JP2005079432A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2005079432A
JP2005079432A JP2003309881A JP2003309881A JP2005079432A JP 2005079432 A JP2005079432 A JP 2005079432A JP 2003309881 A JP2003309881 A JP 2003309881A JP 2003309881 A JP2003309881 A JP 2003309881A JP 2005079432 A JP2005079432 A JP 2005079432A
Authority
JP
Japan
Prior art keywords
electrode
layer
wiring
dielectric constant
low dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003309881A
Other languages
Japanese (ja)
Inventor
Atsuhito Mizutani
篤人 水谷
Takeshi Hamaya
毅 濱谷
Masaji Funakoshi
正司 舩越
Kazuhiko Matsushita
和彦 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003309881A priority Critical patent/JP2005079432A/en
Publication of JP2005079432A publication Critical patent/JP2005079432A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02123Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body inside the bonding area
    • H01L2224/02125Reinforcing structures
    • H01L2224/02126Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/0212Auxiliary members for bonding areas, e.g. spacers
    • H01L2224/02122Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body
    • H01L2224/02163Auxiliary members for bonding areas, e.g. spacers being formed on the semiconductor or solid-state body on the bonding area
    • H01L2224/02165Reinforcing structures
    • H01L2224/02166Collar structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/04042Bonding areas specifically adapted for wire connectors, e.g. wirebond pads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Wire Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress cracks generated on an interlayer insulation film between wiring by an impact at the time of wire bonding. <P>SOLUTION: A semiconductor device is provided with an electrode 4 composed of a conductive layer, an external terminal 8 composed of the conductive layer formed on the electrode 4 and the wiring layer 3 of a different potential holding an insulation layer 5 therebetween on the lower part of the electrode 4, and a low dielectric constant film layer 12 is embedded in the electrode 4. Thus, stress applied to the lower part of the external terminal 8 is dispersed by the low dielectric constant film layer 12 formed in the electrode for the impact of wire bonding to the external terminal 8. Thus, in the case of forming the wiring of different potential below the external terminal 8 in a semiconductor assembling process, the cracks generated in the insulation film 5 formed between the electrode 4 of an upper layer and the wiring layer 3 of a lower layer by the stress at the time of wire bonding are suppressed. As a result, leakage between the electrode 4 of the upper layer and the wiring layer 3 of the lower layer is prevented from occurring. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、ボンディングパッドを有する半導体装置に関するものである。   The present invention relates to a semiconductor device having a bonding pad.

近年コンピュータや通信機器を中心とした電子機器の小型化と高機能化に伴い、半導体装置の小型化、高密度化及び高速化への要求がますます強くなってきている。しかし半導体の高速化の大きな妨げになるのが、MOSトランジスタ自体の遅延及び配線遅延である。従来は微細加工技術によりゲート長を短くすることでMOSトランジスタ自体の遅延を低減してきた。一方、微細加工技術進展によるMOSトランジスタ自体の遅延が小さくなるに従い配線遅延の問題が顕著になってきた。そこで配線遅延を小さくするため従来のAl配線に代わりCu配線が採用されるとともに、配線間に挟まれる絶縁膜に誘電率3.0以下の材料(低誘電率膜)が採用されつつある。   In recent years, with the miniaturization and high functionality of electronic devices such as computers and communication devices, there is an increasing demand for miniaturization, high density and high speed of semiconductor devices. However, it is the delay and wiring delay of the MOS transistor itself that greatly hinders the speeding up of the semiconductor. Conventionally, the delay of the MOS transistor itself has been reduced by shortening the gate length by microfabrication technology. On the other hand, the problem of wiring delay has become more prominent as the delay of the MOS transistor itself due to the progress of microfabrication technology becomes smaller. Therefore, in order to reduce the wiring delay, Cu wiring is adopted instead of the conventional Al wiring, and a material having a dielectric constant of 3.0 or less (low dielectric constant film) is being adopted for the insulating film sandwiched between the wirings.

こうした半導体装置の製造において半導体チップの電極パッドと外部の接続リードを金属細線で接続する或いは電極パッドにバンプ形成するために、汎用性に優れるAu線を用いたボールボンディングが広く一般に普及している。   In the manufacture of such a semiconductor device, ball bonding using Au wire, which is excellent in versatility, is widely used in order to connect an electrode pad of a semiconductor chip and an external connection lead with a fine metal wire or to form a bump on the electrode pad. .

