JP2005076153A - Method for producing non-slip processed glove - Google Patents

Method for producing non-slip processed glove Download PDF

Info

Publication number
JP2005076153A
JP2005076153A JP2003308879A JP2003308879A JP2005076153A JP 2005076153 A JP2005076153 A JP 2005076153A JP 2003308879 A JP2003308879 A JP 2003308879A JP 2003308879 A JP2003308879 A JP 2003308879A JP 2005076153 A JP2005076153 A JP 2005076153A
Authority
JP
Japan
Prior art keywords
vinyl chloride
glove
slip
foaming agent
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003308879A
Other languages
Japanese (ja)
Inventor
Hideki Sawada
英樹 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MIE KAGAKU KOGYO KK
Original Assignee
MIE KAGAKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MIE KAGAKU KOGYO KK filed Critical MIE KAGAKU KOGYO KK
Priority to JP2003308879A priority Critical patent/JP2005076153A/en
Publication of JP2005076153A publication Critical patent/JP2005076153A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing non-slip processed gloves enhancing a non-slip function by forming fine unevenness, exhibiting high non-slip effect, compared with conventional gloves also in operation in which a liquid such as water or oils intervenes, having softness, being easy to use and capable of sufficiently corresponding to conventional production facilities. <P>SOLUTION: The method for producing the non-slip processed gloves comprises applying vinyl chloride sol in which a foaming agent is formulated to the surface of a glove base material made of polyvinyl chloride and having underlining, foaming the vinyl chloride sol by heating to apply non-slip processing to the surface of the glove base material. In the production method, the foaming agent formulated therein is a microcapsule type foaming agent and the foaming agent is formulated in an amount of 1.0-10.0 pts. wt. and a plasticizer is formulated in an amount of >160 pts.wt. and ≤200 pts.wt. based on vinyl chloride resin in the formulation composition of the vinyl chloride sol. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は裏布付き塩化ビニル製手袋基材の表面に、特に裏布付き塩化ビニル製手袋基材に係るコーティング手部の表面に、グリップ性能さらに作業者の安全性向上につながる滑り止め機能を付与する滑り止め加工手袋の製造方法に関する。   The present invention has a non-slip function on the surface of a vinyl chloride glove base material with a backing cloth, particularly on the surface of a coating hand related to the vinyl chloride glove base material with a backing cloth, which leads to improvement of grip performance and safety of workers. The present invention relates to a method for manufacturing a non-slip processed glove to be applied.

周知の通り、裏布付き塩化ビニル製作業用手袋は塩化ビニルペーストの無圧フローコーティング法により製造される。そのままの状態で市場に出される製品もあるが、それでは表面が平滑でグリップ性能に乏しいため、最終溶融工程の前に、表面に粗粒ビニル樹脂を添加した塩化ビニルペーストでトップコーティングを施し、表面に樹脂粒子による凹凸をつけた滑り止め加工手袋として市場に出されることが多い。そして、これまで種々の滑り止め加工手袋が提案されてきた(例えば、特許文献1〜5参照)。   As is well known, a vinyl chloride working glove with a backing cloth is produced by a pressureless flow coating method of vinyl chloride paste. Some products are put on the market as they are, but since the surface is smooth and grip performance is poor, the top coating is applied with a vinyl chloride paste with coarse vinyl resin added to the surface before the final melting process. It is often put on the market as a non-slip processed glove with unevenness made of resin particles. Various anti-slip gloves have been proposed so far (see, for example, Patent Documents 1 to 5).

特公昭47−31102号公報(従来技術1)Japanese Patent Publication No. 47-31102 (prior art 1) 特開昭61−275406号公報(従来技術2)JP 61-275406 A (prior art 2) 実公昭47−24100号公報(従来技術3)Japanese Utility Model Publication No. 47-24100 (Prior Art 3) 特開平5−51804号公報(従来技術4)JP-A-5-51804 (Prior Art 4) 特開2001−131813公報(従来技術5)JP 2001-131813 A (Prior Art 5)

近年、市場で見られる裏布付き塩化ビニル製作業用手袋の滑り止め加工の多くは、従来技術1に示された方法を基にした加工方法である。ところが、実際にこの方法を実施する場合、通常のプラスチゾル型ペーストのままでは粗粒ビニル樹脂がバインダーの役割をなすペースト層の中に埋没してしまい十分な表面の凹凸を得ることが困難である。この問題を回避するためには多量の二次可塑剤を配合することが必要であり、二次可塑剤として工業用ガソリンやミネラルスピリッツ、アルキルトルエン等の比較的低沸点の炭化水素類が使用されている。このような二次可塑剤は最終溶融工程で大気中に蒸散され、製品中にほとんど残らない。それゆえ、二次可塑剤の使用を抑えることは石化資源の有効利用を環境汚染対策の面から強く望まれる問題であるといえる。
従来技術1以外の方法として、発泡技術を応用する製法も考えられており、従来技術2には機械的に発泡させたゾルをコーティングに用い、破泡させることによって網目状の構造体を形成する製法が開示されている。ただ従来技術2は基布に届くまで破泡がほぼ完全に進行するため、水,油等の液体を容易に通過させてしまうという問題があった。また従来技術2は、機械的に発泡させるため多量の二次可塑剤や希釈剤を配合する必要があり、二次可塑剤や希釈剤を素早く吸収できる木綿布ような素材の上にコーティングすることはできても、平滑で液体を通過させない塩化ビニル手袋の皮膜の上では泡状のコーティング液が保持できず流れ落ちてしまい、トップコーティングによる滑り止め加工には応用できないといった問題があった。
従来技術3には点状または線状の加工が示されているが、当該技術はコーティング部分の体積が増加するだけで表面の破泡や発泡により発生する凹凸によって滑り止め効果までは期待されていない。
本出願人の従来技術4によれば、基本布の網目を逆転写し発泡により大きな凹凸を手袋の皮膜に付与できるし、厚み方向への変形や圧着に起因するグリップ性能の向上が期待できる。ただ、当該製法によれば最表面の気泡セルは比較的しっかりしたスキン層で覆われており、個々の気泡で破泡状態の細かい凹凸が手袋表面に形成されるわけではない。このため、濡れたものに対する滑り止め効果が発揮されるまでにはある程度の使用履歴により表面のスキン層に破れが生じるまで待たねばならなかった。また、当該発明技術は分解発泡により発泡させるケミカル発泡剤を使用することを前提としているが、塩化ビニル製手袋のごとく可塑剤を比較的多く配合するような系でこのような発泡剤がセルを形成するには、ある程度のコーティングゾルの厚みが必要となる。塩化ビニル手袋上へトップコーティングを実施した場合にはコーティングゾルの厚みが薄くなると、発泡層の生成過程で微細な発泡セルが集合して安定な大きさの気泡に成長する前に分解ガスが皮膜表面から拡散してしまい見かけ上発泡が起こらない。一方、均一な発泡層が形成できるまでコーティングの厚みを増すと、発泡層が厚くなりすぎて使用するに適さない作業性の悪い手袋になってしまう。このため、この製法で薄く柔軟性に富んだ作業用手袋を作ろうとすれば、先の従来技術2の製法と同様に布地手袋上の全ての皮膜を発泡剤配合のゾルでコーティングするしかなく、その結果できる手袋は皮膜全てが発泡体であり、手袋を装着しての作業中に発泡セルが破れて液体がしみこんでしまう危険が高かった。
本出願人が提案した従来技術5は、斯る問題を解消し、ケミカル発泡剤を用いる方法においても減圧及び急激な大気圧への開放を併用することで塩化ビニル皮膜上へ比較的薄く、柔軟な発泡を利用した凹凸を付与できる方法を開示した。分解ガスが抜け切る前の微細な気泡の発生段階でも減圧により十分な大きさの凹構造を付与できる。それ以外にも従来技術5は表面のクレーター状の網目構造や膨張後の収縮による柔軟な皮膜構造を付与できる方法を示している。ところが、従来技術5では優れた滑り止め加工ができる反面、高温の乾燥炉内から手袋を金型ごと素早く取り出し、かつ高温のまま急速に減圧するため、生産工程が煩雑で大量生産用の設備に、従来の生産設備では対応できず、新たな設備を作らねばならないという欠点があった。
In recent years, many of the non-slip processing of vinyl chloride working gloves with a backing cloth found in the market is a processing method based on the method shown in the prior art 1. However, when this method is actually carried out, it is difficult to obtain sufficient surface irregularities because the coarse vinyl resin is buried in the paste layer serving as a binder if it is a normal plastisol-type paste. . In order to avoid this problem, it is necessary to add a large amount of secondary plasticizer, and hydrocarbons with relatively low boiling points such as industrial gasoline, mineral spirits, and alkyltoluene are used as the secondary plasticizer. ing. Such secondary plasticizers are transpired into the atmosphere in the final melting step and hardly remain in the product. Therefore, it can be said that suppressing the use of secondary plasticizers is a problem in which effective utilization of petrochemical resources is strongly desired from the viewpoint of environmental pollution countermeasures.
As a method other than the prior art 1, a production method using a foaming technique is also considered. In the prior art 2, a network-like structure is formed by using a mechanically foamed sol for coating and breaking the foam. A manufacturing method is disclosed. However, the prior art 2 has a problem in that liquids such as water and oil easily pass through since the bubble breakage almost completely proceeds until reaching the base fabric. Prior art 2 requires a large amount of secondary plasticizer and diluent to be blended in order to foam mechanically, and coating on a material such as cotton cloth that can quickly absorb the secondary plasticizer and diluent. However, there is a problem that the foamed coating liquid cannot be retained on the film of the vinyl chloride glove that is smooth and does not allow liquid to pass through, and cannot be applied to anti-slip processing by top coating.
Although the prior art 3 shows a dotted or linear process, this technique is expected to have an anti-slip effect due to the unevenness generated by foam breakage or foaming on the surface only by increasing the volume of the coating portion. Absent.
According to the prior art 4 of the present applicant, it is possible to reversely transfer the mesh of the basic fabric and impart large irregularities to the film of the glove by foaming, and to improve the grip performance due to deformation in the thickness direction and pressure bonding. However, according to the manufacturing method, the outermost bubble cell is covered with a relatively firm skin layer, and fine irregularities in a bubble-breaking state are not formed on the glove surface by individual bubbles. For this reason, it was necessary to wait until the skin layer on the surface was torn due to a certain usage history before the anti-slip effect on the wet one was exhibited. In addition, the technology of the present invention is based on the premise that a chemical foaming agent that foams by decomposition foaming is used, but such a foaming agent is used in a system in which a relatively large amount of plasticizer is blended like a vinyl chloride glove. In order to form, a certain amount of coating sol thickness is required. When top coating is performed on vinyl chloride gloves, if the coating sol thickness is reduced, the cracked gas is deposited before the fine foam cells gather and grow into stable sized bubbles during the formation of the foam layer. It diffuses from the surface and apparently no foaming occurs. On the other hand, if the thickness of the coating is increased until a uniform foamed layer can be formed, the foamed layer becomes too thick, resulting in a workable glove that is not suitable for use. For this reason, in order to make a thin and flexible working glove with this manufacturing method, all the coating on the fabric glove must be coated with a foaming agent sol as in the manufacturing method of the prior art 2. As a result, the resulting gloves were all foamed, and there was a high risk that the foam cells would be broken and the liquid would be infiltrated during work with the gloves attached.
Prior art 5 proposed by the present applicant solves such a problem, and even in a method using a chemical foaming agent, it is relatively thin and flexible on a vinyl chloride film by using both decompression and rapid release to atmospheric pressure. Disclosed is a method capable of imparting irregularities using simple foaming. Even in the generation stage of fine bubbles before the cracked gas is completely removed, a sufficiently large concave structure can be provided by decompression. In addition, the prior art 5 shows a method capable of providing a crater-like network structure on the surface and a flexible film structure by shrinkage after expansion. However, while the conventional technique 5 provides excellent anti-slip processing, the gloves are quickly taken out from the high-temperature drying furnace together with the mold and rapidly depressurized at a high temperature, making the production process complicated and mass production equipment. However, the conventional production equipment cannot cope with it, and there is a drawback that a new equipment has to be made.

