JP2005078970A - Fuel battery and fuel battery radiation heat utilization system - Google Patents

Fuel battery and fuel battery radiation heat utilization system Download PDF

Info

Publication number
JP2005078970A
JP2005078970A JP2003309037A JP2003309037A JP2005078970A JP 2005078970 A JP2005078970 A JP 2005078970A JP 2003309037 A JP2003309037 A JP 2003309037A JP 2003309037 A JP2003309037 A JP 2003309037A JP 2005078970 A JP2005078970 A JP 2005078970A
Authority
JP
Japan
Prior art keywords
fuel cell
heat
fuel
heat pipe
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003309037A
Other languages
Japanese (ja)
Inventor
Yasuhiro Ishii
康裕 石井
Keisuke Oda
啓介 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003309037A priority Critical patent/JP2005078970A/en
Publication of JP2005078970A publication Critical patent/JP2005078970A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel battery and a fuel battery system using the fuel battery capable of effectively radiating the heat generated in a solid polymer fuel battery to outside with simple configuration. <P>SOLUTION: Each of a plurality of first heat pipes 4a is structured of a conductive pinched part 41 pinched between each two fuel battery cells 20 and a projection 42 protruded outside from the space between the adjacent fuel cells 20. The projection 42 is structured of a protruded root part 421 extended in the same direction as the conductive pinched part 41, and a folded part 422 extended in parallel with a side face 28 of a stack 2. In the conductive pinched parts 41, operating liquid inside the fuel cells 20 is boiled and evaporated by their radiation heat to move toward the folded parts 422 at a low-temperature end, and cooled at the folded part, and the radiation heat is transferred to second heat pipes 6 installed outside the stack 2, and transferred from the second heat pipes 6 to a heat exchanger 7. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、燃料電池セル、例えば固体高分子膜を電解質として用いた燃料電池セルの複数を積層した積層体を備えた燃料電池、および上記燃料電池からの放熱を利用した燃料電池放熱利用システムに関し、詳しくは上記燃料電池セルの冷却構造が改善された燃料電池および上記燃料電池からの放熱の回収機構が改善された燃料電池放熱利用システムに関するものである。   The present invention relates to a fuel cell, for example, a fuel cell including a laminate in which a plurality of fuel cells using a solid polymer membrane as an electrolyte are stacked, and a fuel cell heat radiation utilization system utilizing heat radiation from the fuel cell. More particularly, the present invention relates to a fuel cell having an improved cooling structure for the fuel cell and a fuel cell heat radiation utilization system having an improved recovery mechanism for heat radiation from the fuel cell.

従来の固体高分子型燃料電池においては、複数積層された燃料電池セルの間に冷却媒体流路を有する冷却板が配置され、冷却水ポンプによって冷却媒体を循環させて発電による廃熱を回収し熱交換器で再利用するようにしている。さらに後記の特許文献1から、燃料電池セルを構成する燃料ガス用導電性セパレータおよび酸化剤ガス用導電性セパレータのそれぞれに高温側となる円管状のパイプ部を内蔵せしめたヒートパイプを配置し、上記ヒートパイプの他端に放熱用フィン設け、固体高分子型燃料電池で発生した熱を上記ヒートパイプを通じて燃料電池外に導いて空気中に放熱する技術も公知である。   In a conventional polymer electrolyte fuel cell, a cooling plate having a cooling medium flow path is arranged between a plurality of stacked fuel cells, and the cooling medium is circulated by a cooling water pump to recover waste heat generated by power generation. They are reused in heat exchangers. Further, from Patent Document 1 described later, a heat pipe in which a tubular pipe portion on the high temperature side is built in each of the conductive separator for fuel gas and the conductive separator for oxidant gas constituting the fuel cell is arranged, A technique is also known in which a heat radiating fin is provided at the other end of the heat pipe, and heat generated in the polymer electrolyte fuel cell is guided to the outside of the fuel cell through the heat pipe and radiated into the air.

ところで従来の冷却媒体流路による固体高分子型燃料電池の冷却方法においては、冷却媒体を循環させるためのポンプと冷却媒体を送る配管が必要であって、このために燃料電池システムは複雑で高価なものになるという問題があった。また特許文献1の技術においては、上記ヒートパイプの高温側となる円管状のパイプ部を各セパレータ中に内蔵し、固着する必要がある。このとき、積層されるセパレータは隣接するセパレータと隙間なく密着する必要があり、このような構造を円管状のヒートパイプによって実現するには製造コストが高くなるという問題があった。
特開2000−353536号公報(請求項1、請求項2、段落番号0017、図1)
By the way, in the conventional method for cooling a polymer electrolyte fuel cell using a cooling medium flow path, a pump for circulating the cooling medium and a pipe for feeding the cooling medium are required. Therefore, the fuel cell system is complicated and expensive. There was a problem of becoming something. Moreover, in the technique of patent document 1, it is necessary to incorporate the cylindrical pipe part used as the high temperature side of the said heat pipe in each separator, and to adhere. At this time, the laminated separators need to be in close contact with the adjacent separators without any gap, and there is a problem that the manufacturing cost becomes high in order to realize such a structure with a circular heat pipe.
JP 2000-353536 A (Claim 1, Claim 2, Paragraph 0017, FIG. 1)

本発明は、上述のような従来技術における問題を解決するためになされたものであって、燃料電池内で発生する熱を簡単な構成で効果的に外部に放出することができる燃料電池および当該燃料電池を用いた燃料電池放熱利用システムを提供することを課題とするものである。   The present invention has been made to solve the above-described problems in the prior art, and is capable of effectively releasing heat generated in the fuel cell to the outside with a simple configuration. It is an object of the present invention to provide a fuel cell heat radiation utilization system using a fuel cell.

