは約1000℃の電気炉中に酸素ガスを流し、上記の半導体層(3)の上に熱酸化膜として形成する。保護膜(4)は、後述する式1に従って最適な膜厚を適宜選択する。
The light receiving element of the present invention is configured, for example, as shown in FIG. In the light receiving element of the present invention, silicon (1) having a high impurity concentration is used for the substrate. Silicon having a high impurity concentration is, for example, a high concentration of antimony or the like so as to obtain a desired specific resistance value when a silicon single crystal is produced by a technique known in the art such as the CZ method (Czochralski Method). Obtained by adding impurities. The obtained silicon ingot is sliced to a desired thickness (380 to 400 μm), and one surface is mirror-polished to obtain a silicon substrate (1).
Next, an epitaxial layer (2) having a low impurity concentration is formed on the silicon substrate (1) to a desired thickness (0.1 μm or more and 10 μm or less) by a technique known in the art such as vapor phase epitaxy technology. After the growth, in order to produce a PN junction on the epitaxial layer (2), a technique known in the art such as atmospheric pressure chemical vapor deposition (CVD) is used on the silicon surface. An impurity diffusion source is deposited and heated in an electric furnace at 800 to 900 ° C., preferably about 900 ° C., to diffuse the impurities into the silicon. The diffusion of impurities proceeds from the surface of the epitaxial layer (2) to a depth of about 0.5 μm to less than 1 μm, and forms a semiconductor layer (depletion layer) (3) having P-type conductivity opposite to the epitaxial layer (2). To do.
The light receiving element of the present invention preferably further includes a protective film that suppresses reflection of light in the visibility wavelength region and promotes reflection of light in the infrared wavelength region. The protective film (4) having such a function is formed as a thermal oxide film on the semiconductor layer (3) by flowing oxygen gas in an electric furnace at 900 to 1100 ° C., preferably about 1000 ° C., for example. To do. As the protective film (4), an optimum film thickness is appropriately selected according to the formula 1 described later.

最後に、アルミニウムからなる表電極(5)及び金からなる裏電極(6)をそれぞれ蒸着法によって形成することにより本発明の受光素子が得られる。   Finally, the light receiving element of the present invention is obtained by forming the front electrode (5) made of aluminum and the back electrode (6) made of gold by vapor deposition.

上記のように構成された本発明の受光素子が人間の視感度曲線に近似した視感度を有することができる原理は次の通りである。シリコン基板内に入射した光は、その波長が長くなるにつれてシリコン基板のより深部まで達する。ところが、比抵抗が0.1Ω・cm以下の上記高不純物濃度を有するシリコン基板(1)中では、光エネルギーの入射によって発生したキャリアは不純物イオンと再結合され、電気伝導に寄与することができなくなる。つまり、シリコン基板の深部まで進入する波長の長い赤外領域の光は電気エネルギーに変換されず、信号として感知されない。これに対し、比抵抗が1Ω・cm以上の上記低不純物濃度を有するエピタキシャル層(2)では、発生したキャリアが再結合されず、電気伝導に寄与することができるため信号として感知されることとなる。さらに、上記エピタキシャル層(2)の厚さを0.1μm以上10μmとすると、波長の短い光のみを電気伝導に寄与させることができる。これにより、波長の短い可視領域の光のみを感知させることができ、受光素子の感度をヒトの視感度曲線に近似させることができるのである。   The principle that the light receiving element of the present invention configured as described above can have a visual sensitivity that approximates a human visual sensitivity curve is as follows. The light incident on the silicon substrate reaches a deeper portion of the silicon substrate as its wavelength increases. However, in the silicon substrate (1) having a high impurity concentration with a specific resistance of 0.1 Ω · cm or less, carriers generated by the incidence of light energy are recombined with impurity ions and can contribute to electrical conduction. Disappear. In other words, long-wavelength infrared light that penetrates deep into the silicon substrate is not converted into electrical energy and is not sensed as a signal. On the other hand, in the epitaxial layer (2) having the above low impurity concentration with a specific resistance of 1 Ω · cm or more, the generated carriers are not recombined and can be contributed to electrical conduction, so that they are sensed as signals. Become. Furthermore, when the thickness of the epitaxial layer (2) is 0.1 μm or more and 10 μm, only light having a short wavelength can contribute to electrical conduction. As a result, only light in the visible region with a short wavelength can be sensed, and the sensitivity of the light receiving element can be approximated to a human visibility curve.