ところで、従来から塩化ビニルの発泡技術としてはアゾジカーボンアミドなどを用いたケミカル発泡剤の分解ガスによる製法とマイクロカプセル内に揮発性炭化水素を封入してカプセル自体の膨張により発泡体を形成する製法が使われてきたことは広く知られている。しかるに、これらの発泡技術は専ら樹脂の体積膨張を利用する目的で使われており、例えばマイクロカプセル型発泡剤は衣料の分野において絵柄や文字の膨らむ加工方法に用いられたり壁紙等のケミカルエンボス加工などに使用される。このような用途に共通する特徴として、樹脂部は膨らんでいるもののその表面は滑らかであり、手袋の滑り止めに使えるような発泡セル単位での細かな凹凸は形成されていない。   By the way, as a conventional foaming technique of vinyl chloride, a foaming body is formed by encapsulating volatile hydrocarbons in a microcapsule by producing a chemical foaming agent using azodicarbonamide or the like with a decomposition gas and expanding the capsule itself. It is widely known that the process has been used. However, these foaming technologies are used exclusively for the purpose of utilizing the volume expansion of the resin. For example, microcapsule type foaming agents are used in processing methods for expanding patterns and characters in the field of clothing, and are used for chemical embossing such as wallpaper. Used for etc. As a feature common to such applications, although the resin portion swells, the surface thereof is smooth, and fine irregularities are not formed in foam cell units that can be used for preventing slipping of gloves.

「マイクロカプセル型発泡剤」は、ポリ塩化ビニリデンやポリアクリロニトリル等の数十ミクロン程度の微細なシェル中に炭素数4〜10程度の炭化水素を膨張剤として封入したものであり、加熱によりシェルを構成する樹脂が軟化点に達すると内部の膨張剤のガス圧によりシェルが数倍から数十倍に膨張する。このマイクロカプセル型発泡剤は未膨張のものが発泡剤として市販されている一方で、このマイクロカプセル型発泡剤を単独で加熱膨張させた高分子中空微小球体も充填剤や軽量化材として市販されている。このような高分子小球体は、比面積が大きいために吸油量が大きく、かつその成分が上記のようなプラスチックでありにもかかわらず吸水量も大きいことが知られている。   “Microcapsule type foaming agent” is an encapsulated hydrocarbon of about 4 to 10 carbon atoms in a fine shell of about tens of microns such as polyvinylidene chloride and polyacrylonitrile. When the constituent resin reaches the softening point, the shell expands several to several tens of times by the gas pressure of the internal expansion agent. While this non-expanded microcapsule type foaming agent is commercially available as a foaming agent, polymer hollow microspheres obtained by heating and expanding this microcapsule type foaming agent alone are also commercially available as fillers and lightening materials. ing. Such polymer microspheres are known to have a large oil absorption due to a large specific area, and a large water absorption despite the fact that the component is a plastic as described above.

既述のごとく従来技術4は優れたグリップ性の塩化ビニル手袋の加工方法である半面、従来技術2に示された製法による手袋のように最表面に破泡、連泡構造をもたないためグリップ性能を十分に発揮できなかった。また、従来技術4や従来技術2の製法による手袋では水や油等の液体を取り扱う作業に不都合であった。この問題は従来技術5において解決するための方法が示されているが、従来技術5は従来の生産設備で対応できず、新たな生産設備の構築と省エネルギー型の減圧方法などの新たな技術開発が必要になっていた。従来技術1を基にした加工方法は、凹凸が粗く、厚み方向の変位も比較少なく、加えて滑り止め部表面の親液性も乏しいために、対象物が水や油類のような液体で濡れた物体である場合に滑り止め機能が低下する場合が多く、より滑り止め効果の上がる加工方法が望まれていた。更に、これらの加工方法は、多量の揮発成分すなわち二次可塑剤や希釈剤が使用されることが必要とされる場合が多く、これらの揮発成分の殆どが加工の過程で大気中に蒸散されるため、環境問題上や資源の有効利用上で問題があった。   As described above, the conventional technique 4 is a method of processing a vinyl chloride glove having excellent grip properties, but it does not have a foam breakage or open cell structure on the outermost surface like a glove produced by the manufacturing method shown in the conventional technique 2. The grip performance could not be fully demonstrated. In addition, the gloves produced by the manufacturing methods of the prior art 4 and the prior art 2 are inconvenient for handling a liquid such as water or oil. Although a method for solving this problem is shown in the conventional technology 5, the conventional technology 5 cannot cope with the conventional production equipment, and a new technology development such as construction of a new production equipment and an energy-saving decompression method is shown. Was needed. The processing method based on the prior art 1 is rough, has relatively little displacement in the thickness direction, and also has poor lyophilicity on the surface of the anti-slip part, so that the object is a liquid such as water or oil. In the case of a wet object, the anti-slip function often deteriorates, and a processing method that increases the anti-slip effect has been desired. Furthermore, these processing methods often require the use of large amounts of volatile components, i.e. secondary plasticizers and diluents, and most of these volatile components are evaporated into the atmosphere during processing. Therefore, there were problems in environmental problems and effective use of resources.

本発明は前記問題点を解決するもので、微細な凹凸を形成して滑り止め機能を高め、且つ水、油類等の液体の介在する作業においても従来に比べ高い滑り止め効果を発揮し、また柔軟性があり使い易く、さらに従来の生産設備でも十分対応できる滑り止め加工手袋の製造方法を提供することを目的とする。   The present invention solves the above-mentioned problems, improves the anti-slip function by forming fine irregularities, and also exhibits a higher anti-slip effect than conventional in work involving liquids such as water and oils, It is another object of the present invention to provide a manufacturing method of non-slip processed gloves that is flexible and easy to use, and that can be used with conventional production facilities.