本発明の請求項1に係る燃料電池は、複数の燃料電池セルの積層体、および上記燃料電池セル同士の間に挟着された平板状の導電性挟着部と上記燃料電池セル間から外部に突出した突出部を有すると共に上記燃料電池セル内で発生する熱を外部に放出するための第一放熱装置を備えたことを特徴とし、本発明の請求項4に係る燃料電池は、隣接する上記第一放熱装置の上記突出部の端部同士は、接触することないように互いに異なる方向に上記燃料電池セル間から外部に突出しているか、または互いに反対方向に折り曲げられていることを特徴とし、さらに本発明の請求項5に係る燃料電池は、上記突出部の折り曲げられた外面上に電気絶縁シートを介して第二放熱装置を備えたことを特徴とするものである。   According to a first aspect of the present invention, there is provided a fuel cell stack comprising: a plurality of fuel cell stacks; and a plate-like conductive sandwiched portion sandwiched between the fuel cells and an external portion between the fuel cells. And a first heat dissipating device for releasing heat generated in the fuel cell to the outside. The fuel cell according to claim 4 of the present invention is adjacent to the fuel cell. The ends of the protruding portions of the first heat radiating device protrude outward from the fuel cells in different directions so as not to contact each other, or are bent in opposite directions to each other. Furthermore, the fuel cell according to claim 5 of the present invention is characterized in that a second heat dissipating device is provided on the outer surface of the protruding portion bent through an electric insulating sheet.

本発明の請求項8に係る燃料電池放熱利用システムは、上記燃料電池の上記第二放熱装置に集められた上記燃料電池からの放熱を熱交換する熱交換器を備えたことを特徴とするものである。   A fuel cell heat radiation utilization system according to claim 8 of the present invention includes a heat exchanger for exchanging heat from the fuel cell collected in the second heat radiation device of the fuel cell. It is.

本発明の燃料電池では、第一放熱装置として燃料電池セル間に挟着された平板状の導電性挟着部を有するものを採用するので、前記従来技術におけるような冷却媒体の循環が不要となって燃料電池の構造が簡素化される。さらに上記導電性挟着部は、特許文献1の場合のようにセパレータ内に内蔵されずに、単に燃料電池セル間に挟着設置されるのみであるので燃料電池の製造工程が頗る簡素化され、しかして製造コストが低減する効果がある。その際、上記導電性挟着部が平板状であることが燃料電池セル間での挟着設置を容易にし、しかも挟着設置状態での燃料電池セル間の電気的接続が容易であり且つ安定化する効果もある。   In the fuel cell of the present invention, since the first heat radiating device having a flat conductive sandwiched portion sandwiched between the fuel cells is adopted, it is unnecessary to circulate the cooling medium as in the prior art. Thus, the structure of the fuel cell is simplified. Further, the conductive sandwiching portion is not built in the separator as in the case of Patent Document 1, but is simply sandwiched between the fuel cells, so that the fuel cell manufacturing process is simplified. However, the manufacturing cost can be reduced. At that time, the conductive sandwiched portion is flat, facilitating the sandwich installation between the fuel cells, and the electrical connection between the fuel cells in the sandwich installation state is easy and stable. There is also an effect that.

本発明の燃料電池放熱利用システムでは、上記燃料電池の上記第二放熱装置に集められた上記燃料電池からの放熱は上記熱交換器により熱交換されるので、簡単な構造で効率的に電池からの放熱を再利用できる。   In the fuel cell heat radiation utilization system of the present invention, the heat radiation from the fuel cell collected in the second heat radiation device of the fuel cell is heat-exchanged by the heat exchanger, so that the heat can be efficiently removed from the battery with a simple structure. The heat dissipation can be reused.

以下において、説明の順位の早い図に示された部位と同じ部位が後続の図に示される場合には、互に同じ部位については同じ符号を付して後続の図では部位の説明を省略することがある。   In the following, when the same part as the part shown in the earlier figure of the description is shown in the subsequent figure, the same part is given the same symbol and the description of the part is omitted in the subsequent figure Sometimes.

実施の形態1.
図1〜図5は、本発明の燃料電池における実施の形態1を説明するものであって、図1は実施の形態1の斜視図、図2は図1のII-II線に沿った断面図、図3は図2の一部拡大図、図4は図1のIV-IV線に沿った断面図、図5は実施の形態1において用いられた第一ヒートパイプ4aの斜視図である。図1〜図5において、燃料電池1は、その主要部として、複数の燃料電池セル20の積層体2、端子電極31、端子電極32、前記第一放熱装置の一例としての複数の第一ヒートパイプ4a、電気絶縁シート5、および前記第二放熱装置の一例としての平板状の第二ヒートパイプ6を備えている。端子電極31、端子電極32は、それぞれ電線接続用のターミナル311、ターミナル321を有する。
Embodiment 1 FIG.
1 to 5 illustrate a first embodiment of the fuel cell according to the present invention. FIG. 1 is a perspective view of the first embodiment, and FIG. 2 is a cross-sectional view taken along line II-II in FIG. 3 is a partially enlarged view of FIG. 2, FIG. 4 is a cross-sectional view taken along line IV-IV of FIG. 1, and FIG. 5 is a perspective view of the first heat pipe 4a used in the first embodiment. . 1 to 5, the fuel cell 1 includes, as main parts, a stack 2 of a plurality of fuel cells 20, a terminal electrode 31, a terminal electrode 32, and a plurality of first heats as an example of the first heat dissipation device. A pipe 4a, an electrical insulating sheet 5, and a flat plate-like second heat pipe 6 as an example of the second heat radiating device are provided. The terminal electrode 31 and the terminal electrode 32 have a terminal 311 and a terminal 321 for connecting wires, respectively.

