JP2005079242A - Electronic apparatus - Google Patents

Electronic apparatus Download PDF

Info

Publication number
JP2005079242A
JP2005079242A JP2003306084A JP2003306084A JP2005079242A JP 2005079242 A JP2005079242 A JP 2005079242A JP 2003306084 A JP2003306084 A JP 2003306084A JP 2003306084 A JP2003306084 A JP 2003306084A JP 2005079242 A JP2005079242 A JP 2005079242A
Authority
JP
Japan
Prior art keywords
heat
electronic device
generating component
component
pefc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003306084A
Other languages
Japanese (ja)
Inventor
Satoshi Shibuya
聡 澁谷
Koji Yuasa
浩次 湯浅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003306084A priority Critical patent/JP2005079242A/en
Publication of JP2005079242A publication Critical patent/JP2005079242A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electronic apparatus which can be improved in characteristics and reliability by protecting components having low heat resistance from heat dissipated from a heating component and which can be reduced in size and thickness. <P>SOLUTION: On the bottom inside a housing 10 formed of a material having a low thermal conductivity, PEFC1 which is the heating component whose surface is pasted with an aluminum foil and hence its surface emissivity is suppressed to not less than 0.04 nor more than 0.3 is located via heat insulating spacers 5. An air blower 6 for air-cooling the PEFC1 is located on the side of the PEFC1. On the top face side inside the housing 10, an electrolytic capacitor 2 and a memory disc 3, which are the components having a low heat resistance, are located. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、発熱部品を内蔵する電子機器に関するものであり、特に、発熱部品として、燃料電池を内蔵した電子機器に関する。   The present invention relates to an electronic device incorporating a heat generating component, and more particularly to an electronic device incorporating a fuel cell as a heat generating component.

近年、携帯電話やノート型パーソナルコンピュータ(以下、ノートパソコンと略す)といった携帯用の電子機器において、軽量化、小型化、薄型化が要求されるとともに長時間の使用が要求されており、それに伴って、軽量及び小型であって、かつ、エネルギー密度の高い電源が求められている。現在普及している電源では、リチウムイオン二次電池が最もエネルギー密度が高いが、これよりも更に高いエネルギー密度を有する電源が求められている。電源の1つである燃料電池は、電気化学反応で発電を行うものであり、中でも、固体高分子型燃料電池(Polymer Electrolyte Fuel Cell:以下、PEFCと呼ぶ)や固体酸化物型燃料電池(Solid Oxide Fuel Cell:以下、SOFCと呼ぶ)は、高いエネルギー密度が実現可能な電源として期待されている。     In recent years, portable electronic devices such as mobile phones and notebook personal computers (hereinafter abbreviated as “notebook personal computers”) are required to be lighter, smaller and thinner, and to be used for a long time. Therefore, there is a demand for a power source that is light and small in size and has a high energy density. Among power sources that are currently popular, lithium ion secondary batteries have the highest energy density, but there is a need for a power source that has a higher energy density. A fuel cell, which is one of the power sources, generates electricity by an electrochemical reaction. Among them, a polymer electrolyte fuel cell (hereinafter referred to as PEFC) and a solid oxide fuel cell (Solid). Oxide Fuel Cell (hereinafter referred to as SOFC) is expected as a power source capable of realizing a high energy density.

PEFCやSOFCでは、発電の際に発熱が起こり、例えば、水素を燃料極に供給するとともに空気中の酸素を酸化剤極に供給して発電を行うPEFCの場合では、理論的には1セルあたり1.2ボルトの電圧を生じるが、一般的に実際に得られる電圧は0.4〜0.6ボルトであり、理論電圧と実際に得られる電圧との差、すなわち0.6〜0.8ボルトの電圧に相当する電気エネルギーが、熱エネルギーに変換される。例えば、PEFCにおいて15ワットの発電を行った場合には、15ワットから30ワットの発熱が伴う。     In PEFC and SOFC, heat is generated during power generation. For example, in the case of PEFC that generates power by supplying hydrogen to the fuel electrode and oxygen in the air to the oxidizer electrode, theoretically, per cell. A voltage of 1.2 volts is produced, but generally the actual voltage obtained is 0.4 to 0.6 volts, and the difference between the theoretical voltage and the actual voltage obtained, ie 0.6 to 0.8. Electrical energy corresponding to voltage in volts is converted into thermal energy. For example, when power generation of 15 watts is performed in PEFC, heat generation of 15 to 30 watts is accompanied.

一方、電源の軽量化及び小型化の観点から、電源はより高出力で発電できるように動作させるのが望ましく、よって、PEFCやSOFCでは、高出力で発電を行うために、発電動作時の温度を室温よりも高く保持することが好ましい。例えば、PEFCを25℃で動作させて発電した場合の発電量は2ワットであり、この時の発熱量は4ワットであるのに対して、80℃で動作させた場合の発電量は13ワットであり、この時の発熱量は26ワットである。したがって、PEFCでは、高出力を得るために、発電動作時の温度を70〜130℃程度に保持するように温度制御が行われる。また、SOFCでは、25℃で動作させて発電した場合の発電量は0.2ワットであり、この時の発熱量は0.4ワットであるのに対して、400℃で動作させた場合の発電量は13ワットであり、この時の発熱量は26ワットである。したがって、SOFCでは、高出力を得るために、発電動作時の温度を少なくとも400℃以上に保持するように温度制御が行われる。     On the other hand, it is desirable to operate the power supply so that it can generate electric power at a higher output from the viewpoint of weight reduction and miniaturization of the power supply. Therefore, in PEFC and SOFC, in order to generate electric power at high output, Is preferably kept higher than room temperature. For example, the amount of power generated when the PEFC is operated at 25 ° C. is 2 watts, and the amount of heat generated at this time is 4 watts, whereas the amount of power generated when operated at 80 ° C. is 13 watts. The calorific value at this time is 26 watts. Therefore, in PEFC, in order to obtain a high output, temperature control is performed so that the temperature during the power generation operation is maintained at about 70 to 130 ° C. In addition, in SOFC, the amount of power generated when operated at 25 ° C. is 0.2 watts, and the amount of heat generated at this time is 0.4 watts, whereas the amount of heat generated when operated at 400 ° C. The power generation amount is 13 watts, and the heat generation amount at this time is 26 watts. Therefore, in SOFC, in order to obtain a high output, temperature control is performed so that the temperature during the power generation operation is maintained at least at 400 ° C. or more.

上記のように、PEFCやSOFCを電源として備えた電子機器では、動作時にPEFCやSOFCの温度が高温に保持され、かつ、これらが発電により発熱するため、PEFCやSOFCの温度が他の部品の温度よりも高くなり、よって、PEFCやSOFCから周囲へ多量の熱が放熱される。このことから、以下においては、PEFCやSOFCを発熱部品と呼ぶ。     As described above, in an electronic device equipped with a PEFC or SOFC as a power source, the temperature of the PEFC or SOFC is maintained at a high temperature during operation, and these generate heat due to power generation. Therefore, a large amount of heat is dissipated from the PEFC or SOFC to the surroundings. For this reason, PEFC and SOFC are hereinafter referred to as heat generating components.

ところで、PEFCやSOFCを電源として備えた電子機器は、PEFCやSOFCのような発熱部品の他に、耐熱性の低い部品(以下、低耐熱性部品と呼ぶ)を有している。ここで、低耐熱性部品とは、指定された最高温度が、発熱部品の動作時の温度よりも低い部品のことである。例えば、低耐熱性部品としては、電解コンデンサ、水晶素子、撮像素子、ICカード、電池、記憶ディスク等があげられ、これらの部品の指定された最高使用温度は、それぞれ85℃、80℃、60℃、60℃、60℃、40℃である。このような低耐熱性部品は、最高指定温度よりも高い温度で動作させた場合に、性能の低下、誤動作の発生、寿命の短命化等を生じ、その結果、電子機器の特性及び信頼性に悪影響を及ぼす。したがって、発熱部品と低耐熱性部品とを内蔵する電子機器では、発熱部品から放熱される熱から低耐熱性部品を守る必要があり、よって、機器内の放熱方法を工夫する必要がある。このような問題は、発熱部品がPEFCやSOFCである場合に限定されるものではなく、これ以外に、例えば、電源モジュール等を備えた電子機器においても問題となる。     By the way, an electronic device equipped with a PEFC or SOFC as a power source has a low heat resistance component (hereinafter referred to as a low heat resistance component) in addition to a heat generating component such as a PEFC or SOFC. Here, the low heat-resistant component is a component whose specified maximum temperature is lower than the temperature during operation of the heat generating component. For example, examples of the low heat resistant parts include electrolytic capacitors, crystal elements, image pickup elements, IC cards, batteries, storage disks, etc., and the specified maximum operating temperatures of these parts are 85 ° C., 80 ° C., 60 ° C., respectively. ° C, 60 ° C, 60 ° C, 40 ° C. Such low heat-resistant components cause performance degradation, malfunction, shortening of life, etc. when operated at a temperature higher than the maximum specified temperature, resulting in the characteristics and reliability of electronic equipment. Adversely affect. Therefore, in an electronic device incorporating a heat generating component and a low heat resistant component, it is necessary to protect the low heat resistant component from the heat radiated from the heat generating component, and thus it is necessary to devise a heat dissipation method in the device. Such a problem is not limited to the case where the heat-generating component is a PEFC or SOFC. In addition to this, for example, an electronic device including a power supply module or the like also becomes a problem.

