JP2005073334A - Controller for ac-ac direct conversion type power converter - Google Patents

Controller for ac-ac direct conversion type power converter Download PDF

Info

Publication number
JP2005073334A
JP2005073334A JP2003297534A JP2003297534A JP2005073334A JP 2005073334 A JP2005073334 A JP 2005073334A JP 2003297534 A JP2003297534 A JP 2003297534A JP 2003297534 A JP2003297534 A JP 2003297534A JP 2005073334 A JP2005073334 A JP 2005073334A
Authority
JP
Japan
Prior art keywords
phase
power converter
input voltage
voltage
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003297534A
Other languages
Japanese (ja)
Other versions
JP4273402B2 (en
Inventor
Junichi Ito
淳一 伊東
Ikuya Sato
以久也 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003297534A priority Critical patent/JP4273402B2/en
Publication of JP2005073334A publication Critical patent/JP2005073334A/en
Application granted granted Critical
Publication of JP4273402B2 publication Critical patent/JP4273402B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Ac-Ac Conversion (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To allow operation of a converter by generating an appropriate input current instruction, even if a power converter is connected by mistake to provide a different phase sequence of an input voltage. <P>SOLUTION: A controller which is a direct converter, such as matrix converter, comprises a phase sequence determining means for an input voltage and an input current instruction generating means which generates an input current instruction for each phase to provide the same phase sequence with a determined one. The phase sequence determining means comprises a means 10 for converting a three-phase input voltage into biphasic quantity of orthogonal biaxial coordinate system, and a means 11 for acquiring the angle of an input voltage vector composed of the biphasic quantity. A three-phase oscillator 6, acting as an input current instruction generating means, generates the input current instruction of each phase using the angle of the input voltage vector. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、コンデンサ等の大形のエネルギーバッファを用いることなく、半導体スイッチング素子を用いて多相交流電圧を任意の大きさ及び周波数を有する多相交流電圧に直接変換する交流−交流直接変換形電力変換器(以下、単に直接変換器ともいう)の制御装置に関し、特に、変換器の入力電流波形を制御する元となる入力電流指令を入力電圧の相順を考慮して生成する技術に関するものである。   The present invention provides an AC-AC direct conversion type that directly converts a polyphase AC voltage into a polyphase AC voltage having an arbitrary magnitude and frequency using a semiconductor switching element without using a large energy buffer such as a capacitor. BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control device for a power converter (hereinafter also referred to simply as a direct converter), and particularly relates to a technique for generating an input current command that controls the input current waveform of the converter in consideration of the phase sequence of the input voltage. It is.

単方向の電流を制御できる少なくとも二つの単方向半導体スイッチング素子により交流スイッチ(双方向性スイッチ)を構成し、三相交流電圧から任意の大きさ及び周波数を有する三相交流電圧を直接得るようにした直接変換器として、マトリクスコンバータを例にとり、以下に説明する。   An AC switch (bidirectional switch) is configured by at least two unidirectional semiconductor switching elements capable of controlling a unidirectional current so that a three-phase AC voltage having an arbitrary magnitude and frequency is directly obtained from the three-phase AC voltage. As the direct converter, a matrix converter will be described as an example.

図10は、マトリクスコンバータ及びその制御装置の従来技術を示している。
図において、1は三相交流電源、2はマトリクスコンバータ、3は交流電動機等の負荷、12は変圧器、4は電圧極性判別手段、5はPLL回路、6は三相発振器、9は入力電圧大小検出手段、7は出力電圧指令発生手段、8はパルス発生手段、R,S,Tは交流入力端子、U,V,Wは交流出力端子、マトリクスコンバータ2内のSur,Sru,Sus,Ssu,Sut,Stuは単方向スイッチング素子である。
FIG. 10 shows the prior art of the matrix converter and its control device.
In the figure, 1 is a three-phase AC power source, 2 is a matrix converter, 3 is a load such as an AC motor, 12 is a transformer, 4 is a voltage polarity discriminating means, 5 is a PLL circuit, 6 is a three-phase oscillator, and 9 is an input voltage. Size detection means, 7 is an output voltage command generation means, 8 is a pulse generation means, R, S, T are AC input terminals, U, V, W are AC output terminals, S ur , S ru , S in the matrix converter 2 us , S su , S ut , S tu are unidirectional switching elements.

図10のマトリクスコンバータ2では、入力相のR,S,T相と出力相のU相との間に接続される交流スイッチ(それぞれ、逆方向接続される2個の単方向スイッチング素子から構成される)を示してあるが、入力相のR,S,T相と他の出力相であるV,W相との間に接続される交流スイッチも同様の接続構成であり、三相交流電源1と負荷3との間には合計9個の交流スイッチが接続されている。   In the matrix converter 2 shown in FIG. 10, an AC switch connected between the R, S, T phase of the input phase and the U phase of the output phase (each composed of two unidirectional switching elements connected in the reverse direction). The AC switch connected between the R, S, and T phases of the input phase and the V and W phases of the other output phases has the same connection configuration, and the three-phase AC power source 1 A total of nine AC switches are connected between the load and the load 3.

図10の構成において、マトリクスコンバータ2では、PWM制御される9個の交流スイッチにより三相交流電圧を切り出し、任意の大きさ及び周波数の三相交流電圧を得て負荷3へ供給している。
ここで、マトリクスコンバータ2の入力電流指令は、以下のようにして生成される。すなわち、変圧器12を経た入力電圧のある一相の極性が電圧極性判別手段4により検出され、入力電圧に同期したパルスが生成される。このパルスはPLL回路5に入力されて入力電圧の位相が検出され、この電圧位相を角度データとし、三相発振器6を用いて入力電流指令が生成される。
In the configuration of FIG. 10, the matrix converter 2 cuts out a three-phase AC voltage by nine AC switches that are PWM-controlled, obtains a three-phase AC voltage having an arbitrary magnitude and frequency, and supplies it to the load 3.
Here, the input current command of the matrix converter 2 is generated as follows. That is, the polarity of one phase of the input voltage passed through the transformer 12 is detected by the voltage polarity discriminating means 4, and a pulse synchronized with the input voltage is generated. This pulse is input to the PLL circuit 5 to detect the phase of the input voltage, and this voltage phase is used as angle data, and an input current command is generated using the three-phase oscillator 6.

