JP2005072569A - Organic fet - Google Patents

Organic fet Download PDF

Info

Publication number
JP2005072569A
JP2005072569A JP2004224313A JP2004224313A JP2005072569A JP 2005072569 A JP2005072569 A JP 2005072569A JP 2004224313 A JP2004224313 A JP 2004224313A JP 2004224313 A JP2004224313 A JP 2004224313A JP 2005072569 A JP2005072569 A JP 2005072569A
Authority
JP
Japan
Prior art keywords
dielectric constant
insulating film
film
transistor
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004224313A
Other languages
Japanese (ja)
Inventor
Shinji Aramaki
晋司 荒牧
泰之 ▲鶴▼谷
Yasuyuki Tsuruya
Yoshimasa Sakai
良正 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2004224313A priority Critical patent/JP2005072569A/en
Publication of JP2005072569A publication Critical patent/JP2005072569A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thin Film Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic FET having an insulating film combinedly having a high capacity, high insulation resistance, and the planarity of an interface with an organic semiconductor. <P>SOLUTION: In a transistor element using an organic semiconductor, a gate insulated film is a laminate, including at least a high-dielectric-constant insulating film which includes a polymer and a low-dielectric-constant insulating film including a polymer. Insulating layers each having a difference in dielectric constants of the low-dielectric-constant insulating film and the high-dielectric-constant insulating film of larger than one are laminated, so as to manufacture an organic FET. By laminating two or more kinds of thin films each having a difference in the dielectric constant of one or larger, the organic FET with performance balance maintained can be obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、特定の層構成を有するゲート絶縁膜を用いた有機電界効果トランジスタに関する。   The present invention relates to an organic field effect transistor using a gate insulating film having a specific layer structure.

有機電界効果トランジスタに用いられるゲート絶縁膜材料には、高い静電容量を実現するための高い誘電率、薄膜にしたときの絶縁破壊強度、有機半導体との良好な界面を形成するための有機半導体との親和性、半導体との界面を形成する膜表面の平坦さ等の特性が要求される。また、有機電界効果トランジスタは、フレキシブルな素子に応用される可能性もあり、こういった素子には絶縁膜のフレキシビリティも要求されると予想される。   Gate dielectric materials used in organic field effect transistors include high dielectric constants to achieve high capacitance, dielectric breakdown strength when made into thin films, and organic semiconductors to form good interfaces with organic semiconductors And characteristics such as the flatness of the film surface forming the interface with the semiconductor are required. In addition, the organic field effect transistor may be applied to a flexible element, and it is expected that the flexibility of an insulating film is required for such an element.

一般に絶縁膜は、静電容量が大きくなるほどゲート電圧を低電圧で駆動できることになるので、トランジスタとして有利になる。静電容量を大きくするためには、誘電率の大きな絶縁材料を用いるか、絶縁体層の厚さを薄くする方法がある。しかし、絶縁体膜を薄くするのは、ピンホールができたり大きな電場が印加されて絶縁破壊が起こりやすくなる為、限界がある。一方、高誘電率の膜は、一般に内部に電荷が蓄積されたり、永久分極が起こったりする為に安定な動作ができない。   In general, an insulating film is more advantageous as a transistor because the gate voltage can be driven at a lower voltage as the capacitance increases. In order to increase the capacitance, there are methods of using an insulating material having a large dielectric constant or reducing the thickness of the insulator layer. However, there is a limit to thinning the insulator film because pinholes can be formed or a large electric field is applied to easily cause dielectric breakdown. On the other hand, a high dielectric constant film generally cannot be stably operated because charges are accumulated inside or permanent polarization occurs.

これまで有機電界効果トランジスタに用いられるゲート絶縁膜材料については、種々の検討が行われて来た。もっとも一般的に用いられているゲート絶縁膜は、シリコンを熱酸化した2酸化珪素の膜である。無機材料ではその他、SiO2のリーク電流を改善するた
めに、SiNxと、SiO2を積層した絶縁膜や、SiNxに、オルガノシルセスキオキサ
ンを積層した絶縁膜が報告されている(非特許文献1及び非特許文献2参照)。
Until now, various studies have been made on gate insulating film materials used in organic field effect transistors. The most commonly used gate insulating film is a silicon dioxide film obtained by thermally oxidizing silicon. The inorganic materials other, in order to improve the leakage current of SiO 2, and SiN x, insulating film or formed by laminating SiO 2, the SiN x, insulating film formed by laminating organosilsesquioxane has been reported (Non (See Patent Document 1 and Non-Patent Document 2).

また、有機材料の絶縁膜としては、高誘電率のポリマーであるシアノエチルプルランを絶縁膜として使用すると、トランジスタ特性である移動度が向上することが報告されているが、このポリマーは絶縁破壊強度が低く、また、特性のヒステリシスがあるなど電気特性の安定性が十分でないという欠点があり、このままではゲート絶縁膜の材料としては適当とはいえない(非特許文献3参照)。加えて、高誘電率の膜は、ポリマーの分極が、有機半導体の界面を乱してキャリアの局在化を引き起こし、移動度を下げることも報告されている(非特許文献4参照)。   In addition, it has been reported that the use of cyanoethyl pullulan, which is a high dielectric constant polymer, as an insulating film for organic materials improves the mobility, which is a transistor characteristic, but this polymer has a dielectric breakdown strength. It is low and has the disadvantage that the stability of electrical characteristics is not sufficient, such as characteristic hysteresis, and it cannot be said that it is suitable as a material for the gate insulating film as it is (see Non-Patent Document 3). In addition, it has been reported that in a high dielectric constant film, the polarization of the polymer disturbs the interface of the organic semiconductor to cause the localization of carriers and lower the mobility (see Non-Patent Document 4).

さらに、ポリマーに金属酸化物を含有させた絶縁膜として、エポキシ樹脂にチタン酸バリウムの粒子を分散させて、高誘電率の絶縁膜を作製した例が報告されている(非特許文献5参照)。この絶縁膜の誘電率は40と高いが、チタン酸バリウムが強誘電性の材料であること、絶縁膜の表面が通常のポリマー薄膜より粗くなっていることなどから、この膜自体は有機電界効果トランジスタのゲート絶縁膜として適しているとは考えにくい。   Furthermore, as an insulating film containing a metal oxide in a polymer, an example in which an insulating film having a high dielectric constant is prepared by dispersing particles of barium titanate in an epoxy resin has been reported (see Non-Patent Document 5). . Although the dielectric constant of this insulating film is as high as 40, this film itself has an organic electric field effect because barium titanate is a ferroelectric material and the surface of the insulating film is rougher than a normal polymer thin film. It is unlikely to be suitable as a gate insulating film of a transistor.

一方、絶縁膜の表面性改良のため、絶縁層に配向膜を積層したり、フッ素ポリマー層を積層する例が報告されている(特許文献1及び2参照)。これらは、さらに積層される有機半導体膜の固体状態の制御、例えば結晶状態あるいは液晶の配向状態の制御を目的とするものである。   On the other hand, examples of laminating an alignment film or laminating a fluoropolymer layer on an insulating layer for improving the surface properties of the insulating film have been reported (see Patent Documents 1 and 2). These are intended for controlling the solid state of the organic semiconductor film to be further laminated, for example, controlling the crystalline state or the alignment state of the liquid crystal.

このように、有機材料の絶縁膜であって、耐高電圧特性、ゲート絶縁膜に必要な性能である表面の平坦性、絶縁強度、高抵抗、電場に対する安定性など、すべて満たした高誘電率の絶縁膜は知られていなかった。
特開平9−232589号公報 特開2001−94107号公報 J.Appl.Phys.89,9,5125(2001) PNAS 98,9,4835(2001) Mol.Cryst.Liq.Cryst.228,81(1993) Adv.Funct.Mater.,13,3,199(2003) Proc.Electon.Comp.Tech.Conf.,48,171(1998)
In this way, it is an organic material insulating film that has a high dielectric constant that satisfies all of the requirements such as high voltage resistance, surface flatness, insulation strength, high resistance, and electric field stability, which are required for gate insulating films. The insulating film was not known.
Japanese Patent Laid-Open No. 9-232589 JP 2001-94107 A J. et al. Appl. Phys. 89, 9, 5125 (2001) PNAS 98, 9, 4835 (2001) Mol. Cryst. Liq. Cryst. 228, 81 (1993) Adv. Funct. Mater. , 13, 3, 199 (2003) Proc. Electon. Comp. Tech. Conf. , 48, 171 (1998)

有機電界効果トランジスタにおいて、ゲート絶縁膜は、有機半導体に次いで重要な役割を果たすにも関わらず、未だに十分に実用的な材料は見つかっていない。   In an organic field effect transistor, although a gate insulating film plays an important role next to an organic semiconductor, a sufficiently practical material has not yet been found.

従って、溶液からの塗布法等の容易なプロセスで製膜出来、高い誘電率と、高い絶縁耐性、表面の平坦性等を兼ね備えた絶縁膜及びその材料が求められている。   Accordingly, there is a demand for an insulating film that can be formed by an easy process such as a coating method from a solution, and that has a high dielectric constant, high insulation resistance, surface flatness, and the like, and its material.

以上の事に鑑み、種々検討を行った結果、有機電界効果トランジスタにおいて、高誘電率のポリマー薄膜に低誘電率のポリマー薄膜を積層したゲート絶縁膜が優れた特性を示すことを見出し、本発明に至った。   In view of the above, as a result of various studies, it has been found that in an organic field effect transistor, a gate insulating film obtained by laminating a polymer film having a low dielectric constant on a polymer film having a high dielectric constant exhibits excellent characteristics. It came to.

即ち、本発明の要旨は、有機半導体を用いたトランジスタ素子において、ゲート絶縁膜が少なくともポリマーを含む高誘電率絶縁膜、及びポリマーを含む低誘電率絶縁膜を含む積層体であって、該低誘電率絶縁膜と該高誘電率絶縁膜との誘電率差が1より大きいことを特徴とする有機電界効果トランジスタに存する。   That is, the gist of the present invention is a laminated body including a high dielectric constant insulating film containing at least a polymer and a low dielectric constant insulating film containing a polymer in a transistor element using an organic semiconductor, The organic field effect transistor is characterized in that the dielectric constant difference between the dielectric constant insulating film and the high dielectric constant insulating film is larger than 1.

本発明によれば、誘電率差が1以上ある2種類以上の薄膜を積層する事により、高容量、高絶縁耐性、有機半導体との界面の平坦性を兼ね備えた絶縁膜が作製できる。   According to the present invention, by laminating two or more kinds of thin films having a dielectric constant difference of 1 or more, an insulating film having high capacity, high insulation resistance, and flatness of the interface with the organic semiconductor can be produced.

以下、本発明の実施形態を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

本発明の、有機電界効果トランジスタ(FET)とは、ゲート電圧に印加する電圧によって半導体内のキャリア密度を制御してソース、ドレイン電極間の電流電圧特性を制御する素子である。例えば、図1に示す構造を有する素子である。ここで、1が半導体層、2が絶縁体層、3と4がソース及びドレイン電極、5がゲート電極、6が基板である。
(ゲート絶縁膜)
本発明のゲート絶縁膜は少なくともポリマーを含む高誘電率絶縁膜、及びポリマーを含む低誘電率絶縁膜を含む積層体であって、該低誘電率絶縁膜と該高誘電率絶縁膜との誘電率差が1より大きいものである。
The organic field effect transistor (FET) of the present invention is an element that controls the current-voltage characteristics between the source and drain electrodes by controlling the carrier density in the semiconductor by the voltage applied to the gate voltage. For example, an element having the structure shown in FIG. Here, 1 is a semiconductor layer, 2 is an insulator layer, 3 and 4 are source and drain electrodes, 5 is a gate electrode, and 6 is a substrate.
(Gate insulation film)
The gate insulating film of the present invention is a laminate including at least a high dielectric constant insulating film containing a polymer and a low dielectric constant insulating film containing a polymer, and a dielectric between the low dielectric constant insulating film and the high dielectric constant insulating film. The rate difference is greater than 1.

高誘電率絶縁膜はポリマーを含み、通常、低誘電率絶縁膜との誘電率差が1以上大きければ、特に制限はないが、その誘電率は6より大きく、好ましくは7以上、さらに好ましくは10以上、より好ましくは15以上であることが望ましい。誘電率が5以下では、静電容量が小さいため、ソース・ドレイン電流が微小になってしまう。また、誘電率の低い材料で静電容量を大きくするためには、絶縁体層の厚さを薄くすれば良いが、欠陥やピンホールの出現などにより、トランジスタ作製時のプロセス面が非常に困難になるという欠
点を有している。
The high dielectric constant insulating film contains a polymer and is not particularly limited as long as the difference in dielectric constant from the low dielectric constant insulating film is 1 or more, but the dielectric constant is larger than 6, preferably 7 or more, more preferably It is desirable that it is 10 or more, more preferably 15 or more. When the dielectric constant is 5 or less, the capacitance is small and the source / drain current becomes minute. In addition, in order to increase the capacitance with a low dielectric constant material, it is sufficient to reduce the thickness of the insulator layer. However, due to the appearance of defects and pinholes, the process surface during transistor fabrication is very difficult. Has the disadvantage of becoming.

高誘電性絶縁膜の誘電率を大きくする方法は、幾つかの手法が挙げられる。一つはポリマー中にシアノ基、ニトロ基、ヒドロキシル基、カルボニル及びエステルのような、大きな分極を示す置換基を入れるものである。
このような材料としては、シアノ樹脂、ベクトラ(Ticona社 商品名)等のポリアリレート系高分子液晶等の、主鎖型又は側鎖型の高分子液晶樹脂、及びこれらと、ポリメチルメタクリレート等のアクリル樹脂、ポリスチレン等のスチレン樹脂、ポリビニルフェノール、カプトン(Du pont社製 商品名)に代表されるポリイミド樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリビニルアルコール、ポリ酢酸ビニル、ポリウレタン樹脂、ポリスルホン樹脂、エポキシ樹脂、フェノール樹脂、フッ素樹脂等のポリマー、ポリベンゾオキサゾールやポリベンゾチアゾール等複素環を有する縮合系樹脂を組み合わせた樹脂及びこれらを組み合わせた共重合体が挙げられる。
この中でも、シアノ樹脂等のシアノ基を含むポリマー、ポリスチレン等のスチレン樹脂、ポリビニルフェノール、ポリビニルアルコール、エポキシ樹脂、フェノール樹脂等のヒドロキシル基を有するポリマーを組み合わせた樹脂及びこれらを組み合わせた樹脂が好ましい。
There are several methods for increasing the dielectric constant of the high dielectric insulating film. One is to insert substituents having large polarization such as cyano group, nitro group, hydroxyl group, carbonyl and ester in the polymer.
Examples of such materials include main chain type or side chain type polymer liquid crystal resins such as cyano resins and polyarylate polymer liquid crystals such as Vectra (trade name of Ticona), and polymethyl methacrylate and the like. Acrylic resin, styrene resin such as polystyrene, polyvinylphenol, polyimide resin represented by Kapton (trade name, manufactured by Du Pont), polycarbonate resin, polyester resin, polyvinyl alcohol, polyvinyl acetate, polyurethane resin, polysulfone resin, epoxy resin, Examples thereof include polymers such as phenol resins and fluororesins, resins in which condensed resins having a heterocyclic ring such as polybenzoxazole and polybenzothiazole are combined, and copolymers in which these are combined.
Among these, a polymer containing a cyano group such as a cyano resin, a styrene resin such as polystyrene, a resin combining a polymer having a hydroxyl group such as polyvinyl phenol, polyvinyl alcohol, an epoxy resin, and a phenol resin, and a resin combining these are preferable.

又、高誘電性絶縁膜の誘電率を大きくする他の方法として、シアノビフェニル等の低分子液晶化合物を、ポリメチルメタクリレート等のアクリル樹脂、ポリスチレン等のスチレン樹脂、ポリビニルフェノール、カプトンに代表されるポリイミド樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリビニルアルコール、ポリ酢酸ビニル、ポリウレタン樹脂、ポリスルホン樹脂、エポキシ樹脂、フェノール樹脂、フッ素樹脂等のポリマー、ポリベンゾオキサゾールやポリベンゾチアゾール等複素環を有する縮合系樹脂を組み合わせた樹脂及びこれらを組み合わせた共重合体と混合することもできる。
好ましくは、シアノビフェニル等の低分子液晶化合物を、ポリメチルメタクリレート等のアクリル樹脂、ポリビニルフェノール、フェノール樹脂を組み合わせた樹脂及びこれらを組み合わせた共重合体と混合するものである。
As another method for increasing the dielectric constant of the high dielectric insulating film, low molecular liquid crystal compounds such as cyanobiphenyl, acrylic resins such as polymethyl methacrylate, styrene resins such as polystyrene, polyvinylphenol, and kapton Polyimide resin, polycarbonate resin, polyester resin, polyvinyl alcohol, polyvinyl acetate, polyurethane resin, polysulfone resin, epoxy resin, phenol resin, fluororesin and other polymers, and polybenzoxazole and polybenzothiazole condensed resins It is also possible to mix with a combined resin and a copolymer obtained by combining them.
Preferably, a low-molecular liquid crystal compound such as cyanobiphenyl is mixed with an acrylic resin such as polymethyl methacrylate, a resin combining polyvinyl phenol and a phenol resin, and a copolymer combining these.

さらに、高誘電性絶縁膜の誘電率を大きくする別の方法として、炭素原子、窒素原子及び酸素原子よりも原子量の大きな原子を多く含む構造も挙げられる。例えば硫黄、セレン、テルル、リン、ゲルマニウム等の典型元素、銅、亜鉛、チタン、ニッケル、鉛等の遷移金属、さらにはイットリウム、ハフニウム、ジルコニウム、タンタル、ランタン等の希土類を含むものが挙げられる。このような原子の含有量を多くすれば誘電率はそれに従って大きくなる。またこの様な原子を含む方法としては、ポリマーの骨格の中に導入する事も可能であるし、これらを誘電率の大きな固体をポリマーに混合あるいは分散することも可能である。例えば、ポリメチルメタクリレート等のアクリル樹脂、ポリスチレン等のスチレン樹脂、ポリビニルフェノール、カプトン(Du pont社 商品名)に代表されるポリイミド樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリビニルアルコール、ポリ酢酸ビニル、ポリウレタン樹脂、ポリスルホン樹脂、エポキシ樹脂、フェノール樹脂、フッ素樹脂等のポリマー、ポリベンゾオキサゾールやポリベンゾチアゾール等複素環を有する縮合系樹脂を組み合わせた樹脂、シアノ樹脂、液晶高分子及びこれらを組み合わせた共重合体に、Al23、TiO2、Y23、ScO3、HfO2、ZrO2、Ta25、La23、GdO3、SrTiO3、BaTiO3、SrBi2Ta29、Pb(ZrxTi1-x)O3、(BaxSr1-x)TiO3、Bi4Ti312、BaMgF4、SrBi2(Ta1-x
x29、Ba(Zr1-xTix)O3、Bi4Ti312等の酸化物を分散させたポリマー膜、Si34等の窒化物の粒子を分散させたポリマー膜等が挙げられる。
好ましくは、アクリル樹脂、スチレン樹脂、ポリビニルフェノール、ポリビニルアルコール、フェノール樹脂、シアノ樹脂及びこれらを組み合わせた共重合体に、Al23、TiO2、Y23、ScO3、HfO2、ZrO2、Ta25、La23、GdO3、SrTi
3、BaTiO3、SrBi2Ta29、Pb(ZrxTi1-x)O3、(BaxSr1-x)TiO3、Bi4Ti312、BaMgF4、SrBi2(Ta1-xNbx29、Ba(Zr1-xTix)O3、Bi4Ti312等の酸化物を分散させたポリマー膜である。
Further, as another method for increasing the dielectric constant of the high dielectric insulating film, a structure containing more atoms having a larger atomic weight than carbon atoms, nitrogen atoms, and oxygen atoms can be cited. Examples thereof include typical elements such as sulfur, selenium, tellurium, phosphorus and germanium, transition metals such as copper, zinc, titanium, nickel and lead, and those containing rare earth such as yttrium, hafnium, zirconium, tantalum and lanthanum. Increasing the content of such atoms increases the dielectric constant accordingly. Moreover, as a method including such atoms, it is possible to introduce them into a polymer skeleton, or to mix or disperse these in a polymer with a solid having a large dielectric constant. For example, acrylic resin such as polymethyl methacrylate, styrene resin such as polystyrene, polyvinyl phenol, polyimide resin represented by Kapton (trade name of Du Pont), polycarbonate resin, polyester resin, polyvinyl alcohol, polyvinyl acetate, polyurethane resin, Polymers such as polysulfone resins, epoxy resins, phenol resins, fluororesins, resins combining heterocyclic resins such as polybenzoxazole and polybenzothiazole, cyano resins, liquid crystal polymers, and copolymers combining these , Al 2 O 3 , TiO 2 , Y 2 O 3 , ScO 3 , HfO 2 , ZrO 2 , Ta 2 O 5 , La 2 O 3 , GdO 3 , SrTiO 3 , BaTiO 3 , SrBi 2 Ta 2 O 9 , Pb (Zr x Ti 1-x ) O 3 , (Ba x Sr 1- x ) TiO 3 , Bi 4 Ti 3 O 12 , BaMgF 4 , SrBi 2 (Ta 1-x N
b x ) 2 O 9 , Ba (Zr 1-x Ti x ) O 3 , Bi 4 Ti 3 O 12 and other oxide films dispersed therein, Si 3 N 4 and other nitride particles dispersed therein A polymer film etc. are mentioned.
Preferably, acrylic resin, styrene resin, polyvinyl phenol, polyvinyl alcohol, phenol resin, cyano resin, and a copolymer thereof are combined with Al 2 O 3 , TiO 2 , Y 2 O 3 , ScO 3 , HfO 2 , ZrO. 2 , Ta 2 O 5 , La 2 O 3 , GdO 3 , SrTi
O 3 , BaTiO 3 , SrBi 2 Ta 2 O 9 , Pb (Zr x Ti 1-x ) O 3 , (Ba x Sr 1-x ) TiO 3 , Bi 4 Ti 3 O 12 , BaMgF 4 , SrBi 2 (Ta 1-x Nb x ) 2 O 9 , Ba (Zr 1-x Ti x ) O 3 , Bi 4 Ti 3 O 12 and other polymer films dispersed therein.

高誘電率の無機粒子を分散した系の誘電率は、含有する無機粒子の重量分率で寄与する。含有率が高いほど誘電率は高くなるが、高すぎると機械物性が悪くなり、塗布による膜形成が難しくなる。含有する無機粒子は高誘電率のものが好ましく、比誘電率が5以上、好ましくは10以上、より好ましくは20以上が望ましい。その含有率は、0.5重量%以上であることが好ましく、さらに好ましくは1%以上である。含有量の上限は20重量%以下であることが好ましく、15%以下であることが望ましい。無機粒子が多すぎると、膜が脆くなり、強度が低下する。また、粒子の径は形成する膜厚より小さいことが必要であり、均一な膜を得る為には膜厚の1/2以下、より好ましくは1/5以下が望ましく、実際の寸法としては500nm以下、好ましくは100nm以下、さらに好ましくは20nm以下が望ましい。
又、0.1nm以上、好ましくは0.5nm以上、さらに好ましくは1nm以上が望ましい。
The dielectric constant of a system in which inorganic particles having a high dielectric constant are dispersed contributes by the weight fraction of the inorganic particles contained. The higher the content, the higher the dielectric constant. However, if the content is too high, the mechanical properties deteriorate, and film formation by coating becomes difficult. The inorganic particles to be contained preferably have a high dielectric constant, and the relative dielectric constant is 5 or more, preferably 10 or more, more preferably 20 or more. The content is preferably 0.5% by weight or more, and more preferably 1% or more. The upper limit of the content is preferably 20% by weight or less, and desirably 15% or less. When there are too many inorganic particles, a film | membrane will become weak and intensity | strength will fall. Further, the diameter of the particles needs to be smaller than the film thickness to be formed, and in order to obtain a uniform film, 1/2 or less, more preferably 1/5 or less of the film thickness is desirable, and the actual dimension is 500 nm. Hereinafter, it is preferably 100 nm or less, more preferably 20 nm or less.
Moreover, 0.1 nm or more, preferably 0.5 nm or more, more preferably 1 nm or more is desirable.

高誘電率の材料としては、塗布プロセスで積層できるように高誘電絶縁膜の下層膜及び上層膜との塗り分けが可能である材料が好ましい。   The material having a high dielectric constant is preferably a material that can be separately applied to the lower film and the upper film of the high dielectric insulating film so that they can be laminated by a coating process.

低誘電率絶縁膜はポリマーを含むものであり、高誘電率絶縁膜との誘電率差が1以上大きければ特に制限はないが、その誘電率は5以下であることが好ましく、さらに好ましくは3.8以下、より好ましくは3.6以下である。誘電率が5より大きいと半導体界面近傍に電荷が蓄積されやすく、トランジスタ特性の安定性に問題が生じる可能性がある。   The low dielectric constant insulating film contains a polymer and is not particularly limited as long as the difference in dielectric constant from the high dielectric constant insulating film is 1 or more, but the dielectric constant is preferably 5 or less, more preferably 3 .8 or less, more preferably 3.6 or less. If the dielectric constant is greater than 5, charges are likely to be accumulated near the semiconductor interface, which may cause problems in the stability of transistor characteristics.

低誘電率絶縁膜に用いられる材料としては、ポリメチルメタクリレート等のアクリル樹脂、ポリスチレン等のスチレン樹脂、ポリビニルフェノール、カプトンに代表されるポリイミド樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリ酢酸ビニル、ポリウレタン樹脂、ポリスルホン樹脂、エポキシ樹脂、フッ素樹脂、ポリシロセスオキサン、ポリシロキサン等のポリマー及びこれらを組み合わせた共重合体が挙げられる。   Materials used for the low dielectric constant insulating film include acrylic resins such as polymethyl methacrylate, styrene resins such as polystyrene, polyvinyl phenol, polyimide resins represented by Kapton, polycarbonate resins, polyester resins, polyvinyl acetate, polyurethane resins, Examples thereof include polymers such as polysulfone resin, epoxy resin, fluororesin, polysiloxane oxane and polysiloxane, and copolymers obtained by combining these polymers.

低誘電率絶縁膜として、上記材料にSiO2等の酸化物を分散させたポリマー膜を用い
ることもできる。
As the low dielectric constant insulating film, a polymer film in which an oxide such as SiO 2 is dispersed in the above material can also be used.

低誘電率絶縁膜の材料としては、塗布プロセスで積層できるように低誘電絶縁膜の下層膜及び上層膜との塗り分けが可能である材料が好ましい。又、半導体と組み合わせた時に高移動度を示すものが好ましい。特にポリイミド樹脂、アクリル樹脂、ポリビニルフェノール、フッ素樹脂、ポリカーボネート樹脂、シロキサンが好ましい。   The material for the low dielectric constant insulating film is preferably a material that can be separately applied to the lower film and the upper film of the low dielectric insulating film so that they can be laminated by a coating process. Moreover, what shows a high mobility when combined with a semiconductor is preferable. Particularly preferred are polyimide resin, acrylic resin, polyvinylphenol, fluororesin, polycarbonate resin, and siloxane.

本発明において、ポリマーを含む低誘電率絶縁膜は、高誘電率絶縁膜との誘電率差が1より大きいものである。好ましくは2以上である。誘電率差が1以上ある2種類以上の薄膜を積層する事により、高容量、高絶縁耐性、有機半導体との界面の平坦性を兼ね備えた絶縁膜が作製できる。これは電荷が高誘電率膜に注入されるのを防止できる事、高誘電率膜に由来する表面粗さや表面性を改良できることによる。従って、高誘電率絶縁層と、低誘電率絶縁層の誘電率差が1より小さいと、絶縁耐性が低下して好ましくない。   In the present invention, the low dielectric constant insulating film containing a polymer has a dielectric constant difference larger than 1 with respect to the high dielectric constant insulating film. Preferably it is 2 or more. By laminating two or more kinds of thin films having a dielectric constant difference of 1 or more, an insulating film having high capacity, high insulation resistance, and flatness of the interface with the organic semiconductor can be produced. This is because charges can be prevented from being injected into the high dielectric constant film, and the surface roughness and surface properties derived from the high dielectric constant film can be improved. Therefore, if the difference in dielectric constant between the high dielectric constant insulating layer and the low dielectric constant insulating layer is smaller than 1, it is not preferable because the insulation resistance is lowered.

高誘電率層の誘電率が10以上の場合には絶縁層の安定化のために、低誘電率絶縁層との誘電率差をさらに大きくするのが好ましく、この場合、低誘電率絶縁層の誘電率は好ましくは5以下、より好ましくは誘電率が4以下である。
絶縁膜の誘電率は、材料固有の値であり、単一成分から成る絶縁膜の場合は、一般的に
は公知であるが、混合成分から成る場合や誘電率が不明な材料の場合は、公知の方法を用いて測定することができる。例えば、絶縁層のキャパシタンスを測定し、その際の絶縁層の膜厚と電極面積から誘電率を求めることができる。
When the dielectric constant of the high dielectric constant layer is 10 or more, it is preferable to further increase the dielectric constant difference from the low dielectric constant insulating layer in order to stabilize the insulating layer. The dielectric constant is preferably 5 or less, more preferably 4 or less.
The dielectric constant of the insulating film is a value specific to the material. In the case of an insulating film composed of a single component, it is generally known, but in the case of a material composed of mixed components or a material whose dielectric constant is unknown, It can be measured using a known method. For example, the capacitance of the insulating layer is measured, and the dielectric constant can be obtained from the thickness of the insulating layer and the electrode area at that time.

高誘電率の膜の膜厚は、5μm以下、好ましくは1μm以下、より好ましくは500nm以下が望ましい。又、6nm以上が好ましく、さらに好ましくは10nm以上、より好ましくは50nm以上、特に好ましくは100nm以上であることが、望まれる。5μmより厚いと、トランジスタにおいて静電容量が小さくなりトランジスタ特性が低下する。6nmより薄いとピンホールができやすくなり安定性に問題がある。   The film thickness of the high dielectric constant film is 5 μm or less, preferably 1 μm or less, more preferably 500 nm or less. Further, it is preferably 6 nm or more, more preferably 10 nm or more, more preferably 50 nm or more, and particularly preferably 100 nm or more. If it is thicker than 5 μm, the capacitance of the transistor becomes small and the transistor characteristics deteriorate. If it is thinner than 6 nm, pinholes are easily formed and there is a problem in stability.

低誘電率の膜は、1μm以下、好ましくは500nm以下が望ましい。又、5nm以上が好ましく、さらに好ましくは10nm以上、より好ましくは50nm以上であることが、望まれる。1μmより厚いと、トランジスタにおいて静電容量が小さくなりトランジスタ特性が低下する。5nmより薄いとピンホールができやすくなり安定性に問題がある。ここで、積層膜全体の静電容量を下げないために高誘電率の膜より低誘電率の膜が薄いことが好ましく、通常絶縁膜厚に対する高誘電率絶縁層の厚さが好ましくは40%以上で、さらに好ましくは50%、よりこのましくは55%以上、特に好ましくは60%以上である。膜厚は高誘電率の膜の上に、より薄い低誘電率の膜を積層し、その上に有機半導体の層を作製するのがもっとも好ましい。   The film having a low dielectric constant is 1 μm or less, preferably 500 nm or less. Moreover, 5 nm or more is preferable, More preferably, it is 10 nm or more, More preferably, it is desired that it is 50 nm or more. If it is thicker than 1 μm, the capacitance of the transistor becomes small and the transistor characteristics deteriorate. If the thickness is less than 5 nm, pinholes are easily formed, and there is a problem in stability. Here, in order not to lower the capacitance of the entire laminated film, the low dielectric constant film is preferably thinner than the high dielectric constant film, and the thickness of the high dielectric constant insulating layer is preferably 40% of the normal insulating film thickness. The above is more preferably 50%, more preferably 55% or more, and particularly preferably 60% or more. Most preferably, a thinner low dielectric constant film is laminated on a high dielectric constant film, and an organic semiconductor layer is formed thereon.

高誘電率絶縁膜と低誘電率絶縁膜を積層する際には、どの順番で積層してもよく、また、3層以上積層しても良いが、目的にしたがった層構成を選択することができる。例えば金属酸化物を分散したポリマーを用いた層を高誘電率絶縁膜として用いる場合は、この層と、有機半導体との間に一層以上低誘電率の膜がある方が望ましい。また、ゲート電極からの高誘電率絶縁膜への電荷の注入が問題であるときには、ゲート電極と高誘電率絶縁膜の間に低誘電率絶縁膜があるのが好ましい。特に好ましくは、半導体層と低誘電率絶縁層が隣接しているものである。   When laminating the high dielectric constant insulating film and the low dielectric constant insulating film, they may be laminated in any order, or three or more layers may be laminated, but the layer configuration according to the purpose can be selected. it can. For example, when a layer using a polymer in which a metal oxide is dispersed is used as a high dielectric constant insulating film, it is desirable that a film having a low dielectric constant is further provided between this layer and the organic semiconductor. Further, when charge injection from the gate electrode to the high dielectric constant insulating film is a problem, it is preferable that a low dielectric constant insulating film is provided between the gate electrode and the high dielectric constant insulating film. Particularly preferably, the semiconductor layer and the low dielectric constant insulating layer are adjacent to each other.

高誘電率絶縁膜と低誘電率絶縁膜は積層に際し、先に形成した膜がその上の膜を形成する際の溶媒に侵されないように任意に積層方法、積層条件、積層順序を適宜選択することにより行えばよい。具体的には、先に形成した膜を溶解しない溶媒を用いて後に形成する膜を作製するといった、材料の溶解度の差を利用して積層する方法、先に形成した膜を光や熱で硬化あるいは架橋して溶媒に不溶な膜に変換した後積層する方法等が挙げられる。   When laminating a high dielectric constant insulating film and a low dielectric constant insulating film, a lamination method, a lamination condition, and a lamination order are appropriately selected so that a film formed previously is not affected by a solvent for forming a film thereon. You can do that. Specifically, a method of laminating using the difference in solubility of materials, such as making a film to be formed later using a solvent that does not dissolve the previously formed film, curing the previously formed film with light or heat Or the method of laminating | stacking after bridge | crosslinking and converting into a film | membrane insoluble in a solvent, etc. are mentioned.

(有機電界効果トランジスタ)
本発明の有機電界効果トランジスタには、有機半導体の膜が用いられる。有機半導体としては特に限定はないが、具体的にはナフタセン、ペンタセン、ピレン、フラーレン等の縮合芳香族炭化水素、α−セキシチオフェン等のオリゴマー類、フタロシアニンやポルフィリン等の大環状化合物。α−セキシチオフェン、ジアルキルセキシチオフェン、に代表される、チオフェン環を4個以上含むオリゴチオフェン類、あるいは、チオフェン環、ベンゼン環、フルオレン環、ナフタレン環、アントラセン環、チアゾール環、チアジアゾール環、ベンゾチアゾール環を合計4個以上連結したもの。ナフタレン、ペンタセン、ピレン、ペリレン、フラーレン等の縮合芳香族炭化水素。アントラジチオフェン、ジベンゾチエノビスチオフェン、α、α’−ビス(ジチエノ[3,2−b’:2’、3’−d]チオフェン)等の縮合チオフェン及びその誘導体。ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボンサンジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボンサンジイミド等の、芳香族カルボン酸無水物やそのイミド化物。銅フタロシアニン、パーフルオロ銅フタロシアニン、テトラベンゾポルフィリン及びその金属塩等の大環状化合物。ポリチオフェン、ポリフルオレン、ポリチエニレンビニレン、ポリフェニレンビニレン、ポリフェニレン、ポリアセチレン、ポリピロール、ポリアニリン。特に、レジ
オレギュラーポリチオフェンのような自己組織化を示すものや、ポリフルオレンやその共重合体に代表される液晶性を示す高分子等が挙げられる。
(Organic field effect transistor)
An organic semiconductor film is used for the organic field effect transistor of the present invention. The organic semiconductor is not particularly limited, but specifically, condensed aromatic hydrocarbons such as naphthacene, pentacene, pyrene, and fullerene, oligomers such as α-sexithiophene, and macrocyclic compounds such as phthalocyanine and porphyrin. Oligothiophenes represented by α-sexithiophene and dialkylsexithiophene, including four or more thiophene rings, or thiophene ring, benzene ring, fluorene ring, naphthalene ring, anthracene ring, thiazole ring, thiadiazole ring, Concatenated 4 or more benzothiazole rings. Condensed aromatic hydrocarbons such as naphthalene, pentacene, pyrene, perylene, fullerene; Condensed thiophenes such as anthradithiophene, dibenzothienobisthiophene, α, α′-bis (dithieno [3,2-b ′: 2 ′, 3′-d] thiophene) and derivatives thereof; Aromatic carboxylic acid anhydrides and imidized products thereof such as naphthalenetetracarboxylic acid anhydride, naphthalenetetracarboxylic acid diimide, perylenetetracarboxylic acid anhydride, and perylenetetracarboxylic acid diimide. Macrocyclic compounds such as copper phthalocyanine, perfluoro copper phthalocyanine, tetrabenzoporphyrin and metal salts thereof. Polythiophene, polyfluorene, polythienylene vinylene, polyphenylene vinylene, polyphenylene, polyacetylene, polypyrrole, polyaniline. In particular, those exhibiting self-organization such as regioregular polythiophene, and polymers exhibiting liquid crystallinity represented by polyfluorene and copolymers thereof are exemplified.

有機半導体膜の膜厚は、先に例示した電界効果トランジスタの場合、素子の特性は必要な膜厚以上であれば膜厚には依存しない。膜厚が厚くなると漏れ電流が増加してくることが多い。従って好ましい膜厚は、1nm以上、好ましくは10nm以上である。また、10μm以下、好ましくは、500nm以下が望ましい。また、有機半導体は、それを単独で用いることはもちろんであるが、他の材料との混合で用いることもできるし、さらには他の層との積層構造で用いることも出来る。   In the case of the field effect transistor exemplified above, the thickness of the organic semiconductor film does not depend on the film thickness as long as the element characteristics are equal to or greater than the required film thickness. As the film thickness increases, the leakage current often increases. Therefore, a preferable film thickness is 1 nm or more, preferably 10 nm or more. Further, it is 10 μm or less, preferably 500 nm or less. In addition, the organic semiconductor can be used alone, but can also be used in a mixture with other materials, or can be used in a laminated structure with other layers.

本発明の有機電界効果トランジスタの基板としては、ポリマーの板、フィルム、ガラス、あるいは金属をコーティングにより絶縁膜を形成したもの、ポリマーと無機材料の複合材等を用いることができる。   As the substrate of the organic field effect transistor of the present invention, a polymer plate, a film, glass, or a metal-coated insulating film formed by coating, a composite material of a polymer and an inorganic material, or the like can be used.

有機半導体膜や、絶縁膜は、塗布プロセスあるいは真空プロセスで製膜してデバイスを作製することが出来る。好ましくは塗布プロセスである。   An organic semiconductor film or an insulating film can be formed by a coating process or a vacuum process to manufacture a device. A coating process is preferred.

塗布の方法としては、溶液をたらして乾燥するだけのキャスティング、スピンコーティング、ディップコーティング、ブレードコーティング、ワイヤバーコーティング、スプレーコーティング等のコーティング法や、インクジェット印刷、スクリーン印刷、オフセット印刷、凸版印刷等の印刷法、マイクロコンタクトプリンティング法等のソフトリソグラフィーの手法等、さらにはこれらの手法を複数組み合わせた方法を用いることができる。さらに、塗布に類似の技術として、水面上に形成した単分子膜を基板に移し積層するラングミュア・ブロジェット法、液晶や融液状態を2枚の基板で挟んだり毛管現象で基板間に導入する方法等も挙げられる。   Application methods include casting by simply dropping the solution and drying, coating methods such as spin coating, dip coating, blade coating, wire bar coating, spray coating, ink jet printing, screen printing, offset printing, letterpress printing, etc. A printing lithography method, a soft lithography method such as a microcontact printing method, and a combination of these methods can be used. Furthermore, as a technique similar to coating, a Langmuir-Blodgett method in which a monomolecular film formed on a water surface is transferred to a substrate and laminated, a liquid crystal or a melt state is sandwiched between two substrates, or introduced between substrates by capillary action A method etc. are also mentioned.

真空プロセスでの製膜には、有機化合物をルツボや金属のボートに入れて真空中で加熱し、基板に付着させる真空蒸着法を用いることが出来る。この際、真空度としては、1×10-3Torr以下、好ましくは1×10-5Torr以下が望ましい。また、基板温度でデバイスの特性が変化するので、最適な基板温度を選択する必要があるが、0℃から200℃の範囲が好ましい。また、蒸着速度は0.01Å/秒以上100Å/秒以下、好ましくは0.1Å/秒以上10Å/秒以下が用いられる。材料を蒸発させる方法としては、加熱の他、加速したアルゴン等のイオンを衝突させるスパッタ法も用いることが出来る。 For film formation in a vacuum process, a vacuum deposition method in which an organic compound is placed in a crucible or a metal boat and heated in a vacuum to adhere to the substrate can be used. At this time, the degree of vacuum is 1 × 10 −3 Torr or less, preferably 1 × 10 −5 Torr or less. Further, since the device characteristics change depending on the substrate temperature, it is necessary to select an optimum substrate temperature, but a range of 0 ° C. to 200 ° C. is preferable. The deposition rate is 0.01 Å / second to 100 Å / second, preferably 0.1 Å / second to 10 Å / second. As a method for evaporating the material, a sputtering method in which ions such as accelerated argon collide can be used in addition to heating.

作製された膜は、後処理により特性を改良することが可能である。例えば、加熱処理により、製膜時に生じた膜中の歪みを緩和することができ、特性の向上や安定化を図ることができる。さらに、酸素や水素等の酸化性あるいは還元性の気体や液体にさらすことにより、酸化あるいは還元による特性変化を誘起することもできる。これは例えば膜中のキャリア密度の増加あるいは減少の目的で利用することができる。   The produced film can be improved in properties by post-treatment. For example, the heat treatment can relieve distortion in the film generated during film formation, and can improve and stabilize characteristics. Furthermore, a change in characteristics due to oxidation or reduction can be induced by exposure to an oxidizing or reducing gas or liquid such as oxygen or hydrogen. This can be used for the purpose of increasing or decreasing the carrier density in the film, for example.

電子デバイス作製の為の電極や配線には、金、アルミニウム、銅、クロム、ニッケル、コバルト、チタン、白金、マグネシウム、カルシウム、バリウム、ナトリウム等の金属、InO2、SnO2、ITO等の導電性の酸化物、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセチレン、ポリジアセチレン、等の導電性高分子及びそれに塩酸、硫酸、スルホン酸等の酸、PF6、AsF5、FeCl3等のルイス酸、ヨウ素等のハロゲン原子
、ナトリウムカリウム等の金属原子等のドーピングされた材料、シリコン、ゲルマニウム、ガリウム砒素、等の半導体及びそのドーピングされた材料、フラーレン、カーボンナノチューブ、グラファイト等の炭素材料や金属粒子を分散した導電性の複合材料等の、導電性を有する材料が用いられる。これらを形成する方法も、真空蒸着法、スパッタ法、塗布法、印刷法、ゾルゲル法等を用いることができる。また、そのパターニング方法も、フォ
トレジストのパターニングとエッチング液や反応性のプラズマでのエッチングを組み合わせたフォトリソグラフィー法、インクジェット印刷、スクリーン印刷、オフセット印刷、凸版印刷等の印刷法、マイクロコンタクトプリンティング法等のソフトリソグラフィーの手法及びこれらの手法を複数組み合わせた手法を利用することができる。また、レーザーや電子線等のエネルギー線を照射して材料を除去したり材料の導電性を変化させる事により、直接パターンを作製することも利用できる。
Electrodes and wiring for manufacturing electronic devices include metals such as gold, aluminum, copper, chromium, nickel, cobalt, titanium, platinum, magnesium, calcium, barium, sodium, and conductive materials such as InO 2 , SnO 2 , and ITO. Oxides, polyaniline, polypyrrole, polythiophene, polyacetylene, polydiacetylene, and other conductive polymers, and acids such as hydrochloric acid, sulfuric acid, and sulfonic acid, Lewis acids such as PF 6 , AsF 5 , and FeCl 3 , and halogens such as iodine Conductive material in which atoms, metal atoms such as sodium potassium are doped, semiconductors such as silicon, germanium, gallium arsenide, and the like, carbon materials such as fullerenes, carbon nanotubes, graphite, and metal particles are dispersed. Conductive materials such as composite materials are used. . As a method for forming them, a vacuum deposition method, a sputtering method, a coating method, a printing method, a sol-gel method, or the like can be used. The patterning method is also a photolithography method combining photoresist patterning and etching with an etchant or reactive plasma, ink-jet printing, screen printing, offset printing, letterpress printing and other printing methods, micro-contact printing method, etc. The soft lithography method and a combination of these methods can be used. It is also possible to directly produce a pattern by irradiating an energy beam such as a laser or an electron beam to remove the material or change the conductivity of the material.

本発明の有機電界効果トランジスタは、外気の影響を最小限にするために、保護膜を形成することができる。これには、エポキシ樹脂、アクリル樹脂、ポリウレタン、ポリイミド、ポリビニルアルコール等のポリマー膜、酸化珪素、窒化珪素、酸化アルミニウム等の無機酸化膜や窒化膜等が挙げられる。ポリマー膜は、溶液の塗布乾燥する方法、モノマーを塗布あるいは蒸着して重合する方法が挙げられ、さらに架橋処理や多層膜を形成することも可能である。無機物の膜の形成には、スパッタ法、蒸着法等の真空プロセスでの形成方法や、ゾルゲル法に代表される溶液プロセスでの形成方法も用いることができる。   In the organic field effect transistor of the present invention, a protective film can be formed to minimize the influence of outside air. Examples thereof include polymer films such as epoxy resin, acrylic resin, polyurethane, polyimide, and polyvinyl alcohol, inorganic oxide films such as silicon oxide, silicon nitride, and aluminum oxide, and nitride films. Examples of the polymer film include a method of applying and drying a solution, and a method of polymerizing by applying or vapor-depositing a monomer, and it is also possible to form a crosslinking treatment or a multilayer film. For the formation of the inorganic film, a formation method using a vacuum process such as a sputtering method or a vapor deposition method, or a formation method using a solution process typified by a sol-gel method can be used.

本発明の有機電解効果トランジスタは、ディスプレーのアクティブマトリクスのスイッチング素子として利用することが出来る。これは、ゲートに印加される電圧でソースとドレイン間の電流をスイッチング出来ることを利用して、ある表示素子に電圧を印加あるいは電流を供給する時のみスイッチを入れ、その他の時間は回路を切断する事により、高速、高コントラストな表示を行うものである。   The organic field effect transistor of the present invention can be used as an active matrix switching element of a display. This utilizes the fact that the current between the source and drain can be switched by the voltage applied to the gate, so that the switch is turned on only when a voltage is applied to or supplied to a certain display element, and the circuit is disconnected at other times. By doing so, a high-speed, high-contrast display is performed.

適用される表示素子としては、液晶表示素子、高分子分散型液晶表示素子、電気泳動表示素子、エレクトロルミネッセント素子、エレクトロクロミック素子等が挙げられる。   Examples of the display element to be applied include a liquid crystal display element, a polymer dispersed liquid crystal display element, an electrophoretic display element, an electroluminescent element, and an electrochromic element.

特に、本発明の有機電解効果トランジスタは、低温プロセスでの素子作製が可能であり、プラスチック基板、プラスチックフィルムや紙等の、高温処理に耐えない基板を用いることができる。また、塗布あるいは印刷プロセスでの素子作製が可能であることから、大面積のディスプレーへの応用に適している。また、従来のアクティブマトリクスの代替としても、省エネルギープロセス、低コストプロセスの可能な素子として有利である。   In particular, the organic field effect transistor of the present invention can be manufactured by a low-temperature process, and a substrate such as a plastic substrate, a plastic film, or paper that cannot withstand high-temperature processing can be used. In addition, since the device can be manufactured by a coating or printing process, it is suitable for application to a large area display. Further, as an alternative to the conventional active matrix, it is advantageous as an element capable of an energy saving process and a low cost process.

以下、本発明を実施例により更に具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例に限定されるものではない。
(実施例1)
ガラス基板(2.5×2.5cm2、フルウチ化学社製:商品名パイレックス(登録
商標))を幅1mmのシャドーマスクで覆い、ウルバック社製真空蒸着機EX−400(真空度: 10-6Torr)を用いて、アルミニウムを1000Åの厚さで蒸着を行い、ゲート電極を作製した。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
(Example 1)
A glass substrate (2.5 × 2.5 cm 2 , manufactured by Furuuchi Chemical Co., Ltd .: trade name Pyrex (registered trademark)) is covered with a shadow mask having a width of 1 mm, and a vacuum deposition machine EX-400 (vacuum degree: 10 −6 ) manufactured by Ulvac. Torr) was used to deposit aluminum with a thickness of 1000 mm to produce a gate electrode.

CYEPL(Shinetsu co.製、商品名 シアノレジン CR−S、誘電率18.5)を5wt%濃度でジメチルホルムアミド(DMF):アセトニトリル(1:1重量比)混合溶媒に溶解し、0.45μmのフィルターでろ過を行った。このCYEPL溶液をゲート電極付き2.5×2.5cm2のガラス基板上に1mL展開し、3500r
pm, 120secの間スピンコートを行った。その後、このCYEPL層上にポリカーボネート/PC(Aldrich製、Mw=64,000(GPC法)、誘電率2.85)を5wt%濃度でクロロホルムに溶解させ、0.45μmのフィルターでろ過を行ったポリマー溶液を1mL展開し、3000rpm, 120secの間スピンコートを行った。膜厚計(Alpha−Step500:Tencor社製)で各絶縁体層の膜厚を測定した結果、CYEPL:4000Å、PC:4000Åであることが判明した。
CYPPL (manufactured by Shinetsu co., Trade name: Cyanoresin CR-S, dielectric constant: 18.5) was dissolved in a mixed solvent of dimethylformamide (DMF): acetonitrile (1: 1 weight ratio) at a concentration of 5 wt%, and a 0.45 μm filter And filtered. 1 mL of this CEYPL solution was developed on a 2.5 × 2.5 cm 2 glass substrate with a gate electrode, and 3500 r
Spin coating was performed for pm and 120 sec. Thereafter, polycarbonate / PC (manufactured by Aldrich, Mw = 64,000 (GPC method), dielectric constant 2.85) was dissolved in chloroform at a concentration of 5 wt% on this CEYPL layer, and filtered through a 0.45 μm filter. 1 mL of the polymer solution was developed, and spin coating was performed at 3000 rpm for 120 seconds. As a result of measuring the film thickness of each insulator layer with a film thickness meter (Alpha-Step 500: manufactured by Tencor), it was found that CEYPL: 4000 mm and PC: 4000 mm.

上記で作成した二層絶縁膜を有する基板に対して、半導体層としてペンタセン(東京化成工業製、昇華精製を2回を施す)をウルバック社製真空蒸着機EX−400(真空度:10-6Torr)を用いて、るつぼから1Å/secの速度で1000Åの厚さで蒸着した。この半導体層上にソース・ドレイン電極を作製するため、チャネル(L:1000μm,W:50μm)のシャドーマスクを用いて金を1000Åの厚さで蒸着を行い、トップコンタクト型有機トランジスターを作製した。 With respect to the substrate having the two-layer insulating film prepared above, pentacene (manufactured by Tokyo Chemical Industry, subjected to sublimation purification twice) as a semiconductor layer is a vacuum deposition machine EX-400 (vacuum degree: 10 −6 ) manufactured by Ulvac. Torr) was deposited from the crucible at a rate of 1 kg / sec with a thickness of 1000 mm. In order to produce a source / drain electrode on this semiconductor layer, gold was deposited in a thickness of 1000 mm using a shadow mask of a channel (L: 1000 μm, W: 50 μm) to produce a top contact type organic transistor.

上記において作製されたトランジスター素子をAgilent社製の半導体パラメーターアナライザー4155で測定し、各ゲート電圧(Vg)下でソース電極−ドレイン電極
間の電流(Ids)−電圧(Vds)特性を測定し、電圧−電流曲線を求めて、そのトランジスター特性を評価した。測定条件は、ソース・ドレイン間の電圧(Vds):0〜−60〜0V、ゲート電圧(Vg):30〜−60Vで行った。電界効果移動度μは約0.12〜
0.3cm2/Vsであった。
The transistor element produced above was measured with a semiconductor parameter analyzer 4155 manufactured by Agilent, and the current (I ds ) -voltage (V ds ) characteristics between the source electrode and the drain electrode were measured under each gate voltage (V g ). Then, a voltage-current curve was obtained and the transistor characteristics were evaluated. The measurement conditions were a source-drain voltage (V ds ): 0 to −60 to 0 V and a gate voltage (V g ): 30 to −60 V. Field effect mobility μ is about 0.12-
It was 0.3 cm 2 / Vs.

(実施例2)
実施例1のPCをポリスチレン/PS(Aldrich製、Mw=230,000(GPC法)、誘電率2.6)に変更し、塗布溶液をクロロホルム溶液からトルエンに変更した以外は、実施例1と同様にして,トップコンタクト型有機トランジスターを作製した。各絶縁体層の膜厚は、CYEPL:4000Å、PS:3000Åであることが判明した。トランジスター特性を表1に示した。
(Example 2)
Example 1 is the same as Example 1 except that the PC of Example 1 is changed to polystyrene / PS (manufactured by Aldrich, Mw = 230,000 (GPC method), dielectric constant 2.6), and the coating solution is changed from a chloroform solution to toluene. Similarly, a top contact type organic transistor was fabricated. The film thickness of each insulator layer was found to be CEYPL: 4000 mm and PS: 3000 mm. The transistor characteristics are shown in Table 1.

(実施例3)
実施例1のPCをポリ桂皮酸ビニル/PVCN(Aldrich製、Mw=200,000(GPC法)、誘電率3.8)に変更した以外は、実施例1と同様にして,トップコンタクト型有機トランジスターを作製した。各絶縁体層の膜厚は、CYEPL:4000Å、PVCN:4000Åであることが判明した。トランジスター特性を表1に示した。
(Example 3)
A top contact type organic material was obtained in the same manner as in Example 1 except that the PC of Example 1 was changed to polyvinyl cinnamate / PVCN (manufactured by Aldrich, Mw = 200,000 (GPC method), dielectric constant 3.8). A transistor was fabricated. The film thickness of each insulator layer was found to be CEYPL: 4000 mm and PVCN: 4000 mm. The transistor characteristics are shown in Table 1.

(実施例4)
実施例3において、半導体をペンタセンから塗布工程で半導体となるテトラベンゾポルフィリンに変更して180℃で10分間加熱した以外は実施例3と同様にして、トランジスタ素子を作製した。トランジスタ特性を表1に示した。
Example 4
In Example 3, a transistor element was fabricated in the same manner as in Example 3 except that the semiconductor was changed from pentacene to tetrabenzoporphyrin to be a semiconductor in the coating process and heated at 180 ° C. for 10 minutes. The transistor characteristics are shown in Table 1.

(実施例5)
実施例3において、半導体をペンタセンから塗布工程で半導体となるポリ(3−ヘキシルチオフェン−2,5−ジイル):P3HT,Regioregular (Aldrich製、Mw=87,000(GPC法))に変更した以外は実施例3と同様にして、トランジスタ素子を作製した。トランジスタ特性を表1に示した。
(Example 5)
In Example 3, the semiconductor was changed from pentacene to poly (3-hexylthiophene-2,5-diyl): P3HT, Regioregular (manufactured by Aldrich, Mw = 87,000 (GPC method)) which becomes a semiconductor in the coating process. A transistor element was fabricated in the same manner as in Example 3. The transistor characteristics are shown in Table 1.

(実施例6)
実施例1において、CYEPLをポリビニルアルコール/PVA(−OH,99%,Aldrich製、Mw=50,000(GPC法)、誘電率7.8)に変更し、塗布溶液を10wt%濃度で純水:n−プロパノール(1:1重量比)混合溶媒に変更し、スピンコート後、10-4Torrの減圧下で48時間乾燥させた。又、実施例1のPCをポリ桂皮酸ビニル/PVCN(Aldrich製、Mw=200,000(GPC法)、誘電率3.8)に変更し、スピンコートの回転数を3500rpmに変更した以外は実施例1と同様にしてトランジスタ素子を作製した。各絶縁層の膜厚はPVA:4000Å、PVCN:4000Åであることが判明した。トランジンジスタ特性を表1に示した。
(Example 6)
In Example 1, CEYPL was changed to polyvinyl alcohol / PVA (—OH, 99%, manufactured by Aldrich, Mw = 50,000 (GPC method), dielectric constant 7.8), and the coating solution was pure water at a concentration of 10 wt%. Was changed to a mixed solvent of n-propanol (1: 1 weight ratio), spin-coated, and dried for 48 hours under a reduced pressure of 10 −4 Torr. In addition, the PC of Example 1 was changed to polyvinyl cinnamate / PVCN (manufactured by Aldrich, Mw = 200,000 (GPC method), dielectric constant 3.8), and the spin coat speed was changed to 3500 rpm. A transistor element was fabricated in the same manner as in Example 1. The film thickness of each insulating layer was found to be PVA: 4000 mm and PVCN: 4000 mm. Table 1 shows the properties of the transistor.

(比較例1)
実施例1において、絶縁膜をCYEPLとPCの二層からCYEPL単層に変更した以
外は実施例1と同様にして、トランジスタ素子を作成した。CYEPL層の膜厚は、4000Åであることが判明した。トランジンジスタ特性を表1に示した。トランジスタ性能としては、誘電率の大きなCYEPL単層では、Idsは静電容量成分が大きいため、大電流が流れるが、非常に大きなヒステリシスが観測され、トランジスター特性のばらつきが顕著であった。電界効果移動度μは約0.12〜0.3cm2/Vsであった。
(Comparative Example 1)
In Example 1, a transistor element was formed in the same manner as in Example 1 except that the insulating film was changed from the two layers of CEYPL and PC to a CEYPL single layer. The thickness of the CEYPL layer was found to be 4000 mm. Table 1 shows the properties of the transistor. As for the transistor performance, in the CIEPL single layer having a large dielectric constant, I ds has a large capacitance component, so a large current flows, but a very large hysteresis is observed, and the variation in transistor characteristics is remarkable. The field effect mobility μ was about 0.12 to 0.3 cm 2 / Vs.

(比較例2)
実施例1において、絶縁膜をCYEPLとPCの二層からPC単層に変更した以外は実施例1と同様にして、トランジスタ素子を作成した。PC層の膜厚は、4000Åであった。トランジンジスタ特性を表1に示した。トランジスタ性能としては、Idsは静電容量成分が小さいため実施例1より低かった。Vg電圧の印可・除去におけるIds−Vds特性
にヒステリシスは観測されなかった。又、電界効果移動度μは約0.12〜0.3cm2
/Vsであった。
(Comparative Example 2)
In Example 1, a transistor element was fabricated in the same manner as in Example 1 except that the insulating film was changed from CYPPL and PC to a PC single layer. The thickness of the PC layer was 4000 mm. Table 1 shows the properties of the transistor. As transistor performance, I ds was lower than that of Example 1 because the electrostatic capacitance component was small. No hysteresis was observed in the I ds -V ds characteristics when applying / removing the V g voltage. The field effect mobility μ is about 0.12 to 0.3 cm 2.
/ Vs.

実施例1のCYEPL/PC積層膜では、積層により膜厚が増加、静電容量が低下しているにも関わらず、PC単体よりも大きなIdsが観測されるとともに、CYEPL由来のヒステリシスは観測されなかった。 In the CEYPL / PC laminated film of Example 1, a larger I ds than that of the PC alone is observed and the hysteresis derived from CEYPL is observed although the film thickness increases and the capacitance decreases due to the lamination. Was not.

(比較例3)
実施例2において、絶縁膜をCYEPLとPSの二層からPS単層に変更した以外は実施例2と同様にして、トランジスタ素子を作成した。PS層の膜厚は、3000Åであった。トランジンジスタ特性を表1に示した。トランジスタ性能としては、Idsは静電容量成分が小さいため実施例2より低かった。Vg電圧の印可・除去におけるIds−Vds特性
にヒステリシスは観測されなかった。又、電界効果移動度μは約0.12〜0.3cm2
/Vsであった。
(Comparative Example 3)
In Example 2, a transistor element was formed in the same manner as in Example 2 except that the insulating film was changed from the CYPPL and PS two layers to the PS single layer. The thickness of the PS layer was 3000 mm. Table 1 shows the properties of the transistor. As for transistor performance, I ds was lower than that of Example 2 because the capacitance component was small. No hysteresis was observed in the I ds -V ds characteristics when applying / removing the V g voltage. The field effect mobility μ is about 0.12 to 0.3 cm 2.
/ Vs.

(比較例4)
実施例3において、絶縁膜をCYEPLとPVCNの二層からPVCN単層に変更した以外は実施例3と同様にして、トランジスタ素子を作成した。PVCN層の膜厚は、4000Åであった。トランジンジスタ特性を表1に示した。トランジスタ性能としては、Idsは静電容量成分が小さいため実施例3より低かった。Vg電圧の印可・除去におけるIds−Vds特性にヒステリシスは観測されなかった。又、電界効果移動度μは約0.12〜
0.3cm2/Vsであった。
(Comparative Example 4)
In Example 3, a transistor element was produced in the same manner as in Example 3 except that the insulating film was changed from the two layers of CEYPL and PVCN to a single layer of PVCN. The film thickness of the PVCN layer was 4000 mm. Table 1 shows the properties of the transistor. As transistor performance, I ds was lower than that of Example 3 because the capacitance component was small. No hysteresis was observed in the I ds -V ds characteristics when applying / removing the V g voltage. The field effect mobility μ is about 0.12 to 0.12.
It was 0.3 cm 2 / V s .

(比較例5)
実施例4において、絶縁膜をCYEPLとPVCNの二層からCYEPL単層に変更した以外は実施例4と同様にして、トランジスタ素子を作成した。PVCN層の膜厚は、4000Åであった。トランジンジスタ特性を表1に示した。トランジスタ性能としては、Idsは静電容量成分が大きいため大電流が流れるが、非常に大きなヒステリシスが観測され、トランジスター特性のばらつきが顕著であった。Vg電圧の印可・除去におけるIds
−Vds特性にヒステリシスは観測されなかった。又、電界効果移動度μは約0.02〜0.04cm2/Vsであった。
(Comparative Example 5)
In Example 4, a transistor element was fabricated in the same manner as in Example 4 except that the insulating film was changed from the two layers of CEYPL and PVCN to a CEYPL single layer. The film thickness of the PVCN layer was 4000 mm. Table 1 shows the properties of the transistor. As for transistor performance, a large current flows because I ds has a large capacitance component, but very large hysteresis was observed, and variation in transistor characteristics was remarkable. I ds in applying and removing V g voltage
No hysteresis was observed in the −V ds characteristic. The field effect mobility μ was about 0.02 to 0.04 cm 2 / V s .

(比較例6)
実施例4において、絶縁膜をCYEPLとPVCNの二層からPVCN単層に変更した以外は実施例4と同様にして、トランジスタ素子を作成した。PVCN層の膜厚は、4000Åであった。トランジンジスタ特性を表1に示した。トランジスタ性能としては、Idsは静電容量成分が小さいため実施例4より低かった。Vg電圧の印可・除去におけるIds−Vds特性にヒステリシスは観測されなかった。又、電界効果移動度μは約0.02〜
0.04cm2/Vであった。
(Comparative Example 6)
In Example 4, a transistor element was formed in the same manner as in Example 4 except that the insulating film was changed from the two layers of CEYPL and PVCN to a single layer of PVCN. The film thickness of the PVCN layer was 4000 mm. Table 1 shows the properties of the transistor. As for transistor performance, I ds was lower than that of Example 4 because the capacitance component was small. No hysteresis was observed in the I ds -V ds characteristics when applying / removing the V g voltage. The field effect mobility μ is about 0.02 to 0.02.
It was 0.04 cm 2 / V s .

(比較例7)
実施例5において、絶縁膜をCYEPLとPVCNの二層からCYEPL単層に変更した以外は実施例4と同様にして、トランジスタ素子を作成した。PVCN層の膜厚は、4000Åであった。トランジンジスタ特性を表1に示した。トランジスタ性能としては、Idsは静電容量成分が大きいため大電流が流れるが、非常に大きなヒステリシスが観測され、トランジスター特性のばらつきが顕著であった。Vg電圧の印可・除去におけるIds−Vds特性にヒステリシスは観測されなかった。又、電界効果移動度μは約0.01〜
0.02cm2/Vであった。
(Comparative Example 7)
In Example 5, a transistor element was produced in the same manner as in Example 4 except that the insulating film was changed from CYPPL and PVCN to a CEYPL single layer. The film thickness of the PVCN layer was 4000 mm. Table 1 shows the properties of the transistor. As for transistor performance, a large current flows because I ds has a large capacitance component, but very large hysteresis was observed, and variation in transistor characteristics was remarkable. No hysteresis was observed in the I ds -V ds characteristics when applying / removing the V g voltage. The field effect mobility μ is about 0.01 to
It was 0.02 cm 2 / V s .

(比較例8)
実施例5において、絶縁膜をCYEPLとPVCNの二層からPVCN単層に変更した以外は実施例4と同様にして、トランジスタ素子を作成した。PVCN層の膜厚は、4000Åであった。トランジンジスタ特性を表1に示した。トランジスタ性能としては、Idsは静電容量成分が小さいため実施例5より低かった。Vg電圧の印可・除去におけるIds−Vds特性にヒステリシスは観測されなかった。又、電界効果移動度μは約0.01〜
0.02cm2/Vであった。
(Comparative Example 8)
In Example 5, a transistor element was fabricated in the same manner as in Example 4 except that the insulating film was changed from the two layers of CEYPL and PVCN to a single layer of PVCN. The film thickness of the PVCN layer was 4000 mm. Table 1 shows the properties of the transistor. As transistor performance, I ds was lower than that of Example 5 because the capacitance component was small. No hysteresis was observed in the I ds -V ds characteristics when applying / removing the V g voltage. The field effect mobility μ is about 0.01 to
It was 0.02 cm 2 / V s .

(比較例9)
実施例6において、絶縁膜をPVAとPVCNの二層からPVA単層に変更した以外は実施例6と同様にして、トランジスタ素子を作成した。PVCN層の膜厚は、4000Åであった。トランジンジスタ特性を表1に示した。トランジスタ性能としては、Idsは静電容量成分が大きいため大電流が流れるが、非常に大きなヒステリシスが観測され、トランジスター特性のばらつきが顕著であった。Vg電圧の印可・除去におけるIds−Vds
特性にヒステリシスは観測されなかった。又、電界効果移動度μは約0.12〜0.3cm2/Vであった。
(Comparative Example 9)
In Example 6, a transistor element was formed in the same manner as in Example 6 except that the insulating film was changed from the two layers of PVA and PVCN to a single layer of PVA. The film thickness of the PVCN layer was 4000 mm. Table 1 shows the properties of the transistor. As for transistor performance, a large current flows because I ds has a large capacitance component, but very large hysteresis was observed, and variation in transistor characteristics was remarkable. I ds -V ds in applying / removing V g voltage
No hysteresis was observed in the characteristics. The field effect mobility μ was about 0.12 to 0.3 cm 2 / V s .

Figure 2005072569
Figure 2005072569

本発明の有機電解効果トランジスタを示す図である。It is a figure which shows the organic electrolysis effect transistor of this invention. 実施例1におけるトランジスタの電圧−電流曲線を示す図である。4 is a diagram illustrating a voltage-current curve of a transistor in Example 1. FIG. 比較例1におけるトランジスタの電圧−電流曲線を示す図である。6 is a diagram illustrating a voltage-current curve of a transistor in Comparative Example 1. FIG. 比較例2におけるトランジスタの電圧−電流曲線を示す図である。10 is a diagram illustrating a voltage-current curve of a transistor in Comparative Example 2. FIG.

符号の説明Explanation of symbols

1 有機半導体層
2 絶縁体層
3 ソース又はドレイン電極
4 ソース又はドレイン電極
5 ゲート電極
6 支持基板
DESCRIPTION OF SYMBOLS 1 Organic-semiconductor layer 2 Insulator layer 3 Source or drain electrode 4 Source or drain electrode 5 Gate electrode 6 Support substrate

Claims (6)

有機半導体を用いたトランジスタ素子において、ゲート絶縁膜が少なくともポリマーを含む高誘電率絶縁膜、及びポリマーを含む低誘電率絶縁膜を含む積層体であって、該低誘電率絶縁膜と該高誘電率絶縁膜との誘電率差が1より大きいことを特徴とする有機電界効果トランジスタ。 In a transistor element using an organic semiconductor, a gate insulating film is a laminated body including a high dielectric constant insulating film containing at least a polymer and a low dielectric constant insulating film containing a polymer, the low dielectric constant insulating film and the high dielectric constant An organic field effect transistor having a dielectric constant difference greater than 1 with respect to a dielectric constant insulating film. 低誘電率絶縁膜の誘電率が5以下であることを特徴とする請求項1に記載の有機電界効果トランジスタ。 2. The organic field effect transistor according to claim 1, wherein the dielectric constant of the low dielectric constant insulating film is 5 or less. 高誘電率絶縁膜の膜厚が6nm以上であることを特徴とする請求項1又は2に記載の有機電界効果トランジスタ。 The organic field effect transistor according to claim 1 or 2, wherein the high dielectric constant insulating film has a thickness of 6 nm or more. 高誘電率絶縁膜の膜厚が5μm以下であることを特徴とする請求項1〜3いずれかに記載の有機電界効果トランジスタ。 4. The organic field effect transistor according to claim 1, wherein the high dielectric constant insulating film has a thickness of 5 [mu] m or less. 低誘電率絶縁膜の膜厚が5nm以上であることを特徴とする請求項1〜4いずれかに記載の有機電界効果トランジスタ。 The organic field effect transistor according to any one of claims 1 to 4, wherein the low dielectric constant insulating film has a thickness of 5 nm or more. 低誘電率絶縁膜の膜厚が1μm以下であることを特徴とする請求項1〜5いずれかに記載の有機電界効果トランジスタ。


6. The organic field effect transistor according to claim 1, wherein the low dielectric constant insulating film has a thickness of 1 μm or less.


JP2004224313A 2003-08-06 2004-07-30 Organic fet Pending JP2005072569A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004224313A JP2005072569A (en) 2003-08-06 2004-07-30 Organic fet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003287666 2003-08-06
JP2004224313A JP2005072569A (en) 2003-08-06 2004-07-30 Organic fet

Publications (1)

Publication Number Publication Date
JP2005072569A true JP2005072569A (en) 2005-03-17

Family

ID=34425207

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004224313A Pending JP2005072569A (en) 2003-08-06 2004-07-30 Organic fet

Country Status (1)

Country Link
JP (1) JP2005072569A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005175386A (en) * 2003-12-15 2005-06-30 Asahi Kasei Corp Organic semiconductor device
JP2006269599A (en) * 2005-03-23 2006-10-05 Sony Corp Pattern forming method, method of manufacturing organic field effect transistor, and method of manufacturing flexible printed circuit board
JP2006351623A (en) * 2005-06-13 2006-12-28 Sony Corp Functional molecular element and its manufacturing method, functional molecular device
JP2007165824A (en) * 2005-12-15 2007-06-28 Lg Philips Lcd Co Ltd Thin film transistor array substrate, and manufacturing method thereof
WO2007097165A1 (en) * 2006-02-27 2007-08-30 Murata Manufacturing Co., Ltd. Field effect transistor
JP2008084979A (en) * 2006-09-26 2008-04-10 Canon Inc Device employing orientation film
JP2008258609A (en) * 2007-04-02 2008-10-23 Xerox Corp Process for manufacturing phase-separated dielectric structure
JP2008258610A (en) * 2007-04-02 2008-10-23 Xerox Corp Process of manufacturing phase-separated dielectric structure
JP2009182299A (en) * 2008-02-01 2009-08-13 Konica Minolta Holdings Inc Method of manufacturing organic thin-film transistor, and organic thin-film transistor
JP2009535838A (en) * 2006-05-04 2009-10-01 エルジー・ケム・リミテッド Composition for forming gate insulating film of organic thin film transistor and organic thin film transistor using the same
JP2009224689A (en) * 2008-03-18 2009-10-01 Sanyo Electric Co Ltd Organic transistor, and manufacturing method thereof
JP2010135793A (en) * 2008-12-05 2010-06-17 Xerox Corp Electronic device
JP2010141142A (en) * 2008-12-11 2010-06-24 Nippon Hoso Kyokai <Nhk> Thin film transistor and method of manufacturing the same, and display device
JP2011100972A (en) * 2009-11-03 2011-05-19 Internatl Business Mach Corp <Ibm> Utilization of organic buffer layer to fabricate high performance carbon nanoelectronic device
KR101204338B1 (en) * 2008-12-08 2012-11-26 한국전자통신연구원 Organic thin film transistor and method of forming the same
JP2012232435A (en) * 2011-04-28 2012-11-29 Kyocera Corp Dielectric film, and capacitor using the same
KR101225372B1 (en) 2005-12-29 2013-01-22 엘지디스플레이 주식회사 thin film transistor, fabricating method of the same, and flat panel display having the thin film transistor
JP2013070081A (en) * 2007-03-02 2013-04-18 Nec Corp Switching element and method for manufacturing the same
US8450724B2 (en) 2006-09-26 2013-05-28 Canon Kabushiki Kaisha Electrical device containing helical substituted polyacetylene
US20130299953A1 (en) * 2012-05-11 2013-11-14 Robert L. Hubbard Method for lower thermal budget multiple cures in semiconductor packaging
DE102014107850A1 (en) * 2014-06-04 2015-12-17 Technische Universität Chemnitz Electronic component with a dielectric and method for producing the electronic component

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003052841A1 (en) * 2001-12-19 2003-06-26 Avecia Limited Organic field effect transistor with an organic dielectric

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003052841A1 (en) * 2001-12-19 2003-06-26 Avecia Limited Organic field effect transistor with an organic dielectric

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005175386A (en) * 2003-12-15 2005-06-30 Asahi Kasei Corp Organic semiconductor device
US7723152B2 (en) 2005-03-23 2010-05-25 Sony Corporation Patterning method, method of manufacturing organic field effect transistor, and method of manufacturing flexible printed circuit board
JP2006269599A (en) * 2005-03-23 2006-10-05 Sony Corp Pattern forming method, method of manufacturing organic field effect transistor, and method of manufacturing flexible printed circuit board
US8941151B2 (en) 2005-03-23 2015-01-27 Sony Corporation Patterning method, method of manufacturing organic field effect transistor, and method of manufacturing flexible printed circuit board
US8277901B2 (en) 2005-03-23 2012-10-02 Sony Corporation Patterning method, method of manufacturing organic field effect transistor, and method of manufacturing flexible printed circuit board
US8277900B2 (en) 2005-03-23 2012-10-02 Sony Corporation Patterning method, method of manufacturing organic field effect transistor, and method of manufacturing flexible printed circuit board
JP2006351623A (en) * 2005-06-13 2006-12-28 Sony Corp Functional molecular element and its manufacturing method, functional molecular device
JP2007165824A (en) * 2005-12-15 2007-06-28 Lg Philips Lcd Co Ltd Thin film transistor array substrate, and manufacturing method thereof
KR101225372B1 (en) 2005-12-29 2013-01-22 엘지디스플레이 주식회사 thin film transistor, fabricating method of the same, and flat panel display having the thin film transistor
US7932177B2 (en) 2006-02-27 2011-04-26 Murata Manufacturing Co., Ltd. Field-effect transistor
JP5062435B2 (en) * 2006-02-27 2012-10-31 株式会社村田製作所 Field effect transistor
WO2007097165A1 (en) * 2006-02-27 2007-08-30 Murata Manufacturing Co., Ltd. Field effect transistor
JP2009535838A (en) * 2006-05-04 2009-10-01 エルジー・ケム・リミテッド Composition for forming gate insulating film of organic thin film transistor and organic thin film transistor using the same
US8450724B2 (en) 2006-09-26 2013-05-28 Canon Kabushiki Kaisha Electrical device containing helical substituted polyacetylene
JP2008084979A (en) * 2006-09-26 2008-04-10 Canon Inc Device employing orientation film
JP2013070081A (en) * 2007-03-02 2013-04-18 Nec Corp Switching element and method for manufacturing the same
JP2008258609A (en) * 2007-04-02 2008-10-23 Xerox Corp Process for manufacturing phase-separated dielectric structure
KR101451597B1 (en) * 2007-04-02 2014-10-16 제록스 코포레이션 Device with phase-separated dielectric structure
KR101409725B1 (en) 2007-04-02 2014-06-19 제록스 코포레이션 Phase-separated dielectric structure fabrication process
JP2008258610A (en) * 2007-04-02 2008-10-23 Xerox Corp Process of manufacturing phase-separated dielectric structure
JP2009182299A (en) * 2008-02-01 2009-08-13 Konica Minolta Holdings Inc Method of manufacturing organic thin-film transistor, and organic thin-film transistor
JP2009224689A (en) * 2008-03-18 2009-10-01 Sanyo Electric Co Ltd Organic transistor, and manufacturing method thereof
JP2010135793A (en) * 2008-12-05 2010-06-17 Xerox Corp Electronic device
KR101204338B1 (en) * 2008-12-08 2012-11-26 한국전자통신연구원 Organic thin film transistor and method of forming the same
JP2010141142A (en) * 2008-12-11 2010-06-24 Nippon Hoso Kyokai <Nhk> Thin film transistor and method of manufacturing the same, and display device
JP2011100972A (en) * 2009-11-03 2011-05-19 Internatl Business Mach Corp <Ibm> Utilization of organic buffer layer to fabricate high performance carbon nanoelectronic device
JP2012232435A (en) * 2011-04-28 2012-11-29 Kyocera Corp Dielectric film, and capacitor using the same
US20130299953A1 (en) * 2012-05-11 2013-11-14 Robert L. Hubbard Method for lower thermal budget multiple cures in semiconductor packaging
DE102014107850A1 (en) * 2014-06-04 2015-12-17 Technische Universität Chemnitz Electronic component with a dielectric and method for producing the electronic component

Similar Documents

Publication Publication Date Title
JP2005072569A (en) Organic fet
US7553706B2 (en) TFT fabrication process
KR101379616B1 (en) Organic Thin Film Transistor with improved Interface Characteristics and Method of Preparing the Same
JP5167569B2 (en) Method for manufacturing transistor
JP5913107B2 (en) Organic semiconductor material, organic semiconductor composition, organic thin film, field effect transistor, and manufacturing method thereof
JP2008535218A (en) Polymer gate dielectric for thin film transistors
KR101192615B1 (en) Field effect transistor
CA2549107A1 (en) Organic thin film transistors with multilayer electrodes
JP4867168B2 (en) Method for producing organic thin film transistor
JP2006295165A (en) Thin film transistor and thin film transistor manufacturing method
KR101462526B1 (en) Organic semiconductor meterial, field-effect transistor, and manufacturing method thereof
JP2007273594A (en) Field-effect transistor
CN116569668A (en) Organic thin film transistor
JP2008226959A (en) Organic field-effect transistor and manufacturing method therefor
JP2006032914A (en) Electronic element and its manufacturing method
KR102073763B1 (en) Organic insulating layer composition, method for forming organic insulating layrer, and organic thin film transistor including the organic insulating layer
JP2005322895A (en) Organic electronic-device and manufacturing method thereof
JP5023630B2 (en) Method for manufacturing organic semiconductor element
JP5025124B2 (en) ORGANIC SEMICONDUCTOR DEVICE, ITS MANUFACTURING METHOD, AND DISPLAY DEVICE
JP4961660B2 (en) Field effect transistor using copper porphyrin compound
JP2006303423A (en) Field effect transistor
JP2004282039A (en) Electronic device
JP2005101555A (en) Organic field-effect transistor
JP2005158765A (en) Field effect organic transistor and manufacturing method thereof
JP5630364B2 (en) Organic semiconductor device manufacturing method and organic semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070301

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101019