ところで、発熱部品から周囲への熱の伝わり方には、伝導伝熱、対流伝熱、及び、放射伝熱の3つの態様があり、発熱部品から周囲へ伝えられる熱の量(放熱量)は、これら各伝熱における熱量の総和となる。伝導伝熱は、発熱部品に接触する部材、例えば、発熱部品が取り付けられている筐体、を通じて、発熱部分の熱が周囲に伝熱されるものである。対流伝熱は、空気による伝熱である。放射伝熱は、発熱部分から発せられた赤外線等の熱線による伝熱であり、発熱部品の温度が高いほど、また、発熱部品の表面積が大きいほど、伝熱量が増大する。例えば、波長10マイクロメートル近傍の赤外線に対する放射率が一般的な値(具体的には0.95)である発熱部品であって、表面温度が125℃かつ表面積が100cmである場合に、温度が25℃である周囲への放射伝熱による放熱量は9ワットとなる。 By the way, there are three modes of heat transfer from the heat generating component to the surroundings: conduction heat transfer, convection heat transfer, and radiant heat transfer. The amount of heat transferred from the heat generating component to the surroundings (heat dissipation amount) is The total amount of heat in each heat transfer. In the heat conduction, heat of the heat generating portion is transferred to the surroundings through a member that contacts the heat generating component, for example, a housing to which the heat generating component is attached. Convective heat transfer is heat transfer by air. Radiant heat transfer is heat transfer by heat rays such as infrared rays emitted from a heat generating portion. The heat transfer amount increases as the temperature of the heat generating component increases and the surface area of the heat generating component increases. For example, when the heat generating component has a general value (specifically, 0.95) of emissivity with respect to infrared rays having a wavelength of around 10 micrometers, the surface temperature is 125 ° C. and the surface area is 100 cm 2 , the temperature The amount of heat released by radiant heat transfer to the surroundings at 25 ° C. is 9 watts.

発熱部品から放熱される熱から低耐熱性部品を守るためには、低耐熱性部品への伝熱を抑制する必要がある。伝熱を抑制する方法として、例えば、発熱部品が接触する部分(例えば、発熱部品が取り付けられた筐体)の断面積を小さくすることにより、発熱部品から伝導伝熱により低耐熱性部品へ伝わる伝熱量を容易に低減することができる。また、対流伝熱で温まった空気を速やかに電子機器内部から外部に排出することにより、対流伝熱による伝熱量が大きくなり、それにより、発熱部品からの伝導伝熱及び放射伝熱を抑制することが可能となって結果として低耐熱性部品への放熱が抑制される。     In order to protect the low heat resistant component from the heat radiated from the heat generating component, it is necessary to suppress the heat transfer to the low heat resistant component. As a method for suppressing heat transfer, for example, by reducing the cross-sectional area of a portion where the heat generating component contacts (for example, a casing to which the heat generating component is attached), the heat is transmitted from the heat generating component to the low heat resistant component by conduction heat transfer. The amount of heat transfer can be easily reduced. Also, by quickly discharging air heated by convective heat transfer from the inside of the electronic equipment to the outside, the amount of heat transfer by convective heat transfer increases, thereby suppressing conduction heat transfer and radiant heat transfer from the heat-generating components. As a result, heat dissipation to the low heat resistant component is suppressed.

一方、放射伝熱を抑制する方法としては、例えば、低耐熱性部品及び発熱部品を内部に収納する電子機器の筐体の内面を、低放射率に構成したものがある(例えば、特許文献1参照)。かかる構成によれば、発熱部品から筐体に伝導伝熱された熱が、放射伝熱により筐体からさらに低耐熱性部品に伝熱されるのを抑制することができる。また、発熱部品と低耐熱性部品との間に、赤外線反射板を配置した構成のものもある(例えば、特許文献2参照)。かかる構成によれば、発熱部品から発せられた熱線を赤外線反射板により反射することができるため、低耐熱性部品が発熱部品から熱放射を直接受けることがなく、よって、低耐熱性部品の温度上昇を抑制することができる。
特開2001−210980号公報 特開2001−148593号公報
On the other hand, as a method for suppressing radiant heat transfer, for example, there is a method in which an inner surface of a housing of an electronic device that houses a low heat resistance component and a heat generating component is configured to have a low emissivity (for example, Patent Document 1). reference). According to such a configuration, it is possible to suppress heat transferred from the heat generating component to the housing from being transmitted from the housing to the low heat resistant component by radiant heat transfer. Moreover, there exists a thing of the structure which has arrange | positioned the infrared-reflection board between a heat-emitting component and a low heat resistant component (for example, refer patent document 2). According to such a configuration, since the heat rays emitted from the heat generating component can be reflected by the infrared reflector, the low heat resistant component does not receive heat radiation directly from the heat generating component, and thus the temperature of the low heat resistant component is reduced. The rise can be suppressed.
Japanese Patent Laid-Open No. 2001-210980 JP 2001-148593 A

上記のように電子機器の筐体の内面を低放射率にする方法は、発熱部品から筐体への伝導伝熱が前提であり、したがって、低耐熱性部品を筐体から熱的に分離する必要がある。このため、電子機器内における低耐熱性部品の配置の自由度が著しく低下するとともに、機器の小型化・薄型化の妨げとなる。また、人の手が触れる筐体の温度が伝導伝熱により上昇すると、筐体に触れた際に火傷するおそれがある。一方、発熱部品と低耐熱性部品との間に赤外線反射板を配置する方法では、赤外線反射板の配置のための空間が必要となるため、機器が大型化してしまい小型化・薄型化が困難となる。     As described above, the method for reducing the emissivity of the inner surface of the casing of the electronic device is based on the premise of conduction heat transfer from the heat generating component to the casing, and therefore, the low heat resistant component is thermally separated from the casing. There is a need. For this reason, the degree of freedom of arrangement of the low heat-resistant components in the electronic device is remarkably lowered, and the device is hindered from being reduced in size and thickness. Further, if the temperature of the case touched by human hands rises due to conduction heat transfer, there is a risk of burns when touching the case. On the other hand, the method of placing an infrared reflector between a heat-generating component and a low heat-resistant component requires a space for the arrangement of the infrared reflector, which increases the size of the device and makes it difficult to reduce the size and thickness. It becomes.

本発明は、発熱部品の放熱から低耐熱部品を保護することにより特性及び信頼性が向上し、かつ、小型化・薄型化が可能な電子機器を提供することを目的とする。     An object of the present invention is to provide an electronic device that has improved characteristics and reliability by protecting a low heat-resistant component from heat dissipation of a heat-generating component, and that can be reduced in size and thickness.

上記課題を解決するために、本発明に係る電子機器は、電源ユニットからなる発熱部品と、前記発熱部品の動作時の温度よりも最高使用温度が低い低耐熱性部品と、を内蔵する電子機器において、前記発熱部品の表面の少なくとも一部は、波長10マイクロメートル近傍の赤外線に対する放射率が0.04以上0.3以下である。       In order to solve the above-described problems, an electronic device according to the present invention includes a heat-generating component including a power supply unit and a low heat-resistant component having a maximum use temperature lower than a temperature during operation of the heat-generating component. In the above, at least a part of the surface of the heat generating component has an emissivity of 0.04 or more and 0.3 or less with respect to infrared rays having a wavelength of around 10 micrometers.

かかる構成によれば、発電部品の表面から周囲へ放射伝熱により放熱される熱量を低減することが可能となるため、低耐熱性部品の温度上昇を抑制することが可能となる。したがって、低耐熱性部品の性能低下、誤動作の発生、及び、寿命の短命化を防止することができ、電子機器の特性、信頼性、及び、耐久性を向上させることが可能となる。なお、ここで表面とは、発熱部品がその構成部品をケースに収容してなるような場合は、そのケースの表面をさす。       According to this configuration, it is possible to reduce the amount of heat radiated from the surface of the power generation component to the surroundings by radiant heat transfer, and thus it is possible to suppress the temperature rise of the low heat resistance component. Accordingly, it is possible to prevent the performance of the low heat resistant component from being deteriorated, the occurrence of malfunction, and the shortening of the lifetime, and the characteristics, reliability, and durability of the electronic device can be improved. Here, the surface refers to the surface of the case when the heat generating component houses the component in the case.

前記放射率が0.04以上0.1以下であることがより好ましい。       The emissivity is more preferably 0.04 or more and 0.1 or less.

前記発熱部品が、電源モジュールであってもよい。   The heat generating component may be a power supply module.

前記発熱部品が、燃料電池であってもよく、例えば、固体高分子型燃料電池、あるいは、固体酸化物型燃料電池であってもよい。   The heat generating component may be a fuel cell, for example, a polymer electrolyte fuel cell or a solid oxide fuel cell.

