JP2005077390A - Method and instrument for measuring position and attitude - Google Patents

Method and instrument for measuring position and attitude Download PDF

Info

Publication number
JP2005077390A
JP2005077390A JP2003312120A JP2003312120A JP2005077390A JP 2005077390 A JP2005077390 A JP 2005077390A JP 2003312120 A JP2003312120 A JP 2003312120A JP 2003312120 A JP2003312120 A JP 2003312120A JP 2005077390 A JP2005077390 A JP 2005077390A
Authority
JP
Japan
Prior art keywords
light
diffraction
emission direction
measurement surface
orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003312120A
Other languages
Japanese (ja)
Other versions
JP4027866B2 (en
Inventor
Takahiro Okuda
貴啓 奥田
Ichiro Ishimaru
伊知郎 石丸
Hiroaki Kobayashi
宏明 小林
Yuichi Yokomizo
雄一 横溝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aoi Electronics Co Ltd
Original Assignee
Aoi Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aoi Electronics Co Ltd filed Critical Aoi Electronics Co Ltd
Priority to JP2003312120A priority Critical patent/JP4027866B2/en
Publication of JP2005077390A publication Critical patent/JP2005077390A/en
Application granted granted Critical
Publication of JP4027866B2 publication Critical patent/JP4027866B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a position and attitude measuring instrument capable of measuring precisely six axes of a position and an attitude of a measuring face at the same time. <P>SOLUTION: A plurality of grooves is formed on the measuring face 4 to serve as a diffraction part 7. Light is emitted from a light source 3 toward the diffraction part 7 to detect primary diffraction light generated by the diffraction part 7, by photoreception elements 1, 2. A relative distance between the photoreception elements 1, 2 and the measuring face is changed to detect the diffraction lights at least twice. A computation processing part 61 computes the center brightness position of the diffraction light detected in each of the relative distances, optical axes of the diffraction lights incident into the photoreception elements 1, 2 are found respectively based on the center brightness positions, and the position and attitude of the measuring face 4 are calculated based on the two obtained optical axes and an irradiation (emission) axis of the light source 3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、微小面の位置および姿勢を計測する位置姿勢計測方法および位置姿勢計測装置に関する。   The present invention relates to a position and orientation measurement method and a position and orientation measurement apparatus that measure the position and orientation of a micro surface.

近年、マイクロマシンやMEMS(マイクロ・エレクトロ・メカニカル・システム:Micro Electro Mechanical System)と呼ばれる微小機械部品の利用が進んでいる。例えば、プロジェクタに使用するDMD(デジタル・マイクロミラー・デバイス:Digital Micro-mirror Device)と呼ばれる微小ミラーアレーなどが良く知られている。DMDは、1辺が数ミクロンの小さな鏡を敷き詰めた構造をMEMS技術により作製したものである(例えば、特許文献1参照)。   In recent years, the use of micromachine parts called micromachines and MEMS (Micro Electro Mechanical System) has been advanced. For example, a micromirror array called DMD (Digital Micro-mirror Device) used for a projector is well known. The DMD is a structure in which a small mirror with a side of several microns is laid out by the MEMS technology (see, for example, Patent Document 1).

従来のプロジェクタでは、光源からの光を透過型の液晶パネルを透過させることにより映像を投影するようにしていた。しかし、液晶は透過率があまり高くない為、高輝度のプロジェクタに利用する場合には大きな光源が必要となり、小型化をする上でのネックになっていた。   Conventional projectors project images by transmitting light from a light source through a transmissive liquid crystal panel. However, since the transmittance of the liquid crystal is not so high, a large light source is required for use in a high-brightness projector, which has been a bottleneck in reducing the size.

一方、DMDを用いたプロジェクタでは、微小な鏡の傾きを各々独立に制御して、鏡で反射した光がレンズを通ってスクリーンに投影されるか否かを制御している。この傾き制御を1秒間に数千回繰り返すことにより、スクリーン投影された像が人間の目には滑らかな動画となって映る。そして、DMDを用いたプロジェクタは、反射型であることから光の損失が極めて少なく、高輝度で小型のプロジェクタを提供することが可能である。   On the other hand, in a projector using a DMD, the inclination of a minute mirror is controlled independently to control whether or not the light reflected by the mirror is projected onto a screen through a lens. By repeating this tilt control several thousand times per second, the image projected on the screen appears as a smooth moving image to human eyes. Since the projector using DMD is a reflection type, it is possible to provide a small projector with high brightness and very little light loss.

また、DMDの他の応用例としては、DMDを光通信の光スイッチに用いるものである(例えば、特許文献2参照)。これは、光ファイバーから出力された光を、微小ミラーで反射させて別の光ファイバーに入射させるものであって、光ファイバー間を電気的な変換無しにダイレクトに光接続することができる。この場合、微小ミラーで反射する角度の精度が悪いと全ての射出光を光ファイバーに入射させることができず、光の結合効率が劣化する。そのため、1辺が数百ミクロン程度の微小ミラーの位置と傾き(以下では、姿勢と呼ぶ)に対して高い精度が求められる。   As another application example of the DMD, the DMD is used for an optical switch for optical communication (see, for example, Patent Document 2). In this method, light output from an optical fiber is reflected by a micromirror and incident on another optical fiber, and the optical fibers can be directly optically connected without electrical conversion. In this case, if the accuracy of the angle reflected by the micromirror is poor, all the emitted light cannot be made incident on the optical fiber, and the light coupling efficiency deteriorates. Therefore, high accuracy is required for the position and inclination (hereinafter referred to as posture) of a micromirror whose side is about several hundred microns.

特開2003−215495号公報JP 2003-215495 A 特開2003−43384号公報JP 2003-43384 A

ところで、位置や姿勢を計測する方法には、計測原理として3角測量法と共焦点法とに大別できる。3角測量法では、例えば、図2(a)に示すようレーザ光等の光を測定面100に照射し、その反射光を受光素子101で検出する。光源102に対して測定面100がαからβに平行移動すると、受光素子101での受光点がA’からB’に移動する。この移動量A’−B’から変位量α−βを求めるのが三角測量法の原理である。しかし、図2(b)のβ’のように測定面100の傾きが変化した場合にも、受光素子101での受光点位置がA’からB’へと同様に移動する。そのため、位置と姿勢を分離して計測することができないという欠点がある。   By the way, the method of measuring the position and orientation can be roughly divided into a triangulation method and a confocal method as measurement principles. In the triangulation method, for example, the measurement surface 100 is irradiated with light such as laser light as shown in FIG. 2A, and the reflected light is detected by the light receiving element 101. When the measurement surface 100 moves in parallel with respect to the light source 102 from α to β, the light receiving point at the light receiving element 101 moves from A ′ to B ′. The principle of the triangulation method is to obtain the displacement amount α-β from the movement amount A′-B ′. However, even when the inclination of the measurement surface 100 changes as in β ′ in FIG. 2B, the light receiving point position on the light receiving element 101 moves similarly from A ′ to B ′. Therefore, there is a drawback that the position and orientation cannot be measured separately.

