JP2005074344A - Method for mass producing small particle pure water reusing steam purification and heat of vaporization - Google Patents

Method for mass producing small particle pure water reusing steam purification and heat of vaporization Download PDF

Info

Publication number
JP2005074344A
JP2005074344A JP2003309434A JP2003309434A JP2005074344A JP 2005074344 A JP2005074344 A JP 2005074344A JP 2003309434 A JP2003309434 A JP 2003309434A JP 2003309434 A JP2003309434 A JP 2003309434A JP 2005074344 A JP2005074344 A JP 2005074344A
Authority
JP
Japan
Prior art keywords
water
heat
pressure boiler
steam
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003309434A
Other languages
Japanese (ja)
Inventor
Kazuaki Jokegataki
和明 城ヶ瀧
Ai Jokegataki
愛 城ヶ瀧
Hokon Shin
ほ 根 辛
Meishu Shin
明 珠 辛
Shoshu Bun
承 しゅ 文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003309434A priority Critical patent/JP2005074344A/en
Publication of JP2005074344A publication Critical patent/JP2005074344A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for mass producing and supplying small particle pure water useful for human beings, and animals and plants by utilizing waste heat. <P>SOLUTION: The small particle pure water is obtained firstly with use of a high-pressure boiler advantageous to obtain a large amount of distilled water and having high performance, secondly by efficiently making energy saving using the heat of vaporization of the high-pressure boiler in a heavy-pressure boiler, also using the heat of vaporization of the heavy-pressure boiler in a low-pressure boiler to compress steam vaporized in the low-pressure boiler reduced with pressure by a turbine, and using the final heat of vaporization in the low-pressure boiler in which a liquified temperature is increased, thirdly to obtain the small particle pure water using raw water whose water quality is contaminated, by increasing the temperature of a nitrogen compound, a nitrogen component or the like vaporized in association with steam from the lowest 600°C to 1,200°C to purify, and fourthly by inhibiting oxidation of a heat-resistant stainless metal by coating the inside and the outside of a direct fire steam heating tube of 1,200°C or more received with the direct fire having a high temperature from a steam heating line with ceramics, BAKUHANSEKI (a kind of granite porphyry), tourmaline or the like and emitting a large number of a far-infrared ray. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明に係る蒸気浄化と気化熱を再利用して小粒子の純水を量産する方法は、日に日に汚染してゆく地球上の水から人体には勿論、動植物にも有益な小粒子(micro−cluster)純水を蒸気浄化と気化熱を利用する方法で熱エネルギー(energy)を節約して安く生産する方法と装置に関するものである。   The method of mass production of small particle pure water by reusing steam purification and heat of vaporization according to the present invention is useful for small animals that are beneficial to animals and plants as well as to human bodies from the water on the earth that is polluting day by day. The present invention relates to a method and an apparatus for producing pure water at low cost by saving heat energy by using steam purification and heat of vaporization.

本発明の技術分野は、汚染した海水や地下水又は河川水などを酸素や空気を混合して水質によって600℃から1,200℃まで加熱して蒸発する時、一緒に蒸発した水蒸気の中に混合したBOD、COD、窒素化合物、悪臭、油分などを高温燃焼させて純粋化、すなわち浄化させるものである。このとき加熱によって、水分子の電子軌道と酸素と水素に化合された水分子核の熱エネルギーが大きくなる。水分子は、3,500℃で水素と酸素に熱分解するが、600℃ないし1,200℃でBOD、COD、油分、不純物などが高温の酸素と瞬間的に燃焼し消滅するときに、その部分の水蒸気分子の温度は超高温で単分子状態で熱分解直前に至る。このように、純粋化されたエネルギーが大きい単分子状態の電子軌道が大きい水分子などを急冷凍させる時、電子軌道は冷却収縮して水粒子に変わるが、分子核のエネルギーは、そのまま、大きくなるように残っているので、水分子(water cluster)5乃至6個に結合された小粒子純水になる。   In the technical field of the present invention, when contaminated seawater, groundwater or river water is evaporated by mixing oxygen and air and heating from 600 ° C to 1200 ° C depending on the water quality, it is mixed into the water vapor evaporated together. The purified BOD, COD, nitrogen compounds, malodor, oil, etc. are burned at a high temperature to be purified. At this time, due to heating, the thermal energy of the water molecular nuclei combined with the electron orbits of the water molecules and oxygen and hydrogen is increased. Water molecules are thermally decomposed into hydrogen and oxygen at 3,500 ° C, but when 600 ° C to 1,200 ° C, BOD, COD, oil, impurities, etc. are instantaneously burned with high-temperature oxygen and disappear. The temperature of the water vapor molecules in the part is extremely high and reaches a single molecular state immediately before thermal decomposition. Thus, when water molecules with a large purified single-molecule state electron orbit are rapidly frozen, the electron orbits cool and contract into water particles, but the energy of the molecular nucleus remains large. Therefore, it becomes small particle pure water bonded to 5 to 6 water molecules.

本発明は、人体と動植物に有益な小粒子純水を小さい熱量で生産する経済的な生産方法である。すなわち高圧ボイラーで水を蒸発させながら、消耗した気化熱(539cal)を高圧ボイラーの高圧蒸気の液化点より低い温度の低圧ボイラーの水を蒸発させるのに再使用して、そしてタービンで低圧ボイラーを減圧させて蒸発温度を低めて熱効率を高めて低圧ボイラーで蒸発した水蒸気が持った気化熱も再生して使うために、タービン(turbine)で圧縮させて液化点(液化温度)をタービンにて減圧された低圧ボイラーの水を蒸発させる温度より高めて、低圧ボイラーで液化させて、減圧された低圧ボイラーの水を蒸発させる気化熱で再生し、使用する経済的なエネルギー節約方法で人類と動植物の生命を持続するために必要な水、即ち、水の粒子(cluster)の大きさを測定する核磁気共鳴装置(Nuclear Magnetic Ressonance)の測定価が50−57Hzで現れる5−6個の水分子が結合された小粒子純水を1リットル当たり100Calくらいの小熱量で経済的に大量生産するための方法と装置の技術に関するものである。
The present invention is an economical production method for producing small-particle pure water useful for human bodies and animals and plants with a small amount of heat. That is, while evaporating the water in the high pressure boiler, the consumed heat of vaporization (539 cal) is reused to evaporate the water in the low pressure boiler at a temperature below the liquefaction point of the high pressure steam in the high pressure boiler, and the low pressure boiler in the turbine In order to regenerate and use the heat of vaporization of the water vapor evaporated in the low-pressure boiler by reducing the evaporation temperature to lower the evaporation temperature and using it, the liquefaction point (liquefaction temperature) is reduced by the turbine. This is an economical energy saving method that uses the heat of vaporization that evaporates the water in the low-pressure boiler, evaporates the water in the low-pressure boiler, evaporates the water in the low-pressure boiler, and evaporates the water in the low-pressure boiler. Nuclear magnetic resonance device (Nuclear Mag) for measuring the size of water necessary for sustaining life, that is, water particles Method and apparatus technology for economically mass-producing small particle pure water with 5 to 6 water molecules combined with a measured value of 50 to 57 Hz with a small calorific value of about 100 Cal per liter It is about.

この分野における従来の技術について述べれば、浄水方法とその技術では、精密濾過方法と蒸留方法とイオン(ion)樹脂方法等があって、海水の淡水化方法では逆浸透方法等が使われている。そして、辛 ほ 根氏本人が発明した韓国とEC、そして、各国に出願及び登録された大韓民国特許第119766号蒸気浄化能力を持った蒸発及び蒸発濃縮乾燥装置と方法がある。そして、人体と動植物に良いという小粒子水(micro−cluster water)の製造方法では、ローレンツ(Lorenzen)氏と一緒に開発した蒸留水を蒸発させた蒸気に力強い磁場を掛けて製造する方法と強力な遠赤外線(4−14の波長)を照射する方法と前記の本人の発明である特許第119766号の蒸気浄化方法と一緒に低圧の水蒸気を400℃以上に加熱した後急冷させる時、小粒子水が生産されることなどが知られている。     As for conventional technologies in this field, water purification methods and technologies include microfiltration methods, distillation methods and ion resin methods, and seawater desalination methods use reverse osmosis methods. . In addition, there are South Korea and EC invented by Mr. Shin Hone, and Korean Patent No. 119766, which has been filed and registered in each country, and an evaporation and evaporation concentration drying apparatus and method having steam purification capability. In addition, the micro-cluster water production method, which is good for human bodies and animals and plants, is a powerful method and method that is produced by applying a strong magnetic field to steam obtained by evaporating distilled water, developed with Mr. Lorenzen. Together with the method of irradiating a long infrared ray (wavelength of 4-14) and the steam purification method of Patent No. 119766 which is the inventor's invention, when low-pressure steam is heated to 400 ° C. or higher and then rapidly cooled, small particles It is known that water is produced.

本発明の目的とする小粒子純水を安価に量産するためには、上述した従来の技術を総合してみても、問題点が多くある。定数方法で一番精密なのが蒸留法といえる。蒸留水にも水が蒸発する時、汚染した水中に含有されたBOD、COD、揮発性油分、悪臭、水のあか等が微量に同伴蒸発する。逆浸透方法で汚染しない深海水を淡水化しても微量の塩分が残る。   In order to mass-produce small particle pure water as an object of the present invention at low cost, there are many problems even when the above-described conventional techniques are combined. The most precise of the constant methods is the distillation method. When water evaporates in distilled water, BOD, COD, volatile oil, bad odor, water stains, etc. contained in the contaminated water accompany a trace amount. A trace amount of salinity remains even if the deep seawater that is not polluted by the reverse osmosis method is desalinated.

イオン樹脂方法は、収支をよく再生させなければならないし、それでも完全な浄化にはならない。微量の不純物が通過してしまうからである。そして濾過方法は、不純物をかけて出すのに過ぎないが濁度には効能が大きい。そして、人工的な小粒子水製造方法は、初歩段階で高純度小粒子純水の量産は遠い道である。微弱だが前記の大韓民国特許第119766号の蒸気浄化能力を持った蒸発及び蒸発濃縮建築装置に海水や地下水を入れて小粒子純水を生産して多くの人と動植物の健康のために4乃至5年前から韓国と日本の数箇所で実用化されていて小粒子純水を供給して、人と動植物の健康のために奉仕している。良質の水が豊かな韓国と日本は、水の恵沢がわからなくて暮らした。その故に、前記の特許発明も、水よりは糞尿や排水の処理の方に関心が集中された。BOD 20000乃至30000の糞尿も、飲料水に変える蒸気浄化能力を持った機械であるが故に海水や汚染した地下水等を小粒子純水に作ることは問題にならなかったが、しかし、もう少し良質の高純度である小粒子純水を安価に、量産するには前記の特許としては問題が多かった。   The ionic resin method has to regenerate the balance well and still does not provide complete purification. This is because a small amount of impurities pass through. And the filtration method is only effective by adding impurities, but has a great effect on turbidity. The artificial small particle water production method is a long way from the beginning of mass production of high purity small particle pure water. It is weak, but the above-mentioned Korean Patent No. 119766 has a steam purifying ability, and the evaporation and evaporative concentration building equipment puts seawater and groundwater into small particle pure water to produce 4 to 5 for the health of many people and animals and plants. It has been put into practical use in Korea and Japan for several years, supplying small particle pure water and serving for the health of people, animals and plants. Korea and Japan, which are rich in good quality water, lived without knowing the benefits of water. For this reason, the above-mentioned patented invention also focused on the treatment of manure and wastewater rather than water. Manure of BOD 20000 to 30000 is also a machine with steam purification ability to convert to drinking water, so it was not a problem to make seawater or contaminated groundwater into small particle pure water, but a little better quality In order to mass-produce high-purity small particle pure water at low cost, there are many problems as the above-mentioned patent.