かかる構成において、固体高分子型及び固体酸化型燃料電池では、高出力を得るために、発電動作時の温度が高温に保持される。ここで、上記のように表面の放射率が小さく構成された燃料電池では、周囲への放射伝熱が抑制されて熱を自己内部に閉じ込めることが可能となるため、この熱を自己の温度保持に利用することができる。したがって、低耐熱性部品への放熱を抑制すると同時に、熱を有効に利用することが可能となる。特に、前記放射率が0.04以上0.1以下であると、発電時における温度保持効果とともに、熱の閉じ込めにより燃料電池の起動に要する時間の短縮効果も得られる。   In such a configuration, in the polymer electrolyte fuel cell and the solid oxide fuel cell, the temperature during the power generation operation is maintained at a high temperature in order to obtain a high output. Here, in a fuel cell having a low surface emissivity as described above, radiation heat transfer to the surroundings is suppressed and it becomes possible to confine the heat inside itself, so this heat is maintained at its own temperature. Can be used. Therefore, it is possible to effectively use heat while suppressing heat radiation to the low heat resistant component. In particular, when the emissivity is 0.04 or more and 0.1 or less, not only the temperature holding effect during power generation but also the effect of shortening the time required for starting the fuel cell due to heat confinement can be obtained.

前記低耐熱性部品が、電解コンデンサ、水晶デバイス、撮像素子、ICカード、電池、及び、記憶ディスクのいずれかであってもよい。   The low heat-resistant component may be any one of an electrolytic capacitor, a crystal device, an image sensor, an IC card, a battery, and a storage disk.

前記発熱部品と前記低耐熱性部品とが筐体の内部に配置され、前記発熱部品で生じた熱の前記筐体を介した伝導伝熱が抑制可能に構成されてもよく、前記筐体と前記発熱部品とを断熱することにより前記伝導伝熱が抑制されてよい。例えば、前記筐体が断熱性材料から構成されてもよく、前記筐体と前記発熱部品との間に断熱材が配置されてもよい。   The heat generating component and the low heat resistant component may be arranged inside a housing, and may be configured to be able to suppress conduction heat transfer through the housing of heat generated by the heat generating component, The conduction heat transfer may be suppressed by insulating the heat generating component. For example, the housing may be made of a heat insulating material, and a heat insulating material may be disposed between the housing and the heat generating component.

前記発熱部品と前記低耐熱性部品とが筐体の内部に配置され、前記発熱部品を対流伝熱により冷却する冷却手段を備えてもよい。例えば、前記筐体は、内部の空気を外部に排出するための空気出口と、外部の空気を内部に取り込むための空気入口とを有し、前記冷却手段が、送風機であってもよい。   The heat generating component and the low heat resistant component may be disposed inside a housing, and may include a cooling unit that cools the heat generating component by convective heat transfer. For example, the housing may have an air outlet for discharging internal air to the outside and an air inlet for taking external air into the inside, and the cooling means may be a blower.

前記発熱部品の前記表面の少なくとも一部が、平坦な金属面から構成されてもよく、また、前記金属面が、金属酸化物から構成されてもよい。例えば、前記金属酸化物が、酸化マグネシウム又は酸化アルミニウムであってもよい。   At least a part of the surface of the heat-generating component may be composed of a flat metal surface, and the metal surface may be composed of a metal oxide. For example, the metal oxide may be magnesium oxide or aluminum oxide.

本発明によれば、発熱部品と低耐熱性部品とを内蔵する電子機器において、発熱部品から低耐熱性部品への放熱を大幅に抑制できるので、低耐熱性部品の温度の上昇を抑制することが出来る。したがって、電子機器において、低耐熱性部品の性能低下や誤作動が防止され、安定して良好な特性及び高い信頼性を得ることが可能となる。     According to the present invention, in an electronic device incorporating a heat-generating component and a low heat-resistant component, heat dissipation from the heat-generating component to the low heat-resistant component can be significantly suppressed, so that an increase in temperature of the low heat-resistant component can be suppressed. I can do it. Accordingly, in the electronic device, it is possible to prevent the performance degradation and malfunction of the low heat resistant component, and to stably obtain good characteristics and high reliability.

以下に、本発明の実施の形態について図面を参照しながら説明する。ここでは、電子機器として、ノートパソコンについて説明する。     Embodiments of the present invention will be described below with reference to the drawings. Here, a notebook personal computer will be described as an electronic device.

図1は、本発明の実施の形態に係る電子機器(ノートパソコン)の内部の構成を示す概略的な断面図である。なお、図1では、本発明の特徴を説明するのに必要な構成のみを示しており、それ以外の構成については、図示及び説明を省略する。     FIG. 1 is a schematic cross-sectional view showing an internal configuration of an electronic apparatus (notebook personal computer) according to an embodiment of the present invention. Note that FIG. 1 shows only the configuration necessary for describing the features of the present invention, and illustration and description of other configurations are omitted.

図1に示すように、電子機器は、筐体10内に、発熱部品たる燃料電池であるPEFC1と、低耐熱性部品たる電解コンデンサ2及び記憶ディスク3が配置された第1の基板11と、低耐熱性部品たるリチウムイオン二次電池4が配置された第2の基板12と、PEFC1を空冷するための送風機6とを内蔵して構成されている。     As shown in FIG. 1, an electronic device includes a PEFC 1 that is a fuel cell that is a heat-generating component, a first substrate 11 on which an electrolytic capacitor 2 and a storage disk 3 that are low heat-resistant components are disposed in a housing 10, A second substrate 12 on which a lithium ion secondary battery 4 as a low heat resistant component is disposed and a blower 6 for air-cooling the PEFC 1 are built in.

筐体10は、矩形の薄型の箱形状を有し、一対の主面をなす上面及び底面と、この主面の外周に配置された側面とから構成される。対向する一対の側面には複数の貫通孔が形成されており、それにより、筐体10内の空気を外部に排出するための空気出口13と、外部の空気を筐体10内に導入するための空気入口14とが設けられている。筐体10は、断熱性を有するように、熱伝導率の小さい材料から構成されている。例えば、ここでは、熱伝導率が0.19W/(m・k)であるポリカーボネート系の樹脂によって筐体が構成されている。     The housing 10 has a rectangular thin box shape, and includes a top surface and a bottom surface forming a pair of main surfaces, and side surfaces disposed on the outer periphery of the main surface. A plurality of through holes are formed in a pair of opposing side surfaces, whereby an air outlet 13 for discharging the air in the housing 10 to the outside and an external air to be introduced into the housing 10 Air inlet 14 is provided. The housing | casing 10 is comprised from the material with small heat conductivity so that it may have heat insulation. For example, here, the casing is made of a polycarbonate-based resin having a thermal conductivity of 0.19 W / (m · k).

筐体10内部の上面側には、電解コンデンサ2及び記憶ディスク3等の各種電子部品が実装された回路基板たる第1の基板11が配設されている。一方、底面側には、リチウムイオン二次電池4が配置されたプリント配線基板たる第2の基板12が配設されている。第1の基板11及び第2の基板12は、それぞれ筐体10の内面に、例えば接着剤により取り付けられている。したがって、第1の基板11及び第2の基板12は、筐体10とそれぞれ熱的に接続されており、また、これらの基板11,12は、空間を隔てて互いに離間して配置されている。ここでは図示を省略しているが、第1の基板11と第2の基板12とは、従来の構成と同様に電気的に接続されている。筐体10の底面側には、断熱性材料からなるスペーサ5を介し、筐体10の底面との間に空間を形成してPEFC1が配設されている。したがって、筐体10とPEFC1とは断熱されている。また、このPEFC1に側面側から風を送るように、ファンを有する送風機6が配設されている。   A first substrate 11, which is a circuit substrate on which various electronic components such as the electrolytic capacitor 2 and the storage disk 3 are mounted, is disposed on the upper surface side inside the housing 10. On the other hand, a second substrate 12 that is a printed wiring board on which the lithium ion secondary battery 4 is disposed is disposed on the bottom surface side. The first substrate 11 and the second substrate 12 are each attached to the inner surface of the housing 10 by, for example, an adhesive. Therefore, the first substrate 11 and the second substrate 12 are thermally connected to the housing 10 respectively, and the substrates 11 and 12 are arranged apart from each other with a space therebetween. . Although not shown here, the first substrate 11 and the second substrate 12 are electrically connected as in the conventional configuration. The PEFC 1 is disposed on the bottom surface side of the housing 10 with a space 5 formed between the bottom surface of the housing 10 and the spacer 5 made of a heat insulating material. Therefore, the housing 10 and the PEFC 1 are thermally insulated. Also, a blower 6 having a fan is disposed so as to send wind to the PEFC 1 from the side surface side.

後述するように、電子機器の動作時には、電源であるPEFC1は、周囲の他の部品よりも高温(70〜130℃程度)となる。したがって、ここでは、PEFC1が発熱部品に相当する。一方、電解コンデンサ2、記憶ディスク3、及び、リチウムイオン二次電池4は、指定された最高使用温度が、それぞれ85℃、40℃、及び、60℃であり、PEFC1の動作温度よりも最高使用温度が低い。よって、ここでは、電解コンデンサ2、記憶ディスク3、及びリチウムイオン二次電池4が低耐熱性部品に相当する。     As will be described later, during operation of the electronic device, the PEFC 1 that is a power source is at a higher temperature (about 70 to 130 ° C.) than other surrounding components. Therefore, here, PEFC1 corresponds to a heat generating component. On the other hand, the electrolytic capacitor 2, the storage disk 3, and the lithium ion secondary battery 4 have the specified maximum use temperatures of 85 ° C., 40 ° C., and 60 ° C., respectively, which is the highest use temperature than the operating temperature of PEFC 1. The temperature is low. Therefore, here, the electrolytic capacitor 2, the storage disk 3, and the lithium ion secondary battery 4 correspond to low heat resistant components.

