JP2005078922A - Indirectly heated electrode for gas discharge tube - Google Patents

Indirectly heated electrode for gas discharge tube Download PDF

Info

Publication number
JP2005078922A
JP2005078922A JP2003307511A JP2003307511A JP2005078922A JP 2005078922 A JP2005078922 A JP 2005078922A JP 2003307511 A JP2003307511 A JP 2003307511A JP 2003307511 A JP2003307511 A JP 2003307511A JP 2005078922 A JP2005078922 A JP 2005078922A
Authority
JP
Japan
Prior art keywords
gas discharge
coil
plate
indirectly heated
discharge tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003307511A
Other languages
Japanese (ja)
Inventor
Koji Kawai
浩司 河合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2003307511A priority Critical patent/JP2005078922A/en
Publication of JP2005078922A publication Critical patent/JP2005078922A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Discharge Lamp (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an indirectly heated electrode for a gas discharge tube, which is excellent in productivity, and surely supports a coil member. <P>SOLUTION: This indirectly heated electrode C1 for the gas discharge tube has a heater 1, a double coil 3, a linear member 5, a metal oxide 7, and a plate-shaped member 9. An electric insulating layer 2 is formed on the surface of the heating heater 1. The heater 1 is disposed in the inside of the double coil 3 by being inserted in it. The linear member 5 is disposed throughout the longitudinal direction of the double coil 3. The metal oxide 7 is held by the double coil 3, and is provided so as to be brought into contact with the linear member 5. One end of the heater 1, one end of the double coil 3, and both ends of the linear member 5 are bonded to the plate-shaped member 9 by welding. Thereby, the plate-shaped member 9, the heater 1, the double coil 3, and the linear member 5 are conducted. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ガス放電管用傍熱型電極に関する。   The present invention relates to an indirectly heated electrode for a gas discharge tube.

この種のガス放電管用傍熱型電極として、コイル状に巻き回されたコイル部材と、コイル部材の内側に配設された加熱用ヒータと、コイル部材の外側に当該コイル部材の長手方向にわたって配設された線状の高融点金属と、コイル部材に保持された易電子放射物質としての金属酸化物とを有したものが知られている(例えば、特許文献1参照。)。
国際公開WO02/49070号パンフレット
As this type of indirectly heated electrode for a gas discharge tube, a coil member wound in a coil shape, a heater disposed inside the coil member, and an outer side of the coil member are arranged in the longitudinal direction of the coil member. One having a linear refractory metal provided and a metal oxide as an easy-electron emitting material held by a coil member is known (for example, see Patent Document 1).
International Publication WO02 / 49070 Pamphlet

しかしながら、上記特許文献1に開示されたガス放電管用傍熱型電極では、線状の高融点金属の端部が丸棒状のリードロッドに溶接され、コイル部材は線状の高融点金属を介してリードロッドに支持される構成となっており、上記特許文献1に開示された構造は、線状の高融点金属とリードロッドとの固定を確実且つ容易に行うことが可能な構造とは言い難く、また、コイル部材の支持が不安定な構成となっている。   However, in the indirectly heated electrode for a gas discharge tube disclosed in Patent Document 1, the end of a linear refractory metal is welded to a round rod-shaped lead rod, and the coil member is interposed via the linear refractory metal. It is configured to be supported by a lead rod, and the structure disclosed in Patent Document 1 is difficult to say that the linear refractory metal and the lead rod can be fixed reliably and easily. Moreover, the support of the coil member is unstable.

本発明は上述の点に鑑みてなされたもので、製造性に優れ、確実にコイル部材を支持することが可能なガス放電管用傍熱型電極を提供することを課題とする。   This invention is made | formed in view of the above-mentioned point, and makes it a subject to provide the indirectly heated electrode for gas discharge tubes which is excellent in manufacturability and can support a coil member reliably.

本発明に係るガス放電管用傍熱型電極は、密封容器にガスが気密封止されたガス放電管に用いられるガス放電管用傍熱型電極であって、コイル状に巻き回されたコイル部材と、コイル部材の内側に配設され、表面に電気絶縁層が形成された加熱用ヒータと、コイル部材に保持される易電子放射物質としての金属酸化物と、コイル部材の長手方向にわたって配設され、当該コイル部材と電気的に接触する線状の電気導体と、線状の電気導体の少なくとも一端及びコイル部材の一端が接合される板状の電気導体と、を有することを特徴としている。   An indirectly heated electrode for a gas discharge tube according to the present invention is an indirectly heated electrode for a gas discharge tube used in a gas discharge tube in which a gas is hermetically sealed in a sealed container, and a coil member wound in a coil shape, A heater for heating disposed on the inside of the coil member and having an electrically insulating layer formed on the surface thereof, a metal oxide as an electron emission material held by the coil member, and a longitudinal direction of the coil member. And a linear electric conductor in electrical contact with the coil member, and a plate-like electric conductor to which at least one end of the linear electric conductor and one end of the coil member are joined.

本発明に係るガス放電管用傍熱型電極では、線状の電気導体の少なくとも一端及びコイル部材の一端が、同一の板状の電気導体に接合されることとなり、線状の電気導体及びコイル部材と板状の電気導体との固定を確実且つ容易に行うことができ、コイル部材の支持を確実に行うことができる。また、線状の電気導体及びコイル部材が板状の電気導体に接合された構成の電極中間体の取り扱い(例えば、製造工程途中における搬送等)も容易となる。   In the indirectly heated electrode for a gas discharge tube according to the present invention, at least one end of the linear electrical conductor and one end of the coil member are joined to the same plate-shaped electrical conductor, so that the linear electrical conductor and the coil member are joined. And the plate-like electric conductor can be reliably and easily fixed, and the coil member can be reliably supported. In addition, handling of the electrode intermediate body having a configuration in which the linear electric conductor and the coil member are joined to the plate-like electric conductor (for example, conveyance during the manufacturing process) is facilitated.