複数の燃料電池セル20のそれぞれは、図2に示すように固体高分子膜21、固体高分子膜21の一方の面に設けられて導電性と通気性を兼ね備えた燃料電極22、固体高分子膜21の他方の面に設けられて導電性と通気性を兼ね備えた酸化剤電極23、燃料電極22にガスを供給し、あるいは燃料電極22からガスを排出するための燃料ガス流路24を有する燃料ガス用セパレータ25、および酸化剤ガス流路26を有する酸化剤ガス用セパレータ27を備えている。なお個々の燃料電池セル20の側面では、通常、上記符号21、22、23、25、27で示される各要素の側面が露出しているが、図1および後続の諸図では図面の簡略化のために燃料電池セル20の側面での各要素の明示は省略されている。   As shown in FIG. 2, each of the plurality of fuel cells 20 includes a solid polymer film 21, a fuel electrode 22 provided on one surface of the solid polymer film 21, and having both conductivity and air permeability, a solid polymer Provided on the other surface of the membrane 21 is an oxidizer electrode 23 having both conductivity and air permeability, and a fuel gas passage 24 for supplying gas to the fuel electrode 22 or discharging gas from the fuel electrode 22. A fuel gas separator 25 and an oxidant gas separator 27 having an oxidant gas flow path 26 are provided. In addition, on the side surface of each fuel cell 20, the side surfaces of the respective elements indicated by the reference numerals 21, 22, 23, 25, and 27 are usually exposed. However, in FIG. 1 and subsequent drawings, the drawing is simplified. Therefore, the description of each element on the side surface of the fuel cell 20 is omitted.

複数の第一ヒートパイプ4aのそれぞれは、図5に示すように燃料電池セル20の各間に挟着された導電性挟着部41、および隣接する燃料電池セル20間から、換言すると積層体2の側面28から外部に突出した突出部42から構成されており、さらに突出部42は、導電性挟着部41と同じ方向に延在する突出根部421および積層体2の側面28と略平行に延在する折曲部422から構成されている。なお図5での点線DLは、積層体2の側面28のレベルであって、しかして導電性挟着部41と突出部42との区分けラインとなる。   As shown in FIG. 5, each of the plurality of first heat pipes 4a includes a conductive sandwiched portion 41 sandwiched between the fuel cells 20 and between adjacent fuel cells 20, in other words, a laminate. The projecting portion 42 projects outward from the two side surfaces 28, and the projecting portion 42 is substantially parallel to the projecting root portion 421 extending in the same direction as the conductive sandwiching portion 41 and the side surface 28 of the laminate 2. It is comprised from the bending part 422 extended to. The dotted line DL in FIG. 5 is the level of the side surface 28 of the stacked body 2, and thus becomes a dividing line between the conductive sandwiched portion 41 and the protruding portion 42.

突出根部421の寸法、即ち側面28と折曲部422の内面(側面28と対向する面)との間の距離は、燃料電池1を可及的小型化する立場から、側面28と折曲部422との間での電気的短絡の問題を安全に回避し得る限り、可及的短いことが好ましく、例えば1〜5mm程度が適当である。一方、折曲部422の折曲長さBLは、それが大きい程放熱性能が向上するものの、それが過大であると隣接する第一ヒートパイプ4aの突出根部421と接触して電気的に短絡する問題があるので、かかる短絡問題を安全に回避し得るように折曲部422の折曲先端と隣接する第一ヒートパイプ4の突出根部421との間に少なくとも0.3mm程度、特に少なくとも0.5mm程度のギャップが生じるようにすることが好ましい。   The dimension of the protruding root 421, that is, the distance between the side surface 28 and the inner surface of the bent portion 422 (the surface facing the side surface 28) is determined from the standpoint of miniaturizing the fuel cell 1 as much as possible. As long as the problem of electrical short circuit with 422 can be safely avoided, it is preferably as short as possible, for example, about 1 to 5 mm is appropriate. On the other hand, the larger the bending length BL of the bent portion 422, the better the heat dissipation performance. However, if the bent length BL is excessive, the bent length 422 contacts the protruding root portion 421 of the adjacent first heat pipe 4a and is electrically short-circuited. In order to safely avoid such a short circuit problem, there is at least about 0.3 mm, particularly at least 0, between the bent tip of the bent portion 422 and the protruding root portion 421 of the adjacent first heat pipe 4. It is preferable to create a gap of about 5 mm.

各第一ヒートパイプ4aは、厚さ0.1mm程度の薄い導電性板材で構成され、その空間内部には水、アンモニア、アセトンなどの動作液が真空下で封閉されており、低温端たる折曲部422で凝縮液化した動作液を高温端たる導電性挟着部41に戻すために、導電性挟着部41の内面には溝式あるいは突起式などの方法によって毛管作用が生じるようになっている。各第一ヒートパイプ4aの導電性挟着部41は、一方の側の燃料電池セル20の燃料ガス用セパレータ25との接触抵抗と、他方の側の燃料電池セル20の酸化剤ガス用セパレータ27との接触抵抗を低減するために端子電極31と端子電極32との間の加圧力により両側の燃料電池セル20と圧接される。導電性挟着部41は、その内部に導電性挟着部41を構成する対向板材間を電気的に橋絡する複数のブロック導体411を内蔵しており、ブロック導体411は、上記の電気的橋絡作用に加えて、上記した両側の燃料電池セル20との圧接力にても導電性挟着部41が圧潰しないように保護する圧潰防止作用、さらには燃料電池セル20からの放熱を導電性挟着部41内で効率的に伝達する作用もなす。   Each first heat pipe 4a is composed of a thin conductive plate material having a thickness of about 0.1 mm. Inside the space, a working liquid such as water, ammonia, acetone or the like is sealed under vacuum. In order to return the working fluid condensed and liquefied at the curved portion 422 to the conductive sandwiching portion 41 at the high temperature end, a capillary action is generated on the inner surface of the conductive sandwiching portion 41 by a groove type or a protrusion type method. ing. The conductive sandwiching portion 41 of each first heat pipe 4a has contact resistance with the fuel gas separator 25 of the fuel cell 20 on one side and the oxidant gas separator 27 of the fuel cell 20 on the other side. In order to reduce the contact resistance between the fuel cell 20 and the fuel cell 20 on both sides, the pressure is applied between the terminal electrode 31 and the terminal electrode 32. The conductive sandwiching portion 41 includes therein a plurality of block conductors 411 that electrically bridge the opposing plate members constituting the conductive sandwiching portion 41, and the block conductor 411 includes the electrical conductors described above. In addition to the bridging action, the crushing prevention action that protects the conductive sandwiching portion 41 from being crushed even by the pressure contact force between the fuel cells 20 on both sides described above, and further, the heat radiation from the fuel battery cells 20 is conducted. It also acts to efficiently transmit within the sex pinching portion 41.