PEFC1は、表面が、波長10マイクロメートル近傍の赤外線に対して放射率が0.04以上かつ0.3以下となるように構成されている。例えば、かかる構成は、表面が研磨又はメッキされて平坦化されたアルミニウム、ステンレス等の金属箔や金属板を、PEFC1の表面に貼り付けるか、または、酸化アルミニウムや酸化マグネシウム等の金属酸化物をPEFC1の表面に塗布して平坦面を形成することにより実現できる。金属酸化物が酸化アルミニウム及び酸化マグネシウムである場合には、耐久性を向上させることができる。PEFC1は、表面の一部がかかる構成を有していてもよく、また、表面全体がかかる構成を有していてもよい。ここでは、PEFC1の表面全体がかかる構成を有し、それにより、この表面全体の放射率がこの範囲となっている。     The PEFC 1 is configured such that the surface has an emissivity of 0.04 or more and 0.3 or less with respect to infrared rays having a wavelength of about 10 micrometers. For example, in such a configuration, a metal foil or a metal plate such as aluminum or stainless steel whose surface is polished or plated and is flattened is attached to the surface of PEFC1, or a metal oxide such as aluminum oxide or magnesium oxide is attached. This can be realized by coating the surface of PEFC 1 to form a flat surface. When the metal oxide is aluminum oxide or magnesium oxide, durability can be improved. The PEFC 1 may have a configuration in which a part of the surface is applied, or may have a configuration in which the entire surface is applied. Here, the entire surface of the PEFC 1 has such a configuration, and the emissivity of the entire surface is within this range.

自然界に存在する物質の多くは表面の前記放射率が0.9以上であり、特に、放射率が0.3以下の表面状態は、意図せずには作製することができない。また、PEFC1の表面の放射率とPEFC1からの放射伝熱量とは比例関係にあり、PEFC1の表面の放射率が小さいほど放射伝熱量を低減できるので低耐熱性部品の保護の点からは好ましいが、放射率が0.04より小さい表面状態は非常に平坦な金属面でしか達成できず、このような金属面を形成するには高いコストを要するので現実的ではない。したがって、PEFC1の表面の放射率は0.04以上かつ0.3以下の範囲が好ましい。     Many of the substances existing in the natural world have an emissivity of 0.9 or more on the surface, and in particular, a surface state with an emissivity of 0.3 or less cannot be produced unintentionally. Further, the emissivity of the surface of PEFC1 and the amount of radiant heat transfer from PEFC1 are proportional to each other, and the smaller the emissivity of the surface of PEFC1, the lower the amount of radiant heat transfer, which is preferable from the viewpoint of protecting low heat resistant parts A surface state with an emissivity of less than 0.04 can only be achieved with a very flat metal surface, and it is not practical to form such a metal surface because of the high cost. Therefore, the emissivity of the surface of PEFC1 is preferably in the range of 0.04 or more and 0.3 or less.

なお、放射率を波長10マイクロメートル近傍の赤外線に対して規定したのは、使用する放射温度計の測定対象となる波長がこの波長域である場合が多いことを考慮した便宜上のものであって、赤外線放射に対して同様の効果を奏するのであれば、この波長に限定されるものではない。     The emissivity is defined for infrared rays in the vicinity of a wavelength of 10 micrometers for the convenience of considering that the wavelength to be measured by the radiation thermometer used is often in this wavelength range. The wavelength is not limited to the above as long as the same effect is obtained with respect to infrared radiation.

また、PEFC1では、特に、前記放射率を0.04以上かつ0.1以下とすることがより好ましい。前述のように、放射率を0.04以上かつ0.3以下とすれば十分に放射伝熱量を低減することができるが、0.04以上かつ0.1以下とすることで、以下のように、PEFC1の起動時間の短縮化が可能となる。     In PEFC1, the emissivity is more preferably 0.04 or more and 0.1 or less. As described above, if the emissivity is 0.04 or more and 0.3 or less, the amount of radiant heat transfer can be sufficiently reduced. However, by setting the emissivity to 0.04 or more and 0.1 or less, the following is achieved. In addition, the startup time of PEFC 1 can be shortened.

すなわち、PEFC1では、触媒である白金や白金ルテニウム合金等の電気化学的活性が温度に依存することから、室温では高い出力が得られず、それゆえ、通常は、PEFC1が所定温度まで昇温されるまでの間(すなわち起動時)には、ハイブリッドに接続されたリチウムイオン二次電池4を電源として動作させて出力を賄い、その一方で、PEFC1の昇温を行う。ここで、PEFC1の昇温時間とPEFC1の表面の放射率との相関関係に着目すると、PEFC1の昇温時間は放射率によって定まり、放射率が小さいと、放射伝熱による放熱が抑制されるので、PEFC1で発生した熱は自己内部に閉じ込められて自身の加熱に利用される。したがって、速やかにPEFC1の昇温が行われる。例えば、放射率が0.3の場合、PEFC1を130℃まで昇温するのに要する時間は1分間であるのに対して、放射率が0.1の場合には、昇温時間が20秒に短縮される。そして、このようにPEFC1の昇温時間が短縮されると、起動時にハイブリッド電源として使用されるリチウムイオン二次電池4の容量を小さくすることが可能となり、その結果、電子機器の小型化・薄型化が可能となる。     That is, in PEFC1, since the electrochemical activity of platinum or a ruthenium alloy as a catalyst depends on temperature, a high output cannot be obtained at room temperature. Therefore, normally, PEFC1 is heated to a predetermined temperature. In the meantime (ie, at the time of startup), the lithium ion secondary battery 4 connected to the hybrid is operated as a power source to cover the output, while the temperature of the PEFC 1 is raised. Here, paying attention to the correlation between the temperature rise time of PEFC1 and the emissivity of the surface of PEFC1, the temperature rise time of PEFC1 is determined by the emissivity, and if the emissivity is small, heat dissipation due to radiant heat transfer is suppressed. The heat generated in PEFC1 is confined inside itself and used for heating itself. Therefore, the temperature of PEFC 1 is quickly increased. For example, when the emissivity is 0.3, it takes 1 minute to raise the temperature of PEFC1 to 130 ° C., whereas when the emissivity is 0.1, the temperature rise time is 20 seconds. Shortened to If the temperature raising time of the PEFC 1 is shortened in this way, it is possible to reduce the capacity of the lithium ion secondary battery 4 used as a hybrid power source at the time of start-up. As a result, the electronic device is reduced in size and thickness. Can be realized.

次に、上記の電子機器の動作時における熱の挙動について説明する。     Next, the behavior of heat during the operation of the electronic device will be described.

電子機器の動作の初期(すなわち起動時)には、前述のように、PEFC1が十分な出力を得られる温度となるまで、リチウムイオン二次電池4を電源として用いて機器を動作させる。そして、PEFC1が十分に昇温されたら、リチウムイオン二次電池4の動作を停止させ、PEFC1を電源として動作させるとともに、PEFC1が発電に最適な温度に保持されるようにPEFC1を送風機6によって空冷する。     At the beginning of the operation of the electronic device (that is, at the time of startup), as described above, the device is operated using the lithium ion secondary battery 4 as a power source until the temperature at which the PEFC 1 can obtain a sufficient output. When the PEFC 1 is sufficiently heated, the operation of the lithium ion secondary battery 4 is stopped, the PEFC 1 is operated as a power source, and the PEFC 1 is air-cooled by the blower 6 so that the PEFC 1 is maintained at an optimum temperature for power generation. To do.

PEFC1では、酸化剤極に供給された空気と燃料極に供給された燃料とが反応して発電が行われる。そして、発電反応に伴って、PEFC1で多量の熱が発生する。この発電反応で得られた熱と、発電に最適な高温に保持されていることから、PEFC1は周囲に比べて温度が高くなる。それゆえ、伝導伝熱、対流伝熱、及び、放射伝熱により、PEFC1から周囲に熱が伝達されて放熱が行われる。以下、各伝熱方法における放熱について、詳細に説明する。     In PEFC1, the air supplied to the oxidant electrode reacts with the fuel supplied to the fuel electrode to generate power. Along with the power generation reaction, a large amount of heat is generated in PEFC1. Since the heat obtained by this power generation reaction and the high temperature optimal for power generation are maintained, PEFC 1 has a higher temperature than the surroundings. Therefore, heat is transmitted from the PEFC 1 to the surroundings by conduction heat transfer, convection heat transfer, and radiant heat transfer to perform heat dissipation. Hereinafter, heat dissipation in each heat transfer method will be described in detail.

