JP2005074544A - Electrode for electrolytic inprocess dressing and grinding - Google Patents

Electrode for electrolytic inprocess dressing and grinding Download PDF

Info

Publication number
JP2005074544A
JP2005074544A JP2003305689A JP2003305689A JP2005074544A JP 2005074544 A JP2005074544 A JP 2005074544A JP 2003305689 A JP2003305689 A JP 2003305689A JP 2003305689 A JP2003305689 A JP 2003305689A JP 2005074544 A JP2005074544 A JP 2005074544A
Authority
JP
Japan
Prior art keywords
grinding
electrode
grindstone
gap
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003305689A
Other languages
Japanese (ja)
Inventor
Hitoshi Omori
整 大森
Yoshiyuki Ueno
嘉之 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP2003305689A priority Critical patent/JP2005074544A/en
Publication of JP2005074544A publication Critical patent/JP2005074544A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode for electrolytic inprocess dressing and grinding, facilitating attachment/detachment and clearance adjustment, and stably performing the sticking formation of an electrolytic film on a grinding wheel surface by sufficient current application with sufficient filling and refilling of an electrolyte between electrodes. <P>SOLUTION: This electrode 10 for electrolytic inprocess dressing and grinding is placed to face a grinding action surface 1a of a conductive grinding wheel 1 with a clearance to grind a workpiece while dressing the grinding wheel by electrolysis by applying voltage while allowing a conductive fluid 4 to flow between them. A facing surface 10a of the electrode 10 facing the grinding action surface has a curved surface (e.g., a convex cylindrical surface) not parallel with the grinding action surface, and the clearance G gradually increases after gradually decreasing in the travel direction of the grinding wheel surface to form a micro clearance between them. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、取り付け、取り外し、間隙調整が容易な電解インプロセス・ドレッシング研削用電極に関する。   The present invention relates to an electrode for electrolytic in-process dressing grinding that is easy to attach, remove, and adjust the gap.

特許文献1に電解インプロセスドレッシング研削法(Electrolytic Inprocess Dressing:以下「ELID研削法」という)と呼ばれる電解ドレッシング手段が本願出願人により開示されている。
このELID研削法は、ワークとの接触面を有する砥石と、接触面に対向する電極と、砥石と電極との間に導電性液を流すノズルと、砥石と電極との間に電圧を印加する電源及び給電体とからなる装置を用い、砥石と電極との間に導電性液を流しながら、砥石と電極との間に電圧を印加し、砥石を電解によりドレッシングするものである。
Patent Document 1 discloses an electrolytic dressing means called an electrolytic in-process dressing grinding method (hereinafter referred to as “ELID grinding method”) by the applicant of the present application.
This ELID grinding method applies a voltage between a grindstone having a contact surface with a workpiece, an electrode facing the contact surface, a nozzle for flowing a conductive liquid between the grindstone and the electrode, and the grindstone and the electrode. A device comprising a power source and a power feeder is used to apply a voltage between the grindstone and the electrode while flowing a conductive liquid between the grindstone and the electrode, thereby dressing the grindstone by electrolysis.

このELID研削法によるドレッシングの機構を図6に示す。砥石の目立て開始時(A)には、砥石と電極との間の電気抵抗が少なく比較的大きい電流(5〜10A)が流れる。これにより、電解効果により砥石表面の金属部(ボンド)が溶解し、非導電性のダイヤモンド砥粒が突出する。更に、通電を続けると、酸化鉄(Fe23)を主とした絶縁被膜が砥石表面に形成され、砥石の電気抵抗が大きくなる。これにより、電流が低下し、ボンドの溶解が減り、砥粒の突出(砥石の目立て)が実質的に終了する(B)。この状態で研削を開始する(C)と、被膜が研削屑を遊離しつつ、ワークの研削につれてダイヤモンド砥粒が磨耗していく。更に研削を続けると(D)、砥石表面の絶縁被膜が磨耗により除去され、砥石の電気抵抗が低下し、砥石と電極間の電流が増大し、ボンドの溶解が増し、砥粒の突出(砥石の目立て)が再開される。従って、ELID研削法による研削中には、(B)〜(D)のように被膜の形成・除去によりボンドの過溶出が抑えられ、砥粒の突出(砥石の目立て)が自動的に調整される。(B)〜(D)に示したサイクルを以下「ELIDサイクル」と呼ぶ。 The dressing mechanism by this ELID grinding method is shown in FIG. At the start of sharpening the grinding wheel (A), a relatively large current (5 to 10 A) flows with little electrical resistance between the grinding wheel and the electrode. Thereby, the metal part (bond) on the surface of the grindstone is dissolved by the electrolytic effect, and non-conductive diamond abrasive grains protrude. Further, when energization is continued, an insulating film mainly composed of iron oxide (Fe 2 O 3 ) is formed on the surface of the grindstone, and the electric resistance of the grindstone increases. As a result, the current is decreased, the dissolution of the bond is reduced, and the protrusion of the abrasive grains (sharpening of the grindstone) is substantially finished (B). When grinding is started in this state (C), the diamond abrasive grains are worn as the workpiece is ground while the coating releases the grinding waste. When grinding continues (D), the insulating coating on the surface of the wheel is removed by abrasion, the electric resistance of the wheel decreases, the current between the wheel and the electrode increases, the dissolution of the bond increases, and the protrusion of the abrasive grains (the wheel) Will be resumed. Therefore, during grinding by ELID grinding method, as shown in (B) to (D), excessive elution of bonds is suppressed by forming and removing the coating, and the protrusion of the abrasive grains (sharpening of the grinding stone) is automatically adjusted. The The cycle shown in (B) to (D) is hereinafter referred to as “ELID cycle”.

上述したELID研削法では砥粒を細かくしてもELIDサイクルによる砥石の目立てにより砥石に目詰まりが生じないので、砥粒を細かくすれば鏡面のような極めて優れた加工面を研削加工により得ることができる。従って、ELID研削法は、高能率研削から鏡面研削に至るまで砥石の切れ味を維持できる特徴を有する。   In the above-mentioned ELID grinding method, even if the abrasive grains are made fine, clogging of the grinding stone does not occur due to the grinding of the grinding stone by the ELID cycle. Therefore, if the abrasive grains are made fine, an extremely excellent machining surface such as a mirror surface can be obtained by grinding. Can do. Therefore, the ELID grinding method has a feature that the sharpness of the grindstone can be maintained from high efficiency grinding to mirror grinding.

また、上述したELID研削用の電極として、特許文献2、3が提案されている。   Patent Documents 2 and 3 have been proposed as electrodes for ELID grinding described above.

特許文献2の「動圧発生電極」は、図7に示すように、導電性砥石1の加工面1aと隙間を隔てて対向し、その間に導電性液を流しながら電圧を印加して、砥石を電解によりドレッシングしながらワークを研削する電解ドレッシング研削用の電極50であって、
前記電極50は、砥石面の走行方向に互いに間隔を隔てて設けられ砥石の加工面1aから一定の隙間を有する複数の最狭部51と、該最狭部の間に設けられ最狭部より広い隙間を有する複数の凹部52とを有するものである。
As shown in FIG. 7, the “dynamic pressure generating electrode” of Patent Document 2 is opposed to the processing surface 1a of the conductive grindstone 1 with a gap, and a voltage is applied while flowing a conductive liquid between them. Electrode dressing grinding electrode 50 for grinding a workpiece while dressing by electrolysis,
The electrode 50 is provided at a distance from each other in the running direction of the grindstone surface, and has a plurality of narrowest portions 51 having a certain gap from the processing surface 1a of the grindstone, and the narrowest portion provided between the narrowest portions. And a plurality of recesses 52 having wide gaps.

特許文献3の「リムーバブル電極」は、図8に示すように、導電性砥石1の加工面と隙間を隔てて対向し、その間に導電性液を流しながら電圧を印加して、砥石を電解によりドレッシングしながらワークを研削する電解ドレッシング研削用の電極60であって、
砥石の加工面1aから一定の間隔を隔てた対向面62aを有する電極支持部材62と、該電極支持部材の対向面に沿って着脱可能に取付けられた導電性箔64と、該導電性箔に接触して電圧を印加する導電性端子66とからなるものである。
As shown in FIG. 8, the “removable electrode” of Patent Document 3 is opposed to the processing surface of the conductive grindstone 1 with a gap, and a voltage is applied while flowing a conductive liquid between them, so that the grindstone is electrolyzed. An electrode 60 for electrolytic dressing grinding for grinding a workpiece while dressing,
An electrode support member 62 having a facing surface 62a spaced apart from the processing surface 1a of the grindstone, a conductive foil 64 detachably attached along the facing surface of the electrode support member, and the conductive foil It consists of a conductive terminal 66 that contacts and applies a voltage.

特許第1947329号明細書Japanese Patent No. 1947329 特許第3214694号公報、「動圧発生電極」Japanese Patent No. 3214694, “Dynamic pressure generating electrode” 特開2001−252869号公報、「リムーバブル電極」Japanese Patent Application Laid-Open No. 2001-252869, “Removable Electrode”

従来、ELID研削用の電極(以下、「静電極」という)の形状は動電極である砥石作用面の形状に倣ったもので、対向する面領域において一定の間隙となるべき形状であった。すなわち、図4に示すように、砥石作用面1aが、凸円筒面ならば静電極2の対向面2aの形状は凹円筒面であり、図5に示すように、砥石作用面1aが平面なら静電極2の対向面2aは平面といった具合であった。なお、21、22は電解液注入口である。
その理由は、研削液を兼ねる砥石を電解する液(以下、「電解液」という)は導電性が低く、小さな対向面積で大きな間隙を空けていては十分な通電が得られず、したがって、砥石の研削条件に見合う砥石電解(鋳鉄ボンド砥石の場合、作用面表面にもろくて絶縁性の酸化鉄の皮が付着・形成される)が得られないためである。
そこで十分な通電によって砥石表面での迅速な酸化鉄皮膜の付着・形成を得るため、電極の間隙を小さくし(例えば0.3mm以下)、対向する面積を大きくする(例えば、砥石作用面の面積の1/5〜1/3)設定となっていた。
Conventionally, the shape of an electrode for ELID grinding (hereinafter referred to as “static electrode”) is a shape that follows the shape of a grindstone working surface, which is a moving electrode, and has a shape that should have a constant gap in opposing surface areas. That is, as shown in FIG. 4, if the grindstone working surface 1a is a convex cylindrical surface, the shape of the opposing surface 2a of the static electrode 2 is a concave cylindrical surface. If the grindstone working surface 1a is flat as shown in FIG. The opposing surface 2a of the static electrode 2 was flat. Reference numerals 21 and 22 are electrolyte solution inlets.
The reason for this is that a liquid that electrolyzes a grinding stone that also serves as a grinding fluid (hereinafter referred to as “electrolytic solution”) has low conductivity, and a sufficient gap cannot be obtained when a large gap is left in a small opposing area. This is because the grinding wheel electrolysis suitable for the above grinding conditions (in the case of a cast iron bonded grinding wheel, the surface of the working surface is brittle and an insulating iron oxide skin is adhered and formed) cannot be obtained.
Therefore, in order to obtain quick iron oxide film adhesion / formation on the grindstone surface by sufficient energization, the gap between the electrodes is reduced (for example, 0.3 mm or less) and the opposing area is increased (for example, the area of the grindstone working surface) 1/5 to 1/3).

このため、図4のような大型の平形砥石1(研削作用面は凸円筒面)の場合には、砥石面1aに対して間隙Gが一定になるように静電極2を取り付け、設定するために、精密な電極の位置・姿勢の調整機構を必要とし、電解液も大きくて長い間隙に均一に充満・更新させるために一個所の流入口だけでは不足で2、3個所の流入口を設ける必要があった。
さらに、対向面積全体にわたって電極間隙Gを一段と狭小にして通電効果を高めようとすれば、電解液による動圧の発生や、液の電気分解反応による酸素や水素の気体発生による間隙内の液層の断続にも留意する必要があった。
Therefore, in the case of a large flat grindstone 1 as shown in FIG. 4 (the grinding surface is a convex cylindrical surface), the static electrode 2 is attached and set so that the gap G is constant with respect to the grindstone surface 1a. In addition, a precise electrode position / posture adjustment mechanism is required, and in order to uniformly fill and renew the electrolyte in a large and long gap, a single inlet is not enough and two or three inlets are provided. There was a need.
Further, if the electrode gap G is further narrowed over the entire facing area to increase the energization effect, the liquid layer in the gap due to the generation of dynamic pressure by the electrolyte or the generation of oxygen or hydrogen gas by the electrolysis reaction of the liquid It was necessary to pay attention to the intermittent operation.

一方、図5のようなカップ形砥石1の平面作用面1aの場合には、電解液は砥石の回転方向に連れ出されると同時に遠心力によって半径方向にも振り出されるので、電解液を電極間に充満させておくためには、電解液をカップ砥石1の内側全周から注入するとともに砥石外側への振り出しを制限するなどの工夫が必要であった。
このため、電極の周辺の構造が複雑になり、ELID研削の安定性も必ずしも十分ではなかった。特に、カップ砥石を工具研削盤で用いるときには砥石の使用部位に応じて電極の取り付け位置も変更する必要があり、取り付け、取り外し、間隙調整が簡単で短時間に行えることが実用上から要望されていた。
On the other hand, in the case of the flat working surface 1a of the cup-shaped grindstone 1 as shown in FIG. 5, the electrolytic solution is taken out in the radial direction by centrifugal force at the same time as the electrolytic solution is taken out in the rotating direction of the grindstone. In order to satisfy the requirement, it has been necessary to devise such as injecting the electrolytic solution from the entire inner circumference of the cup grindstone 1 and restricting the swinging out of the grindstone to the outside.
For this reason, the structure around the electrode is complicated, and the stability of ELID grinding is not always sufficient. In particular, when using a cup grinder with a tool grinder, it is necessary to change the mounting position of the electrode according to the site of use of the grindstone, and there is a practical demand for easy mounting, removal, and clearance adjustment in a short time. It was.

本発明はかかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、取り付け、取り外し、間隙調整が容易であり、電極間の電解液の充満・更新も十分であって、十分な通電による砥石表面への電解皮膜の付着・形成が安定に行える電解インプロセス・ドレッシング研削用電極を提供することにある。   The present invention has been made to solve such problems. That is, the object of the present invention is easy to install, remove, and adjust the gap, and the electrolyte solution between the electrodes is sufficiently charged and renewed, and the adhesion and formation of the electrolytic film on the surface of the grindstone by stable energization is stable. It is an object of the present invention to provide an electrode for electrolytic in-process / dressing grinding.

本発明によれば、導電性砥石の研削作用面と隙間を隔てて対向し、その間に導電性液を流しながら電圧を印加して、砥石を電解によりドレッシングしながらワークを研削する電解インプロセス・ドレッシング研削用電極であって、
前記研削作用面と対向する電極の対向面が研削作用面と平行しない曲面を有し、前記隙間が砥石面の走行方向に漸減後に漸増しその間に極小隙間を形成する、ことを特徴とする電解インプロセス・ドレッシング研削用電極が提供される。
According to the present invention, an electrolysis in-process that faces a grinding action surface of a conductive grindstone with a gap, applies a voltage while flowing a conductive liquid therebetween, and grinds the workpiece while dressing the grindstone by electrolysis. An electrode for dressing grinding,
The electrode facing the grinding surface has a curved surface that is not parallel to the grinding surface, and the gap gradually increases in the running direction of the grinding wheel surface to form a minimal gap therebetween. An electrode for in-process dressing grinding is provided.

本発明の好ましい実施形態によれば、前記砥石の研削作用面は平面であり、前記電極の対向面は、研削作用面側に凸の円筒面である。
本発明の好ましい別の実施形態によれば、前記砥石の研削作用面は円筒面であり、前記電極の対向面は、平面または研削作用面側に凸の円筒面である、ことを特徴とする請求項1に記載の電解インプロセス・ドレッシング研削用電極。
また前記電極を弾性支持し、前記隙間を流れる導電性液の動圧により、隙間を増減させる弾性支持手段を備えることが好ましい。
According to a preferred embodiment of the present invention, the grinding surface of the grindstone is a flat surface, and the opposing surface of the electrode is a cylindrical surface convex toward the grinding surface.
According to another preferred embodiment of the present invention, the grinding surface of the grindstone is a cylindrical surface, and the opposing surface of the electrode is a flat surface or a cylindrical surface convex to the grinding surface side. The electrode for electrolytic in-process dressing grinding according to claim 1.
Moreover, it is preferable to provide elastic support means for elastically supporting the electrode and increasing / decreasing the gap by the dynamic pressure of the conductive liquid flowing through the gap.

本発明の構成によれば、導電性砥石の研削作用面と対向する電極の対向面が研削作用面と平行しない曲面を有し、砥石と電極の隙間が砥石面の走行方向(研削加工方向)に漸減後に漸増しその間に極小隙間を形成するので、砥石面の走行により砥石に付着した導電性液(電解液)を極小隙間位置まで同伴させることができる。
また、極小隙間が0.1mm〜0.3mmと大きめの場合、砥石と電極の隙間に砥石面の走行方向に流れる導電性液の層が一旦形成されると、ベルヌーイの定理により極小隙間位置の圧力が最小となり、その部分に導電性液を安定して保持することができる。
従って、例えば静電極面を凸円筒面とした静電極面の形状の効果により、迅速で安定したELID研削に必要な、十分な電解液を動電極である砥石面の運動によって電極間に充満・更新させることができる。
According to the configuration of the present invention, the facing surface of the electrode facing the grinding surface of the conductive grindstone has a curved surface that is not parallel to the grinding surface, and the gap between the grindstone and the electrode is the running direction of the grinding wheel surface (grinding direction). Since it gradually increases after being gradually reduced and a minimal gap is formed therebetween, the conductive liquid (electrolyte) adhering to the grindstone by running of the grinding wheel surface can be entrained to the position of the minimal gap.
In addition, when the minimum gap is as large as 0.1 mm to 0.3 mm, once the conductive liquid layer flowing in the running direction of the grinding wheel surface is formed in the gap between the grinding stone and the electrode, the position of the minimum gap is determined by Bernoulli's theorem. The pressure is minimized, and the conductive liquid can be stably held in that portion.
Therefore, for example, due to the effect of the shape of the electrostatic electrode surface with the electrostatic electrode surface as a convex cylindrical surface, sufficient electrolyte solution necessary for quick and stable ELID grinding is filled between the electrodes by the movement of the grindstone surface as a moving electrode. It can be updated.

また、本発明の構成によれば、電解は砥石と電極の極小隙間付近のみで行われるので、電極の対向長さは短くでき、電極の取り付け・調整が容易に行える。従って、工具研削盤のように、砥石交換や、砥石の使用位置の変更を頻繁に行わなければならない研削作業に適用すれば、交換時間を短縮し、ELIDの安定性を高めることができる。   In addition, according to the configuration of the present invention, since electrolysis is performed only in the vicinity of the minimal gap between the grindstone and the electrode, the opposing length of the electrode can be shortened, and the electrode can be easily attached and adjusted. Therefore, if it is applied to a grinding operation in which the grinding wheel must be changed frequently or the usage position of the grinding wheel must be changed frequently like a tool grinder, the replacement time can be shortened and the stability of ELID can be improved.

また、弾性支持手段を用いて、極近接(例えば0.01mm以下)に円筒形の静電極を、適切に弾性支持しておけば、砥石回転数に応じて電解液の動圧により、間隙が変化し、通過液量、通電電流値とも変化するので、砥石切込み負荷の大となる低砥石周速では、電解が増え、砥石切込み負荷の小さくなる高砥石周速では電解は小さめとなる適応効果が期待できる。   Moreover, if the cylindrical static electrode is appropriately elastically supported in close proximity (for example, 0.01 mm or less) using an elastic support means, the gap is caused by the dynamic pressure of the electrolytic solution according to the grinding wheel rotation speed. As the flow rate and current flow change, the electrolysis increases at low grinding wheel peripheral speeds where the grinding wheel cutting load is large, and the electrolysis is reduced at high grinding wheel speeds where the grinding wheel cutting load is small. Can be expected.

以下、本発明の好適な実施例を説明する。なお、各図において共通する部分には同一の符号を付して使用する。   Hereinafter, preferred embodiments of the present invention will be described. In addition, the same code | symbol is attached | subjected and used for the common part in each figure.

図1は本発明によるELID研削用電極の第1実施形態図であり、(A)は正面図、(B)は横断面図である。
図1に示すように、本発明の電解インプロセス・ドレッシング研削用電極10は、導電性砥石1の研削作用面1aと対向する電極の対向面10aが研削作用面と平行しない曲面を有し、隙間Gが砥石1の砥石面走行方向に漸減後に漸増しその間に極小隙間を形成している。
なおこの例において、導電性砥石1はカップ形砥石であり、その研削作用面1aはリング状の平面である。すなわち、動電極面1aは周回するリング状の平面である。また本発明の電解インプロセス・ドレッシング研削用電極、すなわち静電極10はカーボンの円筒であって、円筒の母線は動電極1の平面1aと平行に設置される。また、この図において、21は電解液注入口、Aは砥石面の走行方向を示す矢印、Gは電極間隙間である。
なお、電極間隙間Gは例えば0.1〜0.3mmの隙間に保持され、その間に電解液4(導電性液)を流しながら砥石1に正(+)、電極に負(-)の電圧を印加し、砥石1を電解によりドレッシングしながら図示しないワークを研削するようになっている。
FIG. 1 is a diagram showing a first embodiment of an ELID grinding electrode according to the present invention, in which (A) is a front view and (B) is a cross-sectional view.
As shown in FIG. 1, the electrode 10 for electrolytic in-process dressing grinding of the present invention has a curved surface in which the facing surface 10a of the electrode facing the grinding surface 1a of the conductive grindstone 1 is not parallel to the grinding surface, The gap G gradually increases in the running direction of the grindstone surface of the grindstone 1 and gradually increases to form a minimal gap therebetween.
In this example, the conductive grindstone 1 is a cup-shaped grindstone, and its grinding surface 1a is a ring-shaped flat surface. That is, the moving electrode surface 1a is a ring-shaped plane that goes around. The electrode for electrolytic in-process dressing grinding of the present invention, that is, the static electrode 10 is a carbon cylinder, and the generatrix of the cylinder is installed parallel to the plane 1 a of the moving electrode 1. Moreover, in this figure, 21 is an electrolyte solution injection port, A is an arrow which shows the running direction of a grindstone surface, G is a clearance gap between electrodes.
Note that the gap G between the electrodes is held, for example, in a gap of 0.1 to 0.3 mm, and a positive (+) voltage is applied to the grindstone 1 and a negative (-) voltage is applied to the electrodes while the electrolytic solution 4 (conductive liquid) is flowing therebetween. Is applied to grind a workpiece (not shown) while dressing the grindstone 1 by electrolysis.

このような構造になっているので静電極10を砥石1に近接して取り付けることは、円筒母線と平面の間の間隙と平行度だけを調整すればよく、たとえば、砥石1と静電極10の間にスペーサをはさんで押しつけた状態で固定すればよい。また、そのための付加機構として種々考えられるが、直交2軸のまわりの角度を調節・設定できる機構であれば、電極の間隙と母線の平行度を独立に調整することができる。このため、砥石面1aに電極10の最近接部(円筒母線)を容易に0.1mm以下に接近させることができる。
また、電解液4は砥石1の走行によって電極間に連れ込まれ(極小隙間がおおむね0.01mm程度と小さければ、液の粘性によって動圧が発生し最薄液層内付近の液の圧力は常圧より高くなる)砥石1の速度に見合う流速、流量となって、電極間に充満し、更新される。
Since it has such a structure, attaching the static electrode 10 close to the grindstone 1 is only necessary to adjust the gap and parallelism between the cylindrical bus bar and the plane. For example, the grindstone 1 and the static electrode 10 What is necessary is just to fix in the state pressed with the spacer in between. Various mechanisms can be conceived as an additional mechanism for this purpose, and the parallelism between the gap between the electrodes and the bus can be adjusted independently if the mechanism can adjust and set the angle around two orthogonal axes. For this reason, the nearest part (cylindrical bus bar) of the electrode 10 can be easily made to approach 0.1 mm or less to the grindstone surface 1a.
In addition, the electrolytic solution 4 is brought between the electrodes by the traveling of the grindstone 1 (if the minimal gap is as small as about 0.01 mm, dynamic pressure is generated due to the viscosity of the liquid, and the pressure of the liquid in the vicinity of the thinnest liquid layer is normal. It becomes a flow rate and a flow rate corresponding to the speed of the grindstone 1 (which becomes higher than the pressure), and is filled and renewed between the electrodes.

静電極10は、その軸心を中心に自由に回転可能に形成するのがよい。この構成により、静電極10が電解液の流れとともに自由回転し、静電極10の外周全面を有効利用することができる。
また、静電極10を弾性支持し、隙間を流れる導電性液の動圧により、隙間を増減させる弾性支持手段6を備えることが好ましい。
The static electrode 10 is preferably formed so as to be freely rotatable around its axis. With this configuration, the static electrode 10 can freely rotate with the flow of the electrolytic solution, and the entire outer periphery of the static electrode 10 can be effectively used.
Moreover, it is preferable to provide the elastic support means 6 which elastically supports the static electrode 10 and increases or decreases the gap by the dynamic pressure of the conductive liquid flowing through the gap.

図2は、本発明によるELID研削用電極の第2実施形態図である。この例は、砥石の研削作用面が円筒面であり、電極が部分円筒面の場合を示している。
砥石1が、その研削作用面1aが凸円筒面であるような平形の場合には、静電極10の形状は小さい直径の凸円筒面では、砥石周長の1%程度の対向面長さを得るのは難しい場合がある。このときには、静電極10の電極面形状として、半径の大きい凸円筒面とするのがよい。
なお、電極10の対向面を半径無限大の凸円筒面すなわち、平面にしてもよい。またこの場合、電極間に電解液が十分連れ込まれるように電極間隙の入り口形状をラッパ状にしておくのが好ましい。
FIG. 2 is a diagram showing a second embodiment of an ELID grinding electrode according to the present invention. In this example, the grinding surface of the grindstone is a cylindrical surface, and the electrode is a partial cylindrical surface.
When the grindstone 1 is a flat shape whose grinding surface 1a is a convex cylindrical surface, the shape of the static electrode 10 is a convex cylindrical surface having a small diameter, and the opposing surface length is about 1% of the circumferential length of the grindstone. It can be difficult to get. At this time, the electrode surface shape of the static electrode 10 is preferably a convex cylindrical surface having a large radius.
The opposing surface of the electrode 10 may be a convex cylindrical surface having an infinite radius, that is, a flat surface. Further, in this case, it is preferable that the entrance shape of the electrode gap is made a trumpet shape so that the electrolyte is sufficiently brought in between the electrodes.

図3は、本発明によるELID研削用電極の第3実施形態図である。この例は、砥石の研削作用面が円筒面であり、電極が複数の円筒の場合を示している。この図において、10は静電極、21、31は電解液注入口、Aは砥石面の走行方向を示す矢印、G2,G3は電極間隙間である。この図に示すように、複数の円筒面形状の静電極を対向させることもできる。   FIG. 3 is a diagram showing a third embodiment of an ELID grinding electrode according to the present invention. In this example, the grinding surface of the grindstone is a cylindrical surface, and the electrode is a plurality of cylinders. In this figure, 10 is a static electrode, 21 and 31 are electrolyte inlets, A is an arrow indicating the running direction of the grindstone surface, and G2 and G3 are gaps between the electrodes. As shown in this figure, a plurality of cylindrically shaped static electrodes can be opposed to each other.

上述した構成の場合、電流路を生じる薄液層の部分の面積が、従来の均等間隙・大対向面積電極の場合に比べて小さいので、通電量(皮膜形成)が十分かどうかについて、実験を行った。   In the case of the above-described configuration, the area of the thin liquid layer that generates the current path is smaller than that of the conventional uniform gap / large counter area electrode, so an experiment was conducted to determine whether the energization amount (film formation) was sufficient. went.

実験の条件として、砥石はカップ形の#3000鋳鉄ボンドダイヤモンド砥石(φ150×φ130)、静電極はカーボン円筒(φ20×L20)、研削液はCEM、電源はELID電源ED−910、加工物は超硬TC20(研削面積1.5mm×1.5mm)、切り込みは2〜3μm/pass、砥石回転は2600rpmとした。   The test conditions are: a # 3000 cast iron bond diamond grinding wheel with a cup shape (φ150 × φ130), a static electrode is a carbon cylinder (φ20 × L20), a grinding fluid is CEM, a power source is ELID power source ED-910, and a workpiece is super Hard TC20 (grinding area 1.5 mm × 1.5 mm), incision was 2 to 3 μm / pass, and grindstone rotation was 2600 rpm.

この結果、電解皮膜無しの砥石に通電する時の初期電流は2アンペアで、研削なしでの通電2分後に0.5アンペアに下がる。この様子は、対向面積大の平面静電極での状況と同等であった。すなわち、通電とともに、砥石表面に、酸化鉄の絶縁皮膜が付着・形成されたのである。
研削中の電流値は1アンペアであった。加工物の接触によって砥石表面から皮膜が掻き落されるのと新たに皮膜が形成されることとの釣り合いが電流1アンペアを通す皮膜の状態のところにあることを示している。
切込みを止めてスパーク・アウトに入ると、1分程度で、電流値は0.5アンペアに減って絶縁皮膜が厚くなることを示す。なお、電極間で電解を生じることなしに流れる電流もあり、0.5アンペアはほぼこれにあたる。
以上によって、通電電流の値も、皮膜形成に要する時間についても、従来の対向面積大の平面静電極と同等であることが確かめられた。
As a result, the initial current when energizing a grindstone without an electrolytic film is 2 amperes, and decreases to 0.5 amperes after 2 minutes of energization without grinding. This situation was equivalent to the situation with a planar static electrode with a large opposing area. In other words, an iron oxide insulating film was adhered and formed on the surface of the grindstone along with the energization.
The current value during grinding was 1 ampere. This shows that the balance between the scraping of the coating from the surface of the grindstone by the contact of the workpiece and the formation of a new coating is in the state of the coating that passes 1 ampere of current.
When the cut is stopped and the spark is entered, the current value is reduced to 0.5 amperes in about 1 minute, indicating that the insulating film becomes thicker. There is also a current that flows without causing electrolysis between the electrodes, and 0.5 ampere corresponds to this.
From the above, it was confirmed that the value of the energization current and the time required for film formation were the same as those of the conventional planar static electrode having a large opposing area.

以上の実験事実は次のように考察される。電極間での電極及び電解液の電気化学的反応は、砥石の周速や電解液の流れに比べて十分に速く、電極間の電解液の更新が迅速ならば十分速く反応が進む。反面、電極間の液が滞留したり、欠乏したりするときには、反応飽和して、進まない。ELID研削では、電解反応は、反応律速ではなく、拡散律速であると解することができる。すなわち、最近接隙間を小さくして、通電電流を多く流し、その分電解液の更新を迅速に行なえば、対向電極面積を大きくしなくとも十分に電解される。   The above experimental facts are considered as follows. The electrochemical reaction of the electrode and the electrolyte between the electrodes is sufficiently faster than the peripheral speed of the grindstone and the flow of the electrolyte, and the reaction proceeds sufficiently quickly if the electrolyte is rapidly updated between the electrodes. On the other hand, when the liquid between the electrodes stays or is deficient, the reaction is saturated and does not proceed. In ELID grinding, it can be understood that the electrolytic reaction is not the reaction rate limiting but the diffusion rate limiting. That is, if the closest gap is made small, a large amount of current is passed, and the electrolyte solution is renewed accordingly, electrolysis can be sufficiently performed without increasing the counter electrode area.

平面静電極の砥石周長に対する対向長さは、13%であったのに対して、これと同等の電解性能をもつ凸円筒静電極のそれは電極間隙を平面電極のそれと同じ、0.3mmのところまでとして計算すると0.85%となって、平面電極の15分の1にすぎない。このことは、静電極の動電極対向面の形状を電解液の充満・更新に適した凸円筒面にした効果である。   The opposing length of the planar static electrode with respect to the grinding wheel circumference was 13%, whereas that of the convex cylindrical static electrode having the same electrolysis performance as that of the planar electrode was 0.3 mm. However, when calculated as 0.8, it is 0.85%, which is only 1/15 of the flat electrode. This is the effect of making the shape of the moving electrode facing surface of the static electrode into a convex cylindrical surface suitable for filling and renewal of the electrolyte.

以上述べたように、静電極面10aを凸円筒面としたことを特徴とする本発明によれば、静電極面の形状の効果により、迅速で安定したELID研削に必要な、十分な電解液を動電極である砥石面1aの運動によって電極間に充満・更新させることができ、電極の対向長さも短いので電極の取り付け・調整が容易に行える効果がある。工具研削盤のように、砥石交換や、砥石の使用位置の変更を頻繁に行わなければならない研削作業に適用すれば、交換時間の短縮、ELIDの安定性の効果が大きい。
また、極近接(0.01mm以下)円筒静電極を、適切に弾性支持しておけば、砥石回転数に応じて電解液の動圧により、間隙が変化し、通過液量、通電電流値とも変化するので、砥石切込み負荷の大となる低砥石周速では、電解が増え、砥石切込み負荷の小さくなる高砥石周速では電解は小さめとなる適応効果が期待できる。
As described above, according to the present invention characterized in that the static electrode surface 10a is a convex cylindrical surface, sufficient electrolyte solution necessary for quick and stable ELID grinding is obtained due to the effect of the shape of the static electrode surface. Can be filled and renewed between the electrodes by the movement of the grindstone surface 1a which is a moving electrode, and since the opposing length of the electrodes is short, there is an effect that the electrodes can be easily attached and adjusted. If it is applied to a grinding operation in which the grinding wheel must be changed frequently or the usage position of the grinding wheel must be changed frequently like a tool grinder, the effect of shortening the replacement time and the stability of ELID is great.
In addition, if the cylindrical static electrode in close proximity (0.01 mm or less) is appropriately elastically supported, the gap changes due to the dynamic pressure of the electrolyte depending on the rotational speed of the grindstone, and both the amount of liquid passing through and the value of the energization current Therefore, the electrolysis increases at a low grinding wheel peripheral speed where the grinding wheel cutting load becomes large, and an adaptation effect can be expected in which the electrolysis becomes smaller at a high grinding wheel circumferential speed where the grinding wheel cutting load becomes small.

なお、本発明は、上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々に変更することができることは勿論である。   In addition, this invention is not limited to embodiment mentioned above, Of course, it can change variously in the range which does not deviate from the summary of this invention.

本発明によるELID研削用電極の第1実施形態図である。It is 1st Embodiment figure of the electrode for ELID grinding by this invention. 本発明によるELID研削用電極の第2実施形態図である。It is 2nd Embodiment figure of the electrode for ELID grinding by this invention. 本発明によるELID研削用電極の第3実施形態図である。It is 3rd Embodiment figure of the electrode for ELID grinding by this invention. 従来のELID研削用電極の例を示す図である。It is a figure which shows the example of the electrode for conventional ELID grinding. 従来のELID研削用電極の別の例を示す図である。It is a figure which shows another example of the conventional electrode for ELID grinding. ELID研削法におけるELIDサイクルを示す説明図である。It is explanatory drawing which shows the ELID cycle in an ELID grinding method. 特許文献2の「動圧発生電極」の模式図である。10 is a schematic diagram of a “dynamic pressure generating electrode” in Patent Document 2. FIG. 特許文献3の「リムーバブル電極」の模式図である。6 is a schematic diagram of “Removable Electrode” in Patent Document 3. FIG.