また、板状の電気導体には、加熱用ヒータの一端が接合されることが好ましい。このように構成した場合、線状の電気導体及び加熱用ヒータが接合された板状の電気導体に加熱用ヒータの一端も接合されることとなり、加熱用ヒータと板状の電気導体との固定も確実且つ容易に行うことができ、加熱用ヒータの支持も確実に行うことができる。   Moreover, it is preferable that one end of the heater for heating is joined to the plate-like electric conductor. When configured in this way, one end of the heating heater is also joined to the plate-like electrical conductor to which the linear electrical conductor and the heater for heating are joined, and the heating heater and the plate-like electrical conductor are fixed. In addition, the heating heater can be reliably and easily supported.

また、板状の電気導体には、密封容器の端部を構成するステムに立設されたステムピンが接合されることが好ましい。このように構成した場合、上記電極中間体を確実且つ容易にステムピンに接合することができる。   In addition, it is preferable that a stem pin standing on a stem constituting the end portion of the sealed container is joined to the plate-shaped electric conductor. When comprised in this way, the said electrode intermediate body can be joined to a stem pin reliably and easily.

また、線状の電気導体はその途中位置にて折り曲げられており、当該線状の電気導体の両端が板状の電気導体に接合されることが好ましい。このように構成した場合、線状の電気導体の板状の電気導体への接合強度を高めることができる。   Moreover, it is preferable that the linear electric conductor is bent in the middle thereof, and both ends of the linear electric conductor are joined to the plate-like electric conductor. When comprised in this way, the joint strength to the plate-shaped electric conductor of a linear electric conductor can be raised.

なお、本明細書において用いる「板状」とは、リボン状、箔状等の形状が含まれるものとする。   The “plate shape” used in this specification includes shapes such as a ribbon shape and a foil shape.

本発明によれば、製造性に優れ、確実にコイル部材を支持することが可能なガス放電管用傍熱型電極を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it is excellent in manufacturability and can provide the indirectly heated electrode for gas discharge tubes which can support a coil member reliably.

以下、図面を参照しながら本発明によるガス放電管用傍熱型電極の好適な実施形態について詳細に説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。   Hereinafter, preferred embodiments of an indirectly heated electrode for a gas discharge tube according to the present invention will be described in detail with reference to the drawings. In the description, the same reference numerals are used for the same elements or elements having the same function, and redundant description is omitted.

図1は、本実施形態に係るガス放電管用傍熱型電極の斜視図であり、図2は、同じく本実施形態に係るガス放電管用傍熱型電極の概略断面図である。また、本実施形態においては、ガス放電管用傍熱型電極を陰極(ガス放電管用傍熱型陰極)に適用した例を示す。   FIG. 1 is a perspective view of an indirectly heated electrode for a gas discharge tube according to this embodiment, and FIG. 2 is a schematic sectional view of the indirectly heated electrode for a gas discharge tube according to this embodiment. Moreover, in this embodiment, the example which applied the indirectly heated electrode for gas discharge tubes to the cathode (an indirectly heated cathode for gas discharge tubes) is shown.

ガス放電管用傍熱型電極C1は、図1及び図2に示されるように、加熱用ヒータ1と、コイル部材としての二重コイル3と、線状の電気導体としての線状部材5と、易電子放射物質(陰極物質)としての金属酸化物7と、板状(リボン状、箔状も含む)の電気導体としての板状部材9とを有している。   As shown in FIGS. 1 and 2, the indirectly heated electrode C1 for a gas discharge tube includes a heater 1, a double coil 3 as a coil member, a linear member 5 as a linear electric conductor, It has a metal oxide 7 as an easy-electron emitting material (cathode material) and a plate-like member 9 as a plate-like (including ribbon-like and foil-like) electric conductor.

加熱用ヒータ1は、直径0.1〜0.5mm、たとえば0.28mmのタングステン素線を二重に巻回したフィラメントコイルからなり、このタングステンフィラメントコイルの表面には、電着法等により電気絶縁材料(たとえば、アルミナ、ジルコニア、マグネシア、シリカ等)が被覆されて電気絶縁層2が形成されている。なお、電気絶縁層2の代わりに電気絶縁材料(たとえば、アルミナ、ジルコニア、マグネシア、シリカ等)の円筒パイプを用い、当該円筒パイプ内に加熱用ヒータ1を挿入して加熱用ヒータ1を絶縁する構成を採用してもよい。ここで、二重コイル3と易電子放射物質としての金属酸化物7とは、加熱用ヒータ1からの熱を受けて電子を放射する電子放射部を構成している。
The heater 1 is composed of a filament coil in which a tungsten wire having a diameter of 0.1 to 0.5 mm, for example, 0.28 mm, is wound twice. The surface of the tungsten filament coil is electrically charged by an electrodeposition method or the like. An electrically insulating layer 2 is formed by covering with an insulating material (for example, alumina, zirconia, magnesia, silica, etc.). A cylindrical pipe made of an electric insulating material (for example, alumina, zirconia, magnesia, silica, etc.) is used instead of the electric insulating layer 2, and the heating heater 1 is inserted into the cylindrical pipe to insulate the heating heater 1. A configuration may be adopted. Here, the double coil 3 and the metal oxide 7 as the electron-emitting material constitute an electron emission part that receives heat from the heater 1 and emits electrons.