まず、伝導伝熱では、発熱部品たるPEFC1が取り付けられた筐体10にPEFC1の熱が伝熱する。伝導伝熱における伝熱量は、筐体10を構成する材料の熱伝導率、筐体10とPEFC1との接触面積、筐体10の断面積、伝熱距離、及び、筐体10とPEFC1との温度差によって決まる。ここで、前述のように、筐体10は熱伝導率の小さい材料から構成されており、かつ、断熱性の材料から構成されるスペーサ5が配置されて筐体10の底面との間に空間が形成されているため、かかる構成では、PEFC1から筐体10への伝導伝熱が抑制される。したがって、筐体10を通じてPEFC1から伝導伝熱により電解コンデンサ2、記憶ディスク3、及び、リチウムイオン二次電池4に伝達される熱量も低減される。また、筐体10自体の温度上昇も抑制されるので、安全性が向上する。     First, in conduction heat transfer, the heat of PEFC 1 is transferred to the casing 10 to which the PEFC 1 as a heat generating component is attached. The amount of heat transfer in conduction heat transfer is the thermal conductivity of the material constituting the housing 10, the contact area between the housing 10 and PEFC 1, the cross-sectional area of the housing 10, the heat transfer distance, and the housing 10 and PEFC 1. It depends on the temperature difference. Here, as described above, the housing 10 is made of a material having a low thermal conductivity, and the spacer 5 made of a heat insulating material is disposed between the bottom surface of the housing 10. In this configuration, conduction heat transfer from the PEFC 1 to the housing 10 is suppressed. Therefore, the amount of heat transferred from the PEFC 1 to the electrolytic capacitor 2, the storage disk 3, and the lithium ion secondary battery 4 through the casing 10 by conduction heat transfer is also reduced. Moreover, since the temperature rise of housing | casing 10 itself is also suppressed, safety | security improves.

対流伝熱は空気による伝熱であり、送風機6が設けられてPEFC1の空冷が行われる上記構成では、以下のように対流伝熱が行われる。すなわち、送風機6のファンの回転により、筐体10内においてPEFC1に向かう空気の流れが形成され、PEFC1から空気に熱が伝達される。熱が伝達された空気は、筐体10の空気出口13から外部に排出され、一方、外部から筐体10の空気入口14を通じて、室温である空気が新たに筐体10内に取り込まれる。     Convective heat transfer is heat transfer by air, and in the above configuration in which the air blower 6 is provided to cool the PEFC 1, convective heat transfer is performed as follows. That is, the rotation of the fan of the blower 6 forms an air flow toward the PEFC 1 in the housing 10, and heat is transferred from the PEFC 1 to the air. The air to which heat has been transferred is discharged to the outside from the air outlet 13 of the housing 10, while air at room temperature is newly taken into the housing 10 from the outside through the air inlet 14 of the housing 10.

このような対流伝熱における伝熱量は、送風機6からPEFC1に送られる風(空気)の風速、及び、この風とPEFC1との温度差、ならびに風の当たる部分の表面積によって決まる。ここでは、風のあたる部分の表面積が大きく、また、送られる風とPEFC1との温度差が大きいので、筐体10内に内蔵可能な大きさでかつ消費電力の小さな送風機6を用いて現実的な風速で空冷を行うことができ、多くの熱を空気とともに外部に放出することが可能となる。したがって、対流伝熱の伝熱量、言い換えると、対流伝熱を利用した機器外部への放熱量、が大きくなり、PEFC1が冷却される。ところで、PEFC1から周囲への伝熱量は、前述のように3つの伝熱方法における伝熱量の総和であり、この総和はPEFC1の出力に応じてほぼ一定であるので、上記のように対流伝熱における伝熱量が多くなると、伝導伝熱及び放射伝熱における伝熱量が低減される。したがって、結果的に、PEFC1から電解コンデンサ2、記憶ディスク3、及び、リチウムイオン二次電池4への伝熱量が低減される。     The amount of heat transfer in such convective heat transfer is determined by the wind speed of the wind (air) sent from the blower 6 to the PEFC 1, the temperature difference between the wind and the PEFC 1, and the surface area of the portion where the wind strikes. Here, since the surface area of the portion to which the wind hits is large and the temperature difference between the sent wind and the PEFC 1 is large, it is realistic to use the blower 6 that can be built in the housing 10 and has low power consumption. Air cooling can be performed at a high wind speed, and a large amount of heat can be released to the outside together with air. Therefore, the heat transfer amount of the convection heat transfer, in other words, the heat release amount to the outside of the device using the convection heat transfer increases, and the PEFC 1 is cooled. By the way, the heat transfer amount from PEFC1 to the surroundings is the sum of the heat transfer amounts in the three heat transfer methods as described above, and since this sum is substantially constant according to the output of PEFC1, the convection heat transfer is performed as described above. When the amount of heat transfer in increases, the amount of heat transfer in conduction heat transfer and radiation heat transfer is reduced. Therefore, as a result, the amount of heat transferred from the PEFC 1 to the electrolytic capacitor 2, the storage disk 3, and the lithium ion secondary battery 4 is reduced.

放射伝熱では、PEFC1の表面の放射率、表面の面積、及び、伝熱される周囲とPEFC1との温度差によって伝熱量が決まる。特に、放射率と伝熱量とは比例関係にあり、よって、PEFC1の表面の放射率を0.04以上かつ0.3以下、より好ましくは0.04以上かつ0.1以下と低くすることにより、放射伝熱による伝熱量を抑制することができ、したがって、PEFC1から電解コンデンサ2、記憶ディスク3、及び、リチウムイオン二次電池4への放射伝熱による伝熱量を低減することが可能となる。また、このようにPEFC1の表面からの放熱を抑制することにより、PEFC1で発生した熱が電池自身の温度保持に利用されるため、PEFC1において、高出力可能な温度状態を保持することが可能となる。     In radiant heat transfer, the amount of heat transfer is determined by the emissivity of the surface of the PEFC 1, the surface area, and the temperature difference between the surroundings where the heat is transferred and the PEFC 1. In particular, the emissivity and the amount of heat transfer are in a proportional relationship. Therefore, by reducing the emissivity of the surface of PEFC1 to 0.04 or more and 0.3 or less, more preferably 0.04 or more and 0.1 or less. The amount of heat transfer due to radiant heat transfer can be suppressed, and therefore the amount of heat transfer due to radiant heat transfer from the PEFC 1 to the electrolytic capacitor 2, the storage disk 3, and the lithium ion secondary battery 4 can be reduced. . In addition, by suppressing the heat radiation from the surface of PEFC1 in this way, the heat generated in PEFC1 is used to maintain the temperature of the battery itself, so that it is possible to maintain a temperature state in which high output is possible in PEFC1. Become.

上記のように、本実施の形態の電子機器では、PEFC1で発生した熱の伝導伝熱及び放射伝熱を抑制し、一方で対流伝熱を促進することが可能となるため、PEFC1から電解コンデンサ2、記憶ディスク3、及びリチウムイオン二次電池4への伝熱が抑制され、これらの部品の温度上昇を防止することができる。したがって、これら低耐熱性部品の性能の低下、誤動作の発生、寿命の短命化等を防止することができ、その結果、電子機器の特性、信頼性、及び耐久性が向上する。     As described above, in the electronic device of the present embodiment, it is possible to suppress conduction heat transfer and radiant heat transfer of heat generated in PEFC 1 while promoting convective heat transfer. 2, the heat transfer to the storage disk 3 and the lithium ion secondary battery 4 is suppressed, and the temperature rise of these components can be prevented. Therefore, it is possible to prevent the performance of these low heat-resistant parts from being deteriorated, the occurrence of malfunction, the shortening of the service life, and the like, and as a result, the characteristics, reliability, and durability of the electronic device are improved.

また、PEFC1の表面を低放射率とする構成は、前述のようにPEFC1の表面に金属箔を貼り付ける等の方法により容易に実現することができ、この場合には、発熱部品と低耐熱性部品との間に赤外線反射板を配置する従来の場合のような空間的な制限がない。したがって、電子機器内において構成部品の配置の自由度が増すとともに、電子機器全体を小型化及び薄型化することができる。したがって、特に、携帯用の電子機器において有効である。また、伝導伝熱が抑制されていることから、筐体10の高温化を防止でき、よって、安全性が向上する。     In addition, the configuration in which the surface of the PEFC 1 has a low emissivity can be easily realized by a method such as attaching a metal foil to the surface of the PEFC 1 as described above. There is no space limitation as in the conventional case in which an infrared reflector is disposed between components. Therefore, the degree of freedom of arrangement of the components in the electronic device is increased, and the entire electronic device can be reduced in size and thickness. Therefore, it is particularly effective in portable electronic devices. Moreover, since conduction | electrical_connection heat transfer is suppressed, the high temperature of the housing | casing 10 can be prevented and safety | security improves accordingly.