以下、図4を参照しながら、従来の半導体製造装置ついて説明する。   Hereinafter, a conventional semiconductor manufacturing apparatus will be described with reference to FIG.

図4(a)は従来の半導体製造装置のボンディングパッドを示す断面図、(b)そのA−A'断面図である。図4において、1は第1の層間絶縁膜、2は第1の配線間絶縁膜、3は下層メタル、4は最上層メタル、5は第2の層間絶縁膜、6は第2の配線間絶縁膜、7は第1の保護膜、8は外部端子、9は第2の保護膜、10はボンディングワイヤである。   4A is a cross-sectional view showing a bonding pad of a conventional semiconductor manufacturing apparatus, and FIG. 4B is a cross-sectional view taken along line AA ′. In FIG. 4, 1 is the first interlayer insulating film, 2 is the first inter-wiring insulating film, 3 is the lower metal, 4 is the uppermost metal, 5 is the second inter-layer insulating film, and 6 is the second inter-wiring film. An insulating film, 7 is a first protective film, 8 is an external terminal, 9 is a second protective film, and 10 is a bonding wire.

図4に示すように、従来は第1の層間絶縁膜1の上に第1の配線間絶縁膜2及び下層メタル3を形成する。第1の配線間絶縁膜2及び下層メタル3の上に下層メタル3と最上層メタル4の間を絶縁する目的で第2の層間絶縁膜5を形成し、第2の層間絶縁膜5の上に第2の配線間絶縁膜6及び最上層メタル4を形成する。第2の配線間絶縁膜6及び最上層メタル4の上に第1の保護膜7を形成した後、外部端子8との接続部を開口する。開口部の上に外部端子8をAl系材料で形成する。外部端子8の上に第2の保護膜9を形成した後に開口する。   As shown in FIG. 4, a first inter-wiring insulating film 2 and a lower layer metal 3 are conventionally formed on a first interlayer insulating film 1. A second interlayer insulating film 5 is formed on the first inter-wiring insulating film 2 and the lower layer metal 3 for the purpose of insulating between the lower layer metal 3 and the uppermost layer metal 4. Then, the second inter-wiring insulating film 6 and the uppermost metal 4 are formed. After the first protective film 7 is formed on the second inter-wiring insulating film 6 and the uppermost metal layer 4, a connection portion with the external terminal 8 is opened. The external terminal 8 is formed of an Al-based material on the opening. An opening is formed after the second protective film 9 is formed on the external terminal 8.

上記ウェーハプロセス後、ダイシング、ダイボンドを行い、外部端子8にボンディングワイヤ10を押圧し、超音波をかけながらボンディングワイヤ10と外部端子8を接合させる。
特開平10−199925号公報
After the wafer process, dicing and die bonding are performed, the bonding wire 10 is pressed against the external terminal 8, and the bonding wire 10 and the external terminal 8 are joined while applying ultrasonic waves.
JP-A-10-199925

しかしながら、図4に示すような上記従来のボンディングパッド構造ではボンディングワイヤ10を用いてボールボンディングする際に加えられる衝撃荷重、超音波及び圧力により第2の層間絶縁膜5がダメージを受けてクラックが生じ、最上層メタル4と下層メタル3が異電位の場合、配線間でのリークが発生するという課題が存在する。特に、超音波の振幅と垂直方向かつボンディングワイヤ10の接合部エッジ下部に応力が集中してクラックが発生しやすい。また第2の層間絶縁膜5に機械的強度の低い低誘電率膜を採用した場合、その傾向が顕著になる。   However, in the conventional bonding pad structure as shown in FIG. 4, the second interlayer insulating film 5 is damaged by the impact load, ultrasonic wave and pressure applied when ball bonding is performed using the bonding wire 10, and cracks are generated. As a result, when the uppermost metal 4 and the lower metal 3 have different potentials, there is a problem that leakage occurs between wirings. In particular, cracks are likely to occur due to stress concentration in the direction perpendicular to the amplitude of the ultrasonic waves and below the joint edge of the bonding wire 10. In addition, when a low dielectric constant film having low mechanical strength is adopted for the second interlayer insulating film 5, the tendency becomes remarkable.