前記目的を達成すべく、請求項1に記載の発明の要旨は、裏布付き塩化ビニル製手袋基材の表面に、発泡剤を配合した塩化ビニルゾルを塗布した後に加熱、発泡させ、手袋基材の表面に滑り止め加工を施す滑り止め加工手袋の製造方法で、配合される前記発泡剤がマイクロカプセル型発泡剤であり、さらに前記塩化ビニルゾルの配合組成中に、塩化ビニル樹脂に対し該発泡剤が1.0〜10.0重量部配合され且つ可塑剤が160重量部を越え200重量部までの範囲内で配合されていることを特徴とする滑り止め加工手袋の製造方法にある。
ここで、「塩化ビニルゾル」とは、微粉末のポリ塩化ビニル樹脂に必要量の液状可塑剤を加えて混合、分散させ、ペースト状の粘稠なゾルに調整したものであり、必要に応じて安定剤、顔料、粘度調整剤、抗菌剤等が配合されている。更に詳しく述べればこの微粉末のポリ塩化ビニル樹脂は、ペーストレジンと呼ばれているものであり、乳化重合法、もしくはマイクロサスペンション重合法で生産される比較的均一で粒子径の小さい粉末状のポリ塩化ビニルである。
請求項2の発明たる滑り止め加工手袋の製造方法は、請求項1で、表層が無浸透型塩化ビニルペーストで加工された裏布付き塩化ビニル製手袋基材の表面に、前記発泡剤を配合した前記塩化ビニルゾルを塗布した後に加熱、発泡させ、手袋基材の表面に滑り止め加工を施すことを特徴とする。すなわち、手袋基材の表層が、無浸透型塩化ビニルペーストをコーティングし加熱成形した軟質塩化ビニル樹脂の被膜であることを特徴とする。
ここで「無浸透型塩化ビニルペースト」は、前記塩化ビニルゾルにおいて原料に使用されるポリ塩化ビニル樹脂がペーストレジンの中でも特殊な無浸透型ペースト樹脂と呼ばれる一群のポリ塩化ビニルであるものをいう。ポリ塩化ビニルの合成において乳化重合法、もしくはマイクロサスペンション重合法を用いた場合、反応液に対し数%の界面活性剤が使用され、この界面活性剤が重合後の塩化ビニル樹脂内に残る。無浸透型ペースト樹脂はこの残留する界面活性剤を何らかの方法で除去したり不活性化したものである。本来、「無浸透型塩化ビニルペースト」とは、無浸透型ペースト樹脂を用いて適度な粘度を有する塩化ビニルゾルを調整し、布製製品の上にコーティングしたときに布内部や裏側に塩化ビニルゾルがほとんど侵入することなく布の上に塩化ビニル被膜が成形できることからこのように呼ばれているものであり、これに対し、界面活性剤が残留したままの通常のペースト樹脂を使用した塩化ビニルペーストを布製製品の上にコーティングすると、速やかに布或いは繊維中に浸透が進み、含浸型の塩化ビニル被膜が成形される。しかるに、本発明において「無浸透型塩化ビニルペースト」を用いる理由はその無浸透性に関わるのではなく、無浸透型ペースト樹脂を用いて造った塩化ビニルゾルのレベリング性の低さと界面活性剤を含まないという点にある。したがって、請求項2にある「無浸透型塩化ビニルペースト」とは前記無浸透型ペースト樹脂のみを用いて調整した塩化ビニルゾル全てを含むものと定義し、その粘度や布製品への無浸透性によって規定されないものとする。
請求項3の発明たる滑り止め加工手袋の製造方法は、請求項2で、発泡剤を配合した前記塩化ビニルゾル中の塩化ビニルペーストレジンの平均重合度が2000〜4000の範囲内にあることを特徴とする。
請求項4の発明たる滑り止め加工手袋の製造方法は、請求項2で、発泡剤を配合した前記塩化ビニルゾルが無浸透型塩化ビニルペーストレジンを用いて調整されたペーストであることを特徴とする。
In order to achieve the above object, the gist of the invention described in claim 1 is that a glove base material is coated with a vinyl chloride sol mixed with a foaming agent on the surface of a vinyl chloride glove base material with a backing and then heated and foamed. The foaming agent to be blended is a microcapsule type foaming agent, and the foaming agent is added to the vinyl chloride resin in the blending composition of the vinyl chloride sol. Is prepared in an amount of 1.0 to 10.0 parts by weight and the plasticizer is added in a range of more than 160 parts by weight and up to 200 parts by weight.
Here, “vinyl chloride sol” is a mixture of fine powder polyvinyl chloride resin with the required amount of liquid plasticizer mixed, dispersed, and adjusted to a paste-like viscous sol. Stabilizers, pigments, viscosity modifiers, antibacterial agents and the like are blended. More specifically, this fine-powder polyvinyl chloride resin is called a paste resin, and is a relatively uniform, small-particle-size powdery poly-crystalline resin produced by emulsion polymerization or microsuspension polymerization. Vinyl chloride.
The method for producing a non-slip processed glove according to claim 2 is the method according to claim 1, wherein the foaming agent is blended on the surface of a vinyl chloride glove base material with a backing cloth whose surface layer is processed with a non-penetrating vinyl chloride paste. After applying the vinyl chloride sol, heating and foaming are performed, and the surface of the glove base material is subjected to anti-slip processing. That is, the surface layer of the glove base material is a soft vinyl chloride resin film formed by coating a non-penetrable vinyl chloride paste and thermoforming it.
Here, the “non-penetrating type vinyl chloride paste” means that the polyvinyl chloride resin used as a raw material in the vinyl chloride sol is a group of polyvinyl chlorides called special non-penetrating type paste resins among paste resins. When an emulsion polymerization method or a microsuspension polymerization method is used in the synthesis of polyvinyl chloride, several percent of the surfactant is used in the reaction solution, and this surfactant remains in the vinyl chloride resin after polymerization. The impervious paste resin is obtained by removing or inactivating the remaining surfactant by some method. Originally, “non-penetrating vinyl chloride paste” is a non-penetrating paste resin that is used to prepare a vinyl chloride sol with an appropriate viscosity, and when coated on a fabric product, most of the vinyl chloride sol is inside or on the back of the fabric. It is called this because a vinyl chloride film can be formed on the cloth without intrusion. On the other hand, a vinyl chloride paste using a normal paste resin with the surfactant remaining is made of cloth. When coated on the product, the penetration proceeds rapidly into the cloth or fiber, and an impregnated vinyl chloride film is formed. However, the reason for using the “non-permeable type vinyl chloride paste” in the present invention is not related to the non-permeable type, but includes the low leveling property of the vinyl chloride sol made from the non-permeable type paste resin and the surfactant. There is no point. Therefore, the “non-penetrating type vinyl chloride paste” in claim 2 is defined as including all vinyl chloride sols prepared using only the non-penetrating type paste resin, depending on its viscosity and non-penetrability to fabric products. It shall not be specified.
The method for producing a non-slip processed glove as claimed in claim 3 is characterized in that, in claim 2, the average degree of polymerization of the vinyl chloride paste resin in the vinyl chloride sol blended with the foaming agent is in the range of 2000 to 4000. And
According to a fourth aspect of the present invention, there is provided a non-slip processed glove manufacturing method according to the second aspect, wherein the vinyl chloride sol blended with a foaming agent is a paste prepared using a non-penetrating vinyl chloride paste resin. .

請求項1の発明のごとく、トップコーティング液に配合される発泡剤がマイクロカプセル型発泡剤で、塩化ビニル樹脂に対し1.0〜10.0重量部配合され、且つトップコーティング液に配合される可塑剤の配合割合が塩化ビニル樹脂に対して160重量部を越え200重量部までの範囲内で配合されていると、微細な凹凸を形成して滑り止め機能を高める加工手袋ができる。水,油等の液体の取扱い作業も可能な加工手袋に仕上がる。可塑剤の配合割合が塩化ビニル樹脂に対して160重量部を越え200重量部までの範囲内で配合されていることから、滑り止め付与される加工皮膜が柔軟になる。手袋基材上に柔らかくて滑り止め効果の高い加工手袋となる。しかも斯る製法によれば、特別の設備を要せず、従来型設備でも十分対応できる。
請求項2の発明のごとく、手袋基材の表層が無浸透型塩化ビニルペーストで加工されている場合、被膜表面の平滑性が悪く、又、基材表面に界面活性剤が存在しないことに起因する可能性が高いが、激しい凹凸が形成されやすく更に滑り止め効果が上がる。
請求項3の発明のごとく、マイクロカプセル型発泡剤を配合した塩化ビニルゾルが平均重合度2000〜4000の範囲内にある塩化ビニルペーストレジンで配合されると、手袋表面の発泡層が不均一に隆起し、網目状もしくは血管状の凹凸模様が形成されるので、二重の滑り止め効果が期待できる。
請求項4の発明のごとく、発泡剤を配合した前記塩化ビニルゾルが無浸透型塩化ビニルペーストレジンを用いて調整されたペーストであると、手袋表面の網目状もしくは血管状の凹凸模様の形成が抑制されて手袋表面が平滑化しつつも、発泡した泡が破泡もしくは半球状の凹凸表面になって美しい外観が得られる。この破泡もしくは半球状の凹凸表面によって請求項3の発明とはまた違った滑り止め効果が期待できる。
As in the first aspect of the invention, the foaming agent to be blended in the top coating liquid is a microcapsule type foaming agent, blended in an amount of 1.0 to 10.0 parts by weight with respect to the vinyl chloride resin, and blended in the top coating liquid. When the blending ratio of the plasticizer is blended in the range of more than 160 parts by weight and up to 200 parts by weight with respect to the vinyl chloride resin, a processed glove that forms fine irregularities and enhances the anti-slip function can be obtained. Finished with processed gloves that can handle liquids such as water and oil. Since the blending ratio of the plasticizer is blended in the range of more than 160 parts by weight and up to 200 parts by weight with respect to the vinyl chloride resin, the processed film to which anti-slip is imparted becomes flexible. A processed glove that is soft and has a high anti-slip effect on the glove base material. In addition, according to such a manufacturing method, no special equipment is required, and conventional equipment can be sufficiently used.
As in the invention of claim 2, when the surface layer of the glove base material is processed with a non-penetrating vinyl chloride paste, the smoothness of the coating surface is poor, and there is no surfactant on the base material surface. However, it is easy to form severe unevenness, and the anti-slip effect is further improved.
When the vinyl chloride sol containing the microcapsule type foaming agent is blended with a vinyl chloride paste resin having an average polymerization degree in the range of 2000 to 4000 as in the invention of claim 3, the foam layer on the glove surface is unevenly raised. However, since a mesh-like or blood vessel-like uneven pattern is formed, a double anti-slip effect can be expected.
As in the invention of claim 4, when the vinyl chloride sol blended with a foaming agent is a paste prepared using a non-penetrating vinyl chloride paste resin, formation of a mesh-like or vascular-like uneven pattern on the surface of the glove is suppressed. While the surface of the glove is smoothed, the foamed foam becomes a bubble breakage or a hemispherical uneven surface, and a beautiful appearance is obtained. The anti-slip effect different from that of the invention of claim 3 can be expected due to the broken bubble or the hemispherical uneven surface.

