JP2005072497A - Method and apparatus for plasma processing - Google Patents

Method and apparatus for plasma processing Download PDF

Info

Publication number
JP2005072497A
JP2005072497A JP2003303610A JP2003303610A JP2005072497A JP 2005072497 A JP2005072497 A JP 2005072497A JP 2003303610 A JP2003303610 A JP 2003303610A JP 2003303610 A JP2003303610 A JP 2003303610A JP 2005072497 A JP2005072497 A JP 2005072497A
Authority
JP
Japan
Prior art keywords
plasma
gas
workpiece
electrodes
plasma processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003303610A
Other languages
Japanese (ja)
Other versions
JP4079056B2 (en
Inventor
Koji Sawada
康志 澤田
Noriyuki Taguchi
典幸 田口
Keiichi Yamazaki
圭一 山崎
Tetsuji Shibata
哲司 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2003303610A priority Critical patent/JP4079056B2/en
Publication of JP2005072497A publication Critical patent/JP2005072497A/en
Application granted granted Critical
Publication of JP4079056B2 publication Critical patent/JP4079056B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma processing method which has a high plasma processing capability. <P>SOLUTION: A plasma processing apparatus has a plurality of electrodes 1, 2 arranged to be opposed to each other and gas passages 36. When gas is introduced into the gas passages 36 and a voltage is applied between the opposing electrodes 1, 2, a plasma 3 is generated in the gas passages 36 under a pressure corresponding nearly to the atmospheric pressure. In the plasma processing method, the plasma 3 is blown out from the gas passages 36 to be supplied to the surface of a workpiece 4. After the plasma 3 is supplied to the surface of the workpiece 4, the surface of the workpiece 4 supplied with the plasma 3 is subjected to exposure of a gas 6 containing oxygen. Thereafter, the plasma 3 is again supplied to the surface of the workpiece 4 subjected to the exposure of the gas 6 containing oxygen. After the surface of the workpiece 4 is activated with the supply of the plasma 3 so that oxygen molecules tend to easily adsorb on the surface of the workpiece, the surface is exposed to the gas 6 containing oxygen and oxygen molecules can be adsorbed on the surface of the workpiece 4. Thereafter, the oxygen molecules adsorbed on the surface of the workpiece 4 can be activated with the plasma 3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、被処理物の表面に存在する有機物等の異物のクリーニング、レジストの剥離やエッチング、有機フィルムの密着性の改善、金属酸化物の還元、成膜、めっき前処理、コーティング前処理、各種材料・部品の表面改質などの表面処理に利用されるプラズマ処理方法及びプラズマ処理装置に関するものであり、特に、精密な接合が要求される電子部品の表面のクリーニングに好適に応用されるものである。   The present invention includes cleaning of foreign substances such as organic substances existing on the surface of the object to be processed, resist peeling and etching, improvement of organic film adhesion, metal oxide reduction, film formation, plating pretreatment, coating pretreatment, The present invention relates to a plasma processing method and a plasma processing apparatus used for surface treatment such as surface modification of various materials and parts, and particularly suitable for cleaning the surface of electronic parts that require precise bonding. It is.

従来より、対向配置された電極間にガスを導入すると共に上記電極間に電圧を印加することにより大気圧近傍の圧力下で放電を発生させてプラズマを生成し、このプラズマを電極間から吹き出して被処理物に供給することによって、被処理物にプラズマ処理を施すことが行われている。   Conventionally, by introducing a gas between electrodes arranged opposite to each other and applying a voltage between the electrodes, a discharge is generated under a pressure near atmospheric pressure to generate plasma, and the plasma is blown out between the electrodes. The plasma treatment is performed on the workpiece by supplying the workpiece.