したがって、この発明の目的は、以上の課題を解決するために、ボンディングパッドを有する半導体製造装置におけるボンディングワイヤを用いたボールボンディング時に発生する配線間の層間絶縁膜に生じるクラックを抑制することができるボンディングパッド構造を有する半導体装置を提供することである。   Accordingly, in order to solve the above-described problems, an object of the present invention can suppress cracks generated in an interlayer insulating film between wirings generated during ball bonding using a bonding wire in a semiconductor manufacturing apparatus having a bonding pad. A semiconductor device having a bonding pad structure is provided.

上記目的を達成するためにこの発明の請求項1記載の半導体装置は、導電層からなる電極と、前記電極上に形成された導電層からなる外部端子と、前記電極の下部に絶縁層を挟んで異電位の配線層とを備えた半導体装置であって、前記電極に低誘電率膜層が埋設されている。   In order to achieve the above object, a semiconductor device according to claim 1 of the present invention includes an electrode made of a conductive layer, an external terminal made of a conductive layer formed on the electrode, and an insulating layer sandwiched below the electrode. In the semiconductor device having a wiring layer having a different potential, a low dielectric constant film layer is embedded in the electrode.

請求項2記載の半導体装置は、請求項1記載の半導体装置において、前記電極の導電材料は銅からなり、前記外部端子の導電材料はアルミニウムからなる。   The semiconductor device according to claim 2 is the semiconductor device according to claim 1, wherein the conductive material of the electrode is made of copper, and the conductive material of the external terminal is made of aluminum.

請求項3記載の半導体装置は、請求項1記載の半導体装置において、前記電極に埋設された低誘電率膜層を円柱状とし、前記低誘電率膜層中に前記電極と同一材料からなる円柱状の導電層を設け、前記電極と前記円柱状の導電層とを、前記電極と同一材料で前記円柱状の導電層を中心として相互に等角度をなすように形成された配線で4方向を繋いでいる。   The semiconductor device according to claim 3 is the semiconductor device according to claim 1, wherein the low dielectric constant film layer embedded in the electrode is formed in a columnar shape, and a circle made of the same material as the electrode is formed in the low dielectric constant film layer. A columnar conductive layer is provided, and the electrode and the columnar conductive layer are made of the same material as the electrode with wiring formed so as to be equiangular with each other around the columnar conductive layer. Are connected.

この発明の請求項1記載の半導体装置によれば、導電層からなる電極と、電極上に形成された導電層からなる外部端子と、電極の下部に絶縁層を挟んで異電位の配線層とを備え、電極に低誘電率膜層が埋設されているので、外部端子に対するワイヤボンドの衝撃に対して電極中に設けた低誘電率膜層によって外部端子下部へかかる応力を分散する。このため、半導体組立プロセスにおいて外部端子下に異電位の配線を有する場合、ワイヤボンド時の応力により発生する上層の電極と下層の配線層の層間にある絶縁膜中に発生するクラックを抑制することが可能である。その結果、上層の電極と下層の配線層間でのリーク発生防止を実現できる。   According to the semiconductor device of the first aspect of the present invention, the electrode composed of the conductive layer, the external terminal composed of the conductive layer formed on the electrode, the wiring layer having a different potential with the insulating layer sandwiched between the electrodes, Since the low dielectric constant film layer is embedded in the electrode, the stress applied to the lower portion of the external terminal is dispersed by the low dielectric constant film layer provided in the electrode against the impact of the wire bond to the external terminal. For this reason, in the semiconductor assembly process, when wiring with a different potential is provided under the external terminal, cracks generated in the insulating film between the upper electrode layer and the lower wiring layer caused by stress during wire bonding are suppressed. Is possible. As a result, it is possible to prevent leakage between the upper electrode and the lower wiring layer.

請求項2では、電極の導電材料は銅からなり、外部端子の導電材料はアルミニウムからなるので、配線遅延を小さくするため銅配線が採用された半導体装置において汎用性に優れるボールボンディングに適したボンディングパッド構造を実現できる。   According to the second aspect of the present invention, since the conductive material of the electrode is made of copper and the conductive material of the external terminal is made of aluminum, bonding suitable for ball bonding having excellent versatility in a semiconductor device employing copper wiring to reduce wiring delay. A pad structure can be realized.