大韓民国特許第19766号公報Korean Patent No. 19766 韓国技術社会(The Korean Professional Engineers Association)技術師2002.8(Vol.35.No.4)249−2890The Korean Professional Engineers Association Engineer 2002.8 (Vol. 35. No. 4) 249-2890

従来の問題点を解決するためには、蒸気浄化能力を持った前記特許第119766号(大韓民国特許)の問題点を解決するのが、高純度の小粒子純水を量産することが出来る道であった。以下本発明の課題について順次説明する。
第一、多い量の蒸留水を得るための目的の蒸留装置としては、海水や地下水を蒸発濃縮乾燥させても、残余物がいくばくもないので濃度の低い時は、攪拌形蒸発濃縮乾燥機より高圧ボイラーを使用することが有利で高性能である。
第二、蒸気の密度が低い低圧ボイラーや減圧ボイラー(boiler)は、蒸気配管が太くて大きくなるので、高圧ボイラーの気化熱を重圧ボイラーで、重圧ボイラーの気化熱をまた低圧ボイラーでも使用してタービン(turbine)で低圧ボイラーを減圧させて、減圧された低圧ボイラーで蒸発した蒸気を圧縮して、液化温度を高めるように減圧された低圧ボイラーで最後の気化熱を使用することがエネルギー節約面で効率的である。
第三、水質が汚染した原水を使用する時、もうちょっと高純度の小粒子純水を得るためには、水蒸気と一緒に同伴蒸発した窒素化合物や窒素成分等は水質によって違うが最下600℃から1200℃まで高めると浄化されることになる。
第四、蒸気加熱ライン(steam heating line)の高い温度の直火を受けう1200℃以上の直火蒸気加熱管の内部と外部をセラミックス、麦飯石、電気石(tourmaline)等でコーティング(coating)して耐熱性ステンレス(stainless)金属の酸化防止と、多くの遠赤外線放出で小粒子純水を得るのに役立つようにして、一石二鳥の効果を得るようにする。
In order to solve the conventional problems, the problem of the above-mentioned Patent No. 119766 (Korean Patent) having steam purification capability is the way to mass-produce high purity small particle pure water. there were. Hereinafter, the problems of the present invention will be sequentially described.
First, as a distillation apparatus for the purpose of obtaining a large amount of distilled water, even if seawater or groundwater is evaporated and dried, there is no residue, so when the concentration is low, use a stirring type evaporation and concentration drier. It is advantageous and high performance to use a high pressure boiler.
Secondly, low pressure boilers and decompression boilers with low steam density are thick and large in steam piping, so the heat of vaporization of high pressure boilers is used in heavy pressure boilers, and the heat of vaporization of heavy pressure boilers is also used in low pressure boilers. It is an energy saving aspect to use the last heat of vaporization in a low pressure boiler that is depressurized to increase the liquefaction temperature by depressurizing the low pressure boiler in a turbine and compressing the vapor evaporated in the depressurized low pressure boiler And efficient.
Third, when using raw water contaminated with water quality, in order to obtain slightly more pure small-particle pure water, the nitrogen compounds and nitrogen components evaporated along with water vapor vary depending on the water quality, but the lowest is 600 ° C. When it is raised to 1200 ° C., it will be purified.
Fourth, coating the interior and exterior of a direct-fired steam heating tube of 1200 ° C or higher that receives a high temperature direct-fired steam heating line with ceramics, barley stone, tourmaline, etc. Thus, the anti-oxidation of heat-resistant stainless steel and helping to obtain small-particle pure water with a lot of far-infrared emission to obtain the effect of two birds with one stone.

以上、上述したように本発明の目的は、従来の問題点を解決して、人類と動植物に有益な小粒子純水を得るために、油よりは自然性廃棄物の廃熱を利用して量産することが出来るようにして、小粒子純水を供給しようとするものである。本発明が供給する目標としている小粒子純水の水質は、表1−a、1−b、2に表示した想定基準値を超えることを最大の理想的な目標とする。蒸留水の場合には、表1−a、bに表示の基準値を超えることを理想として、脱塩海水の場合は、表2に表示の基準値を超えることを理想にして努力している。   As described above, the object of the present invention is to utilize the waste heat of natural waste rather than oil in order to solve conventional problems and obtain small particle pure water useful for human beings and animals and plants. It is intended to supply small particle pure water so that it can be mass-produced. The water quality of the small particle pure water which is the target supplied by the present invention is to exceed the assumed reference values shown in Tables 1-a, 1-b and 2 as the maximum ideal target. In the case of distilled water, it is ideal to exceed the reference values shown in Tables 1-a and b, and in the case of desalted seawater, it is ideal to exceed the reference value shown in Table 2. .

Figure 2005074344
Figure 2005074344

Figure 2005074344
Figure 2005074344

Figure 2005074344
Figure 2005074344

本発明は、第一に熱エネルギー節約の方法で、水が蒸発する時吸収した気化熱を再使用或いは蒸気を圧縮させて再生使用するとか、熱交換する方法で高圧ボイラー熱交換液化装置、そして、タービンにより減圧した低圧ボイラーとタービン、そして熱交換機等で構成されるとか、又はもうちょっと気化熱を使用するために高圧ボイラー、重圧ボイラー、減圧された低圧ボイラー、タービン、ボイラーの中の熱交換液化装置、熱交換機等で熱エネルギー節約部分を構成している。   The present invention is primarily a method for conserving heat energy, reusing the vaporized heat absorbed when water evaporates or reusing it by compressing the steam, or heat exchanging the high pressure boiler heat exchange liquefaction device, and Heat exchange in high pressure boilers, heavy pressure boilers, reduced pressure low pressure boilers, turbines, and boilers to use a low pressure boiler depressurized by a turbine, a turbine, and a heat exchanger, or to use a little more heat of vaporization The liquefaction device, heat exchanger, etc. constitute the heat energy saving part.

即ち、高圧ボイラーの高圧蒸気の気化熱を、高圧蒸気液化点(液化する温度)より低い重圧ボイラーや減圧された高圧ボイラーの水を蒸発させるのに使用して、最後に残った低圧ボイラーの蒸気が持った気化熱タービン(turbine)で低圧ボイラーを減圧させて、蒸発温度を低めて同時に低圧ボイラーの蒸気を圧縮して、蒸気温度と液化点を高めて、減圧された低圧ボイラーの水を蒸発させることに再使用して、液化された熱い水を注入される水と熱交換機で熱交換させることにより熱損失を阻止するものである。   That is, the vaporization heat of the high-pressure steam of the high-pressure boiler is used to evaporate the water of the heavy-pressure boiler or the decompressed high-pressure boiler that is lower than the high-pressure steam liquefaction point (liquefaction temperature). Lowers the pressure of the low-pressure boiler with a vaporized heat turbine (turbine), lowers the evaporation temperature and simultaneously compresses the steam of the low-pressure boiler, raises the steam temperature and the liquefaction point, and evaporates the water of the decompressed low-pressure boiler In order to prevent heat loss, the liquefied hot water is exchanged with the injected water by a heat exchanger.

第二に、図1、図2、図3、図4、図5、図6において説明すれば、符号4及び16により示すように、蒸気浄化方法と小粒子純水製造方法で高温蒸気熱交換機及び図6で符号d、e、fにより示すような熱交換機と内壁に麦飯石、電気石、セラミックス43等でコーティング(coating)された高温(600℃−1200℃)の直火蒸気加熱管g、5、17、43と空気圧縮機h、12、13、そして、熱交換液化するための各ボイラーの中の熱交換液化装置7、18、l、m、nとバーナー(burner)等で蒸気浄化と小粒子純水を製造する主要部分を構成している。   Second, if it demonstrates in FIG.1, FIG.2, FIG.3, FIG.4, FIG.5, FIG.6, as shown by the codes | symbols 4 and 16, it is a high temperature steam heat exchanger with a steam purification method and a small particle pure water manufacturing method. 6 and a high-temperature (600 ° C.-1200 ° C.) direct-fired steam heating tube g coated with barleystone, tourmaline, ceramics 43, etc. on the inner wall and the heat exchanger as indicated by symbols d, e, f in FIG. 5, 17, 43 and air compressors h, 12, 13, and heat exchange liquefaction devices 7, 18, l, m, n in each boiler for liquefying heat exchange and steam in a burner etc. It constitutes the main part of purifying and producing small particle pure water.

即ち、ボイラーで同伴蒸発した微量BOD、COD、悪臭、揮発性、油分等を空気と混合して浄化されて出る高温の小粒子の純粋な蒸気と高温蒸気熱交換、加熱して、また遠赤外線を放射して蒸気粒子を分割する麦飯石、電気石、セラミックス等で内壁をコーティングした高温の直火蒸気加熱管g、5、17、43、高圧ボイラーの高圧蒸気熱交換機図5dにおいて高温の空気中の酸素と高温の乾燥状態のBOD、COD、悪臭、等が超高温燃焼して蒸気浄化をして、このとき放出される熱エネルギーと高温の強力な遠赤外線によって水蒸気粒子等は電子軌道が大きくなって水分子を構成している酸素と水素の分子核も熱エネルギーが大きくなる。これによって、単分子状態の水分子が多い高温の純粋な浄化された蒸気になる。浄化された蒸気は新たに進入する蒸気と高温蒸気熱交換機4、16、d、e、fで熱交換冷却して、また、ボイラーの中の熱交換液化装置7、18、l、m、nでボイラー
水を蒸発させるのに気化熱を消耗して、急速に小粒子純水になる。本発明の解決手段は、以上のような蒸気浄化方法と小粒子純水製造工程をする装置で構成している。本発明は、前記の第一と第二に記述した高圧、重圧、低圧の各ボイラーとボイラーの中の熱交換液化装置とタービン、熱交換装置、高温蒸気熱交換機、電気石、麦飯石、セラミックス等で内部がコーティングされた直火蒸気加熱管、空気圧縮機、バーナー等で主要部を構成しているし、その外補助役割をしているものは、水ポンプ、水位調節器、液化圧力調整バルブ等で構成されている。
That is, heat exchanging and heating high-temperature small-particle pure steam with high-temperature small particles that are purified by mixing with air, such as trace amounts of BOD, COD, bad odors, volatility, and oil that have been evaporated by a boiler. High temperature steam heat exchanger g, 5, 17, 43, high pressure steam heat exchanger of high pressure boiler whose inner wall is coated with barley stone, tourmaline, ceramics, etc. Oxygen in the inside and high temperature dry BOD, COD, bad odor, etc. are burned by ultra high temperature, and the steam is purified by the thermal energy released at this time and high temperature strong far infrared rays. The oxygen and hydrogen molecular nuclei that make up the water molecule become larger and the thermal energy becomes larger. This results in a high temperature pure purified vapor rich in single molecule water molecules. The purified steam is heat-exchanged and cooled by newly entering steam and high-temperature steam heat exchangers 4, 16, d, e, and f, and heat exchange liquefaction devices 7, 18, l, m, and n in the boiler. In order to evaporate the boiler water, the heat of vaporization is consumed and rapidly becomes small particle pure water. The solution means of the present invention is composed of the steam purification method and the apparatus for producing the small particle pure water as described above. The present invention relates to the high-pressure, heavy-pressure, and low-pressure boilers described in the first and second above, the heat exchange liquefaction device in the boiler, the turbine, the heat exchange device, the high-temperature steam heat exchanger, the tourmaline, the barley stone, and the ceramics. The main part is composed of a direct-fired steam heating pipe, air compressor, burner, etc. whose interior is coated with a water pump, water level adjuster, liquefaction pressure control. It consists of valves and so on.

本発明の効果は、請求項1若しくは2に記載の方法により、小粒子純水を安価に量産することが出来る方法と装置で、同伴蒸発したBOD、COD、油分、悪臭等を空気と混合して熱交換する方法で高温燃焼させて水蒸気を浄化させて純粋化させると同時にバーナーの直火を受ける直火蒸気加熱装置の内壁に遠赤外線を放出する麦飯石、電気石、セラミクス等をコーティングして、強力な遠赤外線と高温燃焼して、水蒸気を浄化させる放射熱と熱エネルギーで水蒸気の水分子を分離して単分子状態の純粋な水蒸気を作って、それを急冷させて小粒子純水を作ることが出来る。   The effect of the present invention is that a method and apparatus capable of mass-producing small particle pure water at low cost by the method according to claim 1 or 2, wherein entrained and evaporated BOD, COD, oil, malodor, etc. are mixed with air. In this way, the inner wall of the direct-fired steam heating system that receives the direct fire of the burner and at the same time is coated with barley stone, tourmaline, ceramics, etc. that emits far-infrared rays. Pure water in the unimolecular state is made by separating water molecules of water vapor by radiant heat and thermal energy that purifies water vapor by high-power far-infrared and high-temperature combustion, and rapidly cools it to make small particle pure water Can be made.