裏布付き塩化ビニル製手袋基材の表面上にコーティングするにあたって、薄いコーティング皮膜でも発泡が容易なマイクロカプセル型発泡剤に着目し、鋭意研究を重ねた結果、従来の加工条件では、表面が平滑で単に発泡部分が盛り上がるだけの発泡コーティング層しか得られなかったものが、コーティング液中の一次可塑剤量を160重量部を越え200重量部までの範囲内で配合し、十分に薄くコーティングすることで一つ一つのマイクロカプセルが被膜表面に突出する形で膨張し、手袋表面に従来にない微細な凹凸を形成すること、この場合、発泡後のシェルの多くが滑落して手袋表面に微細なクレータ状の破泡或いは連泡構造層が形成されることを見出した。また、これらの破泡或いは連泡構造層は、スポンジのように親液性の高い発泡層であり、手袋の滑り止めに適した特性をもっていることや発泡コーティングの下地となる裏布付き塩化ビニル製手袋基材の表面の特性によっては、個々のマイクロカプセルの膨張が集合して網目状や血管状の凹凸を形成し、このような高次構造を現出することを見出した。   When coating on the surface of a vinyl chloride glove base material with a backing, we focused on a microcapsule type foaming agent that can be easily foamed even with a thin coating film, and as a result of extensive research, the surface was smooth under conventional processing conditions. In the case where only the foamed coating layer with the foamed part rising is obtained, the amount of the primary plasticizer in the coating solution is blended within the range of more than 160 parts by weight to 200 parts by weight, and the coating is sufficiently thin. In this case, each microcapsule expands in a form that protrudes from the surface of the film, and forms a fine unevenness on the surface of the glove. In this case, many of the foamed shells slide down and become fine on the surface of the glove. It has been found that a crater-like broken bubble or continuous bubble structure layer is formed. In addition, these foam breaking or continuous foam structure layers are highly lyophilic foam layers such as sponges, and have characteristics suitable for preventing slipping of gloves, and vinyl chloride with a backing cloth as the foundation of foam coating. It has been found that depending on the surface characteristics of the glove base material, the expansion of individual microcapsules aggregates to form a network-like or blood vessel-like unevenness, and such a higher-order structure appears.

以下、本発明に係る滑り止め加工手袋の製造方法の一形態を詳述する。滑り止め加工手袋の製造方法は、先ず編製等の布手袋の表面に塩化ビニール皮膜を形成した裏布付き塩化ビニル製手袋基材を製造する。次いで該手袋基材の塩化ビニール皮膜表面に、マイクロカプセル型発泡剤を添加し且つ可塑剤配合量が160重量部を越え200重量部以内の低粘度高可塑剤型塩化ビニルプラスチゾルを、ディッピング法又はフローコーティング法により非常に薄くトップコーティングする。これを溶融、発泡させることによって手袋皮膜表面上に連泡構造を有した凹凸のある滑り止め加工手袋を造る。   Hereinafter, one form of the manufacturing method of the non-slip processed glove concerning the present invention is explained in full detail. In the manufacturing method of the non-slip processed gloves, first, a vinyl chloride glove base material with a backing cloth in which a vinyl chloride film is formed on the surface of a cloth glove such as knitting is manufactured. Next, a low-viscosity high plasticizer type vinyl chloride plastisol having a microcapsule type foaming agent added to the surface of the vinyl chloride film of the glove base material and having a plasticizer compounding amount of more than 160 parts by weight and within 200 parts by weight is applied by dipping or The top coating is very thin by the flow coating method. By melting and foaming this, an uneven non-slip processed glove having a continuous foam structure on the surface of the glove film is produced.

本発明の滑り止め加工を行なう基体となる「裏布付き塩化ビニル製手袋基材」は、例えば次のようにして造られる。先ず布製手袋を縫製又は編製等により作製し、これを人の手形をした金型に装着し、コーティング前の準備を行なう。その上から無浸透型塩化ビニルペーストレジン(無浸透型ペースト用塩化ビニル樹脂)と可塑剤、その他添加剤を混練して得られるゾル状のコーティングペーストをシャワー法等により無圧塗布する。次いで、適当な厚みになるのを待って遠赤ガスバーナー等によって数十秒間強熱し、セミゲル化もしくは半ゲル化と称する仮付形操作を行って裏布付き塩化ビニル製手袋基材が造られる。
その後、主溶融炉において160〜200℃程度の雰囲気温度で数分から十数分間加熱し、均一な状態になるまで溶融させて製品を得る。
The “backed vinyl glove base material made of vinyl chloride”, which is a base for carrying out the anti-slip processing of the present invention, is produced, for example, as follows. First, a cloth glove is produced by sewing or knitting, and this is mounted on a hand-shaped mold to prepare for coating. From there, a non-permeable vinyl chloride paste resin (vinyl chloride resin for non-permeable paste), a sol-like coating paste obtained by kneading a plasticizer and other additives is applied without pressure by a shower method or the like. Next, after waiting for an appropriate thickness, it is ignited for several tens of seconds with a far-red gas burner or the like, and a temporary attachment operation called semi-gelation or semi-gelation is performed to produce a vinyl chloride glove base material with a backing cloth. .
Thereafter, the product is obtained by heating in a main melting furnace at an atmospheric temperature of about 160 to 200 ° C. for several minutes to several tens of minutes and melting until a uniform state is obtained.

ここで、「無浸透型塩化ビニルペーストレジン」とは、乳化重合等の方法で合成されるポリ塩化ビニルの微粉体であって何らかの製法により、重合反応後に、重合時に用いる乳化剤を取り除くか不活性化させた後、乾燥、粉末化させた公知品である。この製法は公開されておらず詳細は不明であるが、以前から上市,販売されているものに新第一塩化ビニル株式会社製のZEST HMやHydro Polymers社製のPevikon P737などがある   Here, the “non-penetrating vinyl chloride paste resin” is a fine powder of polyvinyl chloride synthesized by a method such as emulsion polymerization, and the emulsifier used in the polymerization is removed or inactivated after the polymerization reaction by any production method. It is a publicly known product that has been dried and then pulverized. The details of this method are not disclosed, and details are unknown. However, those that have been on the market for some time include ZEST HM manufactured by Shin-Daiichi Vinyl Chloride Co., Ltd. and Pevikon P737 manufactured by Hydro Polymers.

近年、前記仮賦形操作と主溶融炉による加熱操作の間に二度目の塩化ビニルゾルコーティングとセミゲル化もしくは半ゲル化を行い、手袋袖部表面の艶や平滑性を高める加工を行なうことが多くなっている。この二度目の塩化ビニルゾルコーティング用に、前述の無浸透型ペースト用塩化ビニル樹脂を用いたゾルを使ってもよいが一般のペースト用塩化ビニル樹脂を用いたゾルを使えばより平滑性と艶のある製品となる。
本発明の滑り止め加工手袋に係る滑り止め加工も、この仮賦形操作と主溶融炉による加熱操作の間に行なわれる。該滑り止め加工は専ら手袋基材に係る塩化ビニルコーティング手部の表面に施される。
In recent years, a second vinyl chloride sol coating and semi-gelling or semi-gelling can be performed between the temporary shaping operation and the heating operation in the main melting furnace to improve the gloss and smoothness of the glove sleeve surface. It is increasing. For the second vinyl chloride sol coating, a sol using the above-mentioned non-permeable paste vinyl chloride resin may be used, but if a general paste vinyl chloride resin sol is used, smoothness and gloss will be improved. It will be a product with.
The anti-slip processing according to the anti-slip processing glove of the present invention is also performed between this temporary shaping operation and the heating operation by the main melting furnace. The anti-slip treatment is exclusively applied to the surface of the vinyl chloride coating hand part of the glove base material.