一方、共焦点法は、合焦位置から測定面の位置を計測する手法である。図3は共焦点法の原理を説明する図であり、光源110から射出された光はハーフミラー111とレンズ112を透過した後に測定面113で集光する。このとき、次式(1)が満たされるように集光する。Sは光源110からレンズ112までの距離、fはレンズ112の焦点距離である。
1/S+1/S’=1/f …(1)
On the other hand, the confocal method is a method of measuring the position of the measurement surface from the in-focus position. FIG. 3 is a diagram for explaining the principle of the confocal method. The light emitted from the light source 110 passes through the half mirror 111 and the lens 112 and is then collected on the measurement surface 113. At this time, the light is condensed so that the following expression (1) is satisfied. S is the distance from the light source 110 to the lens 112, and f is the focal length of the lens 112.
1 / S + 1 / S ′ = 1 / f (1)

この測定面113で反射された光はレンズ112を再び透過した後に、ハーフミラー111によりピンホール114の方向に反射される。共焦点法では、ピンホール114は光源110と光学的に共役な位置に配置される。つまり、レンズ112のハーフミラー側の主点からの距離がSとなる位置にピンホール114を配置する。そして、このピンホール114を透過した光を光検出素子115、例えば光電変換素子であるフォトダイオードで検出する。   The light reflected by the measurement surface 113 is transmitted again through the lens 112 and then reflected by the half mirror 111 in the direction of the pinhole 114. In the confocal method, the pinhole 114 is disposed at a position optically conjugate with the light source 110. That is, the pinhole 114 is disposed at a position where the distance from the principal point on the half mirror side of the lens 112 is S. And the light which permeate | transmitted this pinhole 114 is detected with the photon detection element 115, for example, the photodiode which is a photoelectric conversion element.

図4は共焦点法による位置検出方法を説明する図であり、(a)は光路図で、(b)は合焦位置と光検出素子115で検出される受光量との関係を示す図である。図4(a)において実線で示す光路116は、図3と同様に測定面113が合焦位置にある場合の光路を示している。ピンホール114の穴径dは、式(2)から適切に設定できることが知られている。
d=0.61×(光源光の波長)/(レンズの数値開口数) …(2)
4A and 4B are diagrams for explaining a position detection method using a confocal method, where FIG. 4A is an optical path diagram, and FIG. 4B is a diagram illustrating a relationship between a focus position and a received light amount detected by the light detection element 115. is there. An optical path 116 indicated by a solid line in FIG. 4A indicates an optical path when the measurement surface 113 is at the in-focus position as in FIG. It is known that the hole diameter d of the pinhole 114 can be appropriately set from Expression (2).
d = 0.61 × (wavelength of light source light) / (numerical numerical aperture of lens) (2)

測定面113が合焦位置にある場合には光はピンホール位置に集光するので、光検出素子115の受光量はもっとも大きな値Lmaxとなる。一方、図3のレンズ112をハーフミラー111方向に移動すると、図4(a)の点線で示すような光路117となって合焦位置が測定面113からずれる。そのため、光はピンホール位置に集光せず、多くの光がピンホール114の遮蔽部により遮られ、ごく一部の光のみが光検出素子115により検出されることになる。その結果、そのときの受光量L’はLmaxに比べて小さな値となる。   When the measurement surface 113 is at the in-focus position, the light is condensed at the pinhole position, so that the amount of light received by the light detection element 115 is the largest value Lmax. On the other hand, when the lens 112 in FIG. 3 is moved in the direction of the half mirror 111, the focus position is shifted from the measurement surface 113 as an optical path 117 as indicated by a dotted line in FIG. Therefore, the light is not collected at the pinhole position, much light is blocked by the shielding portion of the pinhole 114, and only a small part of the light is detected by the light detection element 115. As a result, the received light amount L ′ at that time is a smaller value than Lmax.

また、レンズ112を測定面側に移動した場合も受光量は同様に小さな値となる。つまり、光検出素子115により検出される受光量は、測定面113が合焦位置である場合が最も大きくなる。このことから、レンズ112をピエゾ素子等により移動させた際の受光量の最大値Lmaxを探索することにより、合焦位置を知ることができ、測定面113の位置を測定することが可能となる。   Further, when the lens 112 is moved to the measurement surface side, the amount of received light is similarly small. That is, the amount of light received detected by the light detection element 115 is the largest when the measurement surface 113 is at the in-focus position. From this, by searching for the maximum value Lmax of the amount of received light when the lens 112 is moved by a piezo element or the like, the in-focus position can be known and the position of the measurement surface 113 can be measured. .

このような共焦点法は、たとえ測定面113が傾いても、その反射光がレンズ112に入射する角度範囲内であれば、測定面113の位置を計測することが可能である。これは、3角測量法に比べて非常に優れた利点であるが、1軸の変位は計測できても姿勢を同時に計測することはできないという欠点がある。   In such a confocal method, even if the measurement surface 113 is inclined, the position of the measurement surface 113 can be measured as long as the reflected light is within an angle range where the reflected light is incident on the lens 112. This is a very superior advantage compared to the triangulation method, but there is a disadvantage that the posture cannot be measured at the same time even if the displacement of one axis can be measured.

このように、3角測量法または共焦点法のいずれか単独で測定を行った場合には、位置と姿勢を同時に測定することができない。また、両方の測定法を同時に用いれば位置と姿勢を同時に測定することが可能であるが、複数の計測装置を必要とするため計測装置そのものが大型化し、寸法が数mm以下のマイクロマシンに適用するのは非常に困難であった。さらには、計測装置が高価になるという欠点もあった。   Thus, when the measurement is performed by either the triangulation method or the confocal method alone, the position and orientation cannot be measured simultaneously. In addition, if both measurement methods are used simultaneously, it is possible to measure the position and orientation at the same time. However, since a plurality of measurement devices are required, the measurement device itself is increased in size and applied to a micromachine having a size of several millimeters or less. It was very difficult. Furthermore, there is a drawback that the measuring device is expensive.

請求項1の発明による位置姿勢計測方法は、測定面に設けられた回折部に光を照射し、光の照射方向および回折部より出射される所定次数の回折光の出射方向に基づいて、測定面の位置および姿勢を計測することを特徴とする。
請求項2の発明による位置姿勢計測装置は、測定面に設けられた回折部と、回折部に光を照射する光源と、回折部より出射される所定次数の回折光の出射方向を検出する出射方向検出手段と、出射方向検出手段により検出された出射方向および光源の光の照射方向に基づいて、測定面の位置および姿勢を演算する演算手段とを備えたことを特徴とする。
請求項3の発明は、請求項2に記載の位置姿勢計測装置において、回折部は1若しくは複数の溝から成り、出射方向検出手段は回折部の反射光に含まれる回折光の出射方向を検出する。
請求項4の発明は、請求項2に記載の位置姿勢計測装置において、回折部は1若しくは複数のスリットから成り、出射方向検出手段は回折部の透過光に含まれる回折光の出射方向を検出する。
請求項5の発明は、請求項2〜4のいずれかに記載の位置姿勢計測装置において、出射方向検出手段は、回折光を受光する光電変換素子と、光電変換素子と測定面との相対距離を変化させる距離変更手段とを備え、回折光の受光位置と相対距離の変化とに基づいて出射方向を検出するものである。
請求項6の発明は、請求項5に記載の位置姿勢計測装置において、光電変換素子と光源とを、同一基板上に配置して一体としたものである。
In the position and orientation measurement method according to the first aspect of the present invention, light is applied to the diffraction portion provided on the measurement surface, and the measurement is performed based on the light irradiation direction and the emission direction of the diffracted light of a predetermined order emitted from the diffraction portion. It is characterized by measuring the position and orientation of the surface.
According to a second aspect of the present invention, there is provided a position / orientation measurement apparatus comprising: a diffractive part provided on a measurement surface; a light source that irradiates light to the diffractive part; It is characterized by comprising direction detection means and calculation means for calculating the position and orientation of the measurement surface based on the emission direction detected by the emission direction detection means and the light irradiation direction of the light source.
According to a third aspect of the present invention, in the position / orientation measurement apparatus according to the second aspect, the diffractive portion includes one or a plurality of grooves, and the emission direction detecting means detects the emission direction of the diffracted light included in the reflected light of the diffractive portion. To do.
According to a fourth aspect of the present invention, in the position / orientation measurement apparatus according to the second aspect, the diffractive portion includes one or a plurality of slits, and the emission direction detecting means detects the emission direction of the diffracted light included in the transmitted light of the diffractive portion. To do.
According to a fifth aspect of the present invention, in the position / orientation measuring apparatus according to any one of the second to fourth aspects, the emission direction detecting means includes a photoelectric conversion element that receives diffracted light, and a relative distance between the photoelectric conversion element and the measurement surface. And a distance changing means for changing the light intensity, and detecting the emission direction based on the light receiving position of the diffracted light and the change in the relative distance.
According to a sixth aspect of the present invention, in the position / orientation measuring apparatus according to the fifth aspect, the photoelectric conversion element and the light source are arranged on the same substrate and integrated.