なお、上記においては、電子機器が燃料電池であるPEFC1を発熱部品として備える場合について説明したが、本発明は、PEFC1以外の燃料電池を発熱部品として備えた電子機器にも適用可能である。例えば、本実施の形態の変形例として、SOFCを発熱部品として備えた構成であってもよい。この場合、SOFCの発電時の動作温度が400℃以上でありPEFCの動作温度よりも高いことから、SOFCから低耐熱性部品への伝熱抑制効果がより有効に奏されるとともに、自己内部に閉じ込めた熱を自身の温度保持に利用する効果がより有効に奏される。また、特に、SOFCでは、触媒の電気化学的活性の他に、さらに電解質のイオン導電性に温度依存性があるため、室温では全く発電できず、よって、起動時には所定の高温となるまで待つ必要があるが、かかる構成では、起動時においても放射伝熱を抑制して熱を自己の温度上昇に有効に利用することができるので、起動時間の短縮効果がさらに有効に奏される。     In the above description, the case where the electronic device includes PEFC1 that is a fuel cell as a heat generating component has been described. However, the present invention can also be applied to an electronic device including a fuel cell other than PEFC1 as a heat generating component. For example, as a modification of the present embodiment, a configuration provided with SOFC as a heat generating component may be used. In this case, the operating temperature during power generation of the SOFC is 400 ° C. or higher, which is higher than the operating temperature of the PEFC. Therefore, the effect of suppressing heat transfer from the SOFC to the low heat-resistant component is more effectively achieved, and the self-inside The effect of using the trapped heat to maintain its own temperature is more effective. In particular, in SOFC, in addition to the electrochemical activity of the catalyst, the ionic conductivity of the electrolyte is temperature-dependent, so power generation is not possible at room temperature. Therefore, it is necessary to wait until the temperature reaches a predetermined high temperature at startup. However, in such a configuration, since the radiant heat transfer can be suppressed and the heat can be effectively used to increase its own temperature even at the time of start-up, the effect of shortening the start-up time is further effectively exhibited.

さらに、本発明は、燃料電池以外の発電部品を発熱部品として備えた電子機器にも適用可能であり、例えば、電源モジュールが発熱部品に相当する電子機器であってもよい。ここで、電源モジュールとは、電力変換装置を主な構成要素として含むもので、例えば、超小型のタービン発電機等である。ここでは、燃料電池や電源モジュールを、電源ユニットと総称する。     Furthermore, the present invention can be applied to an electronic device provided with a power generation component other than a fuel cell as a heat generating component. For example, the power supply module may be an electronic device corresponding to the heat generating component. Here, the power supply module includes a power conversion device as a main component, and is, for example, an ultra-small turbine generator. Here, the fuel cell and the power supply module are collectively referred to as a power supply unit.

なお、発熱部品は、電源ユニット等の発電部品に限定されるものではないが、発電部品では通常多くの熱が発生するので、発電部品は発熱部品であると言える。発電部品等の発熱部品を備えた電子機器においては、発熱部品の発熱量が大きいほど、また、その表面積が大きいほど、本発明の効果がより有効に奏され、さらに、上記のPEFCやSOFCのように動作時に高温に保持する必要があるものにおいては、自己内部に熱を閉じ込めてこの熱を自己の温度維持に利用することができるため、より本発明の効果が有効に奏される。     The heat generating component is not limited to a power generating component such as a power supply unit. However, since the heat generating component usually generates a lot of heat, it can be said that the power generating component is a heat generating component. In an electronic device including a heat generating component such as a power generation component, the effect of the present invention is more effectively exhibited as the heat generation amount of the heat generating component is larger and the surface area thereof is larger. Further, the above-described PEFC and SOFC As described above, in the case where it is necessary to maintain a high temperature during operation, heat can be confined in the self and the heat can be utilized for maintaining the temperature of the self, so that the effect of the present invention is more effectively exhibited.

また、低耐熱性部品は、電解コンデンサ、記憶ディスク、及び、リチウムイオン二次電池に限定されるものではなく、これ以外であってもよい。低耐熱性部品の最高使用温度が低いほど、また、その部品の表面積が大きいほど、本発明の効果が有効に奏される。     Further, the low heat-resistant component is not limited to the electrolytic capacitor, the storage disk, and the lithium ion secondary battery, but may be other than this. The lower the maximum operating temperature of the low heat resistant component and the larger the surface area of the component, the more effective the effect of the present invention.

また、上記においては電子機器としてノートパソコンについて説明したが、これ以外の電子機器にも本発明は適用可能であり、特に、発熱部品と低耐熱性部品とが近くに配置される小型化・薄型化が図られた携帯機器においては、より有利な効果が奏される。
(実施例1)
図1に示す構造を有するノートパソコンを作製し、PEFC1の発電動作時における周囲への放熱量、及び、この時の電解コンデンサ2の温度を測定した。
In the above description, the notebook personal computer is described as the electronic device. However, the present invention can be applied to other electronic devices, and in particular, the heat generating component and the low heat-resistant component are arranged close to each other. A more advantageous effect is achieved in portable devices that have been made more efficient.
(Example 1)
A notebook personal computer having the structure shown in FIG. 1 was produced, and the amount of heat released to the surroundings during the power generation operation of the PEFC 1 and the temperature of the electrolytic capacitor 2 at this time were measured.

本実施例のPEFC1は、発熱する発電部が、縦70mm×横70mm×高さ10mmの寸法を有し、体積が49ccであり、表面積が126cmである。そして、PEFC1の発電部全体に、表面が適度に研磨された厚さ0.05mmの市販のステンレス板が接着剤により貼り付けられている。波長10マイクロメートル近傍の赤外線に対するこのPEFC1の発電部表面の放射率は、放射温度計による測定で0.3であった。PEFC1は、シリカ製の断熱性スペーサ5を介して筐体10の底面に配置されており、このスペーサ5は、熱伝導率が0.1ワット/mKであり、大きさが縦5mm×横5mm×高さ3mmである。 In the PEFC 1 of this example, the power generating unit that generates heat has dimensions of 70 mm long × 70 mm wide × 10 mm high, has a volume of 49 cc, and has a surface area of 126 cm 2 . A commercially available stainless steel plate having a thickness of 0.05 mm, whose surface is appropriately polished, is attached to the entire power generation unit of PEFC 1 with an adhesive. The emissivity of the surface of the power generation section of PEFC1 with respect to infrared rays having a wavelength of around 10 micrometers was 0.3 as measured by a radiation thermometer. The PEFC 1 is disposed on the bottom surface of the casing 10 through a heat insulating spacer 5 made of silica. The spacer 5 has a thermal conductivity of 0.1 watt / mK and a size of 5 mm in length × 5 mm in width. X Height is 3 mm.

かかる構成で、PEFC1からの発熱量を25ワットとし、送風機6から風速2.6m/秒で風(空気)をPEFC1の発電部の全面に送って空冷を行って発電部の温度を100℃とした。この時のPEFC1からの放熱量を測定したところ、伝導伝熱による放熱量が0.3ワットであり、対流伝熱による放熱量が22.3ワットであり、放射伝熱による放熱量が0.3ワットであった。そして、この時の電解コンデンサ2の最高温度は85℃であり、耐熱温度以下であった。
(実施例2)
PEFC1の発電部表面の放射率が0.04である以外は実施例1と同様であるノートパソコンを作製し、実施例1と同様にしてPEFC1の発電動作時における放熱量を測定した。
With this configuration, the amount of heat generated from the PEFC 1 is 25 watts, and air (air) is sent from the blower 6 to the entire surface of the power generation unit of the PEFC 1 at a wind speed of 2.6 m / sec. did. When the amount of heat released from PEFC 1 at this time was measured, the amount of heat released by conduction heat transfer was 0.3 watts, the amount of heat released by convection heat transfer was 22.3 watts, and the amount of heat released by radiant heat transfer was 0.2 watts. It was 3 watts. And the maximum temperature of the electrolytic capacitor 2 at this time was 85 degreeC, and was below the heat-resistant temperature.
(Example 2)
A notebook personal computer similar to that of Example 1 was prepared except that the emissivity of the surface of the power generation unit of PEFC1 was 0.04, and the amount of heat released during the power generation operation of PEFC1 was measured in the same manner as in Example 1.

かかる構成で、PEFC1からの発熱量を25ワットとし、送風機6から風速3.2m/秒で風(空気)をPEFC1の発電部の全面に送って空冷を行い、発電部の温度を100℃とした。この時のPEFC1からの放熱量を測定したところ、伝導伝熱による放熱量が0.2ワットであり、対流伝熱による放熱量が24.5ワットであり、放射伝熱による放熱量が0.3ワットであった。そして、この時の電解コンデンサ2の最高温度は75℃であり、耐熱温度以下であった。
(実施例3)
PEFC1の発電部表面に、前記ステンレス板の代わりに、表面を適度に研磨した厚さ0.5mmの酸化マグネシウム板を配置して発電部表面の放射率を0.29とし、それ以外は実施例1と同様の構成を有するノートパソコンを作製した。そして、実施例1と同様にして、PEFC1の発電動作時における放熱量を測定した。
With such a configuration, the amount of heat generated from the PEFC 1 is 25 watts, air (air) is sent from the blower 6 at a wind speed of 3.2 m / sec to the entire surface of the power generation unit of the PEFC 1, and air cooling is performed. did. When the amount of heat released from PEFC 1 at this time was measured, the amount of heat released by conduction heat transfer was 0.2 watts, the amount of heat released by convection heat transfer was 24.5 watts, and the amount of heat released by radiant heat transfer was 0.2 watts. It was 3 watts. At this time, the maximum temperature of the electrolytic capacitor 2 was 75 ° C., which was lower than the heat resistance temperature.
(Example 3)
Instead of the stainless steel plate, a 0.5 mm-thick magnesium oxide plate with an appropriately polished surface is disposed on the surface of the power generation unit of PEFC1, and the emissivity of the surface of the power generation unit is set to 0.29. A notebook computer having the same configuration as that of No. 1 was produced. In the same manner as in Example 1, the amount of heat released during the power generation operation of PEFC 1 was measured.