複数の第一ヒートパイプ4aの各折曲部422によって積層体2の側面28上に一つの平面が形成され、その平面上に電気絶縁シート5を介して第二ヒートパイプ6が設置されている。第二ヒートパイプ6は、平板状であり、第一ヒートパイプ4aの折曲部422同士間での第二ヒートパイプ6による電気的短絡を防止するために、電気絶縁シート5を介して折曲部422群上に設置されている。   One plane is formed on the side surface 28 of the laminate 2 by the bent portions 422 of the plurality of first heat pipes 4a, and the second heat pipe 6 is installed on the plane via the electrical insulating sheet 5. . The 2nd heat pipe 6 is flat form, and in order to prevent the electrical short by the 2nd heat pipe 6 between the bending parts 422 of the 1st heat pipe 4a, it bends via the electric insulation sheet 5. It is installed on the part 422 group.

次に、実施の形態1の燃料電池1の動作に就いて説明する。以上のように構成された第一ヒートパイプ4aでは、高温端たる導電性挟着部41において燃料電池セル20からの放熱によって内部の動作液が沸騰蒸発して低温端たる折曲部422に向って移動する。そして、低温端で冷却されて液状に戻り毛管作用によって再び高温端にもどることによって上記放熱が積層体2の外部に設置された第二ヒートパイプ6に伝達され、第二ヒートパイプ6から燃料電池1の外部に放熱される。   Next, the operation of the fuel cell 1 of Embodiment 1 will be described. In the first heat pipe 4a configured as described above, the internal working fluid is boiled and evaporated by the heat radiation from the fuel cell 20 in the conductive sandwiching portion 41 that is the high temperature end, toward the bent portion 422 that is the low temperature end. Move. Then, it is cooled at the low temperature end, returned to the liquid state, and returned to the high temperature end by capillary action, whereby the heat radiation is transmitted to the second heat pipe 6 installed outside the laminate 2, and the fuel cell is transmitted from the second heat pipe 6. 1 is dissipated to the outside.

この結果、固体高分子膜21、燃料電極22、酸化剤電極23、燃料ガス用セパレータ25、および酸化剤ガス用セパレータ27を含む燃料電池セル20から発生する熱は、第一ヒートパイプ4aの導電性挟着部41から突出部42、特に折曲部422に向かって速やかに伝達されるので、従来のように冷却媒体を還流させるための冷却媒体流路を設ける必要が無く、また、第一ヒートパイプ4aを採用したことによって、燃料電池セル20群との密着性が向上して効率的に放熱を伝達することが出来る。   As a result, the heat generated from the fuel cell 20 including the solid polymer film 21, the fuel electrode 22, the oxidant electrode 23, the fuel gas separator 25, and the oxidant gas separator 27 is transferred to the first heat pipe 4a. Since it is quickly transmitted from the sex pinching portion 41 toward the projecting portion 42, particularly the bent portion 422, there is no need to provide a cooling medium flow path for circulating the cooling medium as in the prior art. By adopting the heat pipe 4a, the adhesion with the fuel cell group 20 is improved, and heat radiation can be transmitted efficiently.

実施の形態2.
図6〜図7は、本発明の燃料電池における実施の形態2を説明するものであって、図6は実施の形態2の斜視図、図7は実施の形態2において用いられた第一ヒートパイプ4bの斜視図である。第一ヒートパイプ4bは、実施の形態1で用いられた第一ヒートパイプ4aとは、図7に示すように突出部42の幅が導電性挟着部41の幅(図5の点線DLで示す幅)の1/2より少し小さい点で異なり、その他の構造は同じである。また実施の形態2の燃料電池では、第一ヒートパイプ4bがその折曲部422の延在方向が交互に逆方向となるように、換言すると、いま図7に示された第一ヒートパイプ4bの一面をS面、その裏面をR面すると、端子電極31から端子電極32に向かう方向にS面とR面とが交互となるように第一ヒートパイプ4bが設置されていて、図6の向かって左半分はS面が端子電極32の方に向いた第一ヒートパイプ4bの折曲部422により、一方図6の向かって右半分はR面が端子電極32の方に向いた第一ヒートパイプ4bの折曲部422によりそれぞれ平面が形成され、それら両平面上に電気絶縁シート5と第二ヒートパイプ6とが設置されている。その結果、積層体2の側面28の略全面上が第二ヒートパイプ6の設置面積として利用可能となって、放熱性能が向上する。
Embodiment 2. FIG.
6 to 7 illustrate the second embodiment of the fuel cell of the present invention. FIG. 6 is a perspective view of the second embodiment, and FIG. 7 is the first heat used in the second embodiment. It is a perspective view of the pipe 4b. The first heat pipe 4b is different from the first heat pipe 4a used in the first embodiment in that the width of the protruding portion 42 is the width of the conductive sandwiched portion 41 (as indicated by the dotted line DL in FIG. 5). The other structure is the same except that it is slightly smaller than 1/2 of the width shown. Moreover, in the fuel cell of Embodiment 2, the first heat pipe 4b has the bent portions 422 extending in the opposite directions, in other words, the first heat pipe 4b shown in FIG. The first heat pipe 4b is installed so that the S surface and the R surface alternate in the direction from the terminal electrode 31 to the terminal electrode 32 when the one surface is the S surface and the back surface is the R surface. The left half is a bent portion 422 of the first heat pipe 4b with the S surface facing the terminal electrode 32, while the right half of FIG. 6 is the first with the R surface facing the terminal electrode 32. Flat surfaces are formed by the bent portions 422 of the heat pipe 4b, and the electrical insulating sheet 5 and the second heat pipe 6 are installed on both the flat surfaces. As a result, substantially the entire top surface of the side surface 28 of the laminate 2 can be used as the installation area of the second heat pipe 6 and the heat dissipation performance is improved.