請求項3では、電極に埋設された低誘電率膜層を円柱状とし、低誘電率膜層中に電極と同一材料からなる円柱状の導電層を設け、電極と円柱状の導電層とを、電極と同一材料で円柱状の導電層を中心として相互に等角度をなすように形成された配線で4方向を繋いでいるので、超音波の振幅方向に対して垂直及びクラックの発生しやすいボンディングワイヤの接合部エッジの下部の上層の電極中に設けた低誘電率層が割れることで応力を分散させ、上層の電極と下層の配線間の絶縁膜に至るクラックの発生を抑制することができる。また、低誘電率層は4方向にスリット状の配線が存在するので、半導体装置の方向が90度回転しても問題なく対応することが可能である。   According to a third aspect of the present invention, the low dielectric constant film layer embedded in the electrode is formed into a columnar shape, a columnar conductive layer made of the same material as the electrode is provided in the low dielectric constant film layer, and the electrode and the columnar conductive layer are Since the four directions are connected by wirings formed at the same angle around the cylindrical conductive layer made of the same material as the electrode, it is easy to generate vertical and cracks with respect to the ultrasonic amplitude direction. The low dielectric constant layer provided in the upper layer electrode under the bonding edge of the bonding wire breaks down to disperse the stress and suppress the generation of cracks reaching the insulating film between the upper layer electrode and the lower layer wiring. it can. In addition, since the low dielectric constant layer has slit-like wirings in four directions, even if the direction of the semiconductor device is rotated by 90 degrees, it is possible to cope with it without any problem.

この発明の第1の実施の形態を図1および図2に基づいて説明する。図1(a)は本発明の第1の実施形態の半導体装置のボンディングパッドを示す断面図、(b)はそのA−A'断面図である。   A first embodiment of the present invention will be described with reference to FIGS. FIG. 1A is a sectional view showing a bonding pad of the semiconductor device according to the first embodiment of the present invention, and FIG. 1B is a sectional view taken along the line AA ′.

図1において、1は第1の層間絶縁膜、2は第1の配線間絶縁膜、3は下層メタル(配線層)、4は最上層メタル(電極)、5は第2の層間絶縁膜、6は第2の配線間絶縁膜、7は第1の保護膜、8は外部端子、9は第2の保護膜、10はボンディングワイヤ、11はクラック、12は低誘電率膜パターンである。   In FIG. 1, 1 is a first interlayer insulating film, 2 is a first inter-wiring insulating film, 3 is a lower metal (wiring layer), 4 is an uppermost metal (electrode), 5 is a second interlayer insulating film, 6 is a second inter-wiring insulating film, 7 is a first protective film, 8 is an external terminal, 9 is a second protective film, 10 is a bonding wire, 11 is a crack, and 12 is a low dielectric constant film pattern.

図1に示すように、銅等の導電層からなる電極4と、電極4上に形成されたアルミニウム等の導電層からなる外部端子8と、電極4の下部に絶縁層5を挟んで異電位の配線層3とを備え、電極4に低誘電率膜層12が埋設されている。この場合、第2の層間絶縁膜5を低誘電率膜とし、この上の最上層メタル4中に第2の配線間絶縁膜6と同種材料の低誘電率膜パターン12を円柱状に形成する。低誘電率膜パターン12の円の直径はボンディングワイヤ10のボール圧着径と同程度のサイズで設ける。効果として、外部端子8を通じて伝わるワイヤボンディング時の衝撃を最上層メタル4中に設けた低誘電率パターン12が割れることで応力を分散させ、第2の層間絶縁膜5に至るクラックの発生を抑制することができ、その結果として最上層メタル4と下層メタル3の間のリークを防止することが可能になる。   As shown in FIG. 1, an electrode 4 made of a conductive layer such as copper, an external terminal 8 made of a conductive layer such as aluminum formed on the electrode 4, and a different potential with an insulating layer 5 sandwiched between the electrodes 4. And a low dielectric constant film layer 12 is embedded in the electrode 4. In this case, the second interlayer insulating film 5 is a low dielectric constant film, and a low dielectric constant film pattern 12 of the same material as that of the second inter-wiring insulating film 6 is formed in a cylindrical shape in the uppermost metal layer 4. . The diameter of the circle of the low dielectric constant film pattern 12 is set to the same size as the ball crimping diameter of the bonding wire 10. As an effect, the impact during wire bonding transmitted through the external terminal 8 is broken by the low dielectric constant pattern 12 provided in the uppermost metal layer 4 to disperse the stress, and the generation of cracks reaching the second interlayer insulating film 5 is suppressed. As a result, leakage between the uppermost metal 4 and the lower metal 3 can be prevented.