符号の説明Explanation of symbols

1 導電性砥石(動電極)、1a 研削作用面(動電極面)、
2 電極(静電極)、2a 対向面、
4 電解液(導電性液)、6 弾性支持手段、
10 電解インプロセス・ドレッシング研削用電極(静電極)、
10a 対向面、
21、22、31 電解液注入口
1 conductive grinding wheel (moving electrode), 1a grinding working surface (moving electrode surface),
2 electrode (static electrode), 2a facing surface,
4 electrolyte (conductive liquid), 6 elastic support means,
10 Electrolytic in-process dressing grinding electrode (static electrode),
10a facing surface,
21, 22, 31 Electrolyte inlet

Claims (4)

導電性砥石の研削作用面と隙間を隔てて対向し、その間に導電性液を流しながら電圧を印加して、砥石を電解によりドレッシングしながらワークを研削する電解インプロセス・ドレッシング研削用電極であって、
前記研削作用面と対向する電極の対向面が研削作用面と平行しない曲面を有し、前記隙間が砥石面の走行方向に漸減後に漸増しその間に極小隙間を形成する、ことを特徴とする電解インプロセス・ドレッシング研削用電極。
This is an electrode for electrolytic in-process dressing grinding that faces the grinding surface of the conductive grindstone with a gap, applies a voltage while flowing a conductive liquid between them, and grinds the workpiece while dressing the grindstone electrolytically. And
The electrode facing the grinding surface has a curved surface that is not parallel to the grinding surface, and the gap gradually increases in the running direction of the grinding wheel surface to form a minimal gap therebetween. In-process dressing grinding electrode.
前記砥石の研削作用面は平面であり、前記電極の対向面は、研削作用面側に凸の円筒面である、ことを特徴とする請求項1に記載の電解インプロセス・ドレッシング研削用電極。 2. The electrode for electrolytic in-process dressing grinding according to claim 1, wherein the grinding surface of the grindstone is a flat surface, and the opposing surface of the electrode is a cylindrical surface convex toward the grinding surface. 前記砥石の研削作用面は円筒面であり、前記電極の対向面は、平面または研削作用面側に凸の円筒面である、ことを特徴とする請求項1に記載の電解インプロセス・ドレッシング研削用電極。 2. The electrolytic in-process dressing grinding according to claim 1, wherein the grinding surface of the grindstone is a cylindrical surface, and the opposing surface of the electrode is a flat surface or a cylindrical surface convex toward the grinding surface. Electrode. 前記電極を弾性支持し、前記隙間を流れる導電性液の動圧により、隙間を増減させる弾性支持手段を備える、ことを特徴とする請求項1に記載の電解インプロセス・ドレッシング研削用電極。

The electrode for electrolytic in-process dressing grinding according to claim 1, further comprising elastic support means for elastically supporting the electrode and increasing / decreasing the gap by a dynamic pressure of a conductive liquid flowing through the gap.

JP2003305689A 2003-08-29 2003-08-29 Electrode for electrolytic inprocess dressing and grinding Pending JP2005074544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003305689A JP2005074544A (en) 2003-08-29 2003-08-29 Electrode for electrolytic inprocess dressing and grinding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003305689A JP2005074544A (en) 2003-08-29 2003-08-29 Electrode for electrolytic inprocess dressing and grinding

Publications (1)

Publication Number Publication Date
JP2005074544A true JP2005074544A (en) 2005-03-24

Family

ID=34408967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003305689A Pending JP2005074544A (en) 2003-08-29 2003-08-29 Electrode for electrolytic inprocess dressing and grinding

Country Status (1)

Country Link
JP (1) JP2005074544A (en)

Similar Documents

Publication Publication Date Title
EP1072357B1 (en) Elid centerless grinding apparatus
JPH05131365A (en) Method and device for seting grinding wheel
JP3214694B2 (en) Dynamic pressure generating electrode
KR101490745B1 (en) A grinding apparatus for electrolytic in-process dressing
JP2005074544A (en) Electrode for electrolytic inprocess dressing and grinding
JPH10175165A (en) Centerless grinding method using metal bond grinding wheel, and its device
JP2838314B2 (en) Electrolytic interval dressing grinding method
JP2003191164A (en) Precise grinding method and device, composite bond grinding wheel used therefor, and its manufacturing method
JP3530562B2 (en) Lens grinding method
Zhang et al. Precision grinding of bearing steel based on active control of oxide layer state with electrolytic interval dressing
JP4658578B2 (en) Nozzle ELID grinding method and apparatus
JPH11262860A (en) Extremely precise grinding method and device
JP4878159B2 (en) Rotational surface reduction head, electrolytic surface reduction device, and electrolytic surface reduction method
Sudiarso et al. In-Process Electrical Dressing of Metal-Bonded Diamond Grinding Wheels.
JP2950064B2 (en) Electrolytic dressing type grinding machine
KR20160109688A (en) Electro-discharge Truing System of Metal-bonded Grinding Wheel
KR20160109689A (en) Electro-discharge Truing Methode of Metal-bonded Grinding Wheel
JP4215499B2 (en) Electrode fixing jig for internal grinding equipment
JP3669073B2 (en) Grinding apparatus and grinding method
JPH0133287B2 (en)
JP2002011661A (en) Coolant purifying device, electrolytic in-process deressing device and grinding machine
JP3020149B2 (en) Metal Bond Super Abrasive Plane Honing Wheel Shape Correction Device
JPH08174419A (en) Grinding method using magnetic field and device therefor
JP5395572B2 (en) Grinding equipment
JPH02303766A (en) Dressing device for conductive grindstone

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060815

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Effective date: 20081107

Free format text: JAPANESE INTERMEDIATE CODE: A131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081112

A02 Decision of refusal

Effective date: 20090303

Free format text: JAPANESE INTERMEDIATE CODE: A02