さらに、本発明の受光素子に任意に設けることができる、可視光波長領域の光の反射を抑え(可視光波長領域の光を透過させ)、赤外波長領域の光の反射を促進する保護膜(4)は、受光素子の一般的なパッシベーション膜(不活性化層)であり、この保護膜の厚さを最適化することによっても、受光素子の感度をヒトの視感度にさらに近づけることができる。   Furthermore, a protective film that can be arbitrarily provided in the light receiving element of the present invention, suppresses reflection of light in the visible wavelength region (transmits light in the visible wavelength region), and promotes reflection of light in the infrared wavelength region. (4) is a general passivation film (passivation layer) of the light receiving element, and the sensitivity of the light receiving element can be made closer to human visual sensitivity by optimizing the thickness of the protective film. it can.

空気相の屈折率をn、保護膜(4)の屈折率をn、保護膜(4)の厚さをd、シリコン基板(1)の屈折率をn、入射光波長をλとしたときの保護膜(4)の反射率Rは、下記式1で表される。 The refractive index of the air phase is n 0 , the refractive index of the protective film (4) is n 1 , the thickness of the protective film (4) is d, the refractive index of the silicon substrate (1) is n 2 , and the incident light wavelength is λ. The reflectance R of the protective film (4) is expressed by the following formula 1.

上記式1から、保護膜(4)の厚さdを最適化することで、入射してくる可視光波長領域の光を透過し、赤外光波長領域の光を反射する機能を保護膜(4)に持たせることが可能なことがわかる。 From the above formula 1, by optimizing the thickness d of the protective film (4), the function of transmitting the incident light in the visible wavelength region and reflecting the light in the infrared wavelength region is protected. It can be seen that 4) can be provided.

保護膜(4)は、1層の酸化膜からなっていてもよいし、酸化膜や窒化膜等の屈折率の高い膜を組み合わせて同様の機能を持たせることもできる。   The protective film (4) may be formed of a single oxide film, or may have a similar function by combining films having a high refractive index such as an oxide film or a nitride film.

以下、実施例を挙げ、図面を参照しながら本発明を具体的に説明するが、本発明は下記実施例になんら限定されるものではない。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated concretely, referring drawings, this invention is not limited to the following Example at all.

まずCZ法を用いてシリコン単結晶を作製し、その際、高濃度のアンチモンを添加した。シリコンの比抵抗は0.02Ω・cm程度であった。   First, a silicon single crystal was produced using the CZ method, and at that time, a high concentration of antimony was added. The specific resistance of silicon was about 0.02 Ω · cm.

次に、このシリコンインゴットを380μmの厚さにスライスし、片面鏡面研磨を施し、高不純物濃度を有するシリコン基板(1)とした。シリコン基板(1)の上に、比抵抗2000Ω・cmの層を1μm積層させることにより低不純物濃度のエピタキシャル層(2)を形成した。   Next, this silicon ingot was sliced to a thickness of 380 μm and subjected to one-side mirror polishing to obtain a silicon substrate (1) having a high impurity concentration. An epitaxial layer (2) having a low impurity concentration was formed by laminating 1 μm of a layer having a specific resistance of 2000 Ω · cm on the silicon substrate (1).

さらにその上にPN接合を作製するため、シリコン表面に常厚CVD法を用いてボロン不純物拡散源を堆積させ、約900℃の電気炉中で不純物を拡散させた。不純物の拡散はエピタキシャル層(2)の表面から0.5μm程度の深さまで進み、エピタキシャル層(2)とは反対のP片の導電性を有する半導体層(3)を形成した。   Further, in order to form a PN junction thereon, a boron impurity diffusion source was deposited on the silicon surface by using a constant thickness CVD method, and the impurities were diffused in an electric furnace at about 900 ° C. Impurity diffusion proceeded from the surface of the epitaxial layer (2) to a depth of about 0.5 μm, and a P-layer conductive semiconductor layer (3) opposite to the epitaxial layer (2) was formed.