上記のようなプラズマ処理方法において、電極間に導入されるガスとしては各種のものが提案されているが、例えば、放電の安定性やプラズマ処理能力や経済性等を考慮して窒素(N)単独あるいは窒素と酸素(O)の混合ガスを用いることが行われている(例えば、非特許文献1参照)。 In the plasma processing method as described above, various types of gas introduced between the electrodes have been proposed. For example, nitrogen (N 2) is considered in consideration of discharge stability, plasma processing capability, economy, and the like. ) Single or a mixed gas of nitrogen and oxygen (O 2 ) is used (see, for example, Non-Patent Document 1).

この非特許文献1には、大気圧下における吹き出し型プラズマ処理において窒素と酸素の混合ガスを用いる場合に、酸素濃度を3体積%以下にすると高い処理速度が得られることが記載されている。また、酸素濃度が3体積%以下の場合では酸素濃度が徐々に減少するほど処理性能が向上し、酸素濃度0%すなわち窒素単独で処理した場合に処理速度が最大になることが示されている。   This Non-Patent Document 1 describes that when a mixed gas of nitrogen and oxygen is used in a blow-out type plasma treatment under atmospheric pressure, a high treatment speed can be obtained when the oxygen concentration is 3% by volume or less. Further, it is shown that when the oxygen concentration is 3% by volume or less, the treatment performance is improved as the oxygen concentration is gradually decreased, and the treatment speed is maximized when the treatment is performed with the oxygen concentration of 0%, that is, nitrogen alone. .

このように窒素単独をプラズマ処理用のガスとして用いた場合は、非特許文献1に記載されているように、「プラズマで励起された窒素励起種が基板表面の空気(特に酸素)を間接励起することで、オゾンや酸素励起種を生成し、その反応種によって」被処理物の表面の洗浄や改質が行われると考えられる。   In this way, when nitrogen alone is used as a plasma processing gas, as described in Non-Patent Document 1, “nitrogen excited species excited by plasma indirectly excites air (especially oxygen) on the substrate surface. By doing so, it is considered that ozone and oxygen excited species are generated, and the surface of the object to be processed is cleaned or modified by the reactive species.

しかし、非特許文献1に記載されているような間接励起を用いたプラズマ処理方法では、被処理物の表面周辺の空気が不足して空気中の酸素の解離確率が低下することがあり、これにより、オゾンや酸素励起種が少なくなってプラズマ処理能力が低いという問題があった。
「大気圧プラズマによるLCD洗浄技術」積水化学工業(株)湯浅基和、第50回応用物理学関係連合講演会、講演予稿集(2003.3.神奈川大学)
However, in the plasma processing method using indirect excitation as described in Non-Patent Document 1, air near the surface of the object to be processed may be insufficient, and the dissociation probability of oxygen in the air may decrease. Therefore, there is a problem that ozone and oxygen excited species are reduced and the plasma processing capability is low.
"LCD cleaning technology using atmospheric pressure plasma" Sekisui Chemical Co., Ltd. Motokazu Yuasa, 50th Applied Physics Related Conference, Proceedings (2003. 3. Kanagawa University)

本発明は上記の点に鑑みてなされたものであり、プラズマ処理能力を高くすることができるプラズマ処理方法及びプラズマ処理装置を提供することを目的とするものである。   The present invention has been made in view of the above points, and an object of the present invention is to provide a plasma processing method and a plasma processing apparatus capable of increasing the plasma processing capability.

本発明の請求項1に係るプラズマ処理方法は、対向配置された複数の電極1、2及びガス流路36を有し、ガス流路36にガスを導入すると共に対向する電極1、2間に電圧を印加することにより大気圧近傍の圧力下でガス流路36内にプラズマ3を生成し、このプラズマ3をガス流路36から吹き出して被処理物4の表面に供給するプラズマ処理方法であって、被処理物4の表面にプラズマ3を供給した後、プラズマ3を供給した被処理物4の表面を酸素を含むガス6に曝露し、この後、酸素を含むガス6に曝露した被処理物4の表面に再びプラズマ3を供給することを特徴とするものである。   The plasma processing method according to claim 1 of the present invention includes a plurality of electrodes 1 and 2 and a gas flow path 36 arranged to face each other. In this plasma processing method, a voltage 3 is applied to generate plasma 3 in the gas flow path 36 under a pressure close to atmospheric pressure, and the plasma 3 is blown out of the gas flow path 36 and supplied to the surface of the workpiece 4. Then, after the plasma 3 is supplied to the surface of the object 4 to be processed, the surface of the object 4 to which the plasma 3 is supplied is exposed to the gas 6 containing oxygen, and then the object to be processed exposed to the gas 6 containing oxygen. The plasma 3 is again supplied to the surface of the object 4.