二重コイル3は、コイル状に巻き回されたコイルより構成される多重コイルであって、直径0.0913mmのタングステン素線を外径1.1mmの1次マンドレル4にピッチ0.13mmで巻き回して一次コイル(外周径1.283mm)に形成し、さらにその一次コイルを外径5.8mmの2次マンドレルにピッチ1.5mmで、たとえば9回巻き回して二重コイルに形成したものである。二重コイル3の内側には、加熱用ヒータ1が挿入されて配設されている。   The double coil 3 is a multiple coil composed of coils wound in a coil shape, and a tungsten wire having a diameter of 0.0913 mm is wound around a primary mandrel 4 having an outer diameter of 1.1 mm at a pitch of 0.13 mm. A primary coil (outer diameter of 1.283 mm) is rotated to form a double coil by winding the primary coil around a secondary mandrel with an outer diameter of 5.8 mm at a pitch of 1.5 mm, for example, 9 times. is there. Inside the double coil 3, a heater 1 is inserted and disposed.

二重コイル3は、2次マンドレルを取り除き1次マンドレル4を残した状態で用いられ、当該1次マンドレル4を有することになる。この1次マンドレル4は、たとえばモリブデンからなる。また、二重コイル3は、巻き回された複数のコイル部分が所定の間隔(0.1mm〜0.3mm)を有している。ここで、マンドレルとは、フィラメントコイル作成時に巻径を決める型の役割を果たす芯線のことである。   The double coil 3 is used in a state in which the secondary mandrel is removed and the primary mandrel 4 is left, and the primary mandrel 4 is provided. The primary mandrel 4 is made of, for example, molybdenum. In addition, the double coil 3 has a plurality of wound coil portions having a predetermined interval (0.1 mm to 0.3 mm). Here, the mandrel is a core wire that plays the role of a mold that determines the winding diameter when creating the filament coil.

なお、コイル部材としては、二重コイル3を用いる代わりに、三重コイル、あるいは一重コイル等を用いるようにしてもよい。このように、コイル状の部材を用いることにより、易電子放射物質としての金属酸化物7を保持する保持手段としての接触面積を増やすことができる。   As the coil member, a triple coil or a single coil may be used instead of the double coil 3. Thus, by using a coil-shaped member, the contact area as a holding means for holding the metal oxide 7 as the electron-emitting material can be increased.

線状部材5は、導電性を有する剛体(金属導体)で、周期律表のIIIa〜VIIa、VIII、Ib族に属し、具体的にはタングステン、タンタル、モリブデン、レニウム、ニオブ、オスミウム、イリジウム、鉄、ニッケル、コバルト、チタン、ジルコニウム、マンガン、クロム、バナジウム、ロジウム、希土類金属等の高融点金属(融点1000℃以上)の単体金属もしくはこれらの合金からなる。本実施形態においては、タングステン製の線状部材を用いている。線状部材5の直径は、0.1mm程度に設定されている。線状部材5は、所定長さを有しており、二重コイル3の外側及び内側に二重コイル3の長手方向にわたって、放電方向に略直交するように配設されている。この線状部材5は、図2に示されるように、二重コイル3の長手方向に沿って二重コイル3の複数のコイル部分に電気的に接触して設けられている。好ましくは、二重コイル3の長手方向での全長にわたって電気的に接触して設けることがよい。この線状部材5は、二重コイル3と易電子放射物質としての金属酸化物7とを含む電子放射部の最表面側部分に設けられることになる。   The linear member 5 is a rigid body (metal conductor) having conductivity, belonging to groups IIIa to VIIa, VIII, and Ib of the periodic table, specifically tungsten, tantalum, molybdenum, rhenium, niobium, osmium, iridium, It consists of a single metal of a high melting point metal (melting point 1000 ° C. or higher) such as iron, nickel, cobalt, titanium, zirconium, manganese, chromium, vanadium, rhodium, rare earth metal, or an alloy thereof. In this embodiment, a linear member made of tungsten is used. The diameter of the linear member 5 is set to about 0.1 mm. The linear member 5 has a predetermined length, and is disposed outside and inside the double coil 3 so as to be substantially orthogonal to the discharge direction over the longitudinal direction of the double coil 3. As shown in FIG. 2, the linear member 5 is provided in electrical contact with a plurality of coil portions of the double coil 3 along the longitudinal direction of the double coil 3. Preferably, the double coil 3 is provided in electrical contact over the entire length in the longitudinal direction. This linear member 5 is provided in the outermost surface side part of the electron emission part containing the double coil 3 and the metal oxide 7 as an electron emission substance.

傍熱型電極C1は、易電子放射物質としての金属酸化物7を有している。金属酸化物7は、二重コイル3に保持され、線状部材5に接触して設けられている。金属酸化物7及び線状部材5は、金属酸化物7の表面及び線状部材5の表面が放電面となるように、傍熱型電極C1の外側に露出しており、金属酸化物7の表面部分に線状部材5が接触するようになっている。   The indirectly heated electrode C1 has a metal oxide 7 as an electron-emitting material. The metal oxide 7 is held by the double coil 3 and is provided in contact with the linear member 5. The metal oxide 7 and the linear member 5 are exposed to the outside of the indirectly heated electrode C1 so that the surface of the metal oxide 7 and the surface of the linear member 5 become a discharge surface. The linear member 5 comes into contact with the surface portion.

金属酸化物7としては、バリウム(Ba)、ストロンチウム(Sr)、カルシウム(Ca)の内のいずれか単体の酸化物、又はこれらの酸化物の混合物、あるいは、主構成要件がバリウム、ストロンチウム、カルシウムの内のいずれか単体の酸化物、又はこれらの酸化物の混合物であり副構成要件がランタン系を含む希土類金属(周期律表のIIIa)である酸化物が用いられる。バリウム、ストロンチウム、カルシウムは、仕事関数が小さく、熱電子を容易に放出することができ、熱電子供給量を増加させることができる。また、副構成要件として希土類金属(周期律表のIIIa)を添加した場合、熱電子供給量を更に増加させることができると共に、耐スパッタ性能を向上することもできる。   As the metal oxide 7, any one of oxides of barium (Ba), strontium (Sr), calcium (Ca), a mixture of these oxides, or the main constituent elements are barium, strontium, calcium Among these, an oxide which is a single oxide or a mixture of these oxides and whose secondary constituent element is a rare earth metal (IIIa in the periodic table) containing a lanthanum series is used. Barium, strontium, and calcium have a small work function, can easily release thermionic electrons, and can increase the supply amount of thermionic electrons. Further, when a rare earth metal (IIIa in the periodic table) is added as a sub-constituent requirement, it is possible to further increase the supply amount of thermoelectrons and to improve the spatter resistance.