かかる構成で、PEFC1からの発熱量を25ワットとし、送風機6から風速2.7m/秒で風(空気)をPEFC1の発電部の全面に送って空冷を行い、発電部の温度を100℃とした。この時のPEFC1からの放熱量を測定したところ、伝導伝熱による放熱量が0.2ワットであり、対流伝熱による放熱量が22.4ワットであり、放射伝熱による放熱量が2.4ワットであった。そして、この時の電解コンデンサ2の最高温度は84℃であり、耐熱温度以下であった。
(実施例4)
PEFC1の発電部表面に、前記ステンレス板の代わりに、表面を適度に研磨した厚さ0.5mmの酸化アルミニウム板を配置して発電部表面の放射率を0.1とし、それ以外は実施例1と同様の構成を有するノートパソコンを作製した。そして、実施例1と同様にして、PEFC1の発電動作時における放熱量を測定した。
With this configuration, the amount of heat generated from the PEFC 1 is 25 watts, air (air) is sent from the blower 6 at a wind speed of 2.7 m / sec to the entire surface of the power generation unit of the PEFC 1, and air cooling is performed. did. When the amount of heat released from PEFC 1 at this time was measured, the amount of heat released by conduction heat transfer was 0.2 watts, the amount of heat released by convection heat transfer was 22.4 watts, and the amount of heat released by radiant heat transfer was 2.2. It was 4 watts. At this time, the maximum temperature of the electrolytic capacitor 2 was 84 ° C., which was lower than the heat resistance temperature.
Example 4
Instead of the stainless steel plate, a 0.5 mm-thick aluminum oxide plate with a moderately polished surface is placed on the surface of the power generation unit of PEFC1, and the emissivity of the surface of the power generation unit is set to 0.1. A notebook computer having the same configuration as that of No. 1 was produced. In the same manner as in Example 1, the amount of heat released during the power generation operation of PEFC 1 was measured.

かかる構成で、PEFC1からの発熱量を25ワットとし、送風機6から風速3.0m/秒で風をPEFC1の発電部の全面に送って空冷を行い、発電部の温度を100℃とした。この時のPEFC1からの放熱量を測定したところ、伝導伝熱による放熱量が0.2ワットであり、対流伝熱による放熱量が24.0ワットであり、放射伝熱による放熱量が0.8ワットであった。そして、この時の電解コンデンサ2の最高温度は78℃であり、耐熱温度以下であった。
(実施例5)
発熱部品としてPEFCの代わりにSOFCが配設された図1と同様の構成を有する小型のSOFCユニットを作製した。すなわち、SOFCユニットは、筐体10内に、発熱部品たるSOFC1と、低耐熱性部品たる電解コンデンサ2とが収納されて構成される。このSOFCユニットにおけるSOFC1の発熱する発電部は、縦100mm×横100mm×高さ30mmの寸法を有し、体積は300ccであり、表面積は320cmである。そして、SOFC1の発電部表面全体には、アルミニウム箔が接着剤により貼り付けられている。波長10マイクロメートル近傍の赤外線に対するこのSOFC1の発電部表面の放射率は、放射温度計による測定で0.04であった。SOFC1は、シリカ製の断熱性スペーサ5を介して筐体10の底面に配置されており、このスペーサ5は、熱伝導率が0.1ワット/mKであり、大きさが縦5mm×横5mm×高さ3mmである。
With this configuration, the amount of heat generated from PEFC 1 was 25 watts, and the air was cooled from the blower 6 to the entire surface of the power generation unit of PEFC 1 at a wind speed of 3.0 m / sec, and the temperature of the power generation unit was set to 100 ° C. When the amount of heat released from PEFC 1 at this time was measured, the amount of heat released by conduction heat transfer was 0.2 watts, the amount of heat released by convection heat transfer was 24.0 watts, and the amount of heat released by radiant heat transfer was 0.00. It was 8 watts. At this time, the maximum temperature of the electrolytic capacitor 2 was 78 ° C., which was lower than the heat resistance temperature.
(Example 5)
A small SOFC unit having the same configuration as that of FIG. 1 in which an SOFC instead of PEFC was provided as a heat generating component was produced. That is, the SOFC unit is configured by housing the SOFC 1 as a heat generating component and the electrolytic capacitor 2 as a low heat resistant component in a housing 10. The power generating section of SOFC 1 that generates heat in this SOFC unit has dimensions of 100 mm long × 100 mm wide × 30 mm high, has a volume of 300 cc, and has a surface area of 320 cm 2 . And the aluminum foil is affixed on the whole power generation part surface of SOFC1 with the adhesive agent. The emissivity of the surface of the power generation section of SOFC1 with respect to infrared rays having a wavelength of around 10 micrometers was 0.04 as measured by a radiation thermometer. The SOFC 1 is disposed on the bottom surface of the housing 10 via a silica heat insulating spacer 5, and this spacer 5 has a thermal conductivity of 0.1 watt / mK and a size of 5 mm in length × 5 mm in width. X Height is 3 mm.

かかる構成で、SOFC1からの発熱量を150ワットとし、送風機6から風速0.4m/秒で風をSOFC1の発電部の全面に送って空冷を行い、発電部の温度を500℃とした。この時のSOFC1からの放熱量を測定したところ、伝導伝熱による放熱量が1.7ワットであり、対流伝熱による放熱量が124.4ワットであり、放射伝熱による放熱量が23.9ワットであった。そして、この時の電解コンデンサ2の最高温度は85℃であり、耐熱温度以下であった。
(比較例)
PEFC1の発電部の表面に、表面を研磨した実施例1のステンレス板の代わりに、黒色酸化した厚さ0.05mmのステンレス板を配置して発電部表面の放射率を0.95とし、それ以外は実施例1と同様の構成を有するノートパソコンを作製した。そして、実施例1と同様にして、PEFC1の発電動作時における放熱量を測定した。
With this configuration, the heat generation amount from the SOFC 1 was 150 watts, and the air was cooled from the blower 6 to the entire surface of the power generation unit of the SOFC 1 at a wind speed of 0.4 m / sec, and the temperature of the power generation unit was set to 500 ° C. When the amount of heat released from the SOFC 1 at this time was measured, the amount of heat released by conduction heat transfer was 1.7 watts, the amount of heat released by convection heat transfer was 124.4 watts, and the amount of heat released by radiant heat transfer was 23. It was 9 watts. And the maximum temperature of the electrolytic capacitor 2 at this time was 85 degreeC, and was below the heat-resistant temperature.
(Comparative example)
Instead of the stainless steel plate of Example 1 whose surface was polished, a 0.05 mm thick stainless steel plate was placed on the surface of the power generation unit of PEFC1, and the emissivity of the power generation unit surface was set to 0.95. A notebook computer having the same configuration as in Example 1 was prepared except for the above. In the same manner as in Example 1, the amount of heat released during the power generation operation of PEFC 1 was measured.

かかる構成で、PEFC1からの発熱量を25ワットとし、送風機6から風速1.5m/秒で風をPEFC1の発電部の全面に送って空冷を行い、発電部の温度を100℃とした。この時のPEFC1からの放熱量を測定したところ、伝導伝熱による放熱量が0.2ワットであり、対流伝熱による放熱量が17.1ワットであり、放射伝熱による放熱量が7.7ワットであった。そして、この時の電解コンデンサ2の最高温度は95℃であり、耐熱温度を10℃上回っていた。     With this configuration, the amount of heat generated from PEFC 1 was 25 watts, and air was sent from the blower 6 to the entire surface of the power generation unit of PEFC 1 at a wind speed of 1.5 m / second to perform air cooling, and the temperature of the power generation unit was 100 ° C. When the amount of heat released from PEFC 1 at this time was measured, the amount of heat released by conduction heat transfer was 0.2 watts, the amount of heat released by convection heat transfer was 17.1 watts, and the amount of heat released by radiant heat transfer was 7. It was 7 watts. At this time, the maximum temperature of the electrolytic capacitor 2 was 95 ° C., which was 10 ° C. higher than the heat resistance temperature.

以上の実施例1〜5及び比較例に示すように、発熱部品の表面の放射率を0.04以上かつ0.3以下とすれば、低耐熱性部品への伝熱を抑制することができ、よって、低耐熱性部品における温度上昇を抑制できることが明らかとなった。     As shown in Examples 1 to 5 and Comparative Example above, heat transfer to the low heat resistant component can be suppressed by setting the emissivity of the surface of the heat generating component to 0.04 or more and 0.3 or less. Therefore, it has been clarified that the temperature rise in the low heat resistant component can be suppressed.