本発明によれば、プラズマ3の供給で被処理物4の表面を活性化して酸素分子が吸着しやすい状態にした後、酸素を含むガス6に暴露して被処理物4の表面に酸素分子を吸着させ、この後、酸素分子を吸着させた被処理物4の表面にプラズマ3をさらに供給することによって、被処理物4の表面に吸着した酸素分子をプラズマ3で活性化することができ、これにより、オゾンや酸素励起種が多くなってプラズマ処理能力を高くすることができるものである。   According to the present invention, the surface of the object to be processed 4 is activated by supplying the plasma 3 so that the oxygen molecules are easily adsorbed, and then exposed to the gas 6 containing oxygen to be exposed to the oxygen molecules on the surface of the object 4 to be processed. Then, the plasma 3 is further supplied to the surface of the object 4 to which the oxygen molecules are adsorbed, so that the oxygen molecules adsorbed on the surface of the object 4 can be activated by the plasma 3. As a result, the amount of ozone and oxygen-excited species increases, and the plasma processing capability can be increased.

本発明の請求項2に係るプラズマ処理方法は、対向配置された複数の電極1、2及びガス流路36を有し、ガス流路36にガスを導入すると共に対向する電極1、2間に電圧を印加することにより大気圧近傍の圧力下でガス流路36内にプラズマ3を生成し、このプラズマ3をガス流路36から吹き出して被処理物4の表面に供給するプラズマ処理方法であって、被処理物4の表面に酸素を含むガス6の雰囲気中で紫外線を照射した後、紫外線(UV)を照射した被処理物4の表面にプラズマ3を供給することを特徴とするものである。   The plasma processing method according to claim 2 of the present invention has a plurality of electrodes 1 and 2 and a gas flow path 36 arranged to face each other, introduces a gas into the gas flow path 36, and between the opposed electrodes 1 and 2 In this plasma processing method, a voltage 3 is applied to generate plasma 3 in the gas flow path 36 under a pressure close to atmospheric pressure, and the plasma 3 is blown out of the gas flow path 36 and supplied to the surface of the workpiece 4. Then, after the surface of the workpiece 4 is irradiated with ultraviolet rays in an atmosphere of a gas 6 containing oxygen, the plasma 3 is supplied to the surface of the workpiece 4 irradiated with ultraviolet rays (UV). is there.

本発明によれば、紫外線照射により被処理物4の表面を活性化して酸素分子が吸着しやすい状態にすると共に被処理物4の表面に酸素分子を吸着させることができ、この後、被処理物4の表面に吸着した酸素分子をプラズマ3で活性化することができ、これにより、オゾンや酸素励起種が多くなってプラズマ処理能力を高くすることができるものである。   According to the present invention, the surface of the object to be processed 4 is activated by irradiation with ultraviolet rays so that oxygen molecules can be easily adsorbed, and the oxygen molecules can be adsorbed on the surface of the object to be processed 4. Oxygen molecules adsorbed on the surface of the object 4 can be activated by the plasma 3, thereby increasing the number of ozone and oxygen excited species and increasing the plasma processing capability.

本発明の請求項3に係るプラズマ処理装置は、請求項1又は2に記載のプラズマ処理方法を用いてプラズマ処理を行うことを特徴とするものである。   A plasma processing apparatus according to claim 3 of the present invention is characterized in that plasma processing is performed using the plasma processing method according to claim 1 or 2.