金属酸化物7は、陰極物質材として金属炭酸塩(たとえば、炭酸バリウム、炭酸ストロンチウム、炭酸カルシウム等)の形で塗布され、塗布された金属炭酸塩を真空加熱分解することにより得られる。尚、加熱用ヒータへの通電により真空加熱分解を行う場合、直流加熱分解に比べ交流加熱分解の方が好ましい。このようにして得られた金属酸化物7が最終的に易電子放射物質となる。陰極物質材としての金属炭酸塩は、二重コイル3の内側に加熱用ヒータ1が配設され、二重コイル3の外側に線状部材5が配設されている状態において、線状部材5側から塗布される。なお、金属炭酸塩は、傍熱型電極C1(二重コイル3)の全周を覆うように塗布する必要はなく、線状部材5が設けられている部分のみに塗布するようにしてもよい。   The metal oxide 7 is obtained by applying a metal carbonate (for example, barium carbonate, strontium carbonate, calcium carbonate, etc.) as a cathode material, and subjecting the applied metal carbonate to thermal decomposition under vacuum. In addition, when performing vacuum thermal decomposition by energizing the heater for heating, AC thermal decomposition is preferable to direct current thermal decomposition. The metal oxide 7 thus obtained finally becomes an electron-emitting substance. The metal carbonate as the cathode material is composed of the linear member 5 in a state where the heater 1 is disposed inside the double coil 3 and the linear member 5 is disposed outside the double coil 3. It is applied from the side. The metal carbonate need not be applied so as to cover the entire circumference of the indirectly heated electrode C1 (double coil 3), and may be applied only to the portion where the linear member 5 is provided. .

加熱用ヒータ1は、図2に示されるように、電気絶縁層2を介して、金属酸化物7に接触している。このため、予熱時に加熱用ヒータ1の熱を確実且つ効率よく金属酸化物7に伝えることができる。また、特公昭62−56628号公報に開示されたガス放電管用傍熱型陰極のように熱良導性の円筒を有するものに比して、放熱面積が少なくなり、熱陰極動作に必要となる熱量の損失を抑制することができる。このため、外部からの電極への熱量供給、強制過熱を必要とせず、自己加熱による熱量のみで電極が動作するよう設計できる。ここで、自己加熱とは、ガス放電管において電極から電子が出る際、放電空間中のイオン化したガス分子が衝突して電気的に中和されるが、ガス分子が電極に衝突する衝撃により、熱が発生することをいう。   As shown in FIG. 2, the heater 1 is in contact with the metal oxide 7 through the electrical insulating layer 2. For this reason, the heat of the heater 1 can be reliably and efficiently transmitted to the metal oxide 7 during preheating. Further, compared with the indirectly heated cathode for gas discharge tubes disclosed in Japanese Examined Patent Publication No. 62-56628, a heat radiation area is reduced, which is necessary for hot cathode operation. The loss of heat can be suppressed. For this reason, it is possible to design the electrode to operate only by the amount of heat by self-heating, without requiring the supply of heat to the electrode from the outside and forced overheating. Here, self-heating means that when electrons are emitted from the electrode in the gas discharge tube, ionized gas molecules in the discharge space collide and are electrically neutralized, but due to the impact of the gas molecules colliding with the electrode, It means that heat is generated.

板状部材9は、導電性を有する金属(金属導体)で、鉄、ニッケル、コバルト等の鉄族金属の単体もしくはこれらの合金からなる。本実施形態においては、ニッケル製の板状部材を用いている。板状部材9の厚みは、0.2μm程度に設定されており、板状部材9の面積は、6mm(2mm×3mm)程度に設定されている。この板状部材9には、加熱用ヒータ1の一端、二重コイル3の一端、及び、線状部材5の両端が溶接等により接合されている。これにより、板状部材9と、加熱用ヒータ1、二重コイル3及び線状部材5とは、電気的に接触しており、導通状態にある。なお、線状部材5は、少なくともその一端が板状部材9に接合されていればよい。 The plate-like member 9 is a conductive metal (metal conductor) and is made of a simple substance of an iron group metal such as iron, nickel, cobalt, or an alloy thereof. In the present embodiment, a nickel plate-like member is used. The thickness of the plate member 9 is set to about 0.2 μm, and the area of the plate member 9 is set to about 6 mm 2 (2 mm × 3 mm). One end of the heater 1 for heating, one end of the double coil 3, and both ends of the linear member 5 are joined to the plate member 9 by welding or the like. Thereby, the plate-shaped member 9, the heater 1, the double coil 3, and the linear member 5 are in electrical contact and are in a conductive state. In addition, the linear member 5 should just be joined to the plate-shaped member 9 at least one end.

続いて、図3〜図9に基づいて、上述した構成のガス放電管用傍熱型電極C1を製造する工程の一例について説明する。   Next, an example of a process for manufacturing the indirectly heated electrode C1 for a gas discharge tube having the above-described configuration will be described with reference to FIGS.