本発明によれば、測定面に設けられた回折部からの回折光を検出することにより、測定面の位置および姿勢を容易に同時測定することができる。   According to the present invention, the position and orientation of the measurement surface can be easily and simultaneously measured by detecting the diffracted light from the diffraction section provided on the measurement surface.

以下、図を参照して本発明を実施するための最良の形態を説明する。図1は本発明による位置姿勢計測装置の概略構成を示す模式図である。図1において、4は位置および姿勢を計測すべき測定面であり、例えばMEMSなどの微小部品の表面に対応している。測定面4には回折部7が形成されている。回折部7は照射された光を反射回折するものであり、例えば1本または複数本の溝で構成される。図1に示す例では、x軸方向に延在する複数本の溝71が測定面4に形成されている。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing a schematic configuration of a position and orientation measurement apparatus according to the present invention. In FIG. 1, reference numeral 4 denotes a measurement surface whose position and orientation are to be measured, and corresponds to the surface of a micro component such as a MEMS. A diffraction portion 7 is formed on the measurement surface 4. The diffracting unit 7 reflects and diffracts the irradiated light, and is composed of, for example, one or a plurality of grooves. In the example shown in FIG. 1, a plurality of grooves 71 extending in the x-axis direction are formed on the measurement surface 4.

3はレーザ光を出射する光源であり、光源3のレーザ光は測定面4に設けられた回折部7に照射される。回折部7により発生した回折光は光源3を挟んでy軸方向に沿って配設された受光素子1,2により検出される。受光素子1,2には、例えば、CCDカメラが用いられる。受光素子1,2は移動装置5に保持されている。移動装置5は、ピエゾ素子等のアクチュエータによりz方向に上下することができる。受光素子1,2の検出結果は制御装置6の演算処理部61に入力され、位置・姿勢に関する演算処理が行われる。また、移動装置5は制御装置6の移動制御部62によって制御される。   Reference numeral 3 denotes a light source that emits laser light, and the laser light from the light source 3 is applied to the diffraction section 7 provided on the measurement surface 4. The diffracted light generated by the diffraction unit 7 is detected by the light receiving elements 1 and 2 arranged along the y-axis direction with the light source 3 interposed therebetween. For the light receiving elements 1 and 2, for example, a CCD camera is used. The light receiving elements 1 and 2 are held by the moving device 5. The moving device 5 can be moved up and down in the z direction by an actuator such as a piezo element. The detection results of the light receiving elements 1 and 2 are input to the arithmetic processing unit 61 of the control device 6, and arithmetic processing relating to the position and orientation is performed. Further, the moving device 5 is controlled by the movement control unit 62 of the control device 6.

図5は回折部7により発生する回折光を説明する図である。図5(a)に示すように測定面4の回折部7に図示上方から光源3の光Lを照射すると、図5(b)に模式的に示すように所定の強度分布で光が反射される。通常、複数本のスリットを透過させた光は互いに干渉しあい強度分布の生じることが知られており、それはフラウンフォーファ回折と呼ばれている。本発明では、微小な溝71からの反射光が互いに干渉し合うことにより同様の強度分布が得られることを用いている。   FIG. 5 is a diagram illustrating the diffracted light generated by the diffracting unit 7. As shown in FIG. 5 (a), when the light L from the light source 3 is irradiated onto the diffractive portion 7 of the measurement surface 4 from above, the light is reflected with a predetermined intensity distribution as schematically shown in FIG. 5 (b). The In general, it is known that light transmitted through a plurality of slits interfere with each other to generate an intensity distribution, which is called Fraunhofer diffraction. In the present invention, it is used that the same intensity distribution is obtained when the reflected light from the minute grooves 71 interfere with each other.

入射角と等しい反射角を有する光を0次光と呼ぶ。その両脇に生じる強い強度を有する光を1次回折光と呼び、順次、2次回折光、3次回折光と呼ぶ。また、これらの0次光以外の光を総称して高次回折光と呼ぶ。本発明では、これらの回折光をプローブとして用いるので、以下では、プローブとして用いる回折光を回折光プローブと称することにする。   Light having a reflection angle equal to the incident angle is called zero-order light. Light having strong intensity generated on both sides is called first-order diffracted light, and sequentially called second-order diffracted light and third-order diffracted light. Further, these lights other than the 0th-order light are collectively referred to as high-order diffracted light. In the present invention, since these diffracted lights are used as probes, the diffracted lights used as probes are hereinafter referred to as diffracted light probes.

なお、回折光プローブとして0次光を用いた場合には、測定面4の面内における回転に関して測定が難しくなる。これは、溝71が形成された測定面4をほぼ垂直上方(入射角度≒0度)から照明した場合、測定面4を面内で回転しても0次光を中心軸として回転するだけであって、0次光の出射方向の変化が無いためである。そこで、回折光プローブとしては、1次回折光以降の高次回折光を用いることが望ましく、また、高次になるほど姿勢の計測精度確保が容易になる。ただし、高次回折光ほど光強度が弱いため、受光素子1,2に用いられている光電変換素子の電気ノイズなどとのSN比を考慮する必要がある。本実施の形態では、1次回折光を回折光プローブとして用いた場合について説明する。   Note that when zero-order light is used as the diffracted light probe, it becomes difficult to measure the rotation in the plane of the measurement surface 4. This is because, when the measurement surface 4 in which the groove 71 is formed is illuminated almost vertically upward (incident angle ≈ 0 degrees), even if the measurement surface 4 is rotated in the plane, it is only rotated around the 0th order light as the central axis. This is because there is no change in the emission direction of the zero-order light. Therefore, it is desirable to use higher-order diffracted light after the first-order diffracted light as the diffracted light probe, and the higher the order, the easier it is to ensure posture measurement accuracy. However, since the light intensity of the higher order diffracted light is weaker, it is necessary to consider the SN ratio with respect to the electric noise of the photoelectric conversion element used for the light receiving elements 1 and 2. In the present embodiment, a case where first-order diffracted light is used as a diffracted light probe will be described.