前記二度目以降の塩化ビニルゾルコーティング(トップコーテンング)時にマイクロカプセル型発泡剤を配合すれば、塩化ビニル製手袋の表面に発泡層を形成できることは知られている。そしてマイクロカプセル型発泡剤1.0〜10重量部を一般的な軟質塩化ビニル又は手袋用コーティングゾルに加えて適当な粘度に調整したコーティング液(トップコーティング液)を用い、二度目以降の塩化ビニルゾルコーティングを行なった後、常法に従い溶融,発泡加工を行なった場合、発泡層が形成される。ところが、このような発泡層はコーティング部分が膨らむものの、その表面は平滑であり、しっかりとスキン層が形成された発泡構造になってしまい、従来技術4の表面によく似た状態となる。従って、十分な滑り止め効果を得ることができない。発泡層の表面を拡大鏡で観察してもマイクロカプセルが突出したり破泡したりして形成される凹凸構造は殆ど見られない。斯る理由から、一般的な軟質塩化ビニル又は手袋用コーティングゾルにマイクロカプセル型発泡剤を配合してもあまり滑り止め効果の向上は得られなかった。ここで、一般的な軟質塩化ビニル又は手袋用コーティングゾルの配合とはペースト用塩化ビニル樹脂とその樹脂に対し80〜160重量部の可塑剤を配合し混練したゾルをいう。該可塑剤はフタル酸ジオクチル,クエン酸アセチルトリブチル,ポリエステル系可塑剤等の塩化ビニルに用いられる一般的な可塑剤であるが、勿論これらに限定されない。   It is known that a foamed layer can be formed on the surface of a vinyl chloride glove by adding a microcapsule type foaming agent in the second and subsequent vinyl chloride sol coating (top coating). Then, 1.0 to 10 parts by weight of a microcapsule type foaming agent is added to general soft vinyl chloride or a coating sol for gloves, and a coating liquid (top coating liquid) adjusted to an appropriate viscosity is used. After performing sol coating, a foamed layer is formed when melting and foaming are performed according to a conventional method. However, such a foamed layer has a coating portion that swells, but its surface is smooth and has a foamed structure in which a skin layer is firmly formed, which is similar to the surface of prior art 4. Therefore, a sufficient anti-slip effect cannot be obtained. Even when the surface of the foamed layer is observed with a magnifying glass, the concavo-convex structure formed by the microcapsules protruding or breaking is hardly seen. For this reason, even when a microcapsule type foaming agent is added to a general soft vinyl chloride or glove coating sol, the anti-slip effect cannot be improved so much. Here, the blending of a general soft vinyl chloride or glove coating sol refers to a sol obtained by blending and kneading 80 to 160 parts by weight of a plasticizer with a vinyl chloride resin for paste and the resin. The plasticizer is a general plasticizer used for vinyl chloride, such as dioctyl phthalate, acetyl tributyl citrate, and a polyester plasticizer, but of course is not limited thereto.

しかるに、このような配合において可塑剤の量を更に増加させていくと、塩化ビニル樹脂に対し、可塑剤量が160重量部を超えたあたりから、スキン層が形成され難くなり、膨張した個々のマイクロカプセルが半球状に表面に突出した状態で発泡層が形成されるようになってくる。この状態を拡大鏡等で観察すると、膨張したマイクロカプセルが半球状に突出し、手袋全体の表面を緻密に覆っている様子が視認できる。このように半球状に突出した個々のマイクロカプセルは非常に脆弱であり、発泡加工中に破裂したり、或いは、球形のまま被膜表面から滑落してしまい、手袋の表面には破泡や膨張したマイクロカプセルの滑落によるクレーター状の窪みと膨張した発泡剤の盛り上がりの痕跡が混在することによる極めて細かい凹凸が形成されている。
前記可塑剤量は、塩化ビニル樹脂に対して160重量部を越えれば充足し、好ましくは165重量部、より好ましくは175重量部以上である場合に手袋表面の半球状の突出が明瞭になってくる。また、その上限値に特に制限はないが可塑剤量があまり多くなりすぎると被膜強度が低下しすぎて手袋の耐久性、耐磨耗性が低下するため、手袋用滑り止め加工に用いる場合には、滑り止め層の厚みにもよるが200重量部以下が好ましい。
一方、前記マイクロカプセル型発泡剤の配合量に関しては、1.0未満では少なく、逆に発泡剤の配合量を増やしすぎると発泡剤のコストが嵩みすぎて経済的でない。また、軟質塩化ビニルに対して発泡剤の量が多くなりすぎて強度や耐久性が著しく低下するため、マイクロカプセル型発泡剤の配合量は1.0〜10重量部が好ましい。
However, when the amount of the plasticizer is further increased in such a formulation, since the amount of the plasticizer exceeds 160 parts by weight relative to the vinyl chloride resin, it becomes difficult to form a skin layer, and each expanded individual The foamed layer is formed with the microcapsules projecting hemispherically on the surface. When this state is observed with a magnifying glass or the like, it can be visually recognized that the expanded microcapsule protrudes in a hemispherical shape and covers the entire surface of the glove densely. The individual microcapsules protruding in a hemispherical form are very fragile, ruptured during the foaming process, or slid off from the surface of the film while being spherical, and the surface of the glove was broken or expanded. Extremely fine irregularities are formed by mixing crater-like depressions caused by sliding microcapsules and traces of swelling foaming agent.
When the amount of the plasticizer exceeds 160 parts by weight with respect to the vinyl chloride resin, the hemispherical protrusion on the surface of the glove becomes clear when it is preferably 165 parts by weight, more preferably 175 parts by weight or more. come. The upper limit is not particularly limited, but if the amount of plasticizer is too large, the coating strength will be too low and the durability and wear resistance of the glove will be reduced. Depending on the thickness of the anti-slip layer, it is preferably 200 parts by weight or less.
On the other hand, the blending amount of the microcapsule-type foaming agent is less than 1.0, and conversely, if the blending amount of the foaming agent is increased too much, the cost of the foaming agent is too high and it is not economical. Moreover, since the quantity of a foaming agent increases too much with respect to soft vinyl chloride and intensity | strength and durability fall remarkably, the compounding quantity of a microcapsule type foaming agent has preferable 1.0-10 weight part.

前記凹凸が形成される領域は、拡大鏡等で観察すれば破泡状態、連泡状態であることが確認できるが、肉眼で目視すればビロード様あるいはセーム革様に見え、平滑ではあるが適度の滑り止め効果をもつ感触を呈する。マイクロカプセルの滑落が起こっている証拠として、滑落したマイクロカプセルが粉末状になって手袋の表面に付着している状態がはっきり観察される。   The area where the irregularities are formed can be confirmed to be in a broken bubble state or a continuous bubble state when observed with a magnifying glass or the like, but when viewed with the naked eye, it looks like a velvety or chamois leather and is smooth but moderate It has a non-slip feel. As evidence that the microcapsule has slipped, it is clearly observed that the microcapsule that has slipped is powdered and adhered to the surface of the glove.

斯る滑り止め加工手袋の表面に数滴の水道水或いは白灯油をたらすと、水滴や油滴を結ぶことなく速やかに手袋表面に吸収或いは拡散される。このことからも手袋表面に極めて微細な凹凸構造が存在することが確認できる。
さらに、このような手袋の表面状態にあっては、破泡していないマイクロカプセルが半球状の泡のまま滑落せずに手袋表面に多数残っている場合もあるが、該マイクロカプセルの存在は滑り止め効果に特に悪影響を及ぼすものでなく、泡表面の塩化ビニルスキン層が極めて薄いことから、簡単に破れ、実用時には破泡部分と同様の効果が期待できる。
When a few drops of tap water or white kerosene are dripped onto the surface of such a non-slip processed glove, it is quickly absorbed or diffused on the surface of the glove without linking the water or oil drops. From this, it can be confirmed that a very fine uneven structure exists on the surface of the glove.
Furthermore, in such a glove surface state, microcapsules that are not broken may remain on the surface of the glove without sliding off as hemispherical foams. The anti-slip effect is not particularly adversely affected, and since the vinyl chloride skin layer on the foam surface is extremely thin, it can be easily broken, and in practical use, the same effect as the foam-breaking portion can be expected.

手袋表面の凹凸は、単独のマイクロカプセルの膨張性能から数十ミクロンから数百ミクロンであると考えられるが、非常に緻密に存在することや実際に被膜の厚み方向に数個のマイクロカプセルによる発泡セルが重なっているために優れた滑り止め効果を手袋に付与する。また、本発明によれば滑り止め加工層の成分中には可塑剤が160重量部を越えると多量に含まれるため、付与される加工部分は非常に柔軟な被膜であり、従来法による滑り止め加工後の手袋と比較しても、柔軟な手袋を得ることができる。
手袋の滑り止めに寄与する因子は、手袋表面の緻密な発泡構造及び破泡構造による表面積の増大、特に手袋使用時における表面積の増大が最も大きいと考えられる。他に微細構造の寄与や被膜の親液性等も滑り止め効果に寄与していると推定される。
このように可塑剤を大量に配合した系においてスキン層が形成され難いことを積極的に利用した事例はなく、従来の発泡技術においてはスキン層を厚く形成し、被膜表面が破れ難くすることに注力されていたことを鑑みれば、本発明に係る課題解決の製法は特異なものになっている。
The unevenness of the surface of the glove is thought to be several tens to several hundreds of microns due to the expansion performance of a single microcapsule, but it is very dense and is actually foamed by several microcapsules in the thickness direction of the film. Gives the glove an excellent anti-slip effect because the cells overlap. Further, according to the present invention, since the plasticizer exceeds 160 parts by weight in the components of the anti-slip processing layer, the processed portion to be applied is a very flexible film, and the anti-slip method according to the conventional method is used. Even when compared with gloves after processing, a flexible glove can be obtained.
The factor contributing to the anti-slip of the glove is considered to be the largest increase in the surface area due to the dense foam structure and bubble breaking structure on the glove surface, especially the increase in the surface area when using the glove. In addition, it is estimated that the contribution of the fine structure and the lyophilicity of the coating contribute to the anti-slip effect.
There is no example of actively utilizing the fact that skin layers are difficult to be formed in a system in which a large amount of plasticizer is blended in this way, and in conventional foaming technology, the skin layer is formed thick and the surface of the coating is difficult to break. In view of the focus, the manufacturing method for solving the problems according to the present invention is unique.