本発明は、プラズマの供給で被処理物の表面を活性化して酸素分子が吸着しやすい状態にした後、酸素を含むガスに暴露して被処理物の表面に酸素分子を吸着させ、この後、酸素分子を吸着させた被処理物の表面にプラズマをさらに供給することによって、被処理物の表面に吸着した酸素分子をプラズマで活性化することができ、これにより、オゾンや酸素励起種が多くなってプラズマ処理能力を高くすることができるものである。   In the present invention, the surface of the object to be processed is activated by supplying plasma so that oxygen molecules are easily adsorbed, and then exposed to a gas containing oxygen to adsorb the oxygen molecules on the surface of the object to be processed. By further supplying plasma to the surface of the workpiece to which oxygen molecules are adsorbed, the oxygen molecules adsorbed on the surface of the workpiece can be activated by the plasma. This increases the plasma processing capability.

以下、本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

図1に本発明のプラズマ処理装置の一例を示す。このプラズマ処理装置は吹き出し式であって、電極支持筐体22に一対(二つ)の電極1、2を設けて形成されるプラズマ発生器21を備えたものである。   FIG. 1 shows an example of the plasma processing apparatus of the present invention. This plasma processing apparatus is a blow type, and includes a plasma generator 21 formed by providing a pair (two) of electrodes 1 and 2 on an electrode support housing 22.

電極1、2は銅、アルミニウム、真鍮、耐食性の高いステンレス鋼(SUS304など)、チタン、13クロム鋼、SUS410などの導電性の金属材料を用いて幅方向に長い略角棒状に形成されるものであって、その内部には冷却水を流通させるための流水路37が略全長に亘って設けられている。尚、図1において電極1、2の幅方向は紙面と直交する方向であって、本発明のプラズマ処理装置はこの幅方向と直交する方向に被処理物4を搬送しながらプラズマ処理を行うものである。   The electrodes 1 and 2 are formed in a substantially rectangular bar shape that is long in the width direction using a conductive metal material such as copper, aluminum, brass, stainless steel having high corrosion resistance (SUS304, etc.), titanium, 13 chromium steel, SUS410, etc. And the flowing water channel 37 for distribute | circulating a cooling water is provided in the inside over substantially full length. In FIG. 1, the width direction of the electrodes 1 and 2 is a direction orthogonal to the paper surface, and the plasma processing apparatus of the present invention performs plasma processing while conveying the workpiece 4 in the direction orthogonal to the width direction. It is.

また、電極1、2の表面にはアルミナ、チタニア、ジルコニアなどのセラミック材料の溶射法により誘電体被膜40が全面に亘って形成されている。また、誘電体被膜40には封孔処理を行うことが好ましい。封孔材料としてエポキシ系樹脂などの有機材料またはシリカなどの無機材料を用いることができる。このようなセラミック溶射被覆材料による誘電体被膜40として特に有効な材料はアルミナである。   A dielectric coating 40 is formed on the entire surface of the electrodes 1 and 2 by a thermal spraying method of a ceramic material such as alumina, titania or zirconia. The dielectric coating 40 is preferably subjected to a sealing treatment. As the sealing material, an organic material such as an epoxy resin or an inorganic material such as silica can be used. A particularly effective material for the dielectric coating 40 made of such a ceramic spray coating material is alumina.

また、誘電体被膜40を形成するにあたって、シリカ、チタニア、アルミナ、酸化スズ、ジルコニアなどを原料とした無機質材料の釉薬を原料としてホーローコーティングを行うこともできる。上記の溶射法やホーローコーティングの場合、誘電体被膜40の厚みは0.1〜3mm、より好ましくは0.3〜1.5mmに設定することができる。誘電体被膜40の厚みが0.1mmよりも薄いと誘電体被膜40が絶縁破壊する可能性があり、3mmよりも厚いと、対向する電極1、2間に電圧が印加され難くなり、その結果として放電が不安定になる恐れがある。   In forming the dielectric coating 40, enamel coating can also be performed using an inorganic material glaze made of silica, titania, alumina, tin oxide, zirconia, or the like as a raw material. In the case of the above-described thermal spraying method or enamel coating, the thickness of the dielectric coating 40 can be set to 0.1 to 3 mm, more preferably 0.3 to 1.5 mm. If the thickness of the dielectric coating 40 is less than 0.1 mm, the dielectric coating 40 may break down. If the thickness is more than 3 mm, it is difficult to apply a voltage between the opposing electrodes 1 and 2. As a result, the discharge may become unstable.