《測定方法の説明》
次に、測定方法について説明する。まず、図6に示すように、移動装置5により受光素子1,2を測定面4に対して所定の位置zに配置する。そして、光源3により回折部7を照明し、回折部7から出射される1次回折光を受光素子1,2により検出する。受光素子1,2としてCCDカメラを用いた場合、図7に示すような画像が得られる。図7において(a)は受光素子1による画像を示しており、(b)は受光素子2による画像を示している。円形の領域10,11が1次回折光を受光している明るい領域であり、輝度分布は領域の中心10a,11aほど輝度が高くなるような分布となっている。以下では中心10a,11aを、輝度中心位置10a,11aと呼ぶことにする。
<Description of measurement method>
Next, a measurement method will be described. First, as shown in FIG. 6, the light receiving elements 1 and 2 are arranged at a predetermined position z a with respect to the measurement surface 4 by the moving device 5. The light source 3 illuminates the diffractive portion 7, and the first-order diffracted light emitted from the diffractive portion 7 is detected by the light receiving elements 1 and 2. When a CCD camera is used as the light receiving elements 1 and 2, an image as shown in FIG. 7 is obtained. 7A shows an image obtained by the light receiving element 1, and FIG. 7B shows an image obtained by the light receiving element 2. The circular areas 10 and 11 are bright areas that receive the first-order diffracted light, and the luminance distribution is such that the luminance becomes higher at the centers 10a and 11a of the areas. Hereinafter, the centers 10a and 11a are referred to as luminance center positions 10a and 11a.

演算処理部61では、各受光素子1,2により得られた各画像の輝度データを用いて、輝度中心位置10a,11aの座標を算出する。例えば、CCDカメラを用いた場合には、各画素の輝度値と画素の座標を用いた重心演算などにより、輝度中心位置10a,11aのCCDカメラ座標系での座標値を求める。CCDカメラ座標系は、例えば撮像領域の左下隅を原点とするようなローカル座標なので、このローカル座標を装置基準位置を原点とするワールド座標へ変換するパラメータをキャリブレーションにより予め求めておく。そして、輝度中心位置10a,11aのローカル座標値を、上記パラメータを用いてワールド座標上での座標値に変換する。   The arithmetic processing unit 61 calculates the coordinates of the luminance center positions 10a and 11a using the luminance data of the images obtained by the light receiving elements 1 and 2. For example, when a CCD camera is used, the coordinate values in the CCD camera coordinate system of the luminance center positions 10a and 11a are obtained by calculating the center of gravity using the luminance value of each pixel and the pixel coordinates. Since the CCD camera coordinate system is a local coordinate whose origin is, for example, the lower left corner of the imaging area, a parameter for converting the local coordinate into a world coordinate whose origin is the apparatus reference position is obtained in advance by calibration. Then, the local coordinate values of the luminance center positions 10a and 11a are converted into coordinate values on the world coordinates using the above parameters.

次に、移動装置5により受光素子1,2をz方向に移動して、位置zに配設する。そして、位置zの場合と同様に、各受光素子1,2により得られる各画像の輝度中心位置10a,11aのワールド座標系での座標値を求める。ここでは、検出器位置zのときに得られる輝度中心位置10a,11aのワールド座標値を(x、y、z),(x、y、z)、検出器位置zのときに得られる輝度中心位置10a,11aのワールド座標値を(x’、y’、z’),(x’、y’、z’)と表すことにする。 Then, by moving the light receiving elements 1, 2 in the z-direction by the moving device 5 is disposed at a position z b. As in the case of the position z a , the coordinate values in the world coordinate system of the luminance center positions 10a and 11a of the images obtained by the light receiving elements 1 and 2 are obtained. Here, the world coordinate values of the luminance center positions 10a and 11a obtained at the detector position z a are (x 1 , y 1 , z 1 ), (x 2 , y 2 , z 2 ), and the detector position z. The world coordinate values of the luminance center positions 10a and 11a obtained at b are expressed as (x 1 ′, y 1 ′, z 1 ′), (x 2 ′, y 2 ′, z 2 ′).

《位置の算出》
図8は、輝度中心位置10a,11aの測定値を図に示したものである。輝度中心位置10aのワールド座標値(x、y、z),(x’、y’、z’)を通る直線は受光素子1で検出される1次回折光の光軸J1を表しており、測定された座標値(x、y、z),(x’、y’、z’)から光軸J1の直線方程式を求めることができる。同様に、輝度中心11aのワールド座標値(x、y、z),(x’、y’、z’)を通る直線は受光素子2で検出される1次回折光の光軸J2を表しており、測定された座標値(x、y、z),(x’、y’、z’)から光軸J2の直線方程式を求めることができる。
<< Calculation of position >>
FIG. 8 shows measured values of the luminance center positions 10a and 11a. A straight line passing through the world coordinate values (x 1 , y 1 , z 1 ), (x 1 ′, y 1 ′, z 1 ′) of the luminance center position 10 a is the optical axis J 1 of the first-order diffracted light detected by the light receiving element 1. The linear equation of the optical axis J1 can be obtained from the measured coordinate values (x 1 , y 1 , z 1 ), (x 1 ′, y 1 ′, z 1 ′). Similarly, the straight line passing through the world coordinate values (x 2 , y 2 , z 2 ) and (x 2 ′, y 2 ′, z 2 ′) of the luminance center 11 a is the light of the first-order diffracted light detected by the light receiving element 2. The axis J2 is represented, and a linear equation of the optical axis J2 can be obtained from the measured coordinate values (x 2 , y 2 , z 2 ), (x 2 ′, y 2 ′, z 2 ′).

図8に示すように、これら2本の光軸J1,J2の交点J3は回折部7を構成する微小溝群の中心線72上にある。よって、光軸J1,J2の直線方程式から、中心線72と光源3の入射光軸J4との交点のx座標、y座標およびz座標を算出することができる。ただし、測定面4が微小溝71の長手方向(x方向)に移動した場合であっても、交点J3の座標値(x,y,z)は変化せず、同じ座標値が得られることに注意する必要がある。   As shown in FIG. 8, the intersection J3 of these two optical axes J1 and J2 is on the center line 72 of the minute groove group constituting the diffractive portion 7. Therefore, the x coordinate, the y coordinate, and the z coordinate of the intersection of the center line 72 and the incident optical axis J4 of the light source 3 can be calculated from the linear equation of the optical axes J1 and J2. However, even when the measurement surface 4 moves in the longitudinal direction (x direction) of the minute groove 71, the coordinate value (x, y, z) of the intersection J3 does not change, and the same coordinate value is obtained. You need to be careful.