第一ヒートパイプ4bは、突出部42の幅が第一ヒートパイプ4aのそれより小さい点において放熱機能がやや低下するが、第一ヒートパイプ4aよりも工業的に製造し易い利点がある。その理由は、第一ヒートパイプ4aは、前記したように厚さ0.1mm程度の薄い導電性板材間に動作液が封閉される空間を設けて、しかして通常1mm程度の厚みを有する平板状筐体を先ず製造し、その一端の数mm部分を例えば90度に折り曲げて折曲部422を形成して製造されるが、その折曲部422の長さBL(図5参照)は、燃料電池セル20の厚み(通常、3〜8mm程度)より僅かに小さい寸法であるので、それを広幅の上記平板の全幅に亘って一様に折り曲げて形成ことは一般的に容易ではないが、折り曲げ幅を小さくすると、例えば1/2とすると折り曲げ作業が容易となり、第一ヒートパイプ4bの生産効率が向上する利点がある。   The first heat pipe 4b has the advantage that it is easier to manufacture industrially than the first heat pipe 4a, although the heat dissipation function is slightly reduced in that the width of the protrusion 42 is smaller than that of the first heat pipe 4a. The reason is that the first heat pipe 4a is provided with a space in which the working liquid is sealed between the thin conductive plates having a thickness of about 0.1 mm as described above, and is usually a flat plate having a thickness of about 1 mm. The casing is first manufactured, and a portion of several mm at one end thereof is bent at, for example, 90 degrees to form a bent portion 422. The length BL of the bent portion 422 (see FIG. 5) Since the size is slightly smaller than the thickness of the battery cell 20 (usually about 3 to 8 mm), it is generally not easy to bend the battery cell 20 uniformly over the entire width of the flat plate. If the width is reduced, for example, if it is 1/2, the bending work is facilitated, and the production efficiency of the first heat pipe 4b is improved.

実施の形態2の変形の実施の形態として、第一ヒートパイプ4bの全部S面を端子電極32の方に向ける、あるいは端子電極31の方に向けるようにしてもよい。但しそれらの場合には、図6の向かって右半分または左半分のみに折曲部422の平面が形成されることになる。   As an embodiment of the modification of the second embodiment, the entire S surface of the first heat pipe 4b may be directed toward the terminal electrode 32 or directed toward the terminal electrode 31. However, in those cases, the plane of the bent portion 422 is formed only in the right half or the left half as viewed in FIG.

実施の形態3.
図8〜図9は、本発明の燃料電池における実施の形態3を説明するものであって、図8は実施の形態3の平面図であり、図9は実施の形態3の側面図である。但し図8では、電気絶縁シート5と第二ヒートパイプ6とを除去した状態を示す。実施の形態3では、実施の形態2において用いられた前記第一ヒートパイプ4bに代えて第一ヒートパイプ4cが用いられている。第一ヒートパイプ4cは、前記第一ヒートパイプ4bと同様に、突出部42の幅が導電性挟着部41の幅の1/2未満である(図7参照)が、その折曲部422の長さBLは、燃料電池セル20の2個分の厚みに近い長さを有する。第一ヒートパイプ4cは、端子電極31から端子電極32に向かう方向に、前記実施の形態2の場合のように、S面とR面とが交互となるように設置されており、このために図8の向かって上側は、S面が端子電極32の方に向いた第一ヒートパイプ4bの折曲部422により、一方図8の向かって下側は、R面が端子電極32の方に向いた第一ヒートパイプ4bの折曲部422によりそれぞれ平面が形成され、それら両平面上に電気絶縁シート5と第二ヒートパイプ6とが設置されている。
Embodiment 3 FIG.
8 to 9 illustrate the third embodiment of the fuel cell of the present invention. FIG. 8 is a plan view of the third embodiment, and FIG. 9 is a side view of the third embodiment. . However, FIG. 8 shows a state where the electrical insulating sheet 5 and the second heat pipe 6 are removed. In the third embodiment, the first heat pipe 4c is used instead of the first heat pipe 4b used in the second embodiment. Like the first heat pipe 4b, the first heat pipe 4c has a width of the protruding portion 42 that is less than ½ of the width of the conductive sandwiching portion 41 (see FIG. 7), but the bent portion 422 thereof. This length BL has a length close to the thickness of two fuel cells 20. The first heat pipe 4c is installed in the direction from the terminal electrode 31 to the terminal electrode 32 so that the S surface and the R surface are alternated as in the case of the second embodiment. The upper side in FIG. 8 is due to the bent portion 422 of the first heat pipe 4b with the S surface facing the terminal electrode 32, while the lower surface in FIG. Flat surfaces are formed by the bent portions 422 of the first heat pipe 4b facing each other, and the electric insulating sheet 5 and the second heat pipe 6 are installed on both the flat surfaces.

第一ヒートパイプ4cは、突出部42の幅が導電性挟着部41の幅の1/2未満であり、しかも各折曲部422の折り曲げ長さBLが長いので、前記した理由から各折曲部422の形成が一層容易であって、そのために第一ヒートパイプ4cの生産効率が一層向上する利点がある。   In the first heat pipe 4c, the width of the protruding portion 42 is less than ½ of the width of the conductive sandwiching portion 41, and the bent length BL of each bent portion 422 is long. The formation of the curved portion 422 is easier, which has the advantage that the production efficiency of the first heat pipe 4c is further improved.