前述のごとく膨張後のマイクロカプセル型発泡剤が半球状に表面に出てくる原因は、溶融時、特に発泡時における著しい粘度低下が関与しているものと考えられる。
ところで、本発明の検討を続けていくと使用する塩化ビニル樹脂(発泡剤を配合した塩化ビニルゾル中の塩化ビニルペーストレジン)の重合度が増加していくほどマイクロカプセル型発泡剤が半球状に表面に出てくる割合が高くなることが観察され、平均重合度が2000以上、特に好ましくは平均重合度が2800の塩化ビニル樹脂において激しい凹凸が形成されることが確認された。この理由は定かでないが、例えばこのような高分子量の樹脂は溶融温度が高く、個々の塩化ビニル粒子を見たときに、発泡剤の軟化温度に至っても可塑剤を大量に吸収し、極めて低粘化下周辺部分と十分に可塑化されていない核の部分とが混在する海島模様の状態を呈しているためではないかと推定される。
前記塩化ビニル樹脂の平均重合度の上限値に特に制限は確認されていない。ただし、塩化ビニルペーストレジンの中で本発明者が確認できた中で最も重合度の高いものは2800であり、また、架橋型塩化ビニルペーストレジンで重合度3000相当のものがある。本発明に関し、これら二つの樹脂が比較的良好な結果が確認されている。また、現在、これ以上の重合度のペーストレジンが市場において見当たらないため本発明の効果が確認できない。今後もペーストレジンについては平均重合度4000以上のものは製造されないであろうと考え、請求項3の発明においては平均重合度上限を4000とした。
マイクロカプセル型発泡剤を添加したトップコーティング用プラスチゾルに平均重合度2000〜4000の範囲内の塩化ビニル樹脂を使うことにより、手袋表面の発泡構造体に網目様の深い凹凸を付与することができる。
更にこのような平均重合度が2000以上の塩化ビニルペーストレジンを使ったゾルを使用した場合、特定の条件で発泡の状態が著しく不均一となり、手袋表面に膨張したマイクロカプセル型発泡剤の集合体による高次構造が現出することを見出した。すなわち、裏布付き塩化ビニル製手袋基材の表層(すなわち滑り止め加工の下地)に、無浸透型塩化ビニルペーストを用いてコーティングした被膜を用いたところ、手袋の表面の発泡層が不均一に隆起し、より顕著な網目状もしくは血管状の凹凸模様が形成された。手袋基材の表層形成に無浸透型塩化ビニルペーストが用いられることによって手袋基材の表面の平滑度が悪くなり、そしてこの平滑度の悪さが、トップコーティングによる滑り止め加工段階で、個々のマイクロカプセルの膨張が集合して網目状や血管状の凹凸形成を一層促すものと考えられる。
このような網目状もしくは血管状の形状による凹凸と発泡セルによる凹凸が二重の滑り止め効果をもたらし、更に外観上も使用者に強く滑り止め加工の存在をアピールすることを可能にした。
As described above, the cause of the expanded microcapsule type foaming agent appearing on the surface in a hemispherical shape is considered to be due to a significant decrease in viscosity at the time of melting, particularly at the time of foaming.
By the way, if the investigation of the present invention is continued, the microcapsule type foaming agent becomes hemispherical as the polymerization degree of the vinyl chloride resin (vinyl chloride paste resin in the vinyl chloride sol containing the foaming agent) increases. It has been observed that the ratio of the polymerized resin is increased, and it has been confirmed that severe irregularities are formed in the vinyl chloride resin having an average degree of polymerization of 2000 or more, particularly preferably an average degree of polymerization of 2800. The reason for this is not clear, but for example, such a high molecular weight resin has a high melting temperature, and when individual vinyl chloride particles are seen, even if the softening temperature of the foaming agent is reached, a large amount of plasticizer is absorbed and extremely low. It is presumed that it is due to a sea-island pattern in which the peripheral part under viscosity and the part of the nucleus that is not sufficiently plasticized are mixed.
There is no particular limitation on the upper limit of the average degree of polymerization of the vinyl chloride resin. However, among the vinyl chloride paste resins, the one having the highest degree of polymerization that has been confirmed by the present inventor is 2800, and there is a cross-linked vinyl chloride paste resin having a degree of polymerization of 3000. With respect to the present invention, relatively good results have been confirmed for these two resins. Moreover, since no paste resin having a polymerization degree higher than this can be found in the market, the effect of the present invention cannot be confirmed. In the future, it is considered that paste resins having an average polymerization degree of 4000 or more will not be produced. In the invention of claim 3, the upper limit of the average polymerization degree is set to 4000.
By using a vinyl chloride resin having an average polymerization degree in the range of 2000 to 4000 for the plastisol for top coating to which the microcapsule type foaming agent is added, it is possible to impart deep network-like irregularities to the foam structure on the surface of the glove.
Furthermore, when a sol using a vinyl chloride paste resin having an average degree of polymerization of 2000 or more is used, the foamed state becomes extremely uneven under specific conditions, and the aggregate of the microcapsule type foaming agent expands on the surface of the glove. It was found that a higher-order structure appears. That is, when a film coated with a non-penetrating vinyl chloride paste is used on the surface layer of a vinyl chloride glove base material with a backing cloth (i.e., the base for anti-slip processing), the foam layer on the surface of the glove is uneven. Raised and formed a more noticeable mesh or vascular uneven pattern. The non-penetrating vinyl chloride paste is used to form the surface layer of the glove base material, resulting in poor surface smoothness of the glove base material. It is considered that the expansion of the capsule gathers to further promote the formation of mesh-like or blood vessel-like irregularities.
Such irregularities due to the mesh or blood vessel shape and the irregularities due to the foamed cells have a double anti-slip effect, and further, it is possible to appeal the presence of anti-slip processing to the user strongly in terms of appearance.

さて、本発明における加工方法のもう一つの特徴として2次可塑剤や希釈剤を使用しなくても滑り止め加工を実施できる点が挙げられる。2次可塑剤や希釈剤の使用減によって環境問題を改善する。マイクロカプセル型発泡剤を配合したトップコーティング液が、無浸透型塩化ビニルペーストで配合されると、例えばマイクロカプセル型発泡剤が無浸透型ペースト樹脂を用いたコーティング液に配合された場合、無浸透加工が可能な滑り止めコーティング液ができる。   Now, another feature of the processing method according to the present invention is that anti-slip processing can be carried out without using a secondary plasticizer or diluent. Improve environmental problems by reducing the use of secondary plasticizers and diluents. When the top coating solution containing the microcapsule type foaming agent is formulated with a non-permeable type vinyl chloride paste, for example, when the microcapsule type foaming agent is formulated into a coating solution using a non-permeable type paste resin, the non-permeable type An anti-slip coating solution that can be processed is produced.

通常、滑り止め加工は、すでに被膜を完成させた手袋上に対して行なわれ、滑り止め加工用のコーティング液が無浸透型である利点はないように考えられる。ところが、ジャージ付手袋や背抜き手袋のようにコーティング手袋の表面に部分的に布地が露出している手袋に対し、従来のオルガノゾル型滑り止めコーティング液を使って浸漬加工する場合は、浸漬時に滑り止め加工液が跳ね飛び易く、布部に付着し、その部分に樹脂の浸透による樹脂の飛沫痕跡が残り、不良品が発生する割合が高くなる。この原因は、従来の滑り止め加工液が、粘度の低い塩化ビニルゾルであるだけでなくオルガノゾルであることに起因する。同じ粘度のプラスチゾルに比べ、オルガノゾルは多量の二次可塑剤や希釈剤を使用するために浸漬時に飛び跳ね易い理由による。こうした理由の正当性を裏付ける形で、請求項4の発明のごとく発泡剤を配合した塩化ビニルゾルが無浸透型塩化ビニルペーストレジンを用いて調整されたペーストであると、従来困難とされてきた背抜き手袋に対しても滑り止め加工が容易に実施できることが確認できた。   Usually, the anti-slip process is performed on a glove that has already been coated, and it is considered that there is no advantage that the coating liquid for the anti-slip process is non-penetrating. However, when a conventional organosol anti-slip coating solution is used to dip a glove whose surface is partially exposed on the surface of a coated glove, such as a glove with a jersey or a back-thick glove, it does not slip when immersed. The processing liquid easily splashes and adheres to the cloth portion, and the resin droplet traces due to the permeation of the resin remain in the portion, and the rate of occurrence of defective products increases. This is due to the fact that the conventional anti-slip processing fluid is not only a low-viscosity vinyl chloride sol but also an organosol. Compared to the plastisol having the same viscosity, the organosol uses a large amount of secondary plasticizer and diluent, so that it easily jumps when immersed. If the vinyl chloride sol blended with the foaming agent is a paste prepared by using a non-penetrating vinyl chloride paste resin as in the invention of claim 4 in a form that supports the justification of such a reason, it has been considered difficult to do so. It was confirmed that anti-slip processing can be easily performed on gloves.