一方、入力電圧大小検出手段9は各相入力電圧v,v,vの大小関係(最大入力電圧及び最小入力電圧)を判別するものであり、例えば、X(XはR,S,Tの何れか)相が最大のときにX=1(他相についてはX=0)とし、X相が最小のときにX=1(他相についてはX=0)として各相入力電圧v,v,vの大小関係を判別し、X及びX(R,R,S,S,T,T)の“1”,“0”の組合せを出力する。 On the other hand, the input voltage magnitude detection means 9 discriminates the magnitude relation (maximum input voltage and minimum input voltage) of the phase input voltages v R , v S , v T , for example, X (X is R, S, Any of T) When the phase is the maximum, X p = 1 (X p = 0 for the other phase), and when the X phase is the minimum, X n = 1 (X n = 0 for the other phase) The magnitude relationship between the phase input voltages v R , v S , and v T is determined, and “1” and “0” of X p and X n (R p , R n , Sp , Sn , T p , T n ) are determined. The combination of is output.

パルス発生手段8は、三相発振器6からの入力電流指令と、入力電圧大小検出手段9からの入力電圧の大小関係と、出力電圧指令発生手段7により生成された出力電圧指令とに基づいて、マトリクスコンバータ2の各単方向スイッチング素子に与えるべきPWM指令を演算し、その出力パルスによりマトリクスコンバータ2が制御されて入力電流及び出力電圧が各指令通りに制御されるものである。   The pulse generation means 8 is based on the input current command from the three-phase oscillator 6, the magnitude relationship between the input voltages from the input voltage magnitude detection means 9, and the output voltage command generated by the output voltage command generation means 7. The PWM command to be given to each unidirectional switching element of the matrix converter 2 is calculated, the matrix converter 2 is controlled by the output pulse, and the input current and the output voltage are controlled according to each command.

ここで、入力電流指令はPLL回路5により検出した入力電圧位相を元に生成されるため、制御を行うためには入力電圧の相順が重要となる。
入力電圧の相順を逆に接続した場合の検出方法は、例えば後述の特許文献1に開示されている。この特許文献1に記載された発明は、電源電圧の一相のみ欠相した状態、相順が逆相となった状態のどちらの異常も検出可能とした電源電圧異常検出回路及び方法に関するもので、その概要は以下の通りである。
Here, since the input current command is generated based on the input voltage phase detected by the PLL circuit 5, the phase order of the input voltage is important for the control.
A detection method when the phase order of the input voltages is reversed is disclosed in, for example, Patent Document 1 described later. The invention described in Patent Document 1 relates to a power supply voltage abnormality detection circuit and method capable of detecting both abnormalities in a state where only one phase of the power supply voltage is lost and a state where the phase sequence is reversed. The outline is as follows.

すなわち、電源電圧情報生成回路により、三相交流電源のR,S,Tの各相の電圧値の大小関係に応じた情報を検出して電源電圧情報信号Rmax〜Tminとして出力する。異常検出用信号生成回路は、三相交流電源が正常である場合のR,S,Tの各相の電圧値の大小関係に基づく情報を予め保持しておき、この情報を異常検出用信号Rmax 〜Tmin として出力する。判定回路では、電源電圧情報信号Rmax〜Tminと異常検出用信号Rmax 〜Tmin とを一定間隔で比較し、これらの信号が異なっている場合(例えば一相のみ欠相した場合や相順が逆相である場合など)には電源電圧異常信号を出力する。 That is, the power supply voltage information generating circuit, the three-phase AC power supply R, S, and detects the information corresponding to the magnitude relationship between the voltage value of each phase of T is output as the power supply voltage information signal R max through T min. The abnormality detection signal generation circuit holds in advance information based on the magnitude relationship of the voltage values of the R, S, and T phases when the three-phase AC power supply is normal, and this information is used as the abnormality detection signal R. and outputs it as the max * ~T min *. If the determination circuit, a power supply voltage information signal R max through T min and abnormality detection signal R max * ~T min * compared at regular intervals, which is open-phase only (e.g. one phase of these signals are different When the phase sequence is reversed, the power supply voltage abnormality signal is output.

特開2001−258151号公報(請求項1、図2等)JP 2001-258151 A (Claim 1, FIG. 2, etc.)

装置の接続を間違えて、入力電圧の相順を異なって接続してしまった場合には、マトリクスコンバータ2の入力電流指令と入力電圧との実際の相順が異なるため、入力電流に異常電流が発生し、スイッチング素子を破壊したり、負荷3を破壊する恐れがある。また、特許文献1に開示されている手段により、電源電圧異常信号を出力したり過電流保護信号を出力して電力変換器を停止させる場合には、運転自体が不可能になる。
加えて、特許文献1に開示されている相順判定手段では、相順の判定を行うために、三相交流電源が正常である場合のR,S,T各相の電圧値の大小関係に基づく情報を予め保持する必要があるため、構成が複雑になり制御装置のコストが上昇するという問題がある。
If the connection of the devices is wrong and the phase sequence of the input voltage is different, the actual phase sequence between the input current command and the input voltage of the matrix converter 2 will be different. May occur, destroying the switching element or destroying the load 3. Further, when the power converter is stopped by outputting a power supply voltage abnormality signal or outputting an overcurrent protection signal by means disclosed in Patent Document 1, the operation itself is impossible.
In addition, in the phase sequence determination means disclosed in Patent Document 1, in order to determine the phase sequence, the magnitude relationship of the voltage values of the R, S, and T phases when the three-phase AC power supply is normal is determined. Since it is necessary to hold the information based on it in advance, there is a problem that the configuration becomes complicated and the cost of the control device increases.