続いてシリコン表面に、可視光波長領域の光を透過し、赤外波長領域の光を反射する機能を有する酸化膜(4)を成膜するため、約1000℃の電気炉中に酸素ガスを流し、熱酸化膜層を形成した。熱酸化膜層の膜厚は約310nm、屈折率は1.46であった。   Subsequently, in order to form an oxide film (4) having a function of transmitting light in the visible wavelength region and reflecting light in the infrared wavelength region on the silicon surface, oxygen gas was introduced into an electric furnace at about 1000 ° C. Then, a thermal oxide film layer was formed. The thermal oxide film layer had a thickness of about 310 nm and a refractive index of 1.46.

表電極(5)としてアルミニウムを、裏電極(6)として金をそれぞれ蒸着法により形成して受光素子を得た。   Aluminum was formed as the front electrode (5) and gold was formed as the back electrode (6) by a vapor deposition method to obtain a light receiving element.

得られた受光素子の分光感度曲線を図2に示す。図2から、視感度補正されていないシリコン受光素子(8)では赤外波長領域に感度のピークが現れるが、実施例のシリコン受光素子(7)では可視光波長領域に感度のピークが現れており、且つ赤外波長領域の光に対する感度がカットされていることがわかる。   The spectral sensitivity curve of the obtained light receiving element is shown in FIG. From FIG. 2, the sensitivity peak appears in the infrared wavelength region in the silicon light receiving element (8) whose visibility has not been corrected, but the sensitivity peak appears in the visible light wavelength region in the silicon light receiving element (7) of the example. It can also be seen that the sensitivity to light in the infrared wavelength region is cut.

本発明の視感度補正された受光素子の構成を示す断面図である。It is sectional drawing which shows the structure of the light receiving element by which the visibility correction | amendment of this invention was carried out. 本発明の視感度補正された受光素子と従来のシリコン受光素子の分光感度特性を示すグラフである。It is a graph which shows the spectral sensitivity characteristic of the light receiving element by which the visibility correction | amendment of this invention was carried out, and the conventional silicon light receiving element.

符号の説明Explanation of symbols

1…高不純物濃度のシリコン基板層、2…低不純物濃度のエピタキシャル層、3…半導体層(空乏層)、4…保護膜、5…表電極、6…裏電極、7…本発明の視感度補正された受光素子の分光感度曲線、8…視感度補正されていないシリコン受光素子の分光感度曲線。
DESCRIPTION OF SYMBOLS 1 ... High impurity concentration silicon substrate layer, 2 ... Low impurity concentration epitaxial layer, 3 ... Semiconductor layer (depletion layer), 4 ... Protective film, 5 ... Front electrode, 6 ... Back electrode, 7 ... Visibility of this invention Spectral sensitivity curve of the light receiving element corrected, 8... Spectral sensitivity curve of the silicon light receiving element not corrected for visual sensitivity.

Claims (6)

(a)比抵抗が0.1Ω・cm以下の高不純物濃度を有するシリコン基板層と、
(b)上記シリコン基板層の上に形成された比抵抗が1Ω・cm以上の低不純物濃度を有する厚さ0.1μm以上10μm以下のエピタキシャル層と、
(c)該エピタキシャル層の上に形成されたPN接合と
を有することを特徴とする視感度補正された受光素子。
(A) a silicon substrate layer having a high impurity concentration with a specific resistance of 0.1 Ω · cm or less;
(B) an epitaxial layer having a low impurity concentration of 1 Ω · cm or more and a thickness of 0.1 μm or more and 10 μm or less formed on the silicon substrate layer;
(C) A light-receiving device with corrected visibility, comprising a PN junction formed on the epitaxial layer.
前記シリコン基板層の比抵抗が0.0001〜0.1Ω・cmの範囲であることを特徴とする請求項1に記載の視感度補正された受光素子。 The light-receiving element with corrected visibility according to claim 1, wherein a specific resistance of the silicon substrate layer is in a range of 0.0001 to 0.1 Ω · cm. 前記エピタキシャル層の比抵抗が1〜1000Ω・cmの範囲であることを特徴とする請求項1又は2に記載の視感度補正された受光素子。 3. The light-receiving element with corrected visibility according to claim 1, wherein a specific resistance of the epitaxial layer is in a range of 1 to 1000 Ω · cm. 前記エピタキシャル層の厚さが0.1〜10μmの範囲であることを特徴とする請求項1〜3のいずれかに記載の視感度補正された受光素子。 The photosensitivity-corrected light-receiving element according to claim 1, wherein a thickness of the epitaxial layer is in a range of 0.1 to 10 μm. 視感度波長領域の光の反射を抑え、赤外波長領域の光の反射を促進する保護膜を備えることを特徴とする請求項1〜4のいずれかに記載の視感度補正された受光素子。 The light-receiving element with corrected visibility according to any one of claims 1 to 4, further comprising a protective film that suppresses reflection of light in the visibility wavelength region and promotes reflection of light in the infrared wavelength region. 前記保護膜がシリコンの熱酸化膜からなることを特徴とする請求項5に記載の視感度補正された受光素子。
6. The light-receiving element with corrected visibility according to claim 5, wherein the protective film is made of a thermal oxide film of silicon.
JP2003311039A 2003-09-03 2003-09-03 Luminous-efficiency corrected photodetecting element Pending JP2005079494A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003311039A JP2005079494A (en) 2003-09-03 2003-09-03 Luminous-efficiency corrected photodetecting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003311039A JP2005079494A (en) 2003-09-03 2003-09-03 Luminous-efficiency corrected photodetecting element

Publications (1)

Publication Number Publication Date
JP2005079494A true JP2005079494A (en) 2005-03-24

Family

ID=34412708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003311039A Pending JP2005079494A (en) 2003-09-03 2003-09-03 Luminous-efficiency corrected photodetecting element

Country Status (1)

Country Link
JP (1) JP2005079494A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102270711A (en) * 2011-07-26 2011-12-07 山西天能科技股份有限公司 Method for improving light emitting efficiency of blue-green LED (Light-Emitting Diode) on silicon substrate
JP2012520559A (en) * 2009-03-12 2012-09-06 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Semiconductor light receiving element and optoelectronic device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012520559A (en) * 2009-03-12 2012-09-06 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング Semiconductor light receiving element and optoelectronic device
CN102270711A (en) * 2011-07-26 2011-12-07 山西天能科技股份有限公司 Method for improving light emitting efficiency of blue-green LED (Light-Emitting Diode) on silicon substrate

Similar Documents

Publication Publication Date Title
Razeghi Short-wavelength solar-blind detectors-status, prospects, and markets
EP2403009B1 (en) Semiconductor photodetection element
US7718965B1 (en) Microbolometer infrared detector elements and methods for forming same
EP3467882A1 (en) Photodiode and photodiode array
Chen et al. Ultraviolet, visible, and infrared response of PtSi Schottky-barrier detectors operated in the front-illuminated mode
US9601902B2 (en) Optical signal amplification
JP6046630B2 (en) Transition film growth of conductive semiconductor materials.
CN106024922B (en) Phototransistor based on GeSn materials and preparation method thereof
JPH01207640A (en) Semiconductor photodetecting device and ultraviolet detecting method, and semiconductor photodetecting element and its manufacture
US4034396A (en) Light sensor having good sensitivity to visible light
JP2005079494A (en) Luminous-efficiency corrected photodetecting element
JPH06216404A (en) Uv photodetector
JPH0517492B2 (en)
KR20090056934A (en) Photodetector and method for manufacturing photodetector
JP2670289B2 (en) Infrared detecting photodiode and method for manufacturing the same
JPS6032812B2 (en) photodetector
WO2012046479A1 (en) Photodetection element, and method of producing the photodetection element
TW201924032A (en) Ultraviolet light receiving element and method of manufacturing ultraviolet light receiving element
JPH03159179A (en) Manufacture of photoelectric converter
JPH0738138A (en) Ultraviolet sensor
JP5261304B2 (en) Semiconductor light detection element and method for manufacturing semiconductor light detection element
JP2846704B2 (en) Photoelectric conversion element
JPS5946111B2 (en) Photodetection semiconductor device
FR2520557A1 (en) CHROMATIC SENSOR
JP2001144022A (en) Producing method for semiconductor device