なお、本発明を実施するにおいて発泡剤配合のトップコーティング液の粘度は、1500CPS以下が好ましい。また、下地(基材)の塩化ビニル被膜の可塑剤含有量が、発泡コーティングゾル(トップコーティングゾル)の可塑剤含有量よりも少ない場合には表面の凹凸が十分に得られない確率が高い。下地の塩化ビニル被膜の可塑剤含有量と発泡コーティングゾルの可塑剤含有量が同じかあるいは発泡コーティングゾルの可塑剤含有量が多い場合(10PHR程度)に好ましい結果が得られる。本発明において、マイクロカプセル型発泡剤の外殻素材はポリアクリロニトリル系のポリマーで発泡最高倍率が180℃前後のものが最も良好な結果が得られるが、マイクロカプセル型発泡剤の外殻素材や内包膨張剤,発泡温度等はこれらに限定されるものでない。
本発明による加工方法の付帯的特徴として、加工後に滑落した膨張後のマイクロカプセル型発泡剤が手袋の表面に粉状になって付着する点がある。この現象は手袋の使用目的によっては好ましくない場合がある。この粉を除去するには水洗等による方法で簡単に除去できるが、より好ましくは加工後手袋が未だ暖かいうちに火炎の中をくぐらせる方法が最も簡便で、手袋表面に付いた粉状のマイクロカプセル型発泡剤の除去に威力を発揮する。
In carrying out the present invention, the viscosity of the top coating liquid containing a foaming agent is preferably 1500 CPS or less. Further, when the plasticizer content of the vinyl chloride film of the base (base material) is less than the plasticizer content of the foam coating sol (top coating sol), there is a high probability that the surface unevenness cannot be sufficiently obtained. Preferred results are obtained when the plasticizer content of the underlying vinyl chloride coating is the same as the plasticizer content of the foamed coating sol or when the plasticizer content of the foamed coating sol is high (about 10 PHR). In the present invention, the outer shell material of the microcapsule type foaming agent is a polyacrylonitrile-based polymer having the highest foaming ratio of around 180 ° C., and the best results are obtained. The expansion agent, foaming temperature, etc. are not limited to these.
An incidental feature of the processing method according to the present invention is that the expanded microcapsule foaming agent that has slipped down after processing adheres to the surface of the glove in powder form. This phenomenon may not be preferable depending on the purpose of use of the glove. To remove this powder, it can be easily removed by washing or the like, but more preferably, the simplest method is to pass through the flame while the gloves are still warm after processing. Effective in removing capsule-type foaming agents.

以下に実施例を挙げて更に詳しく説明する。
[実施例1]
先ず、下地の塩化ビニル手袋(裏布付き塩化ビニル製手袋基材)を作製するための無浸透型コーティング樹脂を調整する。以下に示す配合(1)の各成分を混練機で十分に混合する。ここで、塩化ビニルペーストレジン(ZEST HM)の平均重合度は1300である。
Examples will be described in more detail below.
[Example 1]
First, a non-penetrating coating resin for preparing a base vinyl chloride glove (a vinyl chloride glove base material with a backing cloth) is prepared. Each component of the following formulation (1) is sufficiently mixed with a kneader. Here, the average degree of polymerization of vinyl chloride paste resin (ZEST HM) is 1300.

配合(1)
・無浸透型塩化ビニルペースト樹脂
ZEST HM(新第一塩ビ株式会社製) 100重量部
・可塑剤
フタル酸ジオクチル 170重量部
・粘度調整剤=変性シリカ
レオロシールMT―10(株式会社トクヤマ製) 2重量部
・安定剤 2重量部
・防黴剤 1重量部
・顔料 2重量部
Formulation (1)
・ Non-penetrating vinyl chloride paste resin
ZEST HM (manufactured by Shin-Daiichi PVC Co., Ltd.) 100 parts by weight, plasticizer 170 parts by weight dioctyl phthalate, viscosity modifier = modified silica Leolosil MT-10 (manufactured by Tokuyama Corporation) 2 parts by weight, stabilizer 2 parts by weight, 1 part by weight of antifungal agent, 2 parts by weight of pigment

次にマイクロカプセル型発泡剤(松本油脂製薬社製マツモトマイクロスフェアーF82D)を配合したトップコーティング液を調整する。以下に示す配合(2)の各成分を混練機で十分に混合する。配合(2)で発泡剤を配合した前記塩化ビニルゾル中の塩化ビニルペーストレジン(カネビニールPHS443)の平均重合度は2800である。   Next, a top coating solution containing a microcapsule type foaming agent (Matsumoto Yushi Seiyaku Matsumoto Microsphere F82D) is prepared. Each component of the following formulation (2) is sufficiently mixed with a kneader. The average degree of polymerization of the vinyl chloride paste resin (Kanevinyl PHS443) in the vinyl chloride sol containing the foaming agent in the formulation (2) is 2800.

配合(2)
・塩化ビニルペースト樹脂
カネビニールPHS443(鐘淵工業株式会社製) 100重量部
・可塑剤
クエン酸アセチルトリブチル 170重量部
・粘度調整剤=変性シリカ
レオロシールMT―10(株式会社トクヤマ製) 1重量部
・マイクロカプセル型発泡剤
マツモトマイクロスフェアーF82D 5重量部
・安定剤 2重量部
・防黴剤 1重量部
・顔料 2重量部
Formula (2)
・ Vinyl chloride paste resin Kane vinyl PHS443 (manufactured by Kaneka Kogyo Co., Ltd.) 100 parts by weight ・ Plasticizer Acetyl tributyl citrate 170 parts by weight ・ Viscosity modifier = modified silica Leolosil MT-10 (manufactured by Tokuyama Corporation) 1 part by weight Microcapsule type foaming agent Matsumoto Microsphere F82D 5 parts by weight, stabilizer 2 parts by weight, antifungal agent 1 part by weight, pigment 2 parts by weight

アルミ製の金型に編製手袋を装着し、フッ素系処理液の希薄水溶層に浸漬した後、十分に乾燥させる。この後、数秒間炎で炙って表面の毛羽を焼ききった後、配合(1)により調整したコーティングゾルをシャワーによる無圧塗布する。この後、数分間放置した後、遠赤外線バーナー状で強熱し、コーティング液をゲル化させて仮付形を行なう。   A knitted glove is attached to an aluminum mold, immersed in a dilute aqueous layer of a fluorine-based treatment solution, and then sufficiently dried. After this, the fluff on the surface is burned by burning with a flame for several seconds, and then the coating sol prepared by blending (1) is applied without pressure by a shower. Thereafter, after standing for a few minutes, it is ignited in the form of a far-infrared burner, and the coating liquid is gelled to carry out a temporary attachment.

数分間放冷の後、配合(2)の液中に手袋を浸漬させて引き上げる。この後、数分間放置した後、遠赤外線バーナー状で強熱し、コーティング液をゲル化させて仮付形を行なう。その後、溶融炉に入れて180℃の雰囲気で十数分間、加熱し溶融,発泡させた。   After allowing to cool for several minutes, the gloves are dipped in the liquid of Formulation (2) and pulled up. Thereafter, after standing for a few minutes, it is ignited in the form of a far-infrared burner, and the coating liquid is gelled to carry out a temporary attachment. Then, it was put into a melting furnace, heated for 10 minutes in an atmosphere of 180 ° C., melted and foamed.

溶融炉から取り出し2分間放冷した後、再び1秒間炎で炙って表面の粉を焼き飛ばした後、放冷し、完全に冷えるの待って、金型から抜き取って滑り止め加工手袋を完成させた。
表面に網目状の凹凸模様があり(図1)、全体が発泡被膜で覆われた美しい外観の所望の滑り止め加工手袋が作製された。この発泡部分を拡大鏡で観察すると、その表面は破泡によるクレーター状のくぼみと半球状に突出した膨張マイクロカプセルで緻密に覆われていた。従来技術4による滑り止め加工凹凸(図2)との差異が歴然としている。
Take out from the melting furnace and let cool for 2 minutes, then burn again with a flame for 1 second to burn off the powder on the surface, let it cool, wait for it to cool completely, pull out from the mold and complete the anti-slip gloves It was.
A desired non-slip processed glove having a beautiful appearance with a mesh-like uneven pattern on the surface (FIG. 1) and covered with a foam coating was produced. When the foamed portion was observed with a magnifying glass, the surface was densely covered with a crater-like depression caused by bubble breakage and an expanded microcapsule protruding in a hemispherical shape. The difference from the non-slip processed unevenness (FIG. 2) by the prior art 4 is obvious.

[実施例2]
トップコーティング液に前記配合(2)に代え以下に示す配合(3)を用い、実施例1と同様の操作を行った。配合(3)で発泡剤を配合した前記塩化ビニルゾル中の塩化ビニルペーストレジン(無浸透型塩化ビニルペースト樹脂:ZEST HM)の平均重合度は1300である。
[Example 2]
The same operation as in Example 1 was performed by using the following formulation (3) instead of the formulation (2) in the top coating solution. The average degree of polymerization of the vinyl chloride paste resin (non-penetrating vinyl chloride paste resin: ZEST HM) in the vinyl chloride sol in which the foaming agent was blended in the blend (3) is 1300.