そこで本発明は、三相交流電源が正常である場合の各相電圧値の大小関係に基づく情報等を予め保持する必要がなく、構成が比較的簡単な相順判定手段を備え、電力変換器の接続を間違えて入力電圧の相順が異なるような場合でも、電力変換器の運転を可能にした直接変換器の制御装置を提供しようとするものである。   Therefore, the present invention does not need to hold in advance information or the like based on the magnitude relationship of each phase voltage value when the three-phase AC power supply is normal, and includes a phase sequence determination unit having a relatively simple configuration, and a power converter Therefore, the present invention intends to provide a control device for a direct converter that enables operation of the power converter even when the phase order of the input voltages is different due to a wrong connection.

上記課題を解決するため、請求項1に記載した発明は、
単方向の電流を制御可能な少なくとも二つの単方向半導体スイッチング素子からなる双方向性の交流スイッチを複数設けて交流スイッチ群を構成し、三相交流電源の各相に接続される前記交流スイッチ群により三相交流電圧を任意の大きさ及び周波数を有する三相交流電圧に直接変換する交流−交流直接変換形電力変換器の制御装置であって、
前記電力変換器の入力電圧の相順を判定する相順判定手段と、この相順判定手段により判定された相順と同一の相順になるように前記電力変換器の各相の入力電流指令を生成する入力電流指令生成手段と、を有する制御装置において、
前記相順判定手段は、三相入力電圧を直交2軸座標系の二相量に変換する手段と、この二相量からなる入力電圧ベクトルの角度を求める手段とを備え、
前記入力電流指令生成手段は、前記入力電圧ベクトルの角度を用いて各相の入力電流指令を生成するものである。
In order to solve the above problem, the invention described in claim 1
The AC switch group configured to form an AC switch group by providing a plurality of bidirectional AC switches composed of at least two unidirectional semiconductor switching elements capable of controlling a unidirectional current, and connected to each phase of a three-phase AC power source A control device for an AC-AC direct conversion power converter that directly converts a three-phase AC voltage into a three-phase AC voltage having an arbitrary magnitude and frequency,
A phase sequence determination unit that determines a phase sequence of the input voltage of the power converter, and an input current command for each phase of the power converter so that the phase sequence is the same as the phase sequence determined by the phase sequence determination unit. An input current command generating means for generating,
The phase order determination means includes means for converting a three-phase input voltage into a two-phase quantity in an orthogonal two-axis coordinate system, and means for obtaining an angle of an input voltage vector composed of the two-phase quantity,
The input current command generation means generates an input current command for each phase using the angle of the input voltage vector.

請求項2に記載した発明は、
単方向の電流を制御可能な少なくとも二つの単方向半導体スイッチング素子からなる双方向性の交流スイッチを複数設けて交流スイッチ群を構成し、三相交流電源の各相に接続される前記交流スイッチ群により三相交流電圧を任意の大きさ及び周波数を有する三相交流電圧に直接変換する交流−交流直接変換形電力変換器の制御装置であって、
前記電力変換器の入力電圧の相順を判定する相順判定手段と、この相順判定手段により判定された相順と同一の相順になるように前記電力変換器の各相の入力電流指令を生成する入力電流指令生成手段と、を有する制御装置において、
前記相順判定手段は、三相入力電圧を直交2軸座標系の二相量に変換する手段と、この二相量の位相差から相順を判定する手段とを備え、
前記入力電流指令生成手段は、ある相の入力電圧の極性から入力電圧の位相を検出する手段と、この位相及び前記相順判定手段により判定された相順に基づき極性を付した角度を生成してこの角度を用いて各相の入力電流指令を生成する手段と、を備えたものである。
The invention described in claim 2
The AC switch group configured to form an AC switch group by providing a plurality of bidirectional AC switches composed of at least two unidirectional semiconductor switching elements capable of controlling a unidirectional current, and connected to each phase of a three-phase AC power source A control device for an AC-AC direct conversion power converter that directly converts a three-phase AC voltage into a three-phase AC voltage having an arbitrary magnitude and frequency,
A phase sequence determination unit that determines a phase sequence of the input voltage of the power converter, and an input current command for each phase of the power converter so that the phase sequence is the same as the phase sequence determined by the phase sequence determination unit. An input current command generating means for generating,
The phase order determining means comprises means for converting a three-phase input voltage into a two-phase quantity in an orthogonal two-axis coordinate system, and means for judging the phase order from the phase difference between the two-phase quantities,
The input current command generating means generates an angle with polarity based on the phase order determined by the phase and the phase order determined by the phase and the phase order determining means, and means for detecting the phase of the input voltage from the polarity of the input voltage of a certain phase. And means for generating an input current command for each phase using this angle.

請求項3に記載した発明は、
単方向の電流を制御可能な少なくとも二つの単方向半導体スイッチング素子からなる双方向性の交流スイッチを複数設けて交流スイッチ群を構成し、三相交流電源の各相に接続される前記交流スイッチ群により三相交流電圧を任意の大きさ及び周波数を有する三相交流電圧に直接変換する交流−交流直接変換形電力変換器の制御装置であって、
前記電力変換器の入力電圧の相順を判定する相順判定手段と、この相順判定手段により判定された相順と同一の相順になるように前記電力変換器の各相の入力電流指令を生成する入力電流指令生成手段と、を有する制御装置において、
前記相順判定手段は、三相入力電圧の大小関係に応じた位相差から相順を判定する手段を備え、
前記入力電流指令生成手段は、ある相の入力電圧の極性から入力電圧の位相を検出する手段と、この位相及び前記相順判定手段により判定された相順に基づき極性を付した角度を生成してこの角度を用いて各相の入力電流指令を生成する手段と、を備えたものである。
The invention described in claim 3
The AC switch group configured to form an AC switch group by providing a plurality of bidirectional AC switches composed of at least two unidirectional semiconductor switching elements capable of controlling a unidirectional current, and connected to each phase of a three-phase AC power source A control device for an AC-AC direct conversion power converter that directly converts a three-phase AC voltage into a three-phase AC voltage having an arbitrary magnitude and frequency,
A phase sequence determination unit that determines a phase sequence of the input voltage of the power converter, and an input current command for each phase of the power converter so that the phase sequence is the same as the phase sequence determined by the phase sequence determination unit. An input current command generating means for generating,
The phase order determining means includes means for determining a phase order from a phase difference corresponding to a magnitude relationship of three-phase input voltages,
The input current command generating means generates an angle with polarity based on the phase order determined by the phase and the phase order determined by the phase and the phase order determining means, and means for detecting the phase of the input voltage from the polarity of the input voltage of a certain phase. And means for generating an input current command for each phase using this angle.

本発明によれば、マトリクスコンバータをはじめとする直接変換器において、入力電圧の相順を間違えた場合にも適切な入力電流指令を生成して変換器を運転することができる。これにより、電力変換器を設置する際に、相順に関して特段の注意を払うことなく、従来のインバータ等と同様に接続することが可能となる。また、相順を判定する際に複雑な演算や回路を必要としないことから、安価な制御装置を提供することができる。   According to the present invention, in a direct converter such as a matrix converter, an appropriate input current command can be generated and the converter can be operated even when the phase sequence of the input voltage is wrong. Thereby, when installing a power converter, it becomes possible to connect similarly to the conventional inverter etc., without paying special attention about a phase order. In addition, since a complicated calculation or circuit is not required when determining the phase order, an inexpensive control device can be provided.

以下、図に沿って本発明の実施形態を説明する。
まず、図1は請求項1に相当する本発明の第1実施形態の構成図であり、図10と同一の構成要素には同一の参照符号を付して詳述を省略し、以下では図10と異なる部分を中心に説明する。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
First, FIG. 1 is a block diagram of a first embodiment of the present invention corresponding to claim 1. The same components as those of FIG. 10 are denoted by the same reference numerals, and detailed description thereof will be omitted. The description will focus on the parts different from 10.

図1では、図10における電圧極性判別手段4及びPLL回路5の代わりに、相順判定手段としての三相/二相変換手段10及び角度演算手段11を用いており、変圧器12の二次側と三相発振器6との間に、三相/二相変換手段10、角度演算手段11が順次接続されている。なお、角度演算手段11及び三相発振器6は入力電流指令生成手段を構成している。
以下に、上記の構成によって入力電圧の相順に応じた入力電流指令を生成できる理由について述べる。
In FIG. 1, a three-phase / two-phase conversion unit 10 and an angle calculation unit 11 as phase order determination units are used instead of the voltage polarity determination unit 4 and the PLL circuit 5 in FIG. Between the side and the three-phase oscillator 6, a three-phase / two-phase conversion means 10 and an angle calculation means 11 are sequentially connected. The angle calculation means 11 and the three-phase oscillator 6 constitute input current command generation means.
The reason why the input current command according to the phase order of the input voltage can be generated by the above configuration will be described below.

三相/二相変換手段10は、変圧器12を介した各相入力電圧をv,v,vとすると、数式1の演算により、三相入力電圧を直交2軸座標系の二相量vα,vβに変換する。 The three-phase / two-phase conversion means 10 converts the three-phase input voltage into two of the orthogonal two-axis coordinate system by the calculation of Equation 1, where the phase input voltages via the transformer 12 are v R , v S , and v T. The phase quantities v α and v β are converted.

Figure 2005073334
Figure 2005073334

入力電圧が三相対称正弦波の場合、三相/二相変換手段10の出力電圧vα,vβは、90°位相の異なる正弦波となる。vαを横軸、vβを縦軸として入力電圧をベクトルで表した場合、その角度θは数式2で求められる。 When the input voltage is a three-phase symmetric sine wave, the output voltages v α and v β of the three-phase / two-phase conversion means 10 are sine waves having different phases by 90 °. In the case where the input voltage is expressed as a vector with v α as the horizontal axis and v β as the vertical axis, the angle θ S is obtained by Equation 2.

Figure 2005073334
Figure 2005073334

図2は電源電圧の相順がR→S→Tの場合、図3は相順がR→T→Sの場合の入力電圧ベクトルの振る舞いをそれぞれ示したものである。
図2に示すように相順がR→S→Tの場合、vαに対してvβは遅れ90°の位相となり、入力電圧ベクトルは反時計方向に回転する。これに対し、図3に示すように相順がR→T→Sの場合、vαに対してvβは進み90°の位相となり、入力電圧ベクトルは時計方向に回転する。従って、入力電圧ベクトルの角度θに基づいて入力電流指令を生成すれば、入力電圧の相順と同一の相順の入力電流指令を得ることができる。
具体的には、図1において、3相/2相変換手段10の出力電圧vα,vβから角度演算手段11が数式2により入力電圧ベクトルの角度θを求め、三相発振器6がこの角度θを用いて入力電流指令を生成する。
2 shows the behavior of the input voltage vector when the phase order of the power supply voltage is R → S → T, and FIG. 3 shows the behavior of the input voltage vector when the phase order is R → T → S.
If phase sequence as shown in Figure 2 is R → S → T, v is v beta against α becomes delayed 90 ° in phase, the input voltage vector rotates counterclockwise. On the other hand, as shown in FIG. 3, when the phase order is R → T → S, v β advances to 90 ° with respect to v α , and the input voltage vector rotates clockwise. Therefore, if the input current command is generated based on the angle θ S of the input voltage vector, an input current command having the same phase sequence as the input voltage phase sequence can be obtained.
Specifically, in FIG. 1, the angle calculation means 11 obtains the angle θ S of the input voltage vector from the output voltages v α and v β of the three-phase / two-phase conversion means 10 according to Equation 2, and the three-phase oscillator 6 generating an input current command using the angle theta S.

次に、図4は請求項2に相当する本発明の第2実施形態の構成図である。
前述した第1実施形態では、数式2により入力電圧ベクトルの角度θを演算している。しかし、数式2におけるtan−1の演算は、角度演算手段11を構成するCPUにとって高負荷であり、高価なCPUが必要となる場合がある。そこで、第2実施形態では、tan−1の演算を行わずに、入力電圧の相順を判定するようにした。
Next, FIG. 4 is a block diagram of a second embodiment of the present invention corresponding to claim 2.
In the first embodiment described above, the angle θ S of the input voltage vector is calculated by Equation 2. However, the calculation of tan −1 in Equation 2 is a heavy load on the CPU that constitutes the angle calculation means 11, and an expensive CPU may be required. Therefore, in the second embodiment, the phase order of the input voltage is determined without performing the calculation of tan −1 .

すなわち、図4の第2実施形態では、図10の従来技術の構成に、変圧器12の二次側に順次接続される三相/二相変換手段10と正負判定手段21とを付加し、この正負判定手段21の判定出力によりPLL回路5の出力(角度データとしての入力電圧位相)を補正するべく乗算手段13を設けている。ここで、三相/二相変換手段10及び正負判定手段21は相順判定手段を構成している。
つまり、この第2実施形態では、三相入力電圧を直交2軸座標系に変換した二相量vα,vβの極性(位相差)から相順を判定するものである。
That is, in the second embodiment of FIG. 4, the three-phase / two-phase conversion means 10 and the positive / negative determination means 21 sequentially connected to the secondary side of the transformer 12 are added to the configuration of the prior art of FIG. Multiplication means 13 is provided to correct the output of the PLL circuit 5 (input voltage phase as angle data) based on the determination output of the positive / negative determination means 21. Here, the three-phase / two-phase conversion means 10 and the positive / negative determination means 21 constitute a phase order determination means.
That is, in the second embodiment, the phase order is determined from the polarities (phase differences) of the two-phase quantities v α and v β obtained by converting the three-phase input voltage into the orthogonal two-axis coordinate system.

図5は電源電圧の相順がR→S→Tの場合、図6は相順がR→T→Sの場合における本実施形態の動作をそれぞれ示したものである。
図4の正負判定手段21は、三相/二相変換手段10から出力される二相電圧vα,vβの正負(極性)を判定して90°位相のずれたパルスを生成する。そして、vαの立ち上がり時にvβが正のときは、図6に示すように“1”を継続的に出力し、vαの立ち上がり時にvβが負のときは、図5に示すように“−1”を継続的に出力する。このような処理は、ソフトウエアにて簡単に行うことができる。
すなわち、正負判定手段21の出力が“−1”か“1”かによって、相順がR→S→TであるかR→T→Sであるかを判定する。
FIG. 5 shows the operation of this embodiment when the phase sequence of the power supply voltage is R → S → T, and FIG. 6 shows the operation of this embodiment when the phase sequence is R → T → S.
The positive / negative determining means 21 in FIG. 4 determines the positive / negative (polarity) of the two-phase voltages v α and v β output from the three-phase / two-phase converting means 10 and generates a pulse that is 90 ° out of phase. When v β is positive at the rise of v α , “1” is continuously output as shown in FIG. 6, and when v β is negative at the rise of v α , as shown in FIG. "-1" is output continuously. Such processing can be easily performed by software.
That is, it is determined whether the phase order is R → S → T or R → T → S depending on whether the output of the positive / negative determining means 21 is “−1” or “1”.

この正負判定手段21の出力を、PLL回路5により検出した角度と乗算手段13にて乗算することにより、入力電圧ベクトルの角度θの範囲を0°≦θ<360°とすれば、相順がR→S→Tの場合は角度θが増加(入力電圧ベクトルが反時計方向に回転)し、相順がR→T→Sの場合は角度θが減少(入力電圧ベクトルが時計方向に回転)する。
すなわち、従来の方法でPLL回路5により検出した角度θに、相順に応じた極性を付加することができ、この角度θを用いて三相発振器6により入力電流指令を生成することができる。
なお、図4において、電圧極性判別手段4、PLL回路5、乗算手段13、三相発振器6等は入力電流指令生成手段を構成する。
If the range of the angle θ S of the input voltage vector is set to 0 ° ≦ θ S <360 ° by multiplying the output of the positive / negative determination unit 21 by the angle detected by the PLL circuit 5 by the multiplication unit 13, the phase When the order is R → S → T, the angle θ S increases (the input voltage vector rotates counterclockwise), and when the phase order is R → T → S, the angle θ S decreases (the input voltage vector is clockwise). Rotate in the direction).
That is, the polarity according to the phase order can be added to the angle θ S detected by the PLL circuit 5 by the conventional method, and the input current command can be generated by the three-phase oscillator 6 using this angle θ S. .
In FIG. 4, the voltage polarity discriminating means 4, the PLL circuit 5, the multiplying means 13, the three-phase oscillator 6 and the like constitute input current command generating means.

本実施形態では二相電圧のうち一方のvαを基準として他方のvβの正負により相順を判定しているが、逆にvβを基準としてvαの正負により相順を判定してもよい。また、vαとvβとは位相が90°ずれているため、何れかの立ち上がり時(ゼロクロス点)でなくても、例えばvαまたはvβのゼロクロス点の前後90°以内でvβまたはvαの正負を調べてもよい。 In the present exemplary embodiment, to determine the phase sequence by sign of the other v beta relative to one v alpha of the two-phase voltages, to determine the phase sequence by positive and negative v alpha relative to the v beta reversed Also good. Further, since the phases of v α and v β are shifted by 90 °, v β or v is within 90 ° before and after the zero cross point of v α or v β even if it is not at any rising edge (zero cross point). v may examine the positive and negative α.

次いで、図7は請求項3に相当する本発明の第3実施形態の構成図である。
この実施形態では、入力電圧大小検出手段9の出力を利用して相順を判定することとした。第1,第2実施形態のように座標変換を用いずに入力電圧の大小検出結果を利用し、ハードウエアによって入力電圧の相順を判定することにより、CPUの演算量を増加させずに入力電圧の相順に応じた入力電流指令を生成することが可能である。
すなわち、図7において、入力電圧大小検出手段9の出力側に相順判定手段30が設けられ、その出力を乗算手段13にてPLL回路5の出力に乗じることにより、入力電圧ベクトルの角度θに極性を付加するものである。
Next, FIG. 7 is a block diagram of a third embodiment of the present invention corresponding to the third aspect.
In this embodiment, the phase order is determined using the output of the input voltage magnitude detection means 9. As in the first and second embodiments, the input voltage magnitude detection result is used without using coordinate transformation, and the phase order of the input voltage is determined by hardware, so that the input of the CPU is not increased. It is possible to generate an input current command corresponding to the phase order of the voltages.
That is, in FIG. 7, phase sequence determination unit 30 is provided on the output side of the input voltage magnitude detection means 9, by multiplying the output by multiplying unit 13 to the output of the PLL circuit 5, the angle of the input voltage vector theta S Is to add polarity.

以下、相順判定手段30の動作について説明する。図10に関して説明したように、入力電圧大小検出手段9は最大入力電圧及び最小入力電圧を検出するもので、X(XはR,S,Tの何れか)相が最大のときにX=1(他相についてはX=0)、X相が最小のときにX=1(他相についてはX=0)となるX及びX(R,R,S,S,T,T)の“1”,“0”の組合せを出力している。 Hereinafter, the operation of the phase order determination unit 30 will be described. As described with reference to FIG. 10, the input voltage magnitude detecting means 9 detects the maximum input voltage and the minimum input voltage, and when the X (X is any of R, S, or T) phase is maximum, X p = 1 (X p = 0 for the other phase), X p and X n (R p , R n , S p , X n = 1 (X n = 0 for the other phase) when the X phase is minimum) A combination of “1” and “0” of S n , T p , T n ) is output.

図9は、相順判定手段30の構成を示すブロック図である。図9において、41R,41S,41TはR,S,T各相のX,Xがセット(S)入力、リセット(R)入力に加えられるRSフリップフロップであり、R相及びT相のフリップフロップ41R,41TのQ出力Rpn,Tpnはそのまま、S相のフリップフロップ41SのQ出力Spnは反転してアンドゲート43に入力されている。
アンドゲート43の出力はラッチ42のデータ(D)入力に加えられ、また、R相フリップフロップ41Rのセット入力(すなわちR)はラッチのゲート(G)入力に加えられている。なお、ラッチ42のQ出力を便宜上、Yとする。
FIG. 9 is a block diagram illustrating a configuration of the phase order determination unit 30. In Figure 9, 41R, 41S, 41T is R, S, T phases of X p, X n is set (S) input, a RS flip-flop that is applied to the reset (R) input, the R-phase and T-phase The Q outputs R pn and T pn of the flip-flops 41 R and 41 T are unchanged and the Q output S pn of the S-phase flip-flop 41 S is inverted and input to the AND gate 43.
The output of the AND gate 43 is applied to the data (D) input of the latch 42, and the set input (that is, R p ) of the R-phase flip-flop 41R is applied to the gate (G) input of the latch. The Q output of the latch 42 is Y for convenience.

上述した構成において、フリップフロップ41R,41S,41Tは、Xの立ち上がりでXpn=1をセットし、Xの立ち上がりでXpn=0にリセットする。この様子が、図8に示されている。
入力電圧の相順を判定する方法は以下の通りである。いま、R相電圧が最大になる時のタイミングを利用する場合には、Rpnの立ち上がり時に、SpnまたはTpn、もしくはその両方の信号を調べる。例えば、図9に示す如くRpn・Spnの反転信号・Tpnの信号(・はアンド条件を示す)をアンドゲート43により求め、このアンドゲート43の出力をR=1のときにラッチ42によりラッチすればよい。
In the above configuration, the flip-flop 41R, 41S, 41T sets the X pn = 1 on the rising edge of X p, reset to X pn = 0 at the rising edge of X n. This is shown in FIG.
The method for determining the phase sequence of the input voltage is as follows. If the timing at which the R-phase voltage is maximized is used, the signal of S pn and / or T pn is examined at the rise of R pn . For example, as shown in FIG. 9, an inverted signal of R pn · S pn · T pn signal (· indicates an AND condition) is obtained by AND gate 43, and the output of AND gate 43 is latched when R p = 1. What is necessary is just to latch by 42.

図8から明らかなように、入力電圧の相順がR→S→Tの場合にはラッチ42の出力Y=1となり、相順がR→T→Sの場合にはラッチ42の出力Y=0となる。
従って、Y=1のときはこれをそのまま相順判定手段30の出力として図7のPLL回路5の出力に乗算し、Y=0のときにのみ、相順判定手段30の出力を−1としてPLL回路5の出力に乗算する。これにより、第2実施形態と同様に、入力電圧ベクトルの角度θの範囲を0°≦θ<360°とすれば、相順がR→S→Tの場合は角度θが増加し、相順がR→T→Sの場合は角度θが減少する。
よってPLL回路5により検出した角度θに、相順に応じた極性を付加することができ、この角度θを用いて三相発振器6により入力電流指令を生成することができる。
As is clear from FIG. 8, when the phase sequence of the input voltage is R → S → T, the output Y of the latch 42 is 1, and when the phase sequence is R → T → S, the output Y of the latch 42 is 0.
Therefore, when Y = 1, this is directly multiplied by the output of the PLL circuit 5 of FIG. 7 as the output of the phase sequence determination means 30, and only when Y = 0, the output of the phase sequence determination means 30 is set to -1. The output of the PLL circuit 5 is multiplied. Thus, as in the second embodiment, if the range of the angle θ S of the input voltage vector is 0 ° ≦ θ S <360 °, the angle θ S increases when the phase sequence is R → S → T. When the phase order is R → T → S, the angle θ S decreases.
Therefore, the polarity according to the phase order can be added to the angle θ S detected by the PLL circuit 5, and the input current command can be generated by the three-phase oscillator 6 using the angle θ S.

なお、相順の判定に際しては上述したようにR相電圧が最大電圧になるときに限定する必要はなく、R相が最小電圧の場合やS相、T相が最大または最小電圧になっているときでも、同様な構成の回路により相順を判定することが可能である。   It is not necessary to limit the phase order when the R-phase voltage reaches the maximum voltage as described above. When the R-phase is the minimum voltage, the S-phase and T-phase are the maximum or minimum voltage. Even at times, it is possible to determine the phase order by a circuit having a similar configuration.

本発明の第1実施形態を示す構成図である。It is a block diagram which shows 1st Embodiment of this invention. 電源電圧の相順がR→S→Tの場合の入力電圧ベクトルの振る舞いを示す図である。It is a figure which shows the behavior of an input voltage vector when the phase sequence of a power supply voltage is R-> S-> T. 電源電圧の相順がR→T→Sの場合の入力電圧ベクトルの振る舞いを示す図である。It is a figure which shows the behavior of an input voltage vector when the phase sequence of a power supply voltage is R-> T-> S. 本発明の第2実施形態を示す構成図である。It is a block diagram which shows 2nd Embodiment of this invention. 電源電圧の相順がR→S→Tの場合の第2実施形態の動作説明図である。It is operation | movement explanatory drawing of 2nd Embodiment when the phase sequence of a power supply voltage is R-> S-> T. 電源電圧の相順がR→T→Sの場合の第2実施形態の動作説明図である。It is operation | movement explanatory drawing of 2nd Embodiment when the phase order of a power supply voltage is R-> T-> S. 本発明の第3実施形態を示す構成図である。It is a block diagram which shows 3rd Embodiment of this invention. 図7の動作を示す波形図である。It is a wave form diagram which shows the operation | movement of FIG. 図7における相順判定手段の構成を示すブロック図である。It is a block diagram which shows the structure of the phase order determination means in FIG. 従来技術を示す構成図である。It is a block diagram which shows a prior art.

符号の説明Explanation of symbols

1:三相交流電源
2:マトリクスコンバータ
3:負荷
6:三相発振器
7:出力電圧指令発生手段
8:パルス発生手段
9:入力電圧大小検出手段
10:三相/二相変換手段
11:角度演算手段
12:変圧器
13:乗算手段
21:正負判定手段
30:相順判定手段
41R,41S,41T:RSフリップフロップ
42:ラッチ
43:アンドゲート
1: three-phase AC power supply 2: matrix converter 3: load 6: three-phase oscillator 7: output voltage command generating means 8: pulse generating means 9: input voltage magnitude detecting means 10: three-phase / two-phase converting means 11: angle calculation Means 12: Transformer 13: Multiplication means 21: Positive / negative judgment means 30: Phase order judgment means 41R, 41S, 41T: RS flip-flop 42: Latch 43: AND gate

Claims (3)

単方向の電流を制御可能な少なくとも二つの単方向半導体スイッチング素子からなる双方向性の交流スイッチを複数設けて交流スイッチ群を構成し、三相交流電源の各相に接続される前記交流スイッチ群により三相交流電圧を任意の大きさ及び周波数を有する三相交流電圧に直接変換する交流−交流直接変換形電力変換器の制御装置であって、
前記電力変換器の入力電圧の相順を判定する相順判定手段と、
この相順判定手段により判定された相順と同一の相順になるように前記電力変換器の各相の入力電流指令を生成する入力電流指令生成手段と、
を有する交流−交流直接変換形電力変換器の制御装置において、
前記相順判定手段は、
三相入力電圧を直交2軸座標系の二相量に変換する手段と、この二相量からなる入力電圧ベクトルの角度を求める手段とを備え、
前記入力電流指令生成手段は、
前記入力電圧ベクトルの角度を用いて各相の入力電流指令を生成することを特徴とする交流−交流直接変換形電力変換器の制御装置。
The AC switch group configured to form an AC switch group by providing a plurality of bidirectional AC switches composed of at least two unidirectional semiconductor switching elements capable of controlling a unidirectional current, and connected to each phase of a three-phase AC power source A control device for an AC-AC direct conversion power converter that directly converts a three-phase AC voltage into a three-phase AC voltage having an arbitrary magnitude and frequency,
Phase sequence determination means for determining the phase sequence of the input voltage of the power converter;
An input current command generating means for generating an input current command for each phase of the power converter so as to be the same phase order as the phase order determined by the phase order determining means;
In a control device for an AC-AC direct conversion power converter having
The phase order determination means includes
Means for converting a three-phase input voltage into a two-phase quantity in an orthogonal two-axis coordinate system; and means for obtaining an angle of an input voltage vector composed of the two-phase quantity,
The input current command generation means includes
A control apparatus for an AC-AC direct conversion power converter, wherein an input current command for each phase is generated using an angle of the input voltage vector.
単方向の電流を制御可能な少なくとも二つの単方向半導体スイッチング素子からなる双方向性の交流スイッチを複数設けて交流スイッチ群を構成し、三相交流電源の各相に接続される前記交流スイッチ群により三相交流電圧を任意の大きさ及び周波数を有する三相交流電圧に直接変換する交流−交流直接変換形電力変換器の制御装置であって、
前記電力変換器の入力電圧の相順を判定する相順判定手段と、
この相順判定手段により判定された相順と同一の相順になるように前記電力変換器の各相の入力電流指令を生成する入力電流指令生成手段と、
を有する交流−交流直接変換形電力変換器の制御装置において、
前記相順判定手段は、
三相入力電圧を直交2軸座標系の二相量に変換する手段と、この二相量の位相差から相順を判定する手段とを備え、
前記入力電流指令生成手段は、
ある相の入力電圧の極性から入力電圧の位相を検出する手段と、この位相及び前記相順判定手段により判定された相順に基づき極性を付した角度を生成してこの角度を用いて各相の入力電流指令を生成する手段と、を備えたことを特徴とする交流−交流直接変換形電力変換器の制御装置。
The AC switch group configured to form an AC switch group by providing a plurality of bidirectional AC switches composed of at least two unidirectional semiconductor switching elements capable of controlling a unidirectional current, and connected to each phase of a three-phase AC power source A control device for an AC-AC direct conversion power converter that directly converts a three-phase AC voltage into a three-phase AC voltage having an arbitrary magnitude and frequency,
Phase sequence determination means for determining the phase sequence of the input voltage of the power converter;
An input current command generating means for generating an input current command for each phase of the power converter so as to be the same phase order as the phase order determined by the phase order determining means;
In a control device for an AC-AC direct conversion power converter having
The phase order determination means includes
Means for converting a three-phase input voltage into a two-phase quantity in an orthogonal two-axis coordinate system; and means for determining a phase order from the phase difference between the two-phase quantities,
The input current command generation means includes
A means for detecting the phase of the input voltage from the polarity of the input voltage of a certain phase, and an angle with polarity based on this phase and the phase order determined by the phase order determining means, and using this angle for each phase A control device for an AC-AC direct conversion type power converter, comprising: means for generating an input current command.
単方向の電流を制御可能な少なくとも二つの単方向半導体スイッチング素子からなる双方向性の交流スイッチを複数設けて交流スイッチ群を構成し、三相交流電源の各相に接続される前記交流スイッチ群により三相交流電圧を任意の大きさ及び周波数を有する三相交流電圧に直接変換する交流−交流直接変換形電力変換器の制御装置であって、
前記電力変換器の入力電圧の相順を判定する相順判定手段と、
この相順判定手段により判定された相順と同一の相順になるように前記電力変換器の各相の入力電流指令を生成する入力電流指令生成手段と、
を有する交流−交流直接変換形電力変換器の制御装置において、
前記相順判定手段は、
三相入力電圧の大小関係に応じた位相差から相順を判定する手段を備え、
前記入力電流指令生成手段は、
ある相の入力電圧の極性から入力電圧の位相を検出する手段と、この位相及び前記相順判定手段により判定された相順に基づき極性を付した角度を生成してこの角度を用いて各相の入力電流指令を生成する手段と、を備えたことを特徴とする交流−交流直接変換形電力変換器の制御装置。
The AC switch group configured to form an AC switch group by providing a plurality of bidirectional AC switches composed of at least two unidirectional semiconductor switching elements capable of controlling a unidirectional current, and connected to each phase of a three-phase AC power source A control device for an AC-AC direct conversion power converter that directly converts a three-phase AC voltage into a three-phase AC voltage having an arbitrary magnitude and frequency,
Phase sequence determination means for determining the phase sequence of the input voltage of the power converter;
An input current command generating means for generating an input current command for each phase of the power converter so as to be the same phase order as the phase order determined by the phase order determining means;
In a control device for an AC-AC direct conversion power converter having
The phase order determination means includes
Means for determining the phase order from the phase difference according to the magnitude relationship of the three-phase input voltage,
The input current command generation means includes
A means for detecting the phase of the input voltage from the polarity of the input voltage of a certain phase, and an angle with polarity based on this phase and the phase order determined by the phase order determining means, and using this angle for each phase A control device for an AC-AC direct conversion type power converter, comprising: means for generating an input current command.
JP2003297534A 2003-08-21 2003-08-21 Control device for AC-AC direct conversion power converter Expired - Lifetime JP4273402B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003297534A JP4273402B2 (en) 2003-08-21 2003-08-21 Control device for AC-AC direct conversion power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003297534A JP4273402B2 (en) 2003-08-21 2003-08-21 Control device for AC-AC direct conversion power converter