電極支持筐体22はステンレス鋼等の金属材料で電極1、2と同様に幅方向に長く形成されている。また、電極支持筐体22には上下に貫通するスリット状のガス流路36が形成されていると共にガス流路36を挟んで対向する電極支持筐体22の二つ内面には電極収容凹部27が設けられている。そして、各電極収容凹部27に上記の電極1、2を一つずつ収容するようにして電極支持筐体22に一対の電極1、2が設けられている。ここで、各電極1、2と電極支持筐体22との間には合成樹脂等で形成される絶縁性のスペーサ28が設けられており、これにより、電極1、2と電極支持筐体22との絶縁性が確保されている。また、電極支持筐体22に設けた一対の電極1、2はガス流路36を挟んで対向配置されるものであり、電極1、2間のガス流路36が放電空間5として形成されている。尚、本発明のプラズマ処理装置には上記一対の対向する電極1、2の間隔を電極1の幅方向の略全長に亘って一定に保つためのギャップ間距離調整機構を具備するのが好ましい。   The electrode support housing 22 is made of a metal material such as stainless steel and is formed long in the width direction like the electrodes 1 and 2. In addition, a slit-like gas channel 36 penetrating vertically is formed in the electrode support housing 22, and electrode housing recesses 27 are formed on two inner surfaces of the electrode support housing 22 facing each other with the gas channel 36 interposed therebetween. Is provided. The electrode support housing 22 is provided with a pair of electrodes 1 and 2 such that the electrodes 1 and 2 are accommodated one by one in each electrode accommodating recess 27. Here, an insulating spacer 28 formed of a synthetic resin or the like is provided between each of the electrodes 1 and 2 and the electrode support housing 22, whereby the electrodes 1 and 2 and the electrode support housing 22 are provided. Insulation is ensured. Further, the pair of electrodes 1 and 2 provided in the electrode support housing 22 are opposed to each other with the gas flow path 36 interposed therebetween, and the gas flow path 36 between the electrodes 1 and 2 is formed as the discharge space 5. Yes. The plasma processing apparatus of the present invention preferably includes an inter-gap distance adjusting mechanism for keeping the distance between the pair of opposed electrodes 1 and 2 constant over substantially the entire length of the electrode 1 in the width direction.

上記のように電極支持筐体22に設けられた電極1、2は被処理物4の搬送方向と平行方向(水平方向)に並べることにより、被処理物4の搬送方向において前後に対向配置されている。また、被処理物4は電極1、2の下側において図1に矢印で示す一方向に搬送されるものである。また、上記対向する電極1、2は所定の間隔の放電空間5を介して略平行に対向配置されるものであるが、電極1、2の間隔(電極1、2の対向面に設けた誘電体被膜40間の間隔)は、0.2〜3mmにするのが好ましい。対向する電極1、2の間隔(ギャップ間距離)が上記の範囲を逸脱すると、均一なグロー状の放電を安定して生成することが難しくなる恐れがある。   As described above, the electrodes 1 and 2 provided on the electrode support housing 22 are arranged opposite to each other in the transport direction of the workpiece 4 by arranging them in a direction parallel to the transport direction of the workpiece 4 (horizontal direction). ing. Further, the workpiece 4 is transported in one direction indicated by an arrow in FIG. The opposing electrodes 1 and 2 are arranged so as to face each other substantially in parallel via the discharge space 5 with a predetermined spacing. The spacing between the electrodes 1 and 2 (the dielectric provided on the facing surface of the electrodes 1 and 2). The distance between the body coatings 40 is preferably 0.2 to 3 mm. If the distance between the facing electrodes 1 and 2 (distance between gaps) deviates from the above range, it may be difficult to stably generate a uniform glow-like discharge.

このプラズマ処置装置には図2に示すように、電極1に昇圧トランス48を介して電源47が電気的に接続されている。また、対向する一対の電極1、2は中点接地されていて、両電極1、2とも接地に対して浮いた状態で電圧を印加されているのが好ましい。このために、被処理物4と電極1との電位差が小さくなってアークの発生を防止することができ、アークによる被処理物4の損傷を防ぐことができるものである。   In this plasma treatment apparatus, as shown in FIG. 2, a power source 47 is electrically connected to the electrode 1 via a step-up transformer 48. Further, it is preferable that the pair of electrodes 1 and 2 facing each other is grounded at the midpoint, and the voltage is applied to both the electrodes 1 and 2 while being floated with respect to the ground. For this reason, the potential difference between the object to be processed 4 and the electrode 1 can be reduced to prevent generation of an arc, and damage to the object to be processed 4 due to the arc can be prevented.

また、本発明のプラズマ処理装置は上記のように電極支持筐体22と電極1、2とで形成されるプラズマ発生器21を被処理物4の搬送方向と平行方向(水平方向)に隣接させて並べると共に隣接する電極支持筐体22の上面間に亘ってガスノズル23が設けられている。ガスノズル23は電極1、2の幅方向と略平行に長く形成されるものであって、ガスノズル23の下面にはスリット状の二つのノズル口35がガスノズル23の幅方向の略全長に亘って形成されている。このガスノズル23は、各ノズル口35を各電極支持筐体22のガス流路36の上側開口にそれぞれ位置合わせした状態で配設されている。   In the plasma processing apparatus of the present invention, as described above, the plasma generator 21 formed of the electrode support housing 22 and the electrodes 1 and 2 is adjacent to the direction (horizontal direction) parallel to the transport direction of the workpiece 4. A gas nozzle 23 is provided between the upper surfaces of the adjacent electrode support housings 22 arranged side by side. The gas nozzle 23 is formed long and substantially parallel to the width direction of the electrodes 1 and 2, and two slit-like nozzle ports 35 are formed on the lower surface of the gas nozzle 23 over substantially the entire length of the gas nozzle 23 in the width direction. Has been. The gas nozzles 23 are arranged in a state where the nozzle ports 35 are aligned with the upper openings of the gas flow paths 36 of the electrode support housings 22, respectively.

上記のように形成されるプラズマ処理装置を用いて、大気圧近傍の圧力下(93.3〜106.7kPa(700〜800Torr))で液晶パネルディスプレイ(LCD)用ガラス板などの平板状の被処理物4にプラズマ処理を施すにあたっては、次のようにして行う。まず、対向配置された一対の電極1、2の上方に設けたガスノズル23内にプラスマ生成用ガスを導入すると共にガスノズル23内でプラスマ生成用ガスを幅方向に流しながら徐々にノズル口35から吹き出すようにする。ここで、プラズマ生成用ガスはガスノズル23の幅方向の全長に亘って略均一に吹き出されるものである。   Using the plasma processing apparatus formed as described above, a flat plate-like object such as a glass plate for a liquid crystal panel display (LCD) under a pressure close to atmospheric pressure (93.3 to 106.7 kPa (700 to 800 Torr)). The plasma treatment is performed on the workpiece 4 as follows. First, a plasma generating gas is introduced into a gas nozzle 23 provided above a pair of electrodes 1 and 2 arranged opposite to each other, and the plasma generating gas is gradually blown out from the nozzle port 35 while flowing in the width direction in the gas nozzle 23. Like that. Here, the plasma generating gas is blown out substantially uniformly over the entire length of the gas nozzle 23 in the width direction.

本発明で用いるプラズマ生成用ガスとしては、特に限定しなくても放電を安定して発生させることができるものであればよく、希ガス類も使用できるが、特に、大気圧下で放電開始電圧10kV/cm以上のガスが好ましい。放電開始電圧10kV/cm以上のプラズマ生成用ガスとしては、窒素、酸素、水素、メタン、アンモニア、空気、水蒸気、各種有機モノマー、フッ素含有ガスなどの単独または混合ガスを例示できる。尚、本発明において、プラズマ生成用ガスの放電開始電圧は100kV/cm以下であることが好ましい。   The plasma generating gas used in the present invention is not particularly limited as long as it can stably generate discharge, and noble gases can be used. In particular, the discharge starting voltage is 10 kV / at atmospheric pressure. A gas of cm or more is preferable. Examples of the plasma generating gas having a discharge start voltage of 10 kV / cm or more include nitrogen, oxygen, hydrogen, methane, ammonia, air, water vapor, various organic monomers, fluorine-containing gas, and the like alone or as a mixed gas. In the present invention, the discharge start voltage of the plasma generating gas is preferably 100 kV / cm or less.

次に、ガスノズル23のノズル口35から吹き出されたプラズマ生成用ガスは、ガス流路36に導入されてガス流路36内を上流(上側)から下流(下側)へと流れた後、対向する一対の電極1、2の間の放電空間5に上側開口から導入される。そして、対向する一対の電極1、2の間に電源47で電圧を印加して誘電体バリア放電を発生させると共に対向する一対の電極1、2の間に導入されたプラズマ生成用ガス(分子)を対向する電極1、2間に印加された電界の作用により励起して活性種を生成するものであり、これにより、プラズマ(放電ガス)3が生成されるものである。   Next, the plasma generating gas blown out from the nozzle port 35 of the gas nozzle 23 is introduced into the gas flow path 36 and flows through the gas flow path 36 from the upstream (upper side) to the downstream (lower side). Is introduced into the discharge space 5 between the pair of electrodes 1 and 2 through the upper opening. A voltage is applied by a power supply 47 between a pair of opposed electrodes 1 and 2 to generate a dielectric barrier discharge, and a plasma generating gas (molecule) introduced between the pair of opposed electrodes 1 and 2 Is excited by the action of an electric field applied between the opposing electrodes 1 and 2 to generate active species, whereby plasma (discharge gas) 3 is generated.

本発明のプラズマ処理において、電源47により対向する一対の電極1、2間に周波数が30〜500kHzの連続交番波形の電圧を印加するのが好ましく、また、電界強度が50〜200kV/cmの電圧を印加するのが好ましい。上記の連続交番波形とは、パルス波形のように対向する一対の電極1、2間に電圧が印加されない休止区間が生じるものではなく、連続して対向する一対の電極1、2間に電圧が印加されるような交番波形であって、例えば、正弦波の波形にすることができる。また、電極1、2間にパルス波形電圧(パルス状の電圧波形)を印加することもできる。パルス波形電圧とは休止区間を設けて規則的に一定の形状の電圧を繰り返し印加するものであり、例えば、立ち上がり時間および立ち下がり時間を100μsec以下、繰り返し周波数を0.5〜1000kHz、電極1、2間に印加される電界強度を0.5〜200kV/cmの波形を印加することで安定的に処理を行うことができる。また、対向する電極1、2の間隙(放電空間5)に供給されるガスの流速が5〜20m/秒となるようにするのが好ましい。このようなガスの流速を調整するにあたっては、対向する電極1、2の間隔やガスの流量などを調整するようにする。   In the plasma treatment of the present invention, it is preferable to apply a voltage having a continuous alternating waveform with a frequency of 30 to 500 kHz between a pair of electrodes 1 and 2 facing each other by a power supply 47 and a voltage with an electric field strength of 50 to 200 kV / cm. Is preferably applied. The above-mentioned continuous alternating waveform does not cause a pause period in which no voltage is applied between a pair of electrodes 1 and 2 facing each other as in a pulse waveform, but a voltage is applied between a pair of electrodes 1 and 2 facing each other continuously. For example, a sinusoidal waveform can be used. A pulse waveform voltage (pulse voltage waveform) can also