配合(3)
・無浸透型塩化ビニルペースト樹脂
ZEST HM(新第一塩ビ株式会社製) 100重量部
・可塑剤
クエン酸アセチルトリブチル 170重量部
・粘度調整剤=変性シリカ
レオロシールMT―10(株式会社トクヤマ製) 1重量部
・マイクロカプセル型発泡剤
マツモトマイクロスフェアーF82D 5重量部
・安定剤 2重量部
・防黴剤 1重量部
・顔料 2重量部
Formula (3)
・ Non-penetrating vinyl chloride paste resin
ZEST HM (manufactured by New Daiichi PVC Co., Ltd.) 100 parts by weight, plasticizer acetyltributyl citrate 170 parts by weight, viscosity modifier = modified silica Leorosil MT-10 (manufactured by Tokuyama Corporation) 1 part by weight, microcapsule type foaming agent Matsumoto Microsphere F82D 5 parts by weight, stabilizer 2 parts by weight, antifungal agent 1 part by weight, pigment 2 parts by weight

配合(3)を用いて造られた滑り止め加工手袋は、手袋表面の網目状もしくは血管状の凹凸模様の形成が抑制されつつも、発泡した泡が破泡もしくは半球状の凹凸表面となり、実施例1とまた違った外観をもつ製品になった。さらに背抜き手袋に対する滑り止め加工の歩留まりを向上させることができた。   Anti-slip processed gloves made using Formulation (3) have a foamed foam that becomes a foamed or hemispherical uneven surface while the formation of a mesh or blood vessel uneven pattern on the surface of the glove is suppressed. The product had a different appearance from Example 1. Furthermore, it was possible to improve the yield of anti-slip processing for back-throw gloves.

尚、本発明においては、前記実施形態,実施例に示すものに限られず、目的,用途に応じて本発明の範囲で種々変更できる。手袋基材の表層形成用の塩化ビニルゾルや、滑り止め加工用トップコーティングに使用されるマイクロカプセル型発泡剤を配合した塩化ビニルゾルに係る成分構成や配合構成等は用途に合わせて本発明の範囲内で適宜選択できる。   The present invention is not limited to those shown in the above-described embodiments and examples, and various modifications can be made within the scope of the present invention depending on the purpose and application. The composition and composition of the vinyl chloride sol for forming the surface layer of the glove base and the microcapsule type foaming agent used for the top coating for anti-slip processing are within the scope of the present invention according to the application. Can be selected as appropriate.

本発明の滑り止め加工手袋に係る滑り止め加工部分の拡大説明画像図である。It is an expansion explanatory image figure of the non-slip processing part concerning the anti-slip processing glove of the present invention. 従来技術の滑り止め加工手袋に係る滑り止め加工部分の拡大説明画像図である。It is an expansion explanatory image figure of the non-slip processing part which concerns on the anti-slip processing glove of a prior art.

Claims (4)

裏布付き塩化ビニル製手袋基材の表面に、発泡剤を配合した塩化ビニルゾルを塗布した後に加熱、発泡させ、手袋基材の表面に滑り止め加工を施す滑り止め加工手袋の製造方法で、配合される前記発泡剤がマイクロカプセル型発泡剤であり、さらに前記塩化ビニルゾルの配合組成中に、塩化ビニル樹脂に対し該発泡剤が1.0〜10.0重量部配合され且つ可塑剤が160重量部を越え200重量部までの範囲内で配合されていることを特徴とする滑り止め加工手袋の製造方法。 Blended with the manufacturing method of non-slip processed gloves, which applies a vinyl chloride sol containing a foaming agent to the surface of a vinyl chloride glove base material with a backing cloth, then heats and foams it to apply anti-slip processing to the surface of the glove base material. The foaming agent is a microcapsule type foaming agent, and in the blending composition of the vinyl chloride sol, 1.0 to 10.0 parts by weight of the foaming agent is blended with respect to the vinyl chloride resin, and the plasticizer is 160 weights. The manufacturing method of the non-slip processed glove characterized by being mix | blended in the range up to 200 weight part exceeding a part. 表層が無浸透型塩化ビニルペーストで加工された裏布付き塩化ビニル製手袋基材の表面に、前記発泡剤を配合した前記塩化ビニルゾルを塗布した後に加熱、発泡させ、手袋基材の表面に滑り止め加工を施す請求項1記載の滑り止め加工手袋の製造方法。 After applying the vinyl chloride sol containing the foaming agent to the surface of a vinyl chloride glove base material with a backing cloth whose surface layer is processed with a non-penetrating vinyl chloride paste, the surface is coated with the vinyl chloride sol, heated and foamed, and then slipped onto the surface of the glove base material. The manufacturing method of the anti-slip | skid processed glove of Claim 1 which gives a stop process. 前記発泡剤を配合した前記塩化ビニルゾル中の塩化ビニルペーストレジンの平均重合度が2000〜4000の範囲内にある請求項2記載の滑り止め加工手袋の製造方法。 The method for producing a non-slip processed glove according to claim 2, wherein an average degree of polymerization of the vinyl chloride paste resin in the vinyl chloride sol containing the foaming agent is in the range of 2000 to 4000. 前記発泡剤を配合した前記塩化ビニルゾルが無浸透型塩化ビニルペーストレジンを用いて調整されたペーストである請求項2記載の滑り止め加工手袋の製造方法。 The method for producing anti-slip gloves according to claim 2, wherein the vinyl chloride sol containing the foaming agent is a paste prepared using a non-penetrating vinyl chloride paste resin.
JP2003308879A 2003-09-01 2003-09-01 Method for producing non-slip processed glove Pending JP2005076153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003308879A JP2005076153A (en) 2003-09-01 2003-09-01 Method for producing non-slip processed glove

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003308879A JP2005076153A (en) 2003-09-01 2003-09-01 Method for producing non-slip processed glove

Publications (1)

Publication Number Publication Date
JP2005076153A true JP2005076153A (en) 2005-03-24

Family

ID=34411215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003308879A Pending JP2005076153A (en) 2003-09-01 2003-09-01 Method for producing non-slip processed glove

Country Status (1)

Country Link
JP (1) JP2005076153A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169503A (en) * 2007-01-11 2008-07-24 Showa Glove Kk Glove
WO2015159925A1 (en) * 2014-04-15 2015-10-22 オカモト株式会社 Polyvinyl chloride-made gloves and method for producing same
JP2015209625A (en) * 2014-04-30 2015-11-24 オカモト株式会社 Polyvinyl chloride glove and manufacturing method thereof
CN108813761A (en) * 2018-05-14 2018-11-16 江苏瑞斯达安全防护用品有限公司 PVC slip-proof glove and its production technology with open cells structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169503A (en) * 2007-01-11 2008-07-24 Showa Glove Kk Glove
WO2015159925A1 (en) * 2014-04-15 2015-10-22 オカモト株式会社 Polyvinyl chloride-made gloves and method for producing same
JP6009124B2 (en) * 2014-04-15 2016-10-19 オカモト株式会社 Polyvinyl chloride gloves and manufacturing method thereof
JP2015209625A (en) * 2014-04-30 2015-11-24 オカモト株式会社 Polyvinyl chloride glove and manufacturing method thereof
CN108813761A (en) * 2018-05-14 2018-11-16 江苏瑞斯达安全防护用品有限公司 PVC slip-proof glove and its production technology with open cells structure

Similar Documents

Publication Publication Date Title
CN104153241B (en) High-hardness, high-toughness and anti-scratch PVC (Polyvinyl Chloride) paste for PVC foamed wallpaper and preparation method thereof
US4044176A (en) Graphic arts and graphic media
CA1153936A (en) Differential gloss products and methods of making the same
JP3670980B2 (en) Thermally foamable microsphere and method for producing the same
JP6830324B2 (en) Ethylene copolymer modified plastisol
CN103710994A (en) Coated fabric with suede-like texture and method for producing same
JP2005076153A (en) Method for producing non-slip processed glove
CN108884376A (en) Microsphere, thermally foamable resin combination and expanded moldings and its manufacturing method
JP2002067068A (en) Method of manufacturing decorative material
CN109265763A (en) Microsphere foaming layer and preparation method thereof for printer&#39;s blanket
NO860650L (en) PRESSIBLE MIXING.
JP2008169503A (en) Glove
CN106085272A (en) Heat foamable transfer membrane
JP4883711B2 (en) Laminated sheet manufacturing method
JP5123557B2 (en) Blackening agent, release agent for tire inner surface, and manufacturing method thereof, tire manufacturing method and tire
NO790276L (en) PROCEDURE FOR PREPARING A SHEET-SHAPED PLASTIC MATERIAL WITH PATTERNED SURFACE
JP2001303445A (en) Air-permeable base fabric and method for producing the same, air-permeable sheet structure and leathery sheet structure
CN108948908B (en) Foaming spray-painting material and preparation method thereof
JP2009263581A (en) Aqueous resin emulsion composition, expanded decorative material and its producing method
KR102658332B1 (en) Manufacturing method for waterproof agent for elastic membrane, and waterproofing construction method using the waterproof agent for elastic membrane
CN105885793A (en) Method for preparing wear-proof super-hydrophobic material by taking quartz sand and PVC (polyvinyl chloride) as raw materials
JP5169698B2 (en) Water pressure transfer method and water pressure transfer decorative molded product
TWI274798B (en) Method for PVP/SiO2 mixture chemical agents for use in woven fabric arranging and finishing
US20080254696A1 (en) Plastisol Composition, a Breathable and Absorbent Polymeric Material, Process and Use Therefor
JPH04337345A (en) Gloss-controlling resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070731