《姿勢の算出》
次に、姿勢の算出方法について説明する。まず、図9に示すように、回折光の光軸J1と光軸J2の2等分線J5(以降、回折光軸2等分線と呼ぶ)を求める。光源3からの光が測定面4に垂直に入射する場合には、入射光軸J4と測定面4の法線nとが一致するが、図9に示すように垂直入射でない場合には一致しない。この場合、反射の法則に基づき、入射光軸J4と法線nとの角度(入射角)θ1と、法線nと回折光軸2等分線J5との間の角度(出射角)θ2とが等しくなる。
《Calculation of posture》
Next, a method for calculating the posture will be described. First, as shown in FIG. 9, a bisector J5 (hereinafter referred to as a diffracted optical axis bisector) between the optical axis J1 and the optical axis J2 of the diffracted light is obtained. When light from the light source 3 is incident on the measurement surface 4 perpendicularly, the incident optical axis J4 and the normal line n of the measurement surface 4 coincide, but as shown in FIG. . In this case, based on the law of reflection, the angle (incident angle) θ1 between the incident optical axis J4 and the normal line n, and the angle (exit angle) θ2 between the normal line n and the diffracted optical axis bisector J5, Are equal.

つまり、回折光軸2等分線J5と入射光軸J4との2等分線を求めることにより、測定面4の法線nの方程式を得ることができる。そして、この法線nに垂直な面が測定面4であるから、法線nの方程式から測定面4の傾きθx、θy、θzを算出することができる。入射光軸J4のワールド座標上での直線方程式は事前のキャリブレーションによりわかっているので、回折光軸2等分線J5の方程式を光軸J1と光軸J2の直線方程式から求めることにより姿勢(θx、θy、θz)を算出することができる。   That is, by obtaining a bisector between the diffracted optical axis bisector J5 and the incident optical axis J4, an equation of the normal n of the measurement surface 4 can be obtained. Since the surface perpendicular to the normal line n is the measurement surface 4, the inclinations θx, θy, and θz of the measurement surface 4 can be calculated from the equation of the normal line n. Since the linear equation on the world coordinate of the incident optical axis J4 is known by prior calibration, the posture (by calculating the equation of the diffracted optical axis bisector J5 from the linear equation of the optical axis J1 and the optical axis J2) θx, θy, θz) can be calculated.

なお、上述した測定方法では、回折光軸J1,J2の直線方程式を計測するために、移動装置5により受光素子1,2と測定面4との相対距離を変化させて回折光軸J1,J2中の2点を計測しているが、もちろん、各回折光軸J1,J2中の複数点を計測して回折光軸J1,J2を算出することにより、計測精度の向上を図ることができる。   In the measurement method described above, in order to measure the linear equation of the diffracted optical axes J1, J2, the moving device 5 changes the relative distance between the light receiving elements 1, 2 and the measurement surface 4 to change the diffracted optical axes J1, J2. Although two of the points are measured, of course, measurement accuracy can be improved by measuring a plurality of points in each of the diffracted optical axes J1 and J2 and calculating the diffracted optical axes J1 and J2.

上述したように、本実施の形態の計測方法によれば、位置(x、y、z)と姿勢(θx、θy、θz)とを合わせた6軸の同時計測が可能となる。さらに、測定面4には回折部7を構成する微小溝71を1本または複数本形成するだけでよいので、DMDのような微小な測定面であっても容易に計測を行うことができる。   As described above, according to the measurement method of the present embodiment, it is possible to simultaneously measure six axes that combine the position (x, y, z) and the posture (θx, θy, θz). Furthermore, since it is only necessary to form one or a plurality of minute grooves 71 constituting the diffraction section 7 on the measurement surface 4, even a minute measurement surface such as a DMD can be easily measured.

なお、前述したように、溝71の長手方向に測定面4が移動した場合には、位置の計測値に変化が見られないので、そのような測定面4の変位を計測できないことになる。そこで、回折部7を図10に示すような直交する一対の微小溝群73,74で構成することにより計測可能とすることができる。もちろん、微小溝群73,74の交わる角度が直交で無くても角度さえ分かっていれば、その角度に基づいて補正をすることにより計測が可能である。   Note that, as described above, when the measurement surface 4 moves in the longitudinal direction of the groove 71, no change is observed in the position measurement value, and thus the displacement of the measurement surface 4 cannot be measured. Therefore, measurement can be made possible by configuring the diffractive portion 7 with a pair of micro groove groups 73 and 74 orthogonal to each other as shown in FIG. Of course, even if the angle at which the minute groove groups 73 and 74 intersect is not orthogonal, if the angle is known, the measurement can be performed by correcting based on the angle.

一対の微小溝群73,74を用いる場合には、図10に示すように光源3の周囲に4つの受光素子31,32,33,34を配設する。図示していないが、これらの受光素子31〜34は移動装置5(図1参照)に設けられていて、一体でz方向に移動させることができる。図10に示す装置では、例えば、一対の受光素子31,34を用いて、微小溝群73の中心線73aの方程式を上述した中心線72と同様にして求める。また、残った一対の受光素子32,33を用いて、微小溝群74の中心線74aの方程式を求めるようにする。   When a pair of minute groove groups 73 and 74 are used, four light receiving elements 31, 32, 33, and 34 are disposed around the light source 3 as shown in FIG. Although not shown, these light receiving elements 31 to 34 are provided in the moving device 5 (see FIG. 1), and can be moved together in the z direction. In the apparatus shown in FIG. 10, for example, using a pair of light receiving elements 31 and 34, the equation of the center line 73 a of the minute groove group 73 is obtained in the same manner as the center line 72 described above. Further, using the remaining pair of light receiving elements 32 and 33, an equation of the center line 74a of the minute groove group 74 is obtained.

中心線73aの方程式と中心線74aの方程式とから中心線73a,74aの交点を求めることにより、測定面4の位置(x、y、z)を得ることができる。また、中心線73aの方程式と中心線74aの方程式とから、中心線73aおよび中心線74aを含む平面の式を求めることにより、また、2本の中心線73aおよび中心線74aにより構成される平面の式より測定面4の姿勢(θx、θy、θz)を得ることができる。すなわち、測定面4がどの方向に移動しても、位置(x、y、z)と姿勢(θx、θy、θz)の6軸を同時に計測することができる。   The position (x, y, z) of the measurement surface 4 can be obtained by obtaining the intersection of the center lines 73a and 74a from the equation of the center line 73a and the equation of the center line 74a. Further, by obtaining an equation of a plane including the center line 73a and the center line 74a from the equation of the center line 73a and the equation of the center line 74a, a plane constituted by the two center lines 73a and the center line 74a. The posture (θx, θy, θz) of the measurement surface 4 can be obtained from the equation That is, regardless of the direction in which the measurement surface 4 moves, the six axes of position (x, y, z) and posture (θx, θy, θz) can be measured simultaneously.

《強度分布の最適化について》
次に、回折光プローブの形状、つまり強度分布の最適化手法について説明する。最適化に際しては、次の3つの項目に関して検討する。
<Optimization of intensity distribution>
Next, a method for optimizing the shape of the diffracted light probe, that is, the intensity distribution will be described. In the optimization, the following three items are examined.

1つ目は強度分布の先鋭化である。強度分布がなだらかな場合、測定面4が少し変位しただけでは強度変化として検出し難く、計測精度が悪くなる。このことは、機械的なプローブを用いた表面形状計測器の場合に、プローブ先端が太いと微細な表面形状を精度良く計測できないことと類似している。   The first is sharpening of the intensity distribution. When the intensity distribution is gentle, it is difficult to detect the intensity change as the measurement surface 4 is slightly displaced, and the measurement accuracy deteriorates. This is similar to the fact that in the case of a surface shape measuring instrument using a mechanical probe, a fine surface shape cannot be accurately measured if the probe tip is thick.