実施の形態4.
図10〜図11は、本発明の燃料電池における実施の形態4を説明するものであって、図10は実施の形態4の平面図、図11は実施の形態4の側面図である。但し図10では、電気絶縁シート5と第二ヒートパイプ6とを除去した状態を示す。実施の形態4では、実施の形態3において用いられた前記第一ヒートパイプ4cに代えて、第一ヒートパイプ4dが用いられている。第一ヒートパイプ4dは、前記第一ヒートパイプ4cと同様に、突出部42の幅が導電性挟着部41の幅の1/2未満であるが、その折曲部422は、燃料電池セル20の4個分の厚みに近い長さBLを有し、しかも第一ヒートパイプ4dは、図11から明らかなように積層体2の同図上の上下の両側面上で各折曲部422にてA面およびB面が形成されるように、後記する状態で燃料電池セル20間に挟着されている。
Embodiment 4 FIG.
10 to 11 illustrate the fourth embodiment of the fuel cell of the present invention. FIG. 10 is a plan view of the fourth embodiment, and FIG. 11 is a side view of the fourth embodiment. However, FIG. 10 shows a state where the electrical insulating sheet 5 and the second heat pipe 6 are removed. In the fourth embodiment, a first heat pipe 4d is used instead of the first heat pipe 4c used in the third embodiment. Like the first heat pipe 4c, the first heat pipe 4d has a width of the projecting portion 42 that is less than ½ of the width of the conductive sandwiching portion 41, but the bent portion 422 is a fuel cell. The first heat pipe 4d has a length BL close to the thickness of 20 pieces, and the first heat pipe 4d has each bent portion 422 on both upper and lower side surfaces of the laminate 2 in FIG. Is sandwiched between the fuel cells 20 in the state described later so that the A and B surfaces are formed.

即ち、いま第一ヒートパイプ4dが端子電極31から端子電極32に向かう面がS面である場合をS、端子電極31から端子電極32に向かう面がR面である場合をRと表示し、さらに折曲部422がA面側となるように設置する場合をA、B面側となるように設置する場合をBと表示すると、第一ヒートパイプ4dは図12の端子電極31から端子電極32に向かって、同図の左端から同パイプ4dの1番目がSB状態、2番目がSA状態、3番目がRB状態,4番目がRA状態となるように設置され、以下1番目〜4番目が繰り返えされる。   That is, the case where the surface of the first heat pipe 4d from the terminal electrode 31 to the terminal electrode 32 is the S surface is indicated as S, and the case where the surface from the terminal electrode 31 to the terminal electrode 32 is the R surface is indicated as R. Further, when the case where the bent portion 422 is installed on the A surface side is indicated as A, and the case where the bent portion 422 is provided on the B surface side is indicated as B, the first heat pipe 4d is connected to the terminal electrode 31 from FIG. 32, from the left end of the figure, the pipe 4d is installed so that the first is in the SB state, the second is in the SA state, the third is in the RB state, and the fourth is in the RA state. Is repeated.

実施の形態5.
図12は、本発明の燃料電池放熱利用システムにおける実施の形態5の概略斜視図である。図12において、燃料電池放熱利用システムは、第一ヒートパイプ4および第二ヒートパイプ6を含む燃料電池1と熱交換器7を備えている。第二ヒートパイプ6は、その高温端61が電気絶縁シート5を介して第一ヒートパイプ4と熱的に接触しており、その低温端62が熱交換器7に接触接続されている。第一ヒートパイプ4から放出された燃料電池1からの放熱は、第二ヒートパイプ6によって熱交換器7に運ばれ、ここで温水などに熱交換される。この結果、従来技術において用いられた冷却媒体循環ポンプや循環パイプなどが不要となって、簡単な構造で効率的に燃料電池1からの放熱を熱交換器7に送り、これを有効に再利用できるようになる。
Embodiment 5 FIG.
FIG. 12 is a schematic perspective view of Embodiment 5 in the fuel cell heat radiation utilization system of the present invention. In FIG. 12, the fuel cell heat radiation utilization system includes a fuel cell 1 including a first heat pipe 4 and a second heat pipe 6, and a heat exchanger 7. The high temperature end 61 of the second heat pipe 6 is in thermal contact with the first heat pipe 4 via the electrical insulating sheet 5, and the low temperature end 62 is in contact with the heat exchanger 7. The heat released from the fuel cell 1 released from the first heat pipe 4 is conveyed to the heat exchanger 7 by the second heat pipe 6 and is heat-exchanged to warm water or the like here. As a result, the cooling medium circulation pump and the circulation pipe used in the prior art become unnecessary, and the heat radiation from the fuel cell 1 is efficiently sent to the heat exchanger 7 with a simple structure, and this is effectively reused. become able to.

本発明は、以上説明した実施の形態1〜5に限定されるものではなく、本発明の課題とその解決手段の精神に沿った種々の変形形態を包含する。例えば前記実施の形態1〜4では、折曲部422で形成される平面を燃料電池セル20の積層方向に向って直線上に夫々1列配設または2列配設としたが、4列、6列、あるいはそれ以上の多列としても良い。また第一ヒートパイプ4a〜4dに代えて平板のヒィンであってもよい。   The present invention is not limited to the first to fifth embodiments described above, and includes various modifications in accordance with the problems of the present invention and the spirit of the solution. For example, in the first to fourth embodiments, the plane formed by the bent portion 422 is arranged in one row or two rows on a straight line in the stacking direction of the fuel cells 20, respectively. It is good also as a multi-row of 6 rows or more. Moreover, it may replace with the 1st heat pipes 4a-4d and a flat fin may be sufficient.

本発明の燃料電池並びに燃料電池放熱利用システムは、従来技術と比較して構造が簡単であって、コンパクト化が可能であるので、大量生産に好適であり、且つ狭隘な個所への設置に適している。   The fuel cell and the fuel cell heat radiation utilization system of the present invention have a simple structure and can be made compact as compared with the prior art, and are therefore suitable for mass production and suitable for installation in a narrow space. ing.