まず、図3に示されるように、線状部材5をヘアピン状に折り曲げ、ヘアピン状に折り曲げられた状態の線状部材5の各端部を板状部材9に溶接する。溶接は、図4に示されるように、線状部材5及び板状部材9とを位置決めした状態で一対の溶接用電極30,31で挟み込み、通電することにより行われる。通電方法としては、直流、交流、パルス状等の様々な方法を用いることができる。   First, as shown in FIG. 3, the linear member 5 is bent into a hairpin shape, and each end of the linear member 5 in a state of being bent into a hairpin shape is welded to the plate-like member 9. As shown in FIG. 4, the welding is performed by sandwiching the linear member 5 and the plate-like member 9 between the pair of welding electrodes 30 and 31 and energizing them. As the energization method, various methods such as direct current, alternating current, and pulse shape can be used.

次に、図5に示されるように、ヘアピン状に折り曲げられた状態の線状部材5の折り曲げ部6側を折り曲げ、折り曲げた線状部材5を二重コイル3の内側に通し、二重コイル3を挟み込む。これにより、線状部材5は、二重コイル3の長手方向に沿って二重コイル3の複数のコイル部分に電気的に接触して設けられることとなる。そして、図5に示されるように、線状部材5の折り曲げ部6及び二重コイル3の一端を板状部材9に溶接する。図5では、板状部材9の一方の面側に線状部材5の各端部が接合され、他方の面側に線状部材5の折り曲げ部6及び二重コイル3の一端が接合されているが、これに限られることなく、例えば同一面側にそれぞれを接合するようにしてよい。   Next, as shown in FIG. 5, the bent portion 6 side of the linear member 5 bent into a hairpin shape is bent, and the bent linear member 5 is passed inside the double coil 3. 3 is inserted. Thereby, the linear member 5 is provided in electrical contact with the plurality of coil portions of the double coil 3 along the longitudinal direction of the double coil 3. Then, as shown in FIG. 5, the bent portion 6 of the linear member 5 and one end of the double coil 3 are welded to the plate-like member 9. In FIG. 5, each end of the linear member 5 is joined to one surface side of the plate-like member 9, and the bent portion 6 of the linear member 5 and one end of the double coil 3 are joined to the other surface side. However, the present invention is not limited to this. For example, each may be joined to the same surface side.

次に、図6に示されるように、加熱用ヒータ1の一端を板状部材9に溶接する。ところで、加熱用ヒータ1を構成するタングステン素線の径が細く、加熱用ヒータ1の一端を板状部材9に溶接する際に、加熱用ヒータ1が破断する惧れがある。このため、本実施形態においては、金属製(例えば、ニッケル製等)の筒状部材13を加熱用ヒータ1の一端に被せ、この筒状部材13を介して板状部材9に溶接している。これにより、上述した加熱用ヒータ1の破断を防止することができる。なお、筒状部材13は、加熱用ヒータ1の電気絶縁層2を被っていてもよい。また、筒状部材13を用いる代わりに、金属製(例えば、ニッケル製等)の板状(リボン状、箔状も含む)部材を用い、当該板状部材と板状部材9とで加熱用ヒータ1の一端を挟んだ状態で溶接してもよい。   Next, as shown in FIG. 6, one end of the heater 1 is welded to the plate member 9. By the way, the diameter of the tungsten strand which comprises the heater 1 for heating is thin, and when the end of the heater 1 for welding is welded to the plate-shaped member 9, there exists a possibility that the heater 1 for a heating may fracture | rupture. For this reason, in the present embodiment, a cylindrical member 13 made of metal (for example, nickel) is placed on one end of the heater 1 for heating, and is welded to the plate member 9 via the cylindrical member 13. . Thereby, the fracture | rupture of the heater 1 mentioned above can be prevented. The cylindrical member 13 may cover the electrical insulating layer 2 of the heater 1 for heating. Further, instead of using the cylindrical member 13, a metal (for example, nickel) plate-like (including ribbon-like or foil-like) member is used, and the plate-like member and the plate-like member 9 are used as a heater for heating. 1 may be welded with one end sandwiched therebetween.

以上の工程により、加熱用ヒータ1、二重コイル3及び線状部材5が板状部材9に接合された電極中間体を得ることができる。この電極中間体に、上述したように、金属炭酸塩を塗布し、当該金属炭酸塩を真空加熱分解することにより、金属酸化物7を有する傍熱型電極C1が得られることとなる。   Through the above steps, an electrode intermediate body in which the heater 1, the double coil 3, and the linear member 5 are joined to the plate member 9 can be obtained. As described above, the indirectly heated electrode C1 having the metal oxide 7 is obtained by applying a metal carbonate to the electrode intermediate and subjecting the metal carbonate to vacuum heat decomposition.

なお、線状部材5と二重コイル3の複数のコイル部分との電気的な接触をより一層確実なものとするために、図7(a)に示されるように、線状部材5における二重コイル3を挟み込んでいる部分をピンセット等で挟むことで絞り部を形成し、線状部材5と二重コイル3とを圧接してもよい。また、図7(b)に示されるように、線状部材5の端部を二重コイル3の内側からコイル部分間を通して外側に導き、線状部材5と二重コイル3とを圧接してもよい。また、図7(c)に示されるように、線状部材5の端部を一回若しくは複数回交差させて、線状部材5と二重コイル3とを圧接してもよい。   In order to further ensure electrical contact between the linear member 5 and the plurality of coil portions of the double coil 3, as shown in FIG. A portion where the heavy coil 3 is sandwiched may be sandwiched by tweezers or the like to form a throttle portion, and the linear member 5 and the double coil 3 may be pressed against each other. Further, as shown in FIG. 7B, the end of the linear member 5 is guided from the inside of the double coil 3 to the outside through the coil portion, and the linear member 5 and the double coil 3 are pressed against each other. Also good. Further, as shown in FIG. 7C, the end of the linear member 5 may be crossed once or a plurality of times, and the linear member 5 and the double coil 3 may be pressed.

また、線状部材5は、ヘアピン状に折り曲げることなく、図8に示されるように、直線状に延びた状態から折り曲げて、折り曲げ部分を二重コイル3の内側に通し、二重コイル3を挟み込むようにしてもよい。このとき、二重コイル3に線状部材5の端部を巻き付けて線状部材5と二重コイル3とを一体化した後に、板状部材9に溶接してもよい。これにより、線状部材5と二重コイル3とを圧接することができる。また、二重コイル3に巻き付けた線状部材5の一方の端部のみを板状部材9に溶接してもよい。   Further, the linear member 5 is bent from a linearly extended state as shown in FIG. 8 without being bent into a hairpin shape, and the bent portion is passed through the inside of the double coil 3 so that the double coil 3 is You may make it pinch | interpose. At this time, the end of the linear member 5 may be wound around the double coil 3 to integrate the linear member 5 and the double coil 3, and then welded to the plate member 9. Thereby, the linear member 5 and the double coil 3 can be press-contacted. Further, only one end of the linear member 5 wound around the double coil 3 may be welded to the plate-like member 9.

また、図9に示されるように、二重コイル3の板状部材9側の部分に線状部材5の折り曲げ部6を引っ掛けて、二重コイル3の内側に通した後に、線状部材5を折り曲げ、折り曲げた線状部材5を二重コイル3の外側を通して二重コイル3を挟み込み、板状部材9に溶接してもよい。   Further, as shown in FIG. 9, after the bent portion 6 of the linear member 5 is hooked on the portion of the double coil 3 on the plate-like member 9 side and passed through the inside of the double coil 3, the linear member 5. The bent linear member 5 may be welded to the plate member 9 by sandwiching the double coil 3 through the outside of the double coil 3.

次に、図10に基づいて、上述した構成の傍熱型電極C1を備えたガス放電管について説明する。   Next, a gas discharge tube including the indirectly heated electrode C1 having the above-described configuration will be described with reference to FIG.

ガス放電管DT1は、図10に示されるように、密封容器としての管状バルブ21と、第1及び第2のステムピン(導入線)23,25と、一対の傍熱型電極C1とを備えている。図10においては、一方の傍熱型電極C1のみを図示している。   As shown in FIG. 10, the gas discharge tube DT1 includes a tubular bulb 21 as a sealed container, first and second stem pins (introduction lines) 23 and 25, and a pair of indirectly heated electrodes C1. Yes. In FIG. 10, only one indirectly heated electrode C1 is illustrated.

管状バルブ21は、ガラス等の材料からなり、当該管状バルブ21の端部を構成するステム22を含んでいる。管状バルブ21の内部には、アルゴン等の希ガス、あるいは、アルゴン等の希ガス及び水銀が封入されている。また、管状バルブ21の内壁には図示しない蛍光体が塗布されている。第1及び第2のステムピン23,25は、管状バルブ21の両端において、管状バルブ21のステム22に立設されており、管軸方向に延在している。傍熱型電極C1は、線状部材5が対向するように第1及び第2のステムピン23,25の先端部に装着されて、管状バルブ21内に気密に封着されている。   The tubular bulb 21 is made of a material such as glass, and includes a stem 22 that constitutes an end of the tubular bulb 21. The inside of the tubular bulb 21 is filled with a rare gas such as argon, or a rare gas such as argon and mercury. Further, a phosphor (not shown) is applied to the inner wall of the tubular bulb 21. The first and second stem pins 23 and 25 are erected on the stem 22 of the tubular valve 21 at both ends of the tubular valve 21 and extend in the tube axis direction. The indirectly heated electrode C <b> 1 is attached to the distal end portions of the first and second stem pins 23 and 25 so that the linear member 5 faces each other, and is hermetically sealed in the tubular valve 21.

板状部材9は、図11に示されるように、溶接等により第1のステムピン23に接合されており、当該第1のステムピン23に電気的に接続されている。加熱用ヒータ1の他端は、溶接等により第2のステムピン25に接合されており、当該第2のステムピン25に電気的に接続されている。なお、必ずしも板状部材9を第1のステムピン23に接合する必要はなく、線状部材5を第1のステムピン23に接合するようにしてもよい。   As shown in FIG. 11, the plate-like member 9 is joined to the first stem pin 23 by welding or the like, and is electrically connected to the first stem pin 23. The other end of the heater 1 is joined to the second stem pin 25 by welding or the like, and is electrically connected to the second stem pin 25. Note that the plate-like member 9 is not necessarily joined to the first stem pin 23, and the linear member 5 may be joined to the first stem pin 23.

また、図12に示されるように、傍熱型電極C1の前方(対向する傍熱型電極との間)に収束筒41を設けてもよい。収束筒41は、板状部材9等を通して第1のステムピン23に電気的に接続されている。対向する傍熱型電極から放出された電子が、傍熱型電極C1に到達する以前に、当該傍熱型電極C1の手前に位置する収束筒41で捕捉され、分流することとなる。これにより、陽極動作状態おける電子収束に伴う傍熱型電極C1本体への収束電流密度を減少でき、傍熱型電極C1の損傷を軽減することができる。   Further, as shown in FIG. 12, a converging cylinder 41 may be provided in front of the indirectly heated electrode C1 (between the oppositely heated electrode). The converging cylinder 41 is electrically connected to the first stem pin 23 through the plate-like member 9 or the like. Before the electrons emitted from the opposite indirectly heated electrode C1 reach the indirectly heated electrode C1, the electrons are captured by the converging cylinder 41 located in front of the indirectly heated electrode C1 and are distributed. Thereby, the convergence current density to the indirectly heated electrode C1 main body accompanying the electron convergence in an anode operation state can be reduced, and damage to the indirectly heated electrode C1 can be reduced.

以上のように、本実施形態においては、線状部材5の少なくとも一端及び二重コイル3の一端が、同一の板状部材9に接合されることとなり、線状部材5及び二重コイル3と板状部材9との固定を確実且つ容易に行うことができ、板状部材9の支持を確実に行うことができる。また、線状部材5及び二重コイル3が板状部材9に接合された構成の電極中間体の取り扱い(例えば、製造工程途中における搬送、金属炭酸塩の塗布及び真空加熱分解等)も容易となる。   As described above, in the present embodiment, at least one end of the linear member 5 and one end of the double coil 3 are joined to the same plate member 9, and the linear member 5 and the double coil 3 The plate-like member 9 can be fixed securely and easily, and the plate-like member 9 can be reliably supported. In addition, it is easy to handle an electrode intermediate having a configuration in which the linear member 5 and the double coil 3 are joined to the plate member 9 (for example, conveyance in the middle of the manufacturing process, application of metal carbonate and vacuum thermal decomposition). Become.

また、本実施形態において、板状部材9には、加熱用ヒータ1の一端が接合されている。これにより、線状部材5及び二重コイル3が接合された板状部材9に加熱用ヒータ1の一端も接合されることとなり、加熱用ヒータ1と板状部材9との固定も確実且つ容易に行うことができ、加熱用ヒータ1の支持も確実に行うことができる。   In the present embodiment, one end of the heater 1 is joined to the plate-like member 9. Thereby, one end of the heater 1 is also joined to the plate-like member 9 to which the linear member 5 and the double coil 3 are joined, and the fixing of the heater 1 and the plate-like member 9 is surely and easily performed. The heater 1 for heating can be reliably supported.

また、本実施形態において、板状部材9には、管状バルブ21の端部を構成するステム22に立設された第1のステムピン23が接合されている。このように構成した場合、上記電極中間体を確実且つ容易に第1のステムピン23に接合することができる。   In the present embodiment, the plate member 9 is joined with a first stem pin 23 erected on a stem 22 constituting the end of the tubular valve 21. When configured in this manner, the electrode intermediate can be reliably and easily joined to the first stem pin 23.

また、本実施形態において、線状部材5はその途中位置にて折り曲げられており、当該線状部材5の両端が板状部材9に接合されている。これにより、線状部材5の板状部材9への接合強度を高めることができる。
In the present embodiment, the linear member 5 is bent at an intermediate position, and both ends of the linear member 5 are joined to the plate member 9. Thereby, the joint strength to the plate-shaped member 9 of the linear member 5 can be raised.

本発明は、前述した実施形態に限定されるものではない。たとえば、線状部材5として高融点金属を用いるようにしているが、導電性を有し融点が陰極の作動温度よりも高い剛体であれば、高融点金属の代わりに厚さの薄い多孔質金属、炭素繊維等を用いるようにしてもよい。また、金属酸化物7の耐スパッタ性向上、放電性能向上のために、タンタル、チタン、ニオブ等の窒化物あるいは炭化物を金属酸化物7の表面、あるいは二重コイル3、あるいは線状部材5に付着させるようにしてもよい。   The present invention is not limited to the embodiment described above. For example, although a refractory metal is used as the linear member 5, a thin porous metal is used instead of the refractory metal as long as it is conductive and has a rigid body whose melting point is higher than the operating temperature of the cathode. Carbon fiber or the like may be used. Further, nitride or carbide such as tantalum, titanium, niobium or the like is applied to the surface of the metal oxide 7, the double coil 3, or the linear member 5 in order to improve the sputtering resistance and discharge performance of the metal oxide 7. You may make it adhere.

また、本実施形態においては、線状部材5の表面が露出するようにしているが、必ずしもこれらを露出させる必要はなく、金属酸化物7に線状部材5が接触しているのであれば、線状部材5の表面が金属酸化物7に覆われていてもよい。   Moreover, in this embodiment, although the surface of the linear member 5 is exposed, it is not necessary to expose these, if the linear member 5 is contacting the metal oxide 7, The surface of the linear member 5 may be covered with the metal oxide 7.

本実施形態に係るガス放電管用傍熱型電極を示す概略斜視図である。It is a schematic perspective view which shows the indirectly heated electrode for gas discharge tubes which concerns on this embodiment. 本実施形態に係るガス放電管用傍熱型電極を示す概略断面図である。It is a schematic sectional drawing which shows the indirectly heated electrode for gas discharge tubes which concerns on this embodiment. 本実施形態に係るガス放電管用傍熱型電極における、製造工程の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing process in the indirectly heated electrode for gas discharge tubes which concerns on this embodiment. 本実施形態に係るガス放電管用傍熱型電極における、製造工程の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing process in the indirectly heated electrode for gas discharge tubes which concerns on this embodiment. 本実施形態に係るガス放電管用傍熱型電極における、製造工程の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing process in the indirectly heated electrode for gas discharge tubes which concerns on this embodiment. 本実施形態に係るガス放電管用傍熱型電極における、製造工程の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing process in the indirectly heated electrode for gas discharge tubes which concerns on this embodiment. (a)〜(c)は、本実施形態に係るガス放電管用傍熱型電極における、製造工程の一例を説明するための図である。(A)-(c) is a figure for demonstrating an example of the manufacturing process in the indirectly heated electrode for gas discharge tubes which concerns on this embodiment. 本実施形態に係るガス放電管用傍熱型電極における、製造工程の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing process in the indirectly heated electrode for gas discharge tubes which concerns on this embodiment. 本実施形態に係るガス放電管用傍熱型電極における、製造工程の一例を説明するための図である。It is a figure for demonstrating an example of the manufacturing process in the indirectly heated electrode for gas discharge tubes which concerns on this embodiment. 本実施形態に係るガス放電管用傍熱型電極を備えたガス放電管を示す概略斜視図である。It is a schematic perspective view which shows the gas discharge tube provided with the indirectly heated electrode for gas discharge tubes which concerns on this embodiment. 図10に示されたガス放電管におけるガス放電管用傍熱型電極と第1のステムピンとを示す概略斜視図である。It is a schematic perspective view which shows the indirectly heated electrode for gas discharge tubes and the 1st stem pin in the gas discharge tube shown by FIG. 図10に示されたガス放電管の変形例を示す概略斜視図である。It is a schematic perspective view which shows the modification of the gas discharge tube shown by FIG.

符号の説明Explanation of symbols

1…加熱用ヒータ、2…電気絶縁層、3…二重コイル、5…線状部材、7…金属酸化物、9…板状部材、13…筒状部材、21…管状バルブ、22…ステム、23…第1のステムピン、25…第2のステムピン、C1…ガス放電管用傍熱型電極、DT1…ガス放電管。   DESCRIPTION OF SYMBOLS 1 ... Heating heater, 2 ... Electrical insulation layer, 3 ... Double coil, 5 ... Linear member, 7 ... Metal oxide, 9 ... Plate-shaped member, 13 ... Cylindrical member, 21 ... Tubular valve, 22 ... Stem 23 ... 1st stem pin, 25 ... 2nd stem pin, C1 ... indirectly heated electrode for gas discharge tube, DT1 ... gas discharge tube.

Claims (4)

密封容器にガスが気密封止されたガス放電管に用いられるガス放電管用傍熱型電極であって、
コイル状に巻き回されたコイル部材と、
前記コイル部材の内側に配設され、表面に電気絶縁層が形成された加熱用ヒータと、
前記コイル部材に保持される易電子放射物質としての金属酸化物と、
前記コイル部材の長手方向にわたって配設され、当該コイル部材と電気的に接触する線状の電気導体と、
前記線状の電気導体の少なくとも一端及び前記コイル部材の一端が接合される板状の電気導体と、を有することを特徴とするガス放電管用傍熱型電極。
An indirectly heated electrode for a gas discharge tube used for a gas discharge tube in which gas is hermetically sealed in a sealed container,
A coil member wound in a coil shape;
A heater for heating disposed on the inside of the coil member and having an electrically insulating layer formed on the surface;
A metal oxide as an electron emission material held by the coil member;
A linear electrical conductor disposed over the longitudinal direction of the coil member and in electrical contact with the coil member;
An indirectly heated electrode for a gas discharge tube, comprising: a plate-like electric conductor to which at least one end of the linear electric conductor and one end of the coil member are joined.
前記板状の電気導体には、前記加熱用ヒータの一端が接合されることを特徴とする請求項1に記載のガス放電管用傍熱型電極。   The indirectly heated electrode for a gas discharge tube according to claim 1, wherein one end of the heater for heating is joined to the plate-like electric conductor. 前記板状の電気導体には、前記密封容器の端部を構成するステムに立設されたステムピンが接合されることを特徴とする請求項1に記載のガス放電管用傍熱型電極。   The indirectly heated electrode for a gas discharge tube according to claim 1, wherein a stem pin erected on a stem constituting an end of the sealed container is joined to the plate-like electric conductor. 前記線状の電気導体はその途中位置にて折り曲げられており、当該線状の電気導体の両端が前記板状の電気導体に接合されることを特徴とする請求項1に記載のガス放電管用傍熱型電極。   2. The gas discharge tube according to claim 1, wherein the linear electrical conductor is bent at an intermediate position thereof, and both ends of the linear electrical conductor are joined to the plate-shaped electrical conductor. Side-heated electrode.
JP2003307511A 2003-08-29 2003-08-29 Indirectly heated electrode for gas discharge tube Pending JP2005078922A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003307511A JP2005078922A (en) 2003-08-29 2003-08-29 Indirectly heated electrode for gas discharge tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003307511A JP2005078922A (en) 2003-08-29 2003-08-29 Indirectly heated electrode for gas discharge tube

Publications (1)

Publication Number Publication Date
JP2005078922A true JP2005078922A (en) 2005-03-24

Family

ID=34410283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003307511A Pending JP2005078922A (en) 2003-08-29 2003-08-29 Indirectly heated electrode for gas discharge tube

Country Status (1)

Country Link
JP (1) JP2005078922A (en)

Similar Documents

Publication Publication Date Title
US4550269A (en) Electric discharge lamps
EP0632479A1 (en) Anisotropic pyrolytic graphite heater
JP3968016B2 (en) Indirectly heated electrode for gas discharge tube, gas discharge tube using the same, and its lighting device
US2258836A (en) Cathode heater
CN110335794B (en) Cold end extraction method of lanthanum hexaboride hollow cathode thermion heating wire
EP0491420B1 (en) Low-pressure mercury vapour discharge lamp
JP2005078922A (en) Indirectly heated electrode for gas discharge tube
JP3987436B2 (en) Side-heated electrode for gas discharge tube
JP3999663B2 (en) Direct heating type electrode for gas discharge tube and gas discharge tube
US20070138931A1 (en) Backwound electrode coil for electric arc tube of ceramic metal halide lamp and method of manufacture
JP2005071816A (en) Light source device
JP4012904B2 (en) Gas discharge tube
JP2004014467A (en) Gas discharge tube
JPH1125893A (en) X-ray tube
JP4054017B2 (en) Gas discharge tube
JP4227364B2 (en) Gas discharge tube and gas discharge tube device
WO2012108161A1 (en) Cold cathode device and method for manufacturing same
JP2590750B2 (en) Impregnated cathode structure
JPH01296542A (en) Magnetron
US2589522A (en) Cathode heater structure
US20100171411A1 (en) Cathode heater
JP2005183046A (en) Gas discharge tube
JPWO2002049073A1 (en) Gas discharge tube
JP2004014464A (en) Driving method of gas discharge tube
JP2016035863A (en) Electrode for discharge lamp and flash lamp