高圧ボイラーで蒸発する時、吸収した低圧ボイラーの気化熱は、タービンで低圧ボイラーを減圧させて、低圧ボイラーの蒸発温度を低めて同時に圧縮して水蒸気の温度と液化点を高めて再生使用する方法と装置により、熱エネルギーの再利用を可能にした。
When evaporating with a high-pressure boiler, the heat of vaporization of the absorbed low-pressure boiler is regenerated by reducing the pressure of the low-pressure boiler with a turbine, lowering the evaporation temperature of the low-pressure boiler, and simultaneously compressing it to increase the temperature and liquefaction point of the water vapor. And the equipment made it possible to reuse heat energy.

本発明は、同伴蒸発したBOD、COD、油分、悪臭等を空気と混合して熱交換する方法で高温燃焼させて水蒸気を浄化させて純粋化させると同時にバーナーの直火を受ける直火蒸気加熱装置の内壁に遠赤外線を放出する麦飯石、電気石、セラミックス等をコーティングして、強力な遠赤外線と高温燃焼して、水蒸気を浄化させる放射熱と熱エネルギーで水蒸気の水分子を分離して単分子状態の純粋な水蒸気を作って、それを急冷させて小粒子純水を安価に量産する問題を解決した。   The present invention is a direct-fired steam heating that purifies by purifying water vapor by purifying water vapor by high-temperature combustion by mixing heat and exchanging entrained evaporated BOD, COD, oil, malodor, etc. with air The inner wall of the device is coated with barley stone, tourmaline, ceramics, etc. that emits far-infrared rays, burns at high temperature with strong far-infrared rays, and separates water molecules of water vapor with radiant heat and thermal energy that purifies water vapor. We solved the problem of producing pure water vapor in a single molecule state and rapidly cooling it to mass-produce small particle pure water at low cost.

そのために、高圧ボイラーで蒸発する時、吸収した低圧ボイラーの気化熱は、タービンで低圧ボイラーを減圧させて、低圧ボイラーの蒸発温度を低めて同時に圧縮して水蒸気の温度と液化点を高めて再生使用する方法でエネルギーを無駄にすることなく課題を実現した。     Therefore, when evaporating with a high-pressure boiler, the vaporized heat of the absorbed low-pressure boiler is regenerated by reducing the pressure of the low-pressure boiler in the turbine and simultaneously reducing the evaporation temperature of the low-pressure boiler to increase the temperature and liquefaction point of the water vapor. The method was used without wasting energy.

本発明の技術的思想は、実施例において次に記載のように具体化されている。   The technical idea of the present invention is embodied in the embodiments as described below.

本発明が解決しようとする問題点を整理すると、第一、多い量の蒸留水を得るための目的の蒸留装置として、高圧ボイラーを使用することが有利で高性能である。
第二、蒸気の密度が低い低圧ボイラーや減圧ボイラー(boiler)は、蒸気配管が太くて大きくなるので、高圧ボイラーの気化熱を重圧ボイラーで、重圧ボイラーの気化熱をまた低圧ボイラーでも使用して、タービン(turbine)で低圧ボイラーを減圧させて、減圧された低圧ボイラーで蒸発した蒸気を圧縮して、液化温度を高めるように減圧された低圧ボイラーで最後の気化熱を使用することがエネルギー節約面で効率的である。
第三、水質が汚染した原水を使用する時、もうちょっと高純度の小粒子純水を得るためには、水蒸気と一緒に同伴蒸発した窒素化合物や窒素成分等は水質によって違うが最下600℃から1200℃まで高めると浄化されることになる。
第四、蒸気加熱ライン(steam heating line)の高い温度の直火を受ける1200℃以上の直火蒸気加熱管の内部と外部をセラミックス、麦飯石、電気石(tourmaline)等でコーティング(coating)して耐熱性ステンレス(stainless)金属の酸化防止と、多くの遠赤外線放出で小粒子純水を得るのに役立つようにして、一石二鳥の効果を得るようにする。実施例について、本発明の原理工程を分かり易く説明する。
To summarize the problems to be solved by the present invention, it is advantageous to use a high-pressure boiler as a distillation apparatus for the purpose of obtaining a large amount of distilled water.
Secondly, low pressure boilers and decompression boilers with low steam density are thick and large in steam piping, so the heat of vaporization of high pressure boilers is used in heavy pressure boilers, and the heat of vaporization of heavy pressure boilers is also used in low pressure boilers. , Using the last heat of vaporization in a low pressure boiler depressurized to increase the liquefaction temperature by depressurizing the low pressure boiler in the turbine and compressing vapor evaporated in the depressurized low pressure boiler In terms of efficiency.
Third, when using raw water contaminated with water quality, in order to obtain slightly more pure small-particle pure water, the nitrogen compounds and nitrogen components evaporated along with water vapor vary depending on the water quality, but the lowest is 600 ° C. When it is raised to 1200 ° C., it will be purified.
Fourth, the inside and outside of a 1200 ° C or higher direct-fired steam heating tube receiving a high temperature direct fire in a steam heating line is coated with ceramics, barley stone, tourmaline, etc. In order to obtain the effect of two birds with one stone, it helps to prevent oxidation of heat-resistant stainless steel and to obtain small particle pure water with many far-infrared emission. The principle steps of the present invention will be described in an easy-to-understand manner with respect to examples.

高圧ボイラー2に海水や汚染した地下水を入れて、高圧ボイラー2の下にあるバーナーを点火して高圧ボイラー2とバーナーの上にある麦飯石やセラミックス43で内部がコーティングされた直火蒸気加熱管5、7を加熱すれば、高圧ボイラー2では水蒸気が発生して直火蒸気加熱管5、7は加熱される。そして、高圧ボイラー2は高圧を受けるようになる。高圧蒸気ラインの液化調節のための圧力調節バルブ8によって、高圧ボイラーの高圧蒸気の圧力を一定にする。高圧ボイラー2で発生した高圧蒸気は、圧力が弱いオーバーフル(overfull)防止機3を経てパイプライン26によって圧出される。   Direct-fired steam heating pipe in which seawater or contaminated groundwater is put into the high-pressure boiler 2, the burner under the high-pressure boiler 2 is ignited, and the inside is coated with barleystone or ceramics 43 above the high-pressure boiler 2 and the burner If 5 and 7 are heated, water vapor is generated in the high pressure boiler 2 and the direct fire steam heating pipes 5 and 7 are heated. Then, the high pressure boiler 2 receives high pressure. The pressure of the high-pressure steam in the high-pressure boiler is made constant by the pressure control valve 8 for adjusting the liquefaction of the high-pressure steam line. The high-pressure steam generated in the high-pressure boiler 2 is pumped out by the pipeline 26 through the overfull prevention device 3 having a low pressure.

この時になって、汚染した地下水や海水は、水蒸気になって蒸発する。この時微量なBOD、COD、悪臭、揮発性油分、窒素化合物などを同伴蒸発する。圧出される高圧ボイラー2の蒸気の中に含んだBOD、COD、悪臭等を高温燃焼浄化させるために、蒸気ライン(steam−line)26に装置された空気圧縮機13、12を稼動させて水蒸気と混合する。   At this time, the contaminated groundwater and seawater become water vapor and evaporate. At this time, a small amount of BOD, COD, malodor, volatile oil, nitrogen compound and the like are evaporated. In order to purify BOD, COD, bad odor and the like contained in the steam of the high pressure boiler 2 being pumped out at high temperature, the air compressors 13 and 12 installed in the steam line 26 are operated to steam. Mix with.

このようにして、空気と混合した高圧ボイラーの水蒸気は、空気と水蒸気の中に混合した不純物分離機15を経て、高温蒸気熱交換機4で、直火蒸気加熱管5、43により加熱浄化された高温(600℃−1200℃)の水蒸気と高温で熱交換加熱されて、蒸気パイプライン(steam pipe line)27を通じてバーナーの直火を受け、内壁に小さい水粒子(water cluster)を分離しながら、遠赤外線(4−14の波長)を放射する麦飯石、電気石(tourmaline)、セラミックス等をコーティングしてある直火蒸気加熱管5を経るようになる。   Thus, the steam of the high-pressure boiler mixed with air was heated and purified by the direct-fired steam heating pipes 5 and 43 in the high-temperature steam heat exchanger 4 through the impurity separator 15 mixed in the air and steam. Heat exchange heat is performed at high temperature (600 ° C.-1200 ° C.) with steam at high temperature, and a direct fire of a burner is passed through a steam pipe line 27, separating small water particles on the inner wall, It goes through a direct-fired steam heating tube 5 coated with barley stone, tourmaline, ceramics, etc., which radiates far infrared rays (wavelength 4-14).

この時600℃乃至1200℃に加熱された空気の中の酸素と高温(600℃−1200℃)に加熱された乾燥状態のBOD、COD、悪臭、油分等と超高温で燃焼し消滅して(燃消)浄化される。
この時放出される熱エネルギーと直火蒸気加熱機、コーティングされた麦飯石、電気石、セラミックス等で放射される強力な遠赤外線の熱エネルギーによって水分子の電子軌道が大きくなって酸素と水素を結合した水分子核の熱エネルギーも大きくなる。
At this time, oxygen in the air heated to 600 ° C. to 1200 ° C. and BOD, COD, offensive odor, oil, etc. in a dry state heated to high temperature (600 ° C. to 1200 ° C.) burn and disappear at ultra high temperature ( It is purified.
The thermal energy released at this time and the heat energy of strong far-infrared rays radiated by the direct-fired steam heater, coated barley stone, tourmaline, ceramics, etc., increase the electron orbit of water molecules, and oxygen and hydrogen. The thermal energy of the combined water molecular nuclei also increases.

水は、3500℃で水素と酸素に熱分解する。即ち熱エネルギーで水分子の電子軌道が大きくなって、酸素と水素を結合した水分子の酸素原子核と水素原子核の間隔が大きくなりながら、3500℃から熱分解する。水分子の酸素と水素の原子核の結合を熱分解しながら、強力な熱エネルギーで水分子核が大きくなると言える。
以上のように高温燃消して浄化されて、この時放出されている熱エネルギーと強力な遠赤外線の熱エネルギーによって蒸気粒子は熱分解して大部分、単分子状態の高温の純粋な水蒸気に変わる。
高温の純粋な水蒸気は、高圧ボイラー2で蒸発して、空気と混合させて圧出された低い温度の水蒸気と熱交換して、高圧ボイラー2の蒸発温度より、50乃至100℃近く、冷却して、蒸気パイプライン29を通じて高圧ボイラー2の水を蒸発させて、高圧ボイラー2の温度のようになってパイプライン31を通じて、タービンにより減圧されたより圧力が低い低圧ボイラー9の中の水を蒸発させる熱交換液化装置7へ圧入される。
Water decomposes thermally into hydrogen and oxygen at 3500 ° C. That is, the thermal orbital of water molecules increases, and thermal decomposition starts from 3500 ° C. while the distance between oxygen nuclei and hydrogen nuclei of water molecules combining oxygen and hydrogen increases. It can be said that the water molecule nuclei become larger with strong thermal energy while thermally decomposing the bonds between oxygen and hydrogen nuclei in the water molecule.
As described above, it is purified by extinguishing at a high temperature, and the vapor particles are thermally decomposed by the thermal energy released at this time and the thermal energy of strong far-infrared rays, and are mostly converted into high-temperature pure water vapor in a monomolecular state. .
High-temperature pure water vapor is evaporated in the high-pressure boiler 2, mixed with air and heat-exchanged with the low-temperature water vapor that has been pumped out, and cooled to a temperature close to 50 to 100 ° C. from the evaporation temperature of the high-pressure boiler 2. Then, the water in the high pressure boiler 2 is evaporated through the steam pipeline 29, and the water in the low pressure boiler 9 having a lower pressure reduced by the turbine is evaporated through the pipeline 31 at the temperature of the high pressure boiler 2. It press-fits into the heat exchange liquefaction device 7.

高圧ボイラー2の水を蒸発する時、吸収した気化熱を低圧ボイラー9の水を蒸発させるのに再使用して、熱交換液化装置7で熱交換液化されて低圧ボイラー9の水蒸発温度で冷却されて、パイプライン32と圧力調節バルブ8を通じて小粒子純水に変わって水タンク21に圧出される。   When evaporating the water in the high pressure boiler 2, the absorbed heat of vaporization is reused to evaporate the water in the low pressure boiler 9, and the heat exchange is liquefied by the heat exchange liquefaction device 7 and cooled at the water evaporation temperature of the low pressure boiler 9. Then, it is changed into small particle pure water through the pipeline 32 and the pressure control valve 8 and is discharged to the water tank 21.

そして、次に低圧ボイラー9のタービン11を稼動させれば、低圧ボイラー9は減圧されて大気圧以下に下がって100℃以下で水が蒸発するようになって、同時に、低圧ボイラー9で蒸発した水蒸気は圧縮されて水蒸気温度と液化温度が上昇する。この低圧ボイラー9の中で、もし、380mmHgまで減圧されたとすれば、水の蒸発温度と蒸気温度は約80℃になり、低圧ボイラーの蒸気を2kg/平方cmまで圧縮したら、液化温度と蒸気温度は約120℃になって、120℃以下では蒸気熱(539cal)を失えば液化する。   Then, when the turbine 11 of the low pressure boiler 9 is operated next, the low pressure boiler 9 is depressurized and drops to below atmospheric pressure, and water evaporates at 100 ° C. or below, and at the same time, it evaporates at the low pressure boiler 9. The water vapor is compressed and the water vapor temperature and the liquefaction temperature rise. In this low pressure boiler 9, if the pressure is reduced to 380 mmHg, the evaporation temperature and steam temperature of water will be about 80 ° C. If the steam of the low pressure boiler is compressed to 2 kg / square cm, the liquefaction temperature and steam temperature Becomes about 120 ° C., and below 120 ° C., it loses its vapor heat (539 cal) and liquefies.

このようにタービン11により圧縮された蒸気は、パイプライン34を通じて空気圧縮機12の空気と混合されて、蒸気と空気の中に混合された不純物分離機14を経て、前記の高温蒸気熱交換機16で高温(600℃−1200℃)浄化されて、高温蒸気熱交換機16で圧入されてくる蒸気パイプライン(steam pipe line)35を通じる強力な遠赤外線を放射する直火に加熱される直火蒸気加熱管17、43で、高圧ボイラー2の蒸気浄化方法で前記したように高温燃焼、浄化されて、単分子が多い高温の純粋な水蒸気に変わって、パイプライン36を通じる高温蒸気熱交換機16で圧縮されて、空気と混合され、低圧ボイラーの蒸気パイプライン37を通じて、減圧された低圧ボイラー9中に装置された低圧ボイラーの水を加熱して蒸発させる。前記したように高温の純粋な水蒸気は、最後の熱交換液化装置18で、気化熱を失って急冷小粒子純水に変わって、パイプライン38と圧力調節装置19を通じて小粒子純水20がある水槽21に圧出される。そして、高圧ボイラー2と低圧ボイラー9の原水(汚染した地下水や海水)の供給は、圧出されて出た熱い小粒子純水(80℃〜00℃)と熱交換させて水ポンプ(water pomp)22で水位調節装置24、25を通じて供給する。   The steam compressed by the turbine 11 in this way is mixed with the air of the air compressor 12 through the pipeline 34, passes through the impurity separator 14 mixed in the steam and the air, and then the high-temperature steam heat exchanger 16. The high temperature (600 ° C.-1200 ° C.) purified and heated to a direct fire that emits strong far-infrared rays through a steam pipeline 35 that is press-fitted by a high temperature steam heat exchanger 16. In the high-temperature steam heat exchanger 16 through the pipeline 36, the high-temperature boiler 17, 43 is converted into high-temperature pure steam having a large number of single molecules after high-temperature combustion and purification by the steam purification method of the high-pressure boiler 2. The water of the low pressure boiler which is compressed, mixed with air and installed in the low pressure boiler 9 through the steam pipeline 37 of the low pressure boiler. Is evaporated by heating. As described above, the pure high-temperature steam loses the heat of vaporization in the final heat exchange liquefaction device 18 and changes to rapidly cooled small-particle pure water, and there is small-particle pure water 20 through the pipeline 38 and the pressure control device 19. Pressurized into the water tank 21. The supply of raw water (contaminated groundwater and seawater) of the high pressure boiler 2 and the low pressure boiler 9 is exchanged with hot small particle pure water (80 ° C. to 00 ° C.) that has been pumped out, and a water pump (water pump). ) 22 and supplied through the water level adjusting devices 24 and 25.

本発明の原理と構成により小粒子純水は生産される。本発明の主要な部分の装置の構造と作用について説明する。図1、図2、図3に示したように高圧ボイラー2は下部に楕円形の大きくて長い煙管51になったバーナー(burner)1を備えた燃焼室49が装置されていて、その中に二つの各図に示す長いジグザグ模様のパイプの内面には遠赤外線が放出される麦飯石、電気石、セラミックス43などでコーティングされており、外面には高温での酸化防止のためにセラミックスがコーティングされている。高温バーナー1の直火を直接受けるように、高圧ボイラー2用の直火蒸気加熱管5と低圧ボイラー用の直火蒸気加熱管17が並列に並んで装置されている。そして、その横で図4に示したように楕円形の煙管の燃焼室49で燃焼した燃焼ガスが持った熱で高圧ボイラー2の水を加熱蒸発させるように、ゼット(Z)型で回って熱交換して、更に燃焼室49の廃熱を図2に示した煙管50で低圧ボイラーの水を蒸発させるのに再使用するように、高圧ボイラーと低圧ボイラーを連結管41で連結されている。前記図4中の高圧ボイラー2の水中にある煙管40の上には、図3、図4に示したように四角形模様の熱交換装置6が高圧ボイラー2の水中に装置されていて高圧ボイラーの高温蒸気熱交換機4で熱交換して、高圧ボイラー2の蒸発温度より5℃〜100℃位高い熱量を高圧ボイラーの水を加熱させるために熱交換加熱する作用をする。そして、熱交換加熱装置6の上には高圧ボイラー水位調節装置24が、水ポンプ22と連結されて高圧ボイラーの水位を調節するようになっている。   Small particle pure water is produced by the principles and configurations of the present invention. The structure and operation of the main part of the present invention will be described. As shown in FIGS. 1, 2 and 3, the high-pressure boiler 2 is provided with a combustion chamber 49 having a burner 1 which is an oval large and long smoke pipe 51 in the lower part thereof. The inner surface of the long zigzag pipe shown in each of the two figures is coated with barley stone, tourmaline, ceramics 43, etc. that emits far-infrared rays, and the outer surface is coated with ceramics to prevent oxidation at high temperatures. Has been. The direct fire steam heating pipe 5 for the high pressure boiler 2 and the direct fire steam heating pipe 17 for the low pressure boiler are arranged in parallel so as to receive the direct fire of the high temperature burner 1 directly. Next, as shown in FIG. 4, the ZET (Z) type is used to heat and evaporate the water in the high pressure boiler 2 with the heat of the combustion gas burned in the combustion chamber 49 of the elliptical smoke tube as shown in FIG. The high-pressure boiler and the low-pressure boiler are connected by the connecting pipe 41 so that the waste heat of the combustion chamber 49 is reused to evaporate the water of the low-pressure boiler in the smoke pipe 50 shown in FIG. . On the smoke pipe 40 in the water of the high pressure boiler 2 in FIG. 4, a heat exchanger 6 having a square pattern is installed in the water of the high pressure boiler 2 as shown in FIGS. 3 and 4. Heat exchange is performed by the high-temperature steam heat exchanger 4 to heat the heat of the high-pressure boiler with a heat quantity higher by about 5 ° C. to 100 ° C. than the evaporation temperature of the high-pressure boiler 2. A high pressure boiler water level adjusting device 24 is connected to the water pump 22 on the heat exchange heating device 6 to adjust the water level of the high pressure boiler.

低圧ボイラー9は、図1、図2、図3、図4に表示したところのように、同じであるような新しい燃焼装置はない。高圧ボイラー2の燃焼室49において、煙管40で使用した廃熱の再使用により、低圧ボイラー9の水を加熱することが出来るように、高圧ボイラーの燃焼室49に連結された煙管41で連結されている煙管50が低圧ボイラー9の水中下の部分に装置されている。これは、水中の煙管50の上にある高圧ボイラーで高圧蒸気が蒸発する時、吸収した気化熱を低圧ボイラー9の水を蒸発させるために再使用して液化させるための装置である。図1、図2の各図面に表示したように、符号7により示す四角模様の熱交換液化装置が装置されて、低圧ボイラー9内の水中に沈めて設置されている。またその上には同一模様に熱交換液化装置18が装置されている。これらの熱交換液化装置7、18は、低圧ボイラー9で蒸発する時吸収した気化熱を再生使用するためにタービンで圧縮して液化温度を高めて、低圧ボイラー9の水を蒸発させるのに熱交換して、気化熱を使用して液化させる作用をする。そして、その低圧ボイラーの水位の上に水位調節装置25が図1、図3に表示したように設けられていて、これは水ポンプ22を連動させて原水供給と水位調節をするものである   The low pressure boiler 9 does not have a new combustion device which is the same as shown in FIGS. 1, 2, 3 and 4. In the combustion chamber 49 of the high pressure boiler 2, it is connected by a smoke pipe 41 connected to the combustion chamber 49 of the high pressure boiler so that the water of the low pressure boiler 9 can be heated by reusing the waste heat used in the smoke pipe 40. A smoke tube 50 is installed in the underwater part of the low pressure boiler 9. This is a device for reusing and liquefying the absorbed heat of vaporization in order to evaporate the water in the low pressure boiler 9 when the high pressure steam evaporates in the high pressure boiler above the underwater smoke pipe 50. As shown in each drawing of FIGS. 1 and 2, a square pattern heat exchange liquefaction device indicated by reference numeral 7 is installed and is submerged in the low-pressure boiler 9. Further, a heat exchange liquefaction device 18 is installed in the same pattern thereon. These heat exchange liquefaction devices 7 and 18 are heated to evaporate the water in the low-pressure boiler 9 by increasing the liquefaction temperature by compressing it in the turbine in order to recycle and use the heat of vaporization absorbed when evaporating in the low-pressure boiler 9. Exchanges and acts to liquefy using heat of vaporization. Then, a water level adjusting device 25 is provided on the water level of the low pressure boiler as shown in FIGS. 1 and 3, and the water pump 22 is interlocked to adjust the raw water supply and the water level.

高圧ボイラー2と低圧ボイラー9には、図2、図3、図4に表示したように円筒形のオーバーフル防止器3、10が設置されている。これは、沸きすぎるのを防止すると共に、蒸発する水蒸気を円筒内壁に接しながら、回転させて遠心分離する。すなわち、サイクロン(cyclone)の役目もするようにして、蒸気の中に混合した液体粒子、不純物を比重分離して、出来る限りきれいな水蒸気を得るために、図2、図3の符号3及び10に図示した如く3個が連結して1組を構成している。そして、高圧ボイラーと低圧ボイラーは、それぞれ高温蒸気熱交換機4、16と連結されている。蒸発する水蒸気を直接すぐ加熱して600℃〜1200℃まで上げることは構造上熱損失が大きい。   The high pressure boiler 2 and the low pressure boiler 9 are provided with cylindrical overfull preventers 3 and 10 as shown in FIGS. 2, 3, and 4. This prevents excessive boiling and rotates and centrifuges while evaporating water vapor in contact with the inner wall of the cylinder. That is, in order to obtain the water vapor as clean as possible by separating the liquid particles and impurities mixed in the vapor in a specific gravity so as to serve as a cyclone, reference numerals 3 and 10 in FIGS. As shown in the figure, three are connected to form one set. The high-pressure boiler and the low-pressure boiler are connected to the high-temperature steam heat exchangers 4 and 16, respectively. Heating the evaporated water vapor directly and raising it to 600 ° C. to 1200 ° C. has a large heat loss in terms of structure.