本発明の燃料電池における実施の形態1の斜視図。1 is a perspective view of Embodiment 1 in a fuel cell of the present invention. 図1のII-II線に沿った断面図。Sectional drawing along the II-II line of FIG. 図2の一部拡大図。FIG. 3 is a partially enlarged view of FIG. 2. 図1のIV-IV線に沿った断面図。Sectional drawing along the IV-IV line of FIG. 実施の形態1において用いられた第一ヒートパイプ4aの斜視図。FIG. 3 is a perspective view of a first heat pipe 4a used in the first embodiment. 本発明の燃料電池における実施の形態2の斜視図。The perspective view of Embodiment 2 in the fuel cell of this invention. 実施の形態2において用いられた第一ヒートパイプ4bの斜視図。The perspective view of the 1st heat pipe 4b used in Embodiment 2. FIG. 本発明の燃料電池における実施の形態3の平面図(但し電気絶縁シート5と第二ヒートパイプ6とを除去した状態)。The top view of Embodiment 3 in the fuel cell of this invention (however, the state which removed the electrical insulation sheet 5 and the 2nd heat pipe 6). 実施の形態3の側面図。FIG. 9 is a side view of the third embodiment. 本発明の燃料電池における実施の形態4の平面図(但し電気絶縁シート5と第二ヒートパイプ6とを除去した状態)。The top view of Embodiment 4 in the fuel cell of this invention (however, the state which removed the electrical insulation sheet 5 and the 2nd heat pipe 6). 実施の形態4の側面図。FIG. 6 is a side view of a fourth embodiment. 本発明の燃料電池放熱利用システムにおける実施の形態5の概略斜視図。The schematic perspective view of Embodiment 5 in the fuel cell heat radiation utilization system of this invention.

符号の説明Explanation of symbols

1 燃料電池、2 積層体、20 燃料電池セル、21 固体高分子膜、
22 燃料電極、23 酸化剤電極、24 燃料ガス流路、
25 燃料ガス用セパレータ、26 酸化剤ガス流路、27 酸化剤ガス用セパレータ、28 積層体2の側面、31 端子電極、32 端子電極、
4a〜4d 第一ヒートパイプ、41 導電性挟着部、411 ブロック導体、
42 突出部、421 突出根部、422 折曲部、5 電気絶縁シート、
6 第二ヒートパイプ、61 高温端、 低温端62、7 熱交換器。
DESCRIPTION OF SYMBOLS 1 Fuel cell, 2 laminated body, 20 fuel battery cell, 21 solid polymer membrane,
22 fuel electrode, 23 oxidant electrode, 24 fuel gas flow path,
25 Separator for fuel gas, 26 Oxidant gas flow path, 27 Separator for oxidant gas, 28 Side surface of laminate 2, 31 terminal electrode, 32 terminal electrode,
4a-4d 1st heat pipe, 41 electroconductive clamping part, 411 block conductor,
42 Protruding part, 421 Protruding root part, 422 Bending part, 5 Electrical insulation sheet,
6 Second heat pipe, 61 High temperature end, Low temperature end 62, 7 Heat exchanger.

Claims (8)

複数の燃料電池セルの積層体、および上記燃料電池セルの間に挟着された平板状の導電性挟着部と上記燃料電池セル間から外部に突出した突出部を有すると共に上記燃料電池セル内で発生する熱を外部に放出するための第一放熱装置を備えたことを特徴とする燃料電池。   A stack of a plurality of fuel cells, a flat conductive sandwiched portion sandwiched between the fuel cells, and a projecting portion projecting outside from between the fuel cells and the inside of the fuel cell A fuel cell comprising a first heat radiating device for releasing the heat generated in the above to the outside. 上記燃料電池セルは、固体高分子膜と、上記固体高分子膜の一方の面に配置された燃料電極と、上記固体高分子膜の他方の面に配置された酸化剤電極と、上記燃料電極に当接されて燃料ガスを供給するための燃料ガス用導電性セパレータと、上記酸化剤電極に当接されて酸化剤ガスを供給するための酸化剤ガス用導電性セパレータを有することを特徴とする請求項1記載の燃料電池。   The fuel cell includes: a solid polymer membrane; a fuel electrode disposed on one surface of the solid polymer membrane; an oxidant electrode disposed on the other surface of the solid polymer membrane; and the fuel electrode. A fuel gas conductive separator for supplying a fuel gas in contact with the oxidant gas; and an oxidant gas conductive separator for contacting the oxidant electrode and supplying an oxidant gas. The fuel cell according to claim 1. 上記突出部は平板状であって、且つ上記突出部の端部は上記積層体の側面と略平行するように折り曲げられていることを特徴とする請求項1または請求項2記載の燃料電池。   3. The fuel cell according to claim 1, wherein the protruding portion has a flat plate shape, and an end portion of the protruding portion is bent so as to be substantially parallel to a side surface of the laminated body. 隣接する上記第一放熱装置の上記突出部の端部同士は、接触することないように互いに反対方向に折り曲げられているか、または上記燃料電池セル間から互いに異なる方向に外部に突出していることを特徴とする請求項3記載の燃料電池。   The ends of the protruding portions of the adjacent first heat radiating devices are bent in opposite directions so as not to contact each other, or protruded to the outside in different directions from between the fuel cells. 4. The fuel cell according to claim 3, wherein 上記突出部の上記折り曲げられた折曲部の外面上に電気絶縁シートを介して第二放熱装置を備えたことを特徴とする請求項3または請求項4記載の燃料電池。   5. The fuel cell according to claim 3, further comprising a second heat dissipating device on an outer surface of the bent portion of the protruding portion via an electric insulating sheet. 上記第一放熱装置は、ヒートパイプであることを特徴とする請求項1〜請求項5のいずれか一項記載の燃料電池。   The fuel cell according to any one of claims 1 to 5, wherein the first heat dissipation device is a heat pipe. 上記ヒートパイプの導電性挟着部は、その内部に上記導電性挟着部を構成する対向板材間を電気的に橋絡するブロック導体を有することを特徴とする請求項6記載の燃料電池。   The fuel cell according to claim 6, wherein the conductive sandwiching portion of the heat pipe has a block conductor that electrically bridges between opposing plate members constituting the conductive sandwiching portion. 請求項5〜請求項7のいずれか一項記載の燃料電池を備え、上記第二放熱装置に集められた上記燃料電池からの放熱を熱交換する熱交換器を備えたことを特徴とする燃料電池放熱利用システム。   A fuel comprising the fuel cell according to any one of claims 5 to 7, further comprising a heat exchanger for exchanging heat from the fuel cell collected in the second heat radiating device. Battery heat dissipation system.
JP2003309037A 2003-09-01 2003-09-01 Fuel battery and fuel battery radiation heat utilization system Pending JP2005078970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003309037A JP2005078970A (en) 2003-09-01 2003-09-01 Fuel battery and fuel battery radiation heat utilization system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003309037A JP2005078970A (en) 2003-09-01 2003-09-01 Fuel battery and fuel battery radiation heat utilization system