Publications (2)

Publication Number Publication Date
JP2005073334A true JP2005073334A (en) 2005-03-17
JP4273402B2 JP4273402B2 (en) 2009-06-03

Family

ID=34403360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003297534A Expired - Lifetime JP4273402B2 (en) 2003-08-21 2003-08-21 Control device for AC-AC direct conversion power converter

Country Status (1)

Country Link
JP (1) JP4273402B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006352960A (en) * 2005-06-14 2006-12-28 Fuji Electric Holdings Co Ltd Method of detecting abnormality of ac-ac converter
JP2007006589A (en) * 2005-06-23 2007-01-11 Fuji Electric Holdings Co Ltd Control method of ac direct converter
JP2007020275A (en) * 2005-07-06 2007-01-25 Fuji Electric Holdings Co Ltd Ac-ac power converter
JP2007025740A (en) * 2005-07-12 2007-02-01 Fuji Electric Holdings Co Ltd Power supply abnormality detector
JP2017522850A (en) * 2014-07-16 2017-08-10 フェルメス マイクロディスペンシング ゲゼルシャフト ミット ベシュレンクテル ハフツンク Phase angle control of piezoelectric actuator

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006352960A (en) * 2005-06-14 2006-12-28 Fuji Electric Holdings Co Ltd Method of detecting abnormality of ac-ac converter
JP2007006589A (en) * 2005-06-23 2007-01-11 Fuji Electric Holdings Co Ltd Control method of ac direct converter
JP2007020275A (en) * 2005-07-06 2007-01-25 Fuji Electric Holdings Co Ltd Ac-ac power converter
JP2007025740A (en) * 2005-07-12 2007-02-01 Fuji Electric Holdings Co Ltd Power supply abnormality detector
JP2017522850A (en) * 2014-07-16 2017-08-10 フェルメス マイクロディスペンシング ゲゼルシャフト ミット ベシュレンクテル ハフツンク Phase angle control of piezoelectric actuator

Also Published As

Publication number Publication date
JP4273402B2 (en) 2009-06-03

Similar Documents

Publication Publication Date Title
JP2006238546A (en) Inverter temperature detector
JP2008172925A (en) Backup operation device of matrix converter
WO2014024460A1 (en) Motor control apparatus
JP2006296108A (en) Phase interruption detector and ac-ac direct converter
JP4273402B2 (en) Control device for AC-AC direct conversion power converter
JP2017060276A (en) Three-phase inverter device
JP2006246649A (en) Inverter device
JP4277186B2 (en) Control device for power converter
JP2007082321A (en) Motor drive unit
JP2011053108A (en) Reverse phase/phase interruption detecting device
JP2005168198A (en) Control unit of ac-ac direct conversion device
JP6851291B2 (en) Power converter and its control method
JP4761118B2 (en) Power failure detection device
JP2005269769A (en) Three-phase inverter
JP4423949B2 (en) Control device for AC / AC direct conversion device
JP2009050091A (en) Phase detector
JP2007049801A (en) Inverter device for motor drive
JP2007225427A (en) Power interruption detecting circuit and uninterruptible power supply unit
JP2004364477A (en) Ac-ac direct conversion type power conversion apparatus
JP2005160214A (en) Power conversion apparatus
JP4600726B2 (en) Three-phase inverter device
JP2018066678A (en) Device for detecting non-conduction in semiconductor switching element
JP5389686B2 (en) Power supply
JP4553079B2 (en) AC / AC direct power converter
JP4265395B2 (en) Inverter device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051017

A131 Notification of reasons for refusal

Effective date: 20081008

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090205

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20090218

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20120313

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120313

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130313

Year of fee payment: 4