本発明に係る電子機器は、発熱部品から低耐熱性部品への放熱を抑制する効果を有し、例えば、発熱部品が発電部品であり、中でも、発電部品として燃料電池を備えた電子機器に有効である。また、特に、発熱部品と低耐熱性部品とが近くに配置される小型化・薄型化された携帯機器等の電子機器において、本発明はより有益である。   The electronic device according to the present invention has an effect of suppressing heat dissipation from the heat-generating component to the low heat-resistant component. For example, the heat-generating component is a power-generating component, and particularly effective for an electronic device equipped with a fuel cell as the power-generating component. It is. In particular, the present invention is more useful in electronic devices such as miniaturized and thin portable devices in which a heat generating component and a low heat resistant component are arranged close to each other.

本発明の実施の形態に係る電子機器の構成を概略的に示す断面図Sectional drawing which shows schematically the structure of the electronic device which concerns on embodiment of this invention

符号の説明Explanation of symbols

1 PEFC
2 電解コンデンサ
3 記憶ディスク
4 リチウムイオン二次電池
5 スペーサ
6 送風機
10 筐体
11 第1の基板
12 第2の基板
13 空気出口
14 空気入口
1 PEFC
2 Electrolytic Capacitor 3 Storage Disk 4 Lithium Ion Secondary Battery 5 Spacer 6 Blower 10 Housing 11 First Board 12 Second Board 13 Air Outlet 14 Air Inlet

Claims (17)

電源ユニットからなる発熱部品と、前記発熱部品の動作時の温度よりも最高使用温度が低い低耐熱性部品と、を内蔵する電子機器において、
前記発熱部品の表面の少なくとも一部は、波長10マイクロメートル近傍の赤外線に対する放射率が0.04以上0.3以下であることを特徴とする電子機器。
In an electronic device having a built-in heat-generating component composed of a power supply unit and a low heat-resistant component whose maximum operating temperature is lower than the operating temperature of the heat-generating component,
At least a part of the surface of the heat generating component has an emissivity of 0.04 or more and 0.3 or less with respect to infrared rays having a wavelength of around 10 micrometers.
前記放射率が0.04以上0.1以下である請求項1記載の電子機器。   The electronic device according to claim 1, wherein the emissivity is 0.04 or more and 0.1 or less. 前記発熱部品が、電源モジュールである請求項1又は2記載の電子機器。   The electronic device according to claim 1, wherein the heat generating component is a power supply module. 前記発熱部品が、発電部品である請求項1又は2記載の電子機器。   The electronic device according to claim 1, wherein the heat generating component is a power generating component. 前記発電部品が、燃料電池である請求項4記載の電子機器。   The electronic device according to claim 4, wherein the power generation component is a fuel cell. 前記燃料電池が、固体高分子型燃料電池である請求項5記載の電子機器。   The electronic device according to claim 5, wherein the fuel cell is a polymer electrolyte fuel cell. 前記燃料電池が、固体酸化物型燃料電池である請求項5記載の電子機器。   The electronic device according to claim 5, wherein the fuel cell is a solid oxide fuel cell. 前記低耐熱性部品が、電解コンデンサ、水晶デバイス、撮像素子、ICカード、電池、及び、記憶ディスクのいずれかである請求項1〜7のいずれかに記載の電子機器。   The electronic apparatus according to claim 1, wherein the low heat-resistant component is any one of an electrolytic capacitor, a crystal device, an image sensor, an IC card, a battery, and a storage disk. 前記発熱部品と前記低耐熱性部品とが筐体の内部に配置され、前記発熱部品で生じた熱の前記筐体を介した伝導伝熱が抑制可能に構成された請求項1〜8のいずれかに記載の電子機器。   The heat generating component and the low heat resistant component are arranged inside a housing, and the heat transfer from the heat generated by the heat generating component through the housing can be suppressed. The electronic device according to Crab. 前記筐体と前記発熱部品とが断熱された請求項9記載の電子機器。   The electronic device according to claim 9, wherein the casing and the heat generating component are thermally insulated. 前記筐体が断熱性材料から構成された請求項10記載の電子機器。   The electronic device according to claim 10, wherein the casing is made of a heat insulating material. 前記筐体と前記発熱部品との間に断熱材が配置された請求項10記載の電子機器。   The electronic device according to claim 10, wherein a heat insulating material is disposed between the housing and the heat generating component. 前記発熱部品と前記低耐熱性部品とが筐体の内部に配置され、前記発熱部品を対流伝熱により冷却する冷却手段を備えた請求項1〜12のいずれかに記載の電子機器。   The electronic device according to claim 1, wherein the heat generating component and the low heat resistant component are disposed inside a housing, and includes a cooling unit that cools the heat generating component by convective heat transfer. 前記筐体は、内部の空気を外部に排出するための空気出口と、外部の空気を内部に取り込むための空気入口とを有し、
前記冷却手段が、送風機である請求項13記載の電子機器。
The housing has an air outlet for discharging internal air to the outside, and an air inlet for taking external air into the inside,
The electronic device according to claim 13, wherein the cooling means is a blower.
前記発熱部品の前記表面の少なくとも一部が、平坦な金属面から構成される請求項1〜14のいずれかに記載の電子機器。   The electronic device according to claim 1, wherein at least a part of the surface of the heat-generating component is formed of a flat metal surface. 前記金属面が、金属酸化物から構成された請求項15記載の電子機器。   The electronic device according to claim 15, wherein the metal surface is made of a metal oxide. 前記金属酸化物が、酸化マグネシウム又は酸化アルミニウムである請求項16記載の電子機器。
The electronic device according to claim 16, wherein the metal oxide is magnesium oxide or aluminum oxide.
JP2003306084A 2003-08-29 2003-08-29 Electronic apparatus Pending JP2005079242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003306084A JP2005079242A (en) 2003-08-29 2003-08-29 Electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003306084A JP2005079242A (en) 2003-08-29 2003-08-29 Electronic apparatus

Publications (1)

Publication Number Publication Date
JP2005079242A true JP2005079242A (en) 2005-03-24

Family

ID=34409255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003306084A Pending JP2005079242A (en) 2003-08-29 2003-08-29 Electronic apparatus

Country Status (1)

Country Link
JP (1) JP2005079242A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299870A (en) * 2006-04-28 2007-11-15 Matsushita Electric Ind Co Ltd Relay substrate, and three-dimensional electronic circuit structure using same
WO2008041274A1 (en) * 2006-09-29 2008-04-10 Fujitsu Limited Fuel cell
JP2008238055A (en) * 2007-03-27 2008-10-09 Casio Comput Co Ltd Reactor
JP2011075260A (en) * 2009-10-02 2011-04-14 Ihi Corp Heat radiation recovery device for industrial furnace
JP6026059B1 (en) * 2015-05-21 2016-11-16 三菱電機株式会社 Electronics

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007299870A (en) * 2006-04-28 2007-11-15 Matsushita Electric Ind Co Ltd Relay substrate, and three-dimensional electronic circuit structure using same
WO2008041274A1 (en) * 2006-09-29 2008-04-10 Fujitsu Limited Fuel cell
JP2008238055A (en) * 2007-03-27 2008-10-09 Casio Comput Co Ltd Reactor
JP2011075260A (en) * 2009-10-02 2011-04-14 Ihi Corp Heat radiation recovery device for industrial furnace
JP6026059B1 (en) * 2015-05-21 2016-11-16 三菱電機株式会社 Electronics
WO2016185613A1 (en) * 2015-05-21 2016-11-24 三菱電機株式会社 Electronic device
CN107615901A (en) * 2015-05-21 2018-01-19 三菱电机株式会社 Electronic instrument
US10098256B2 (en) 2015-05-21 2018-10-09 Mitsubishi Electric Corporation Electronic device
CN107615901B (en) * 2015-05-21 2018-11-20 三菱电机株式会社 Electronic instrument

Similar Documents

Publication Publication Date Title
JP4315187B2 (en) Portable electronic devices
US20080259569A1 (en) Thermally enhanced battery module
KR101147435B1 (en) Method and system for improving efficiency of fuel cell in portable devices
JP2005079242A (en) Electronic apparatus
TWI669843B (en) Power generating system having rechargeable battery
JP2003346823A (en) Power source system
US20110023928A1 (en) Thermoelectric conversion device
CN112687975A (en) Electronic equipment and heat dissipation method
JPS6113348B2 (en)
JP2000285873A (en) Secondary battery and battery pack
JP2010257940A (en) Fuel cell module
CN217606907U (en) Battery module
JP2009200652A (en) System and method for radiating heat in portable terminal under charging
JP2010134786A (en) Electronic apparatus
JP2002050727A (en) Electronic apparatus
US20140030575A1 (en) Thermal Reservoir Using Phase-Change Material For Portable Applications
TWI264272B (en) A battery module for electrical apparatus
JP4551608B2 (en) Fuel cells and electrical equipment
JP5146316B2 (en) Fuel cell
JP2004303536A (en) Electronic equipment
JP3224790U (en) Storage battery and storage battery system
JP2015088381A (en) Battery pack
CN219144279U (en) From portable package that generates heat of taking inside cooling function
US20200373636A1 (en) Heat sharing between batteries and electronic systems
JP2007328971A (en) Fuel cell device, and electronic equipment equipped with fuel cell device