Publications (1)

Publication Number Publication Date
JP2005078970A true JP2005078970A (en) 2005-03-24

Family

ID=34411319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003309037A Pending JP2005078970A (en) 2003-09-01 2003-09-01 Fuel battery and fuel battery radiation heat utilization system

Country Status (1)

Country Link
JP (1) JP2005078970A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100804702B1 (en) * 2006-11-15 2008-02-18 삼성에스디아이 주식회사 Fuel cell stack
EP2626941A1 (en) * 2012-02-09 2013-08-14 The Boeing Company Fuel cell generation system
JP2013191545A (en) * 2012-01-24 2013-09-26 Boeing Co:The Utilizing phase change material, heat pipes, and fuel cells for aircraft applications
JP2016035857A (en) * 2014-08-04 2016-03-17 株式会社フジクラ Fuel cell cooling system
JP2016035856A (en) * 2014-08-04 2016-03-17 株式会社フジクラ Fuel cell cooling system
JPWO2015041149A1 (en) * 2013-09-20 2017-03-02 株式会社東芝 Battery heat dissipation system, battery heat dissipation unit
JP2017212131A (en) * 2016-05-26 2017-11-30 本田技研工業株式会社 Fuel cell system
JP2017216051A (en) * 2016-05-30 2017-12-07 本田技研工業株式会社 Fuel cell system
US10116019B2 (en) 2014-05-21 2018-10-30 Audi Ag Energy storage assembly, temperature control device, and motor vehicle
CN117080482A (en) * 2023-10-11 2023-11-17 北京永氢储能科技有限责任公司 Fuel cell system utilizing heat pipe to dissipate heat and heat dissipation method

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8703357B2 (en) 2006-11-15 2014-04-22 Samsung Sdi Co., Ltd. Fuel cell stack
KR100804702B1 (en) * 2006-11-15 2008-02-18 삼성에스디아이 주식회사 Fuel cell stack
JP2013191545A (en) * 2012-01-24 2013-09-26 Boeing Co:The Utilizing phase change material, heat pipes, and fuel cells for aircraft applications
US9548504B2 (en) 2012-01-24 2017-01-17 University Of Connecticut Utilizing phase change material, heat pipes, and fuel cells for aircraft applications
US10218010B2 (en) 2012-01-24 2019-02-26 The Boeing Company Utilizing phase change material, heat pipes, and fuel cells for aircraft applications
EP2626941A1 (en) * 2012-02-09 2013-08-14 The Boeing Company Fuel cell generation system
JP2013168358A (en) * 2012-02-09 2013-08-29 Boeing Co:The Fuel cell electrothermal cogeneration system
US10224585B2 (en) 2013-09-20 2019-03-05 Kabushiki Kaisha Toshiba Battery heat radiation system, battery heat radiation unit
JPWO2015041149A1 (en) * 2013-09-20 2017-03-02 株式会社東芝 Battery heat dissipation system, battery heat dissipation unit
US10116019B2 (en) 2014-05-21 2018-10-30 Audi Ag Energy storage assembly, temperature control device, and motor vehicle
JP2016035856A (en) * 2014-08-04 2016-03-17 株式会社フジクラ Fuel cell cooling system
JP2016035857A (en) * 2014-08-04 2016-03-17 株式会社フジクラ Fuel cell cooling system
JP2017212131A (en) * 2016-05-26 2017-11-30 本田技研工業株式会社 Fuel cell system
JP2017216051A (en) * 2016-05-30 2017-12-07 本田技研工業株式会社 Fuel cell system
CN117080482A (en) * 2023-10-11 2023-11-17 北京永氢储能科技有限责任公司 Fuel cell system utilizing heat pipe to dissipate heat and heat dissipation method

Similar Documents

Publication Publication Date Title
US8231996B2 (en) Method of cooling a battery pack using flat heat pipes
JP5916500B2 (en) Assembled battery
KR101233318B1 (en) Battery module
JP6148404B2 (en) Strips of electrochemical cells for manufacturing battery modules for electric or hybrid vehicles, and manufacture of such modules
JP4351431B2 (en) Fuel cell stack
JP2008510288A (en) SOFC stack concept
JP2006278330A (en) Secondary battery module
JP6373103B2 (en) Power storage device
JP7218691B2 (en) battery module
JP2005078970A (en) Fuel battery and fuel battery radiation heat utilization system
JP2008047506A (en) Fuel cell stack
JP2015041558A (en) Cooling and heating structure of battery pack
US20230231221A1 (en) Tab Cooling for Batteries
JP3056829B2 (en) Solid oxide fuel cell
JP5191303B2 (en) Fuel cell
CN210926233U (en) Battery module and battery pack
JP5906921B2 (en) Battery module and vehicle
JP2009123446A (en) Solid polymer fuel cell
JP4085669B2 (en) Fuel cell
JP2010061986A (en) Fuel battery stack
JPH1092456A (en) Fuel cell device to be mounted on equipment
JP2005276670A (en) Fuel cell stack
JP7104008B2 (en) Fuel cell stack
JP2020035565A (en) Battery pack
JP2003217628A (en) Fuel cell unit