2つ目はSN比の向上である。回折光の強度は高次成分になるほど弱くなるので、本実施の形態において1次回折光を用いたように、できるだけ次数の低い回折光を用いることにより回折光強度が大きくなるようにする。   The second is to improve the SN ratio. Since the intensity of the diffracted light becomes weaker as the higher order component is used, the diffracted light intensity is increased by using the diffracted light having the lowest order as much as possible, as in the case of the first embodiment.

3つ目は隣り合う回折光の間隔の確保である。上述したように受光素子1,2としてCCDカメラを用いる場合には、輝度中心演算時に工夫をすれば対応できるが、例えば、PSD(Position Sensitive Detector)などを受光素子1,2に用いる場合には、PSDに回折光プローブとともに隣接する回折光が同時に入射すると、輝度中心を的確に計測できなくなる。そこで、隣接する回折光との間隔が十分確保できるように回折部7を構成する必要がある。   The third is to secure an interval between adjacent diffracted lights. As described above, when a CCD camera is used as the light receiving elements 1 and 2, it can be dealt with by devising the brightness center calculation. For example, when a PSD (Position Sensitive Detector) is used for the light receiving elements 1 and 2, for example. If the adjacent diffracted light enters the PSD together with the diffracted light probe, the luminance center cannot be measured accurately. Therefore, it is necessary to configure the diffractive portion 7 so as to ensure a sufficient interval between adjacent diffracted lights.

上述した回折部7を設定する場合には、これら3つの項目を満たすように溝71の溝幅、溝71の間隔、溝71の本数を最適化する必要がある。前述したように、1本または複数本の溝から出射される光の強度分布はフラウンフォーファ回折としてモデル化できることが知られている。この回折光分布モデルを用いると、(a)各微小溝71の幅を狭くするとSN比が向上すること、(b)微小溝71の間隔を狭めると、隣接する回折光同士の間隔が広がること、(c)微小溝71の本数を増加させると強度分布が先鋭化することが分かる。   When setting the diffraction part 7 mentioned above, it is necessary to optimize the groove width of the groove 71, the space | interval of the groove | channel 71, and the number of the grooves 71 so that these three items may be satisfy | filled. As described above, it is known that the intensity distribution of light emitted from one or a plurality of grooves can be modeled as Fraunhofer diffraction. Using this diffracted light distribution model, (a) the SN ratio is improved when the width of each minute groove 71 is narrowed, and (b) the distance between adjacent diffracted lights is widened when the distance between the minute grooves 71 is narrowed. (C) It can be seen that the intensity distribution is sharpened when the number of the minute grooves 71 is increased.

図11は上記(a)〜(c)の手順によって強度分布が変化する様子を図示したものである。図11(a)に示すような強度分布だったものは、溝幅を狭くすると図11(b)のように変化してSN比が向上する。さらに、溝間隔を狭めると図11(c)に示すようにピーク間隔が拡がり、溝本数を増加することにより図11(d)のようにピークが先鋭化する。   FIG. 11 illustrates how the intensity distribution changes according to the procedures (a) to (c). In the case of the intensity distribution as shown in FIG. 11A, when the groove width is narrowed, it changes as shown in FIG. 11B and the SN ratio is improved. Further, when the groove interval is narrowed, the peak interval is widened as shown in FIG. 11 (c), and the peak is sharpened as shown in FIG. 11 (d) by increasing the number of grooves.

例えば、幅2μm、間隔5μm、本数41本の微小溝71からなる回折部7にレーザ(He−Neレーザ、波長:633nm)を照射した場合の、回折光強度分布の理論値と実測値の例を図12に示す。図12において破線が計測値であり、本来透過型のスリット透過後の回折光強度分布を示すフラウンフォーファ回折理論を用いても、理論値(実線)と良く合うことが確認できている。   For example, a theoretical value and an actual measurement value of the diffracted light intensity distribution when a laser (He-Ne laser, wavelength: 633 nm) is irradiated onto the diffractive portion 7 having a width of 2 μm, an interval of 5 μm, and 41 fine grooves 71. Is shown in FIG. In FIG. 12, the broken line is the measured value, and it has been confirmed that the theoretical value (solid line) is in good agreement with the Fraunhofer diffraction theory that indicates the diffracted light intensity distribution after transmission through the transmission-type slit.

また、溝断面形状を矩形にすると、より理論値と良く合うようになる。図12に示した実測値は、断面形状が矩形になるようにICP−RIE(反応性イオンエッチング)装置でSi基板を深堀エッチングを行った場合の例を示したものである。例えば、Si基板を用いて異方性エッチングにより微小溝71を形成すると、断面形状が3角形となるため、得られる回折光強度分布はフラウンフォーファ回折式から算出される理論値と厳密には合わなくなる。しかしながら、上記最適化フローを適用することは可能であり、所定計測精度を得るのに必要な微小溝を設計するための指針として用いることができる。   Further, when the groove cross-sectional shape is rectangular, the theoretical value is better matched. The actual measurement values shown in FIG. 12 show an example in which the Si substrate is deep-etched with an ICP-RIE (reactive ion etching) apparatus so that the cross-sectional shape is rectangular. For example, when the microgroove 71 is formed by anisotropic etching using a Si substrate, the cross-sectional shape becomes a triangle, so that the diffracted light intensity distribution obtained is strictly the theoretical value calculated from the Fraunhofer diffraction equation. Will not fit. However, it is possible to apply the above optimization flow, and it can be used as a guideline for designing a minute groove necessary for obtaining a predetermined measurement accuracy.

また、フラウンフォーファ回折式を用いて最適化するには、全ての溝71の幅を同じとし、また全ての溝間隔を同じとしなくては扱いにくい。しかし、1本1本異なる溝幅であっても、また溝間隔が違っていても回折光強度分布のシミュレーションは可能であり、本発明の適用には何ら問題はない。   Also, in order to optimize using the Fraunhofer diffraction formula, it is difficult to handle all the grooves 71 having the same width and the same groove interval. However, even if the groove width is different from one line to another, and the groove interval is different, the diffracted light intensity distribution can be simulated, and there is no problem in applying the present invention.

なお、上述した計測方法では、受光素子1,2に関するローカル座標値をワールド座標値に変換するパラメータを予め求めておいたり、光源3からの入射光軸J4のワールド座標上での方程式を求めるためのキャリブレーションが必要であった。しかし、図13に示した装置では、受光素子200〜203と光源210とが同一基板211上に設けられていてそれらの相対位置が固定されているので、それらを基板211上に精度良く配置することによりキャリブレーションが容易となり、また、キャリブレーションを不要とすることもできる。   In the measurement method described above, a parameter for converting the local coordinate values related to the light receiving elements 1 and 2 into the world coordinate value is obtained in advance, or an equation on the world coordinate of the incident optical axis J4 from the light source 3 is obtained. Calibration was required. However, in the apparatus shown in FIG. 13, since the light receiving elements 200 to 203 and the light source 210 are provided on the same substrate 211 and their relative positions are fixed, they are arranged on the substrate 211 with high accuracy. This facilitates calibration, and can also eliminate the need for calibration.