だから、高温蒸気熱交換機を利用して600℃〜1200℃まで加熱浄化を行っていく高温蒸気と新たに進入してくる低い温度の蒸気をお互いに行き違うように熱交換させれば、新たに進入する蒸気の温度が100度位だと言っても、高温で熱を取り交せば図6の実施例で図示したように500℃〜1100℃の高温蒸気を得ることができれば、100℃だけで600℃〜1200℃になる。高温熱交換機14、16は、直火蒸気加熱装置5、17と距離が一番近いところである高圧ボイラー2の上に、図2と図3に図示したように並んで設置されている。高温蒸気熱交換機4、16は、図2に表示したように両端に短い円筒或いは四角筒の気室に数十個の細い熱交換パイプ44で連結して水蒸気が漏れないように溶接して、水蒸気が両円筒或いは四角筒に通じながら熱交換できるようにする。熱交換する細いパイプ周りを円筒或いは四角筒で密封して、直火蒸気加熱装置5、17でパイプ28と36を通して出る高温(600℃〜1200℃)加熱浄化された水蒸気が図2に示すように熱交換パイプ中のボイラーで蒸発した低い温度の水蒸気を十分に矢印方向へ回りながら加熱する。熱交換パイプ44を取り囲んでいる高温蒸気室に仕切りを設けて、出来る限り、高温蒸気が自由に回りながら熱交換をするようにした。   Therefore, if heat exchange is performed so that the high temperature steam that is heated and purified from 600 ° C to 1200 ° C using the high temperature steam heat exchanger and the low temperature steam that newly enters are mutually passed, Even if the temperature of the entering steam is about 100 degrees, if the heat is exchanged at a high temperature, as shown in the embodiment of FIG. 6, a high temperature steam of 500 ° C. to 1100 ° C. can be obtained. It will be 600 to 1200 degreeC. The high-temperature heat exchangers 14 and 16 are installed side by side as illustrated in FIGS. 2 and 3 on the high-pressure boiler 2 that is closest to the direct-fired steam heating devices 5 and 17. As shown in FIG. 2, the high-temperature steam heat exchangers 4 and 16 are connected to the air chambers of short cylinders or square cylinders at both ends by dozens of thin heat exchange pipes 44 and welded so that water vapor does not leak, Steam can exchange heat while passing through both cylinders or square cylinders. As shown in FIG. 2, the high temperature (600 ° C. to 1200 ° C.) heated and purified water vapor is sealed through the pipes 28 and 36 by the direct-fired steam heating devices 5 and 17 by sealing the thin pipes to be heat-exchanged with cylinders or square tubes. In addition, the low-temperature water vapor evaporated by the boiler in the heat exchange pipe is heated while sufficiently rotating in the direction of the arrow. A partition was provided in the high-temperature steam chamber surrounding the heat exchange pipe 44 so that the high-temperature steam could freely rotate and exchange heat as much as possible.

そして、低圧ボイラー9の上には低圧ボイラー9を減圧させて蒸発温度を低めて同時に減圧された低圧ボイラー9で蒸発した水蒸気を圧縮させて液化温度を高めて、低圧ボイラー9で蒸発する時吸収した水蒸気が持った気化熱を低圧ボイラー9の水を蒸発させるのに再生使用して熱交換液化装置18で気化熱を失って液化されるようにする。   Then, on the low pressure boiler 9, the low pressure boiler 9 is depressurized to lower the evaporation temperature, and at the same time, the vapor evaporated in the reduced pressure low pressure boiler 9 is compressed to increase the liquefaction temperature and absorb when the low pressure boiler 9 evaporates. The heat of vaporization of the water vapor is recycled to evaporate the water in the low-pressure boiler 9 so that the heat exchange liquefaction device 18 loses the heat of vaporization and is liquefied.

本発明は、高圧ボイラー2、低圧ボイラー9、各ボイラーの中に装置された直火蒸気加熱装置5、17、43、そして直火蒸気加熱装置を加熱するためのバーナー(burner)1とバーナーの燃焼室49、水を加熱する高圧ボイラー2と低圧ボイラー9の煙管40、煙管50、そして高圧ボイラー2の中の水を加熱する熱交換装置6と低圧ボイラー9の水を蒸発させる熱交換液化装置7、18、そして高温蒸気熱交換機4、16、そして各ボイラーのオーバーフル(over full)防止器3、10、そしてタービン11などで主要部分を構成している。そのほか、本発明はエアコンプレッサー(air compressor)12と水ポンプ22、そして液化のための圧力調整バルブ8、19、不純物分離機14、15などで構成し、図面に図示した構造で小粒子純水を製するものである。
The present invention includes a high pressure boiler 2, a low pressure boiler 9, an open flame steam heater 5, 17, 43 installed in each boiler, and a burner 1 and a burner for heating the open flame steam heater. Combustion chamber 49, high-pressure boiler 2 for heating water and smoke tube 40 of low-pressure boiler 9, smoke tube 50, heat exchange device 6 for heating water in high-pressure boiler 2, and heat-exchange liquefaction device for evaporating water in low-pressure boiler 9 7, 18 and the high-temperature steam heat exchangers 4 and 16 and the overfull preventers 3 and 10 of each boiler, the turbine 11 and the like constitute the main part. In addition, the present invention includes an air compressor 12, a water pump 22, pressure control valves 8 and 19 for liquefaction, impurity separators 14 and 15, etc. Is to make.

以上のような構造により小粒子純水を製する本発明の実施例について、図1乃至図5の各々に表示する符号を引用して詳細に説明する。
水ポンプ22を作動させて、各ボイラー2、9に水位調節器24、25を通じて原水(地下水、海水、汚染した河川水)を満たしてエアコンプレッサー12を作動させる。そして、バーナー1を点火する。バーナー1の火炎は直火蒸気加熱管5、17が装置されたバーナー1の燃焼室(combustion chamber)49高圧ボイラー2の煙管40を経ながら直火蒸気加熱装置5、17と高圧ボイラー2の水を加熱する。高圧ボイラー2の煙管40を通る廃熱は、廃熱連結管41を経て低圧ボイラー9の煙管50を経ながら、低圧ボイラー9を加熱して煙突を抜けて排気される。
The embodiment of the present invention for producing small particle pure water with the above structure will be described in detail with reference to the reference numerals shown in FIGS.
The water pump 22 is operated, and the boilers 2 and 9 are filled with raw water (ground water, seawater, contaminated river water) through the water level adjusters 24 and 25 to operate the air compressor 12. Then, the burner 1 is ignited. The flame of the burner 1 passes through the combustion chamber 49 of the burner 1 to which the direct-fired steam heating pipes 5 and 17 are installed, and the water of the direct-fired steam heating apparatuses 5 and 17 and the high-pressure boiler 2 through the smoke pipe 40 of the high-pressure boiler 2. Heat. Waste heat passing through the smoke pipe 40 of the high pressure boiler 2 is exhausted through the chimney by heating the low pressure boiler 9 through the waste heat connecting pipe 41 and the smoke pipe 50 of the low pressure boiler 9.

しばらくの後、高圧ボイラーが加熱されて、水蒸気が発生して低圧ボイラーのタービン11も稼動させて、低圧ボイラー9でも水蒸気が図1の小粒子純水生産原理工程図で上述したように高圧ボイラー2と低圧ボイラー9で蒸発した水蒸気は、各其のオーバーフル防止とサイクロンの役目をする3個一組になったオーバーフル防止器3、10をそれぞれ経て水蒸気の中に混合した水玉や不純物粒子等を比重分離してきれいになった水蒸気を蒸気ライン26、33を通じて、エアコンプレッサー12で空気と混合して、図1、図2、図3に表示した500℃〜1100℃まで熱交換が出来るための高温蒸気熱交換機4、16で各々圧入するようになるが、オーバーフル防止器を通過してきれいになっても、一緒に蒸発したBOD、COD、悪臭等は消えない。そして、高圧蒸気は低圧蒸気より液化温度が高いので低圧ボイラー9で高圧蒸気が気化する時吸収した気化熱(539cal)を低圧ボイラー9の水を蒸発させるのに熱交換液化させて使うことが出来るが、高圧ボイラーの液化温度に比べて低圧ボイラー9の蒸気は液化温度が低いのでその逆に利用することが出来ない。
したがって、低圧ボイラーで蒸発するとき吸収した水蒸気の気化熱を再生使用するためには、タービンで低圧ボイラーを減圧させて、低圧ボイラーの水の蒸発温度を低めて、同時に減圧された低圧ボイラー9の蒸気を圧縮させて、蒸気温度と液化温度を高めるほかない。タービン11で減圧(380mmHg)になった低圧ボイラーの蒸気温度80℃程度の水蒸気は、各図面において示したように特に図2に図示したオーバーフル防止器10を通過して、同タービン11によって、2kg/cm2 位に圧縮される。この結果、蒸気温度120℃の圧縮された水蒸気に変わって、前記したように空気と混合して、図1及び図2に具体的に図示した蒸気パイプライン34を通じて高温蒸気熱交換機16の下端にある低温蒸気ラインである数十個の細い熱交換パイプと連結された円筒或いは四角筒の蒸気室(図2)に圧入される。この蒸気室に圧入された蒸気は、熱交換パイプライン44に付いて進行しながら、反対方向で熱交換しながら進行してくる600℃〜1200℃に直火蒸気加熱装置17で加熱された高温蒸気と熱交換して熱交換パイプ44を取り囲んでいる蒸気室の中で500℃〜1100℃まで加熱されて、蒸気ライン35に付いている直火蒸気加熱装置17で、図2において図示した高温のバーナー燃焼室49から矢印方向に圧入しながら、600℃〜1200℃まで加熱される。
After a while, the high-pressure boiler is heated to generate steam, and the low-pressure boiler turbine 11 is also operated. As described above in the small particle pure water production principle process diagram of FIG. 2 and the water vapor evaporated in the low-pressure boiler 9 are polka dots and impurity particles mixed into the water vapor through the over-full preventers 3 and 10 each serving as a set of three to prevent over-fullness and a cyclone. Steam that has been cleaned by separating specific gravity and the like is mixed with air by the air compressor 12 through the steam lines 26 and 33, so that heat exchange can be performed from 500 ° C. to 1100 ° C. shown in FIGS. The high-temperature steam heat exchangers 4 and 16 are pressed in, but the BOD, COD, and bad odor evaporated together even after passing through the overfull preventer and being cleaned Not disappear. Since the high-pressure steam has a higher liquefaction temperature than the low-pressure steam, the heat of vaporization (539 cal) absorbed when the high-pressure steam is vaporized in the low-pressure boiler 9 can be used as a heat exchange liquefaction to evaporate the water in the low-pressure boiler 9. However, since the liquefaction temperature of the low pressure boiler 9 is lower than the liquefaction temperature of the high pressure boiler, it cannot be used in reverse.
Therefore, in order to recycle and use the heat of vaporization of the water vapor absorbed when evaporating with the low-pressure boiler, the low-pressure boiler is depressurized by the turbine to lower the water evaporation temperature of the low-pressure boiler, and at the same time, the low-pressure boiler 9 depressurized. The steam must be compressed to increase the steam temperature and liquefaction temperature. The steam at a steam temperature of about 80 ° C. in the low pressure boiler that has been depressurized (380 mmHg) in the turbine 11 passes through the overfull preventer 10 shown in FIG. Compressed to 2kg / cm2. As a result, instead of compressed steam having a steam temperature of 120 ° C., it is mixed with air as described above, and is fed to the lower end of the high-temperature steam heat exchanger 16 through the steam pipeline 34 specifically shown in FIGS. It is press-fitted into a cylinder or square cylinder steam chamber (FIG. 2) connected to several tens of thin heat exchange pipes in a certain low temperature steam line. The steam press-fitted into the steam chamber is attached to the heat exchange pipeline 44 and is heated at 600 to 1200 ° C. while the heat is exchanged in the opposite direction, and is heated by the direct-fired steam heating device 17. In the steam chamber which heat-exchanges with the steam and surrounds the heat exchanging pipe 44, it is heated to 500 ° C. to 1100 ° C., and the direct flame steam heating device 17 attached to the steam line 35 has the high temperature shown in FIG. While being pressed in from the burner combustion chamber 49 in the direction of the arrow, it is heated to 600 to 1200 ° C.