なお、前記の第2の層間絶縁膜5は低誘電率膜に限らず、低誘電率膜の機械的強度以上を有する絶縁膜であればよい。低誘電率膜パターン12はワイヤボンド時の応力を分散できれば円柱以外の形状でもよい。また、最上層メタル4の導電材料は銅、外部端子8の導電材料はアルミニウムとしたがこれ以外でもよい。   The second interlayer insulating film 5 is not limited to a low dielectric constant film, but may be an insulating film having a mechanical strength higher than that of the low dielectric constant film. The low dielectric constant film pattern 12 may have a shape other than a cylinder as long as the stress during wire bonding can be dispersed. In addition, although the conductive material of the uppermost metal 4 is copper and the conductive material of the external terminal 8 is aluminum, other materials may be used.

図2は本発明の実施形態における半導体装置の製造方法を示す工程図である。
図2(a)に示すように、第1の層間絶縁膜1の上に第1の配線間絶縁膜2を化学気相堆積法(以下、CVDと略す)により成膜する。図2(b)に示すように、第1の配線間絶縁膜2にドライエッチ法により第1の配線溝14を形成する。図2(c)に示すように、第1の配線溝14に電解めっきにより第1のメタル15を埋め込む。図2(d)に示すように、図2(c)で埋め込んだ第1のメタル15を機械的化学研磨(以下、CMPと略す)により第1の配線間絶縁膜2が露出するまで平坦化を進める。これにより第1のメタル15から下層メタル3を形成する。図2(e)に示すように、CVDにより第2の層間絶縁膜5を成膜する。図2(f)に示すように、第2の層間絶縁膜5の上に第2の配線間絶縁膜6をCVDにより成膜する。図2(g)に示すように、低誘電率膜パターン12を残して、第2の配線間絶縁膜6に第2の配線溝16をドライエッチ法により形成する。図2(h)に示すように、第2の配線溝16へ電解めっきにより第2のメタル17を埋め込む。図2(i)に示すように、図2(h)で埋め込んだ第2のメタル17をCMPにより第2の配線間絶縁膜6が露出するまで平坦化を進める。これにより第2のメタル17から最上層メタル4を形成する。
FIG. 2 is a process diagram showing a method for manufacturing a semiconductor device according to an embodiment of the present invention.
As shown in FIG. 2A, a first inter-wiring insulating film 2 is formed on the first interlayer insulating film 1 by chemical vapor deposition (hereinafter abbreviated as CVD). As shown in FIG. 2B, a first wiring groove 14 is formed in the first inter-wiring insulating film 2 by a dry etching method. As shown in FIG. 2C, a first metal 15 is embedded in the first wiring groove 14 by electrolytic plating. As shown in FIG. 2D, the first metal 15 buried in FIG. 2C is planarized by mechanical chemical polishing (hereinafter abbreviated as CMP) until the first inter-wiring insulating film 2 is exposed. To proceed. As a result, the lower metal 3 is formed from the first metal 15. As shown in FIG. 2E, a second interlayer insulating film 5 is formed by CVD. As shown in FIG. 2F, a second inter-wiring insulating film 6 is formed on the second interlayer insulating film 5 by CVD. As shown in FIG. 2G, the second wiring trench 16 is formed in the second inter-wiring insulating film 6 by the dry etching method, leaving the low dielectric constant film pattern 12. As shown in FIG. 2H, a second metal 17 is embedded in the second wiring groove 16 by electrolytic plating. As shown in FIG. 2I, the second metal 17 buried in FIG. 2H is planarized by CMP until the second inter-wiring insulating film 6 is exposed. As a result, the uppermost metal 4 is formed from the second metal 17.

次に図2(j)に示すように、ウェーハ全面にCVDを用いて第1の保護膜7を成膜する。保護膜材料はSiNが採用される。図2(k)に示すように、図2(j)で成膜した第1の保護膜7をドライエッチ法により最上層メタル4の上のみ開口する。図2(l)に示すように、ウェーハ全面にCVDを用いて外部端子8の材料となるメタルを成膜する。外部端子8の材料にはAl系が用いられる。図2(m)に示すように、ドライエッチ法により図2(l)で成膜した外部端子8のメタルを外部端子8の形状に形成する。図2(n)に示すように、ウェーハ全面にCVDを用いて第2の保護膜9を成膜する。保護膜材料はSiNが採用される。図2(o)に示すように、外部端子8上の第2の保護膜9をドライエッチ法により開口する。以上の工程を経て本発明の実施形態の半導体装置を製造する。   Next, as shown in FIG. 2J, a first protective film 7 is formed on the entire wafer surface using CVD. SiN is adopted as the protective film material. As shown in FIG. 2 (k), the first protective film 7 formed in FIG. 2 (j) is opened only on the uppermost metal 4 by dry etching. As shown in FIG. 2L, a metal as a material for the external terminals 8 is formed on the entire wafer surface by CVD. Al material is used for the material of the external terminal 8. As shown in FIG. 2M, the metal of the external terminal 8 formed in FIG. 2L is formed in the shape of the external terminal 8 by dry etching. As shown in FIG. 2 (n), a second protective film 9 is formed on the entire wafer surface using CVD. SiN is adopted as the protective film material. As shown in FIG. 2 (o), the second protective film 9 on the external terminal 8 is opened by a dry etching method. The semiconductor device of the embodiment of the present invention is manufactured through the above steps.

以上のように本実施形態によれば、ワイヤボンドの衝撃に対して最上層メタル中に設けた低誘電率膜パターンによって外部端子下部へ掛かる応力を分散するため、ワイヤボンド時に発生する最上層メタルから層間絶縁膜を介して下層メタルに至るクラックの発生を抑制することが可能である。また、半導体装置の製造期間については、低誘電率膜パターンを配線間絶縁膜と同一材料で形成するため、パッド構造特有のプロセスを追加する必要がなく従来と同様の拡散期間が維持できる。   As described above, according to the present embodiment, the stress applied to the lower part of the external terminal is dispersed by the low dielectric constant film pattern provided in the uppermost layer metal in response to the impact of the wirebond. It is possible to suppress the generation of cracks from the metal through the interlayer insulating film to the lower layer metal. In addition, regarding the manufacturing period of the semiconductor device, since the low dielectric constant film pattern is formed of the same material as the inter-wiring insulating film, it is not necessary to add a process peculiar to the pad structure, and a diffusion period similar to the conventional one can be maintained.

この発明の第2の実施の形態を図3に基づいて説明する。図3(a)は本発明の第2の実施形態の半導体装置のボンディングパッドを示す断面図、(b)はそのA−A'断面図である。   A second embodiment of the present invention will be described with reference to FIG. FIG. 3A is a cross-sectional view showing a bonding pad of a semiconductor device according to a second embodiment of the present invention, and FIG. 3B is an AA ′ cross-sectional view thereof.

図3に示すように、銅等の導電層からなる電極4と、電極4上に形成されたアルミニウム等の導電層からなる外部端子8と、電極4の下部に絶縁層5を挟んで異電位の配線層3とを備え、電極4に円柱状の低誘電率膜層13が埋設されている。また、低誘電率膜層13中に電極4と同一材料からなる円柱状の導電層4aを設け、電極4と円柱状の導電層4aとを、電極4と同一材料で円柱状の導電層4aを中心として相互に等角度をなすように形成された配線4bで4方向を繋いでいる。   As shown in FIG. 3, an electrode 4 made of a conductive layer such as copper, an external terminal 8 made of a conductive layer such as aluminum formed on the electrode 4, and a different potential with an insulating layer 5 sandwiched between the electrodes 4 And a cylindrical low dielectric constant film layer 13 is embedded in the electrode 4. In addition, a cylindrical conductive layer 4 a made of the same material as the electrode 4 is provided in the low dielectric constant film layer 13, and the electrode 4 and the cylindrical conductive layer 4 a are made of the same material as the electrode 4 and the cylindrical conductive layer 4 a. The four directions are connected by a wiring 4b formed so as to be equiangular with each other.