図1に示した装置では、別途高精度ステージを準備するなどしてワールド座標を定義し、そのワールド座標内での受光素子1,2の座標を求める必要があった。一方、図13の装置では、例えば、4つの受光素子200〜203が搭載される基板211の基板面と、光源210の出射光212の光軸J4とを用いてワールド座標を定義することができる。もちろん、図13の装置においても、受光素子を図1の装置のように2つにすることが可能である。   In the apparatus shown in FIG. 1, it is necessary to define world coordinates by separately preparing a high-precision stage and to obtain the coordinates of the light receiving elements 1 and 2 within the world coordinates. On the other hand, in the apparatus of FIG. 13, for example, the world coordinates can be defined using the substrate surface of the substrate 211 on which the four light receiving elements 200 to 203 are mounted and the optical axis J4 of the emitted light 212 of the light source 210. . Of course, also in the apparatus of FIG. 13, the number of light receiving elements can be two as in the apparatus of FIG.

なお、上述した実施の形態では反射型の回折部7を用いたが、図14に示すように透過型の回折部700を用いても良い。測定面4に設けられた回折部700には複数のスリット701が形成されており、測定面4の図示下方に設けられた光源3から回折部700に光を照射し、その透過光を受光素子1,2で検出する。また、図1および図14の装置では測定面4に対して受光素子1,2を移動させて相対距離を変更したが、逆に、測定面4を移動させて相対距離を変更しても良い。   In the above-described embodiment, the reflection type diffraction unit 7 is used. However, as shown in FIG. 14, a transmission type diffraction unit 700 may be used. A plurality of slits 701 are formed in the diffractive portion 700 provided on the measurement surface 4, and light is emitted from the light source 3 provided below the measurement surface 4 to the diffractive portion 700, and the transmitted light is received by the light receiving element. 1 and 2 are detected. 1 and 14, the relative distance is changed by moving the light receiving elements 1 and 2 with respect to the measurement surface 4, but conversely, the relative distance may be changed by moving the measurement surface 4. .

上述した実施の形態では、MEMSなどの微小部品の位置姿勢計測を例に説明したが、本発明の計測方法は、逐次露光装置(ステッパー)の高精度移動ステージの運動直進度計測や、ロボット関節角の計測など、位置と姿勢(傾き)の多軸を高精度に分離して計測する用途に広く応用することができる。また、本発明の特徴を損なわない限り、本発明は上記実施の形態に何ら限定されるものではない。   In the above-described embodiment, the position and orientation measurement of a micro component such as MEMS has been described as an example. However, the measurement method of the present invention can measure the straightness of movement of a high-precision moving stage of a sequential exposure apparatus (stepper) or a robot joint. It can be widely applied to applications such as angle measurement where multiple axes of position and orientation (tilt) are separated with high accuracy. In addition, the present invention is not limited to the above embodiment as long as the characteristics of the present invention are not impaired.

以上説明した実施の形態と特許請求の範囲の要素との対応において、演算処理部61は演算手段を、受光素子1,2、移動装置5および演算処理部61は出射方向検出手段を、移動装置5および移動制御部62は距離変更手段をそれぞれ構成する。   In the correspondence between the embodiment described above and the elements of the claims, the arithmetic processing unit 61 is an arithmetic unit, the light receiving elements 1 and 2, the moving device 5 and the arithmetic processing unit 61 are an emission direction detecting unit, and a moving device. 5 and the movement control unit 62 constitute distance changing means, respectively.

本発明による位置姿勢計測装置の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the position and orientation measuring apparatus by this invention. 3角測量法を説明する図であり、(a)は測定面4が平行移動した場合を、(b)は測定面4が傾いた場合をそれぞれ示す。It is a figure explaining a triangulation method, (a) shows the case where the measurement surface 4 moves in parallel, (b) shows the case where the measurement surface 4 inclines, respectively. 共焦点法の原理を説明する図である。It is a figure explaining the principle of a confocal method. 共焦点法による位置検出方法を説明する図であり、(a)は光路図、(b)は合焦位置と受光量との関係を示す図である。It is a figure explaining the position detection method by a confocal method, (a) is an optical path figure, (b) is a figure which shows the relationship between a focus position and light reception amount. 回折部7により発生する回折光を説明する図であり、(a)は入射光を示し、(b)は回折光を示したものである。It is a figure explaining the diffracted light which the diffraction part 7 generate | occur | produces, (a) shows incident light, (b) shows diffracted light. 測定方法を説明する図である。It is a figure explaining a measuring method. 受光素子1,2による画像を示す図であり、(a)は受光素子1による画像、(b)は受光素子2による画像をそれぞれ示す。It is a figure which shows the image by the light receiving elements 1 and 2, (a) shows the image by the light receiving element 1, (b) shows the image by the light receiving element 2, respectively. 輝度中心位置10a,11aの測定値の位置関係を示す図である。It is a figure which shows the positional relationship of the measured value of the luminance center position 10a, 11a. 入射光軸J4,回折軸2等分線J5および測定面4の法線nとの関係を示す図である。FIG. 5 is a diagram showing a relationship between an incident optical axis J4, a diffraction axis bisector J5, and a normal line n of a measurement surface 4; 微小溝群73,74を測定面に形成した場合の受光素子の構成を示す図である。It is a figure which shows the structure of the light receiving element at the time of forming the micro groove groups 73 and 74 in a measurement surface. 強度分布の最適化手順を示す図であり、(a)は最適化前の回折光強度分布を示し、(b)〜(d)に最適化の各段階における回折光強度分布を示す。It is a figure which shows the optimization procedure of intensity distribution, (a) shows the diffracted light intensity distribution before optimization, (b)-(d) shows the diffracted light intensity distribution in each step of optimization. フラウンフォーファ回折理論による回折光強度分布の理論値と実測値とを示す図である。It is a figure which shows the theoretical value and measured value of diffracted light intensity distribution by Fraunhofer diffraction theory. 同一基板211上に配置された受光素子200〜203と光源210とを示す図である。It is a figure which shows the light receiving elements 200-203 and the light source 210 which are arrange | positioned on the same board | substrate 211. FIG. 透過型の回折部700を用いた場合の位置姿勢計測装置の概略構成を示す模式図である。It is a schematic diagram which shows schematic structure of the position and orientation measurement apparatus at the time of using the transmissive | pervious diffraction part 700. FIG.

符号の説明Explanation of symbols

1,2,31〜34,200〜203 受光素子
3,210 光源
4 測定面
5 移動装置
6 制御装置6
7,700 回折部
10a,11a 輝度中心位置
61 演算処理部
62 移動制御部
71 溝
73,74 微小溝群
701 スリット
J1,J2 光軸
J3 交点
J4 入射光軸
J5 回折軸2等分線
1, 2, 31 to 34, 200 to 203 Light receiving element 3,210 Light source 4 Measurement surface 5 Moving device 6 Control device 6
7,700 Diffraction unit 10a, 11a Luminance center position 61 Arithmetic processing unit 62 Movement control unit 71 Groove 73, 74 Micro groove group 701 Slit J1, J2 Optical axis J3 Intersection J4 Incident optical axis J5 Diffraction axis 2 bisector

Claims (6)