直火蒸気加熱装置5、17の内壁には、水の粒子を分離して小粒子水を作ることが出来る遠赤外線を放出する麦飯石、電気石(tourmaline)、
セラミックス(ceramic)等でコーティング(coating)されている。高温の直火蒸気加熱装置を経ながら高温(600℃〜1200℃)の水蒸気が高温バーナーの直火で受ける熱量と水蒸気粒子を小粒子に分離することが出来る強力な遠赤外線放射と高温の空気中の酸素と高温のBOD、COD、悪臭等の超高温燃焼で受けるその部分の熱エネルギー等高温の単分子状態の水蒸気が受ける熱エネルギーは非常に大きい。図5に基づいて、温度の変化に従って小粒子純水になる過程を説明すれば次の様である。
小粒子純水を説明するため、本発明に必要な水や水蒸気の核磁気共鳴装置(nuclear magnetic resonance 略してNMR)の測定値(表3)を分かる必要がある。
韓国技術社会(The Korean Professional Engineers Association)
技術師2002.8(Vol.35.No.4)249−2890参照
On the inner walls of the direct-fired steam heating devices 5 and 17, barley stone, tourmaline, which emits far-infrared rays that can separate water particles to make small particle water,
It is coated with ceramics or the like. The amount of heat received by the high temperature (600 ° C to 1200 ° C) steam by the direct fire of the high temperature burner while passing through the high temperature direct steam heating device, and the powerful far infrared radiation and high temperature air that can separate the water vapor particles into small particles The thermal energy received by the high-temperature monomolecular water vapor, such as the thermal energy of the portion received by ultra-high temperature combustion such as oxygen in the inside and high-temperature BOD, COD, and bad odor, is very large. The process of becoming small particle pure water according to a change in temperature will be described with reference to FIG.
In order to explain the small particle pure water, it is necessary to know the measured values (Table 3) of the nuclear magnetic resonance apparatus (nuclear magnetic resonance for short) of water and water vapor necessary for the present invention.
Korea Technical Society (The Korean Professional Engineers Association)
See engineer 2002.8 (Vol. 35. No. 4) 249-2890

Figure 2005074344
Figure 2005074344

水のクラスタ(cluster)の分子数は、核磁気共鳴装置(NMR)の測定値8〜9個の水分子で成り立っている。原水(行水、地下水)が汚染した時には、図5に表示したようにCOD、BOD、悪臭、油分は蒸気粒子の中に含有されている。汚染した水蒸気を空気と混合して強力な遠赤外線と熱エネルギーで600℃〜1200℃に加熱すれば、水蒸気を成している水分子は、電子軌道が大きくなって、複数の水分子を構成している水素と酸素の複数の原子核を水分子核であると言えば、水分子核の熱エネルギーも大きくなったと言える。水分子は、3500℃から熱分解し始めるが、600℃〜1200℃の高温で強力な遠赤外線と放射熱を受けている複数の水蒸気分子は、乾蒸気状態のおおよそ大部分は、ただ単分子状態の赤色の熱エネルギーを放出する状態である。このような高温状態の蒸気の中に含有された微量の高温に加熱されたBOD、COD、悪臭、窒素化合物、水垢、油分などは、同じ条件で加熱された空気中の酸素と瞬間的に超高温燃消し、或いは熱分解する。この時放出する熱エネルギーも非常に大きくなって、その部分の水分子は熱分解直前に至る。このように浄化された純粋な小粒子水蒸気は、図5に表示したように冷却過程で急冷されて小粒子純粋が製せられる。   The number of molecules in the water cluster is composed of 8 to 9 water molecules measured by a nuclear magnetic resonance apparatus (NMR). When raw water (row water, groundwater) is contaminated, COD, BOD, malodor, and oil are contained in the vapor particles as shown in FIG. If contaminated water vapor is mixed with air and heated to 600 ° C to 1200 ° C with strong far-infrared rays and heat energy, the water molecules that make up the water vapor have larger electron orbits and constitute multiple water molecules. If we say that the hydrogen and oxygen nuclei are water molecular nuclei, it can be said that the thermal energy of the water molecular nuclei has also increased. Water molecules begin to thermally decompose at 3500 ° C, but a plurality of water vapor molecules receiving strong far-infrared rays and radiant heat at a high temperature of 600 ° C to 1200 ° C are mostly single molecules. This is a state in which red heat energy in the state is released. BOD, COD, malodor, nitrogen compounds, scales, oils, etc. heated to a very small amount contained in such high-temperature steam are instantaneously superfluous with oxygen in the air heated under the same conditions. High temperature extinguishment or thermal decomposition. The thermal energy released at this time also becomes very large, and the water molecules in that part reach just before thermal decomposition. The pure small particle water vapor purified in this way is quenched in the cooling process as shown in FIG. 5 to produce small particle pure.

図2に基づいてこの過程を説明すれば、直火蒸気加熱装置17で高温燃焼浄化されて強力な遠赤外線と放射熱、BOD、COD、悪臭等の超高温燃焼等で純粋な小粒子蒸気になった高温の蒸気は、反対方向から進行して来る低温の水蒸気と熱交換加熱するために、パイプライン36を通じて矢印方向に移動して、高温蒸気熱交換機16の熱交換パイプ44を取り囲んでいる高温蒸気室(steam chamber)で、圧入されて矢印方向に回って行きながら、反対方向から進行して来る低い温度の蒸気を熱交換、加熱して高温蒸気排出口45を通じて、図1、図3のパイプラインを通じて、図2の低圧ボイラー9の中の熱交換液化装置18の連結圧入口46より圧入される。   This process will be described with reference to FIG. 2. It is purified by high-temperature combustion in the direct-fired steam heating device 17, and converted into pure small-particle vapor by intense far-infrared rays, radiant heat, ultra-high temperature combustion such as BOD, COD, and bad odor. The high-temperature steam thus moved moves in the direction of the arrow through the pipeline 36 in order to heat-exchange heat with the low-temperature steam traveling in the opposite direction, and surrounds the heat-exchange pipe 44 of the high-temperature steam heat exchanger 16. In the high temperature steam chamber, the low temperature steam that has been press-fitted and rotated in the direction of the arrow is heat-exchanged and heated through the high temperature steam discharge port 45 through FIGS. 2 is press-fitted from the connection pressure inlet 46 of the heat exchange liquefaction apparatus 18 in the low-pressure boiler 9 of FIG.

熱交換液化装置18の連結圧入口46で圧入された水蒸気は、圧入の際タービンに圧縮された温度120℃、圧力2kg/cm2、液化点120℃の純粋な小粒子水蒸気である。タービンにより減圧されて蒸発温度80℃の減圧された低圧ボイラー水中にある熱交換液化装置18で図2の矢印方向へ進行しながら熱交換して低圧ボイラー9の水を蒸発させて気化熱を失って80℃に液化されて、パイプライン38と液化圧力調節バルブ19を通じて水槽21に小粒子純水になって圧出される。オーバーフル(over full)防止機3を経て空気と混合した高温蒸気加熱交換機(図1符号4)で圧入される水蒸気は、水蒸気圧力5kg/cm2、水蒸気温度150℃、液化点(液化温度)150℃である。   The steam injected at the connection pressure inlet 46 of the heat exchange liquefaction device 18 is pure small-particle steam having a temperature of 120 ° C., a pressure of 2 kg / cm 2, and a liquefaction point of 120 ° C. compressed in the turbine during the injection. The heat exchange liquefaction device 18 in the low pressure boiler water reduced in pressure by the turbine and having an evaporation temperature of 80 ° C. undergoes heat exchange while proceeding in the direction of the arrow in FIG. 2 to evaporate the water in the low pressure boiler 9 and lose the heat of vaporization. Then, it is liquefied to 80 ° C. and is discharged as small particle pure water into the water tank 21 through the pipeline 38 and the liquefaction pressure control valve 19. Water vapor injected by a high-temperature steam heating exchanger (reference numeral 4 in FIG. 1) mixed with air through an over full prevention device 3 has a water vapor pressure of 5 kg / cm 2, a water vapor temperature of 150 ° C., and a liquefaction point (liquefaction temperature) of 150. ° C.

図1符合16に示す低圧ボイラー9の高温蒸気熱交換機16で、前記のように150℃の水蒸気は熱交換加熱されて500℃〜1100℃になってパイプライン27に設けている直火蒸気加熱装置5、43で600℃〜1200℃に加熱されて、空気中の酸素とBOD、COD、悪臭等は前記のように高温燃消して純粋な高温の小粒子蒸気に変わって高温蒸気熱交換機(図1符合4)から進入してくる低い温度の水蒸気と熱交換して250℃位の蒸気に変わる。   In the high-temperature steam heat exchanger 16 of the low-pressure boiler 9 shown in FIG. 1, as described above, the steam at 150 ° C. is heat-exchanged and heated to 500 ° C. to 1100 ° C. and is provided in the pipeline 27. Heated to 600 ° C to 1200 ° C in devices 5 and 43, oxygen in the air and BOD, COD, bad odor etc. are extinguished at a high temperature as described above and converted into pure high temperature small particle vapor and a high temperature steam heat exchanger ( Heat exchange with the low-temperature steam entering from FIG.

250℃の蒸気は、150℃の高圧ボイラー2の水を蒸発させることが出来るので高圧ボイラー2の水中にある熱交換装置6に設けた図3の符号29に示すパイプライン29を通じて、高圧ボイラーの水を加熱して150℃の蒸気になって、高圧ボイラーライン31の連結口47、48で連結された低圧ボイラー9の中の熱交換液化装置7を矢印方向に移動しながら、減圧された低圧ボイラー9の80℃の水を加熱、蒸発させながら熱交換して高圧ボイラー2で蒸発する時吸収した気化熱(539cal)を再使用し、そして急冷液化されてパイプライン32と液化のための圧力調節バルブ8を通じて、水タンク21に小粒子純水になって圧縮される。
本発明の実施例は、以上のように気化熱を再使用する方法及び再生使用して熱エネルギーを節約して、水蒸気に混合した一緒に同伴蒸発したBOD、COD、悪臭等を空気と混合して高温で燃消する方法で浄化して直火蒸気加熱装置内壁に麦飯石、電気石、セラミックス等をコーティングして、600℃〜1200℃で放射する強力な遠赤外線と放射熱等で単分子状態になった純粋な水蒸気を急冷させて、小粒子純水を量産する方法、その原理を取り入れている装置、その構造及び作用により具体化される。
Since the steam at 250 ° C. can evaporate the water in the high pressure boiler 2 at 150 ° C., the steam of the high pressure boiler passes through the pipeline 29 indicated by reference numeral 29 in FIG. 3 provided in the heat exchanger 6 in the water of the high pressure boiler 2. The water is heated to steam at 150 ° C., and the pressure is reduced while moving in the direction of the arrow through the heat exchange liquefaction device 7 in the low pressure boiler 9 connected by the connection ports 47 and 48 of the high pressure boiler line 31. Heating and evaporating 80 ° C. water in boiler 9 and reusing the heat of vaporization (539 cal) absorbed when evaporating in high pressure boiler 2, and quenching and liquefying the pipeline 32 and pressure for liquefaction Through the control valve 8, the water tank 21 is compressed as pure water with small particles.
The embodiment of the present invention is a method for reusing heat of vaporization as described above and reusing it to save heat energy and mixing together entrained vaporized BOD, COD, bad odor etc. with air. It is purified by a method of extinguishing at high temperature, and the inner wall of the direct-fired steam heating device is coated with barley stone, tourmaline, ceramics, etc. It is embodied by a method of mass-producing small particle pure water by quenching pure water vapor in a state, an apparatus incorporating the principle, its structure and operation.

図6は、本発明の原理を利用してもっと多くの小粒子純水を量産する時、高圧ボイラーと低圧ボイラーの間に重圧ボイラーを設置して、気化熱を再使用する実施例である。圧力、温度、熱交換する方法と温度及び原水供給の時圧出される80℃〜150℃の熱い水と熱交換する方法などを矢印、気化、圧力と温度の変化等を実施例で分かりやすく表示した実施例である。   FIG. 6 shows an embodiment in which a heavy-pressure boiler is installed between a high-pressure boiler and a low-pressure boiler and the heat of vaporization is reused when mass production of more small particle pure water is performed using the principle of the present invention. The pressure, temperature, heat exchange method and temperature, and the method of heat exchange with hot water of 80 ° C to 150 ° C, which is pumped out when supplying raw water, are displayed in an easy-to-understand manner with examples, showing vaporization, changes in pressure and temperature, etc. This is an example.

本発明は、海水や汚染した河川水や地下水、或いは従来の技術としては到底食水するには不可能な糞尿や油分が混在した廃水までも原水として、私たちが飲むことが出来る小粒子純水を安価に量産する経済的な方法である。   The present invention is a small particle pure water that we can drink as raw water even for seawater, contaminated river water and groundwater, or wastewater mixed with manure and oil which is impossible for conventional edible water. It is an economical way to mass-produce water at low cost.

本発明の方法と装置によって、海水や汚染した水を浄化して食水にすることが出来る。地球上のすべての人々は、もちろん、悪性な廃水処理も兼ねることが出来て、環境汚染を防止して、人だけでなく動植物にも貢献する。故に、本発明の利用により産業活性化効果は大きいものであると信じる。   Seawater and contaminated water can be purified into edible water by the method and apparatus of the present invention. All people on the planet can, of course, also serve malignant wastewater treatment, prevent environmental pollution, and contribute not only to people but also to animals and plants. Therefore, it is believed that the industrial activation effect is great by the use of the present invention.

本発明の原理と工程を分かりやすく説明するための小粒子純水を生産する原理工程図Principle process diagram for producing small particle pure water for easy understanding of the principle and process of the present invention 本発明の小粒子純水量産方法と装置を説明するために装置の一部を切開して開示した側面図The side view which disclosed the small-part pure water mass-production method and apparatus of the present invention by cutting a part of the apparatus 図1の上面の一部を開示して分かり易くした図1の平面図The top view of FIG. 1 which disclosed part of the upper surface of FIG. 1 and was easy to understand. 図1の前面一部を開示して分かり易くした図1の正面図1 is a front view of FIG. 1 which is easy to understand by disclosing a part of the front of FIG. 水蒸気と一緒に、同伴蒸発したBOD、COD、油分、悪臭、水垢などの酸素を要求する不純物等が温度の変化に従って一緒に混合加熱された空気中の酸素と結合高温燃焼して純水の水蒸気に浄化されて水分子の小粒子純水に変わる過程を説明するための図面Impurities requiring oxygen such as BOD, COD, oil, bad odors, and scales that have evaporated along with steam are combined with oxygen in the air that is mixed and heated together with changes in temperature. For explaining the process of being purified to small particles of pure water 本発明の原理を利用して熱エネルギー(Energy)を、もっと節約してもっと多い量の純水を生産するための高圧ボイラーと低圧ボイラーの間に重圧ボイラーを連結して使うことが出来る実施例2に係る小粒子純水生産工程図An embodiment in which a heavy pressure boiler can be used between a high pressure boiler and a low pressure boiler to save more heat energy (Energy) using the principle of the present invention and produce a larger amount of pure water. Small particle pure water production process diagram for 2

符号の説明Explanation of symbols

1.. バーナー(burner)
2.. 高圧ボイラー(boiler)
3.. 高圧ボイラーで沸き過ぎるとか蒸気と一緒に飛上がった水滴或いは不純物を分離させて可能な限り、きれいな水蒸気を得ようとする目的のオーバーフル(over full)防止機
4.. 高圧ボイラーの高温蒸気熱交換機
5.. バーナーの直火で水蒸気が高温に直接加熱される蒸気ライン(steam line)内壁に麦飯石、電気石(tourmaline)、セラミックス(ceramic)などでコーテ
ィング(coating)されている直火加熱管
6.. 高圧ボイラーの高温蒸気熱交換機で熱交換した残る熱量中の高圧ボイラーの中の水温度より高い温度の熱エネルギー(energy)で高圧ボイラーの水を蒸発させる熱交換加熱装置
7.. 高圧ボイラーで蒸発した高圧蒸気の液化する液化温度、液化点より低い温度の低圧ボイラーの水を高圧蒸気が持った気化熱で蒸発させて低圧ボイラー水を蒸発させるのに再使用して液化する高圧蒸気ライン(line)の最後の熱交換液化装置
8.. 高圧ボイラーの高圧蒸気液化調節のための圧力バルブ(valve)装置
9.. 低圧ボイラー
10.. 低圧ボイラーで沸き過ぎるとか蒸気と一緒に飛び上がった水滴或いは不純物を分離させきれいな水蒸気を得ようとする目的のオーバーフル(over full)防止機
11.. 低圧ボイラーを減圧させて低圧ボイラーで蒸発した水蒸気を吸入圧縮させる減圧及び蒸気圧縮タービン(turbine)
12,13.. 空気圧縮機(air compressor)
14,15.. 蒸気と空気の中に混合した不純物分離機
16... 低圧ボイラーの高温蒸気熱交換機
17..バーナーの直火で低圧ボイラーの水蒸気が高温に直接加熱される蒸気ライン(steam line)、内壁に麦飯石、電気石(tourmaline)、セラミック(ceramic)などでコーティングされている直火蒸気加熱管
18..低圧ボイラーで蒸発した低圧水蒸気を蒸気圧縮タービン(turbine)で圧縮させて液化点を低圧ボイラーの蒸発する水の温度より高めて低圧ボイラーの水を蒸発させるのにタービンにより圧縮された蒸気が持った気化熱を熱交換使用して液化させる低圧蒸気ライン(steam line)の最後の熱交換液化装置
19..低圧ボイラーの液化調節のための圧力調節バルブ(valve)装置
20..生産された小粒子の純水
21..水タンク(water tank)
22、23..水ポンプ
24、25..水位調節装置
26、27、28、29、31、32..高圧ボイラー(boiler)の蒸気パイプライン(steam pipe line)
33、34、35、36、37、38..低圧ボイラー(boiler)の蒸気パイプライン(steam pipe line)
39..海水又は地下水の貯水槽(原水タンク)
40..煙管即ち水を沸かすために水道を通すパイプ
41..高圧ボイラーで使った火力を低圧ボイラーで再び使用するために連結する廃熱連結管
42..煙突
43..直火蒸気加熱管の内壁にコーティング(coating)にされている麦飯石
44..熱交換パイプ(pipe)
45..低圧ボイラーの蒸気がタービンにより圧縮されて、熱交換機において熱交換加熱されてパイプ(pipe)36を通じて新たに進入して来る低圧ボイラーの蒸気と熱交換機16から矢印方向で進入しながら熱交換して摂氏600度ー1200度の高温の蒸気が冷却して約170度ー200度の水蒸気に変わって排出されるパイプ(pipe)孔で低圧ボイラーの水を蒸発させる熱交換液化装置18のパイプ(pipe)孔とを連結した。
46..パイプゴング(pipe孔)45と低圧ボイラーパイプライン37で連結した。
47、48..高圧ボイラーライン31の連結口
49..高圧ボイラーの楕円形の大きくて長い煙管になったバーナー(burner)の燃焼室
50..低圧ボイラー9の廃熱を再利用する煙管
51..バーナー燃焼室49を構成している楕円形煙管
52..排水バルブ(valve)
a..高圧ボイラー(boiler)(圧力13kg/平方cm 蒸気温度摂氏190度)
b..中圧ボイラー(boiler)(圧力5kg/平方cm 蒸気温度摂氏150度)
c.. タービン(turbine)によって減圧された低圧ボイラー(boiler)(圧力0.5kg/平方cm、380mmHg、蒸気温度摂氏80度)
d..高圧ボイラーの高圧蒸気熱交換機
e..中圧ボイラーの中圧蒸気熱交換機
f..低圧ボイラーの低圧蒸気熱交換機
g..麦飯石、電気石、セラミックス等でコーティング(coating)されている直火蒸気加熱装置
j..海水又は地下水
k..液化調節のための圧力調節バルブ(valve)
l..高圧ボイラーの高圧蒸気が持った気化熱を高圧蒸気の液化点(液化する温度)より低い温度の重圧ボイラーの水を蒸発させながら、気化熱を失って液化になる蒸気液化加熱ライン(line)
m..中圧ボイラーの中圧空気が持った気化熱を重圧蒸気の液化温度より低い温度のタービン(turbine)に減圧された低圧ボイラーの水を蒸発させながら気化熱を失って液化される蒸気液化加熱ライン(line)
n..低圧ボイラーで蒸発した水蒸気が持った気化熱を再生使用するために、タービン(turbine)で低圧ボイラーを減圧させて、減圧された低圧ボイラーにおける蒸発温度を低めて、この低圧ボイラーで蒸発した水蒸気を圧縮させて、液化温度を減圧された低圧ボイラーの蒸発温度より高めて、減圧された低圧ボイラーの水を蒸発させながら気化熱を失って液化される蒸気液化加熱ライン(line)
w....浄化された小粒子純水
t..タービン(turbine)
p..水ポンプ(water pomp)
1. . Burner
2. . High pressure boiler
3. . 3. Over-full prevention machine for the purpose of obtaining clean water vapor as much as possible by separating water droplets or impurities that boiled with high-pressure boiler or with steam. . 4. High temperature steam heat exchanger for high pressure boiler . 5. Direct-fired heating pipe in which steam is heated directly to a high temperature by a burner, and the inner wall of the steam line is coated with barleystone, tourmaline, ceramic, etc. . 6. Heat exchange heating device for evaporating the water in the high pressure boiler with heat energy higher than the water temperature in the high pressure boiler in the remaining amount of heat exchanged by the high temperature steam heat exchanger of the high pressure boiler. . The liquefaction temperature of the high-pressure steam that evaporates in the high-pressure boiler, the high-pressure that is reused to evaporate the low-pressure boiler water by evaporating the water in the low-pressure boiler that is lower than the liquefaction point with the heat of vaporization of the high-pressure steam 7. Last heat exchange liquefaction unit in the steam line. . 8. Pressure valve device for adjusting high pressure steam liquefaction of high pressure boiler . Low pressure boiler10. . 10. Over-full prevention machine for the purpose of obtaining clean water vapor by separating water droplets or impurities that have boiled off with a low-pressure boiler or with steam. . Depressurization and steam compression turbine (turbine) for reducing the pressure of the low-pressure boiler and sucking and compressing water vapor evaporated by the low-pressure boiler
12,13. . Air compressor
14, 15 .. Impurity separator mixed in steam and air 16. . 18. High pressure steam heat exchanger for low pressure boiler . A steam line in which the steam of the low pressure boiler is directly heated to a high temperature by a burner direct fire, and a direct fire steam heating pipe 18 whose inner wall is coated with barley stone, tourmaline, ceramic, etc. . . The low-pressure steam evaporated by the low-pressure boiler was compressed by a steam compression turbine (turbine), and the steam compressed by the turbine had the liquefaction point higher than the temperature of the low-pressure boiler evaporating water to evaporate the low-pressure boiler water. 18. Last heat exchange liquefaction device in low pressure steam line that uses heat exchange to liquefy heat. . Pressure regulating valve (valve) device for regulating the liquefaction of the low pressure boiler20. . 21. Pure water of small particles produced . Water tank
22, 23. . Water pumps 24, 25. . Water level adjusting devices 26, 27, 28, 29, 31, 32. . Steam pipe line of high pressure boiler
33, 34, 35, 36, 37, 38. . Steam pipe line of low pressure boiler
39. . Seawater or groundwater reservoir (raw water tank)
40. . 41. A smoke pipe, i.e. a pipe through which water is passed to boil water. . Waste heat connection pipe connecting the thermal power used in the high pressure boiler for reuse in the low pressure boiler. . Chimney 43. . 45. Barley stone coated on the inner wall of the direct-fired steam heating tube. . Heat exchange pipe
45. . The steam of the low-pressure boiler is compressed by the turbine, heat-exchanged and heated in the heat exchanger, and exchanges heat with the steam of the low-pressure boiler newly entering through the pipe 36 while entering from the heat exchanger 16 in the direction of the arrow. Pipe of the heat exchange liquefaction device 18 that evaporates the water of the low-pressure boiler through the pipe hole where the high-temperature steam of 600 degrees Celsius to 1200 degrees Celsius is cooled and discharged into steam of about 170 degrees Celsius to 200 degrees Celsius. ) The holes were connected.
46. . A pipe gong (pipe hole) 45 and a low pressure boiler pipeline 37 were connected.
47, 48. . Connecting port of high-pressure boiler line 31 49. . Burner combustion chamber in the form of an elliptical large and long smoke tube of a high pressure boiler 50. . 51. A smoke pipe that reuses the waste heat of the low-pressure boiler 9. . 52. An elliptical smoke tube constituting the burner combustion chamber 49 . Drain valve (valve)
a. . High pressure boiler (pressure 13 kg / square cm, steam temperature 190 degrees Celsius)
b. . Medium pressure boiler (pressure 5 kg / square cm, steam temperature 150 degrees Celsius)
c. . Low pressure boiler decompressed by a turbine (pressure 0.5 kg / square cm, 380 mmHg, steam temperature 80 degrees Celsius)
d. . High pressure steam heat exchanger for high pressure boiler e. . Medium pressure steam heat exchanger for medium pressure boiler f. . Low pressure steam heat exchanger for low pressure boiler g. . Direct-fired steam heating device coated with barley stone, tourmaline, ceramics, etc. j. . Seawater or groundwater k. . Pressure control valve (valve) for liquefaction adjustment
l. . Steam liquefaction heating line (line) that loses the heat of vaporization and liquefies while evaporating the heat of vaporization of the high pressure steam of the high pressure boiler, which is lower than the liquefaction point (liquefaction temperature) of the high pressure steam.
m. . Steam liquefaction heating line that loses the heat of vaporization and evaporates while evaporating the water of the low-pressure boiler in which the heat of vaporization of the medium-pressure boiler's medium-pressure air is reduced to a turbine whose temperature is lower than the liquefaction temperature of heavy-pressure steam. (Line)
n. . In order to recycle and use the heat of vaporization of the steam evaporated in the low-pressure boiler, the low-pressure boiler is depressurized by a turbine, the evaporation temperature in the decompressed low-pressure boiler is lowered, and the steam evaporated in the low-pressure boiler is reduced. Vapor liquefaction heating line that loses heat of vaporization and liquefies while evaporating the water of the reduced pressure low pressure boiler by evaporating and evaporating the water of the reduced pressure low pressure boiler.
w. . . . Purified small particle pure water t. . Turbine
p. . Water pump

Claims (2)

汚染した海水、地下水、河川水、廃水等をボイラーで蒸発させて、小粒子純水を生産する時、水蒸気の中に混合した水蒸気と一緒に蒸発したBOD、COD、悪臭、油分、窒素酸化物等を浄化して、小粒子純水を作る方法において、ボイラーで蒸発する時1次的にオーバーフル防止とサイクロン役目もするオーバーフル防止機3、10を通じて水蒸気をきれいにして、水蒸気を空気と混合して、高温蒸気熱交換器4、16で反対方向から近づく高温(600℃〜1200℃)の純粋な小粒子水蒸気と500℃〜1100℃まで熱交換加熱して、各図面に図示して明細書に記述したところの高温バーナーで直接加熱する直火蒸気加熱装置の内壁には水の粒子を分割して、小粒子水を作る力がある遠赤外線放出と酸化防止のために麦飯石、電気石、セラミックス、等をコーティングして600℃〜1200℃の水蒸気と空気が通過する時強力な遠赤外線と放射熱、そして高温のBOD、COD、悪臭等が高温の空気中の酸素と超高温燃焼して浄化される熱エネルギーなどにより浄化された純粋なただ分子状態の高温の水蒸気を熱交換急冷液化させて蒸気浄化と気化熱を再利用して小粒子の純水を量産する方法。 When producing small particle pure water by evaporating contaminated seawater, groundwater, river water, wastewater, etc. with a boiler, BOD, COD, bad odor, oil, nitrogen oxides evaporated together with the water vapor mixed in the water vapor In the method of producing pure water with small particles by purifying water etc., the water vapor is cleaned with the air through the over-full prevention machines 3 and 10 which primarily serve as over-full prevention and cyclone when evaporating with a boiler. Mix and heat exchange heat to 500 ° C to 1100 ° C with high temperature (600 ° C to 1200 ° C) pure small particle water vapor approaching from the opposite direction in high temperature steam heat exchangers 4 and 16 and illustrated in each drawing The inner wall of the direct-fired steam heating device that is directly heated by the high-temperature burner described in the specification splits the water particles to produce far-infrared rays and the ability to prevent oxidation, Tourmaline When ceramics, etc. are coated and water vapor and air of 600 ° C to 1200 ° C pass, strong far infrared rays and radiant heat, and high temperature BOD, COD, bad odor, etc. burn with oxygen in high temperature air and super high temperature A method of mass-producing pure water with small particles by heat-exchange quenching and liquefaction of pure high-temperature water vapor purified by thermal energy to be purified, and reusing steam purification and heat of vaporization. 小粒子純水を経済的に熱エネルギーを節約して量産する方法において、
第一に、上述した小粒子純水生産原理と工程で高圧ボイラーの蒸気を低圧ボイラーの水を蒸発させるのに再使用する方法で小さい熱量で多くの小粒子純水を得るために、すなわち高圧蒸気が高圧ボイラーで蒸発する時吸収した気化熱を高圧蒸気の温度と液化点より低い低圧ボイラーの水を蒸発させるのに熱交換液化装置7で使用して、熱交換液化させながら急冷させて、多量に小粒子純水を得るために気化熱を再使用する方法と、
第二に、また低圧ボイラーで蒸発した水蒸気の気化熱を再使用して上述した小粒子純水生産原理工程で熱エネルギーを節約して、もっと多くの小粒子純水を量産する方法において、タービンで低圧ボイラーを減圧して低圧ボイラーの蒸気温度と水温度を低めて、同時に減圧された低圧ボイラーで蒸発した水蒸気の圧力を高めて、水蒸気の温度と液化点を減圧された低圧ボイラーより高めて熱交換液化装置を使用して熱交換液化しながら、低圧ボイラーで蒸発する時吸収した気化熱を減圧された低圧ボイラーの水を蒸発させるのに再使用して、もっと多くの小粒子純水を量産する方法と、
を各図面に図示し明細書に説明したように一緒に組み合わせて海水、地下水、河川水、或いは廃水等を原水にして純水や小粒子純水を生産し又は廃水を処理することを特徴とする請求項1に記載の蒸気浄化と気化熱を再利用して小粒子の純水を量産する方法。
In the method of mass production of small particle pure water economically saving thermal energy,
First, in order to obtain a large amount of small particle pure water with a small amount of heat by reusing the steam of the high pressure boiler to evaporate the water of the low pressure boiler in the small particle pure water production principle and process described above, that is, high pressure The vaporization heat absorbed when the vapor evaporates in the high pressure boiler is used in the heat exchange liquefaction device 7 to evaporate the water in the low pressure boiler lower than the temperature and liquefaction point of the high pressure steam, and rapidly cooled while liquefying the heat exchange, A method of reusing heat of vaporization to obtain a large amount of small particle pure water;
Secondly, in the method of mass production of more small particle pure water by reusing the vaporization heat of water vapor evaporated in the low pressure boiler to save heat energy in the above-described principle of producing small particle pure water, The pressure of the low pressure boiler is reduced by lowering the steam temperature and water temperature of the low pressure boiler, and at the same time the pressure of the vapor evaporated by the reduced pressure low pressure boiler is increased, and the temperature and liquefaction point of the water vapor are increased compared to the low pressure boiler having the reduced pressure. While using a heat exchange liquefaction device, the vaporized heat absorbed when evaporating in the low pressure boiler is reused to evaporate the water in the decompressed low pressure boiler, resulting in more small particle pure water. A mass production method,
As shown in each drawing and described together in the drawings, seawater, groundwater, river water, or wastewater is used as raw water to produce pure water or small particle pure water, or to treat wastewater. A method for mass-producing small particles of pure water by reusing steam purification and heat of vaporization according to claim 1.
JP2003309434A 2003-09-01 2003-09-01 Method for mass producing small particle pure water reusing steam purification and heat of vaporization Pending JP2005074344A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003309434A JP2005074344A (en) 2003-09-01 2003-09-01 Method for mass producing small particle pure water reusing steam purification and heat of vaporization

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003309434A JP2005074344A (en) 2003-09-01 2003-09-01 Method for mass producing small particle pure water reusing steam purification and heat of vaporization

Publications (1)

Publication Number Publication Date
JP2005074344A true JP2005074344A (en) 2005-03-24

Family

ID=34411565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003309434A Pending JP2005074344A (en) 2003-09-01 2003-09-01 Method for mass producing small particle pure water reusing steam purification and heat of vaporization

Country Status (1)

Country Link
JP (1) JP2005074344A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027366A (en) * 2009-07-28 2011-02-10 Ryoji Watabe Method of producing emulsion fuel and its device
JP2015047595A (en) * 2013-09-04 2015-03-16 初一 松本 Water adjustor and water produced thereby
CN108358254A (en) * 2018-03-26 2018-08-03 上海瀑润科技发展有限公司 A kind of modified water and its method of modifying, application
CN112963823A (en) * 2021-03-31 2021-06-15 成都三山粮油有限公司 Steam heat recovery system
CN114607998A (en) * 2022-04-14 2022-06-10 泸州老窖股份有限公司 Bran steaming waste gas heat energy recovery processing method and bran steaming machine system used for same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027366A (en) * 2009-07-28 2011-02-10 Ryoji Watabe Method of producing emulsion fuel and its device
JP2015047595A (en) * 2013-09-04 2015-03-16 初一 松本 Water adjustor and water produced thereby
CN108358254A (en) * 2018-03-26 2018-08-03 上海瀑润科技发展有限公司 A kind of modified water and its method of modifying, application
CN108358254B (en) * 2018-03-26 2021-03-30 上海瀑润科技发展有限公司 Modified water, and modification method and application thereof
CN112963823A (en) * 2021-03-31 2021-06-15 成都三山粮油有限公司 Steam heat recovery system
CN114607998A (en) * 2022-04-14 2022-06-10 泸州老窖股份有限公司 Bran steaming waste gas heat energy recovery processing method and bran steaming machine system used for same
CN114607998B (en) * 2022-04-14 2023-06-09 泸州老窖股份有限公司 Bran-steaming waste gas heat energy recovery treatment method and bran-steaming machine system for same

Similar Documents

Publication Publication Date Title
KR100774546B1 (en) Seawater desalinating apparatus using blowdown of heat recovery steam generator
KR102447646B1 (en) Oil and gas well generation seawater treatment system
US7037430B2 (en) System and method for desalination of brackish water from an underground water supply
US8475727B2 (en) Pressure and temperature control system for at least one chemical reactor
CN103775150B (en) A kind of electricity-water cogeneration system and method
EP1908733A1 (en) Method and plant for joint production of electricity, steam and desalinated water
JP2012525529A (en) Power plant and water treatment plant with CO2 capture
US7571613B1 (en) System and method for water pasteurization and power generation
Sharan et al. Solar assisted multiple-effect evaporator
JP5099939B1 (en) Activated carbon production system
JP2007198201A (en) Gas turbine plant system and method for remodeling gas turbine plant system
EP1645613A8 (en) Novel fuel production plant and seawater desalination system for use therein
KR0119766B1 (en) Vaporizing and concentration drying apparatus and method
JP2005074344A (en) Method for mass producing small particle pure water reusing steam purification and heat of vaporization
US20110024283A1 (en) Ammonia Production And Water Purification
JPWO2016143848A1 (en) Fresh water generator
KR100733696B1 (en) Freshwater apparatus of seawater
WO2019235652A1 (en) Offshore water treatment system
CN112225275A (en) Contain high-efficient evaporation plant of salt organic waste water and system
US20050115878A1 (en) System for desalinating and purifying seawater and devices for the system
JP6823331B1 (en) Steam generator
US20180282181A1 (en) Fresh water and salable energy without environmental harm1
KR20040100692A (en) The mass produce for micro-clusters purity water a method and equipment of a steam purification and eraporation heat
WO2006121335A1 (en) A method and a system for generating steam
RU2562660C2 (en) Desalination installation generating cold and electric power (versions)

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060901

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080414

A131 Notification of reasons for refusal

Effective date: 20080526

Free format text: JAPANESE INTERMEDIATE CODE: A131

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20080723

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20080807

A521 Written amendment

Effective date: 20080924

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080930

A59 Written plea

Free format text: JAPANESE INTERMEDIATE CODE: A59

Effective date: 20081030

A521 Written amendment

Effective date: 20081031

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Effective date: 20081030

Free format text: JAPANESE INTERMEDIATE CODE: A523

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20090219

A02 Decision of refusal

Effective date: 20090406

Free format text: JAPANESE INTERMEDIATE CODE: A02