この場合、図3において、低誘電率膜パターン13は図1の低誘電率膜パターン12の中に円柱状のメタル4aを設け、中心線に対して45°のメタル配線4bで四方繋いだ形態を有するものである。低誘電率膜パターン13の円の外径はボンディングワイヤ10のボール圧着径と同程度、内径は外径の40〜60%のサイズで設ける。効果として、超音波の振幅方向に対して垂直及びクラックの発生しやすいボンディングワイヤ10の接合部エッジの下部の最上層メタル4中に設けた低誘電率パターン13が割れることで応力を分散させ、第2の層間絶縁膜5に至るクラックの発生を抑制することができ、その結果として最上層メタル4と下層メタル3の間のリークを防止することが可能になる。また低誘電率膜パターン13は4方向にスリット状の低誘電率膜が存在するため、チップの方向が90°回転しても問題なく対応することが可能である。   In this case, in FIG. 3, the low dielectric constant film pattern 13 is a form in which a cylindrical metal 4a is provided in the low dielectric constant film pattern 12 of FIG. It is what has. The outer diameter of the circle of the low dielectric constant film pattern 13 is approximately the same as the ball crimping diameter of the bonding wire 10, and the inner diameter is 40 to 60% of the outer diameter. As an effect, the stress is dispersed by cracking the low dielectric constant pattern 13 provided in the uppermost layer metal 4 at the lower part of the bonding edge of the bonding wire 10 that is perpendicular to the ultrasonic amplitude direction and easily generates cracks, Generation of cracks reaching the second interlayer insulating film 5 can be suppressed, and as a result, leakage between the uppermost layer metal 4 and the lower layer metal 3 can be prevented. In addition, since the low dielectric constant film pattern 13 has slit-like low dielectric constant films in four directions, it is possible to cope with the problem even if the direction of the chip is rotated by 90 °.

なお、本実施形態の製造方法は、円柱状のメタル4a、メタル配線4bを設ける点を除いては第1の実施形態の図2と同様である。その他の構成効果は、第1の実施の形態と同様である。   Note that the manufacturing method of the present embodiment is the same as that of FIG. 2 of the first embodiment except that the columnar metal 4a and the metal wiring 4b are provided. Other structural effects are the same as those of the first embodiment.

本発明にかかる半導体装置は、ワイヤボンド時の応力により発生する上層の電極と下層の配線層の層間にある絶縁膜中に発生するクラックを抑制することが可能となり、上層の電極と下層の配線層間でのリーク発生防止を実現できるという効果を有し、小型化、高密度化及び高速化が要求されるコンピュータや通信機器を中心とした電子機器として有用である。   The semiconductor device according to the present invention can suppress cracks generated in the insulating film between the upper electrode layer and the lower wiring layer, which are generated by stress during wire bonding, and the upper electrode layer and the lower wiring layer can be suppressed. It has the effect of preventing leakage between layers, and is useful as an electronic device centering on computers and communication devices that require miniaturization, high density, and high speed.

(a)は本発明の第1の実施形態の半導体装置のボンディングパッドを示す断面図、(b)はそのA−A'断面図である。(A) is sectional drawing which shows the bonding pad of the semiconductor device of the 1st Embodiment of this invention, (b) is the AA 'sectional drawing. 本発明の実施形態における半導体装置の製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the semiconductor device in embodiment of this invention. (a)は本発明の第2の実施形態の半導体装置のボンディングパッドを示す断面図、(b)はそのA−A'断面図である。(A) is sectional drawing which shows the bonding pad of the semiconductor device of the 2nd Embodiment of this invention, (b) is the AA 'sectional drawing. (a)は従来の半導体製造装置のボンディングパッドを示す断面図、(b)そのA−A'断面図である。(A) is sectional drawing which shows the bonding pad of the conventional semiconductor manufacturing apparatus, (b) is the AA 'sectional drawing.

符号の説明Explanation of symbols

1 第1の層間絶縁膜
2 第1の配線間絶縁膜
3 下層メタル
4 最上層メタル
5 第2の層間絶縁膜
6 第2の配線間絶縁膜
7 第1の保護膜
8 外部端子
9 第2の保護膜
10 ボンディングワイヤ
11 クラック
12 低誘電率膜パターン
13 低誘電率膜パターン
14 第1の配線溝
15 第1のメタル
16 第2の配線溝
17 第2のメタル
DESCRIPTION OF SYMBOLS 1 1st interlayer insulation film 2 1st interlayer insulation film 3 Lower layer metal 4 Uppermost layer metal 5 2nd interlayer insulation film 6 2nd interlayer insulation film 7 1st protective film 8 External terminal 9 2nd Protective film 10 Bonding wire 11 Crack 12 Low dielectric constant film pattern 13 Low dielectric constant film pattern 14 First wiring groove 15 First metal 16 Second wiring groove 17 Second metal

Claims (3)

導電層からなる電極と、前記電極上に形成された導電層からなる外部端子と、前記電極の下部に絶縁層を挟んで異電位の配線層とを備えた半導体装置であって、前記電極に低誘電率膜層が埋設されていることを特徴とする半導体装置。   A semiconductor device comprising: an electrode made of a conductive layer; an external terminal made of a conductive layer formed on the electrode; and a wiring layer having a different potential with an insulating layer sandwiched below the electrode. A semiconductor device having a low dielectric constant film layer embedded therein. 前記電極の導電材料は銅からなり、前記外部端子の導電材料はアルミニウムからなる請求項1記載の半導体装置。   The semiconductor device according to claim 1, wherein the conductive material of the electrode is made of copper, and the conductive material of the external terminal is made of aluminum. 前記電極に埋設された低誘電率膜層を円柱状とし、前記低誘電率膜層中に前記電極と同一材料からなる円柱状の導電層を設け、前記電極と前記円柱状の導電層とを、前記電極と同一材料で前記円柱状の導電層を中心として相互に等角度をなすように形成された配線で4方向を繋いでいる請求項1記載の半導体装置。   The low dielectric constant film layer embedded in the electrode has a cylindrical shape, a cylindrical conductive layer made of the same material as the electrode is provided in the low dielectric constant film layer, and the electrode and the cylindrical conductive layer are provided. 2. The semiconductor device according to claim 1, wherein the four directions are connected by wirings that are formed of the same material as the electrode and are formed at equal angles with respect to the cylindrical conductive layer.
JP2003309881A 2003-09-02 2003-09-02 Semiconductor device Pending JP2005079432A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003309881A JP2005079432A (en) 2003-09-02 2003-09-02 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003309881A JP2005079432A (en) 2003-09-02 2003-09-02 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2005079432A true JP2005079432A (en) 2005-03-24

Family

ID=34411911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003309881A Pending JP2005079432A (en) 2003-09-02 2003-09-02 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2005079432A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351588A (en) * 2005-06-13 2006-12-28 Nec Electronics Corp Semiconductor device and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351588A (en) * 2005-06-13 2006-12-28 Nec Electronics Corp Semiconductor device and its manufacturing method
JP4717523B2 (en) * 2005-06-13 2011-07-06 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US11574819B2 (en) Semiconductor device and method for manufacturing the same
TWI281719B (en) Semiconductor device
JP5383446B2 (en) Semiconductor device
US10756050B2 (en) Package structure and bonding method thereof
JP5797873B2 (en) Integrated circuit having bond pads with improved thermal and mechanical properties
TWI421988B (en) Bump pad structure
TWI767676B (en) Semiconductor device structure and method for forming the same
JP2018129475A (en) Semiconductor device and manufacturing method thereof
TWI503906B (en) Stress reduction apparatus
JP2010093161A (en) Semiconductor device
US20140175643A1 (en) Apparatuses and methods to enhance passivation and ild reliability
US8476764B2 (en) Bonding pad structure for semiconductor devices
TW201349368A (en) Semiconductor device and production method thereof
KR102076305B1 (en) Semiconductor device and method for forming the same
JP4021376B2 (en) Pad structure
JP2005079432A (en) Semiconductor device
JP2016152328A (en) Semiconductor device and manufacturing method of the same
JP2005026639A (en) Semiconductor device, method of manufacturing same, circuit board, and electronic equipment
JP3725527B2 (en) Semiconductor device
TWI697078B (en) Package substrate structure and method of bonding using the same
JP2007059867A (en) Semiconductor device
JP2006165054A (en) Semiconductor device
TWI243459B (en) Semiconductor device and method of manufacturing thereof
JP2008053406A (en) Semiconductor device, and manufacturing method thereof
JP4481065B2 (en) Manufacturing method of semiconductor device