測定面に設けられた回折部に光を照射し、前記光の照射方向および前記回折部より出射される所定次数の回折光の出射方向に基づいて、前記測定面の位置および姿勢を計測することを特徴とする位置姿勢計測方法。   Irradiating light to a diffraction part provided on a measurement surface, and measuring the position and orientation of the measurement surface based on the irradiation direction of the light and the emission direction of a predetermined order of diffracted light emitted from the diffraction part A position and orientation measurement method characterized by 測定面に設けられた回折部と、
前記回折部に光を照射する光源と、
前記回折部より出射される所定次数の回折光の出射方向を検出する出射方向検出手段と、
前記出射方向検出手段により検出された出射方向および前記光源の光の照射方向に基づいて、前記測定面の位置および姿勢を演算する演算手段とを備えたことを特徴とする位置姿勢計測装置。
A diffraction part provided on the measurement surface;
A light source for irradiating the diffraction part with light;
An emission direction detecting means for detecting an emission direction of diffracted light of a predetermined order emitted from the diffraction unit;
A position / orientation measurement apparatus comprising: an operation unit that calculates the position and orientation of the measurement surface based on the emission direction detected by the emission direction detection unit and the light irradiation direction of the light source.
請求項2に記載の位置姿勢計測装置において、
前記回折部は1若しくは複数の溝から成り、
前記出射方向検出手段は前記回折部の反射光に含まれる前記回折光の出射方向を検出することを特徴とする位置姿勢計測装置。
In the position and orientation measurement apparatus according to claim 2,
The diffraction part is composed of one or a plurality of grooves,
The position / orientation measurement apparatus characterized in that the emission direction detecting means detects an emission direction of the diffracted light included in the reflected light of the diffraction unit.
請求項2に記載の位置姿勢計測装置において、
前記回折部は1若しくは複数のスリットから成り、
前記出射方向検出手段は前記回折部の透過光に含まれる前記回折光の出射方向を検出することを特徴とする位置姿勢計測装置。
In the position and orientation measurement apparatus according to claim 2,
The diffraction part is composed of one or a plurality of slits,
The position / orientation measurement apparatus characterized in that the emission direction detecting means detects an emission direction of the diffracted light included in the transmitted light of the diffraction unit.
請求項2〜4のいずれかに記載の位置姿勢計測装置において、
前記出射方向検出手段は、前記回折光を受光する光電変換素子と、前記光電変換素子と前記測定面との相対距離を変化させる距離変更手段とを備え、前記回折光の受光位置と前記相対距離の変化とに基づいて前記出射方向を検出することを特徴とする位置姿勢計測装置。
In the position and orientation measurement apparatus according to any one of claims 2 to 4,
The emission direction detecting unit includes a photoelectric conversion element that receives the diffracted light, and a distance changing unit that changes a relative distance between the photoelectric conversion element and the measurement surface, and a light reception position of the diffracted light and the relative distance. A position and orientation measurement apparatus that detects the emission direction based on a change in the position.
請求項5に記載の位置姿勢計測装置において、
前記光電変換素子と前記光源とを、同一基板上に配置して一体としたことを特徴とする位置姿勢計測装置。
In the position and orientation measurement apparatus according to claim 5,
The position / orientation measurement apparatus characterized in that the photoelectric conversion element and the light source are arranged on the same substrate and integrated.
JP2003312120A 2003-09-04 2003-09-04 Position and orientation measurement method and position and orientation measurement apparatus Expired - Fee Related JP4027866B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003312120A JP4027866B2 (en) 2003-09-04 2003-09-04 Position and orientation measurement method and position and orientation measurement apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003312120A JP4027866B2 (en) 2003-09-04 2003-09-04 Position and orientation measurement method and position and orientation measurement apparatus

Publications (2)

Publication Number Publication Date
JP2005077390A true JP2005077390A (en) 2005-03-24
JP4027866B2 JP4027866B2 (en) 2007-12-26

Family

ID=34413467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003312120A Expired - Fee Related JP4027866B2 (en) 2003-09-04 2003-09-04 Position and orientation measurement method and position and orientation measurement apparatus

Country Status (1)

Country Link
JP (1) JP4027866B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218842A (en) * 2006-02-20 2007-08-30 Tohoku Univ Tri-axis angle sensor
JP2018155852A (en) * 2017-03-16 2018-10-04 株式会社ニコン Inspection apparatus and inspection method, exposure apparatus and exposure method, and method for manufacturing device
CN110460828A (en) * 2019-08-22 2019-11-15 淮南师范学院 A kind of micro electromechanical scanning mirror projection system and method
CN112654832A (en) * 2018-12-20 2021-04-13 欧姆龙株式会社 Confocal sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007218842A (en) * 2006-02-20 2007-08-30 Tohoku Univ Tri-axis angle sensor
JP2018155852A (en) * 2017-03-16 2018-10-04 株式会社ニコン Inspection apparatus and inspection method, exposure apparatus and exposure method, and method for manufacturing device
JP7087268B2 (en) 2017-03-16 2022-06-21 株式会社ニコン Inspection equipment and inspection method, exposure equipment and exposure method, and device manufacturing method
CN112654832A (en) * 2018-12-20 2021-04-13 欧姆龙株式会社 Confocal sensor
US11965729B2 (en) 2018-12-20 2024-04-23 Omron Corporation Confocal sensor
CN110460828A (en) * 2019-08-22 2019-11-15 淮南师范学院 A kind of micro electromechanical scanning mirror projection system and method
CN110460828B (en) * 2019-08-22 2021-03-19 淮南师范学院 Micro-electro-mechanical scanning mirror projection system and method

Also Published As

Publication number Publication date
JP4027866B2 (en) 2007-12-26

Similar Documents

Publication Publication Date Title
US20220192801A1 (en) Apparatus and method for measuring surface topography optically
JP2019533834A (en) Method for manufacturing an optical system and optical system
JP5361322B2 (en) Exposure apparatus and device manufacturing method
JP3914210B2 (en) Optical displacement sensor and external force detection device
JP2007048819A (en) Surface position detector, aligner and process for fabricating microdevice
JP4882384B2 (en) Surface position detection apparatus, surface position detection method, exposure apparatus, and device manufacturing method
JP2020502570A (en) Optical devices and related systems
JP4027866B2 (en) Position and orientation measurement method and position and orientation measurement apparatus
JP4730712B2 (en) Illumination optical apparatus, exposure apparatus, and exposure method
US11409199B2 (en) Pattern drawing device
JP2006098389A (en) Method and apparatus for measuring transmittance of finite-system optical element
JP5358898B2 (en) Optical surface shape measuring method and apparatus, and recording medium
JP6264797B2 (en) Optical transmission line alignment method, alignment apparatus, and alignment program
WO2023112363A1 (en) Optical system, multi-beam projection optical system, multi-beam projection device, image projection device, and imaging device
KR102116618B1 (en) Inspection apparatus for surface of optic specimen and controlling method thereof
US20240142339A1 (en) Methods of geometry parameters measurement for optical gratings
JP3235782B2 (en) Position detecting method, semiconductor substrate and exposure mask
JP2581227B2 (en) Position detection device
JP5965721B2 (en) Multifocal imaging device
JP3048904B2 (en) Position detection method applied to proximity exposure, wafer and exposure mask
KR100447456B1 (en) Semiconductor substrate and exposure mask in position detection apparatus using edge diffusion light
WO2024091628A1 (en) Methods of geometry parameters measurement for optical gratings
Summitt Fast and Scalable Fabrication of Microscopic Optical Surfaces and its Application for Optical Interconnect Devices
JP2021010327A (en) Cell observation apparatus
JP2009170560A (en) Surface position detection device, exposure equipment, and method for manufacturing device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070925

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111019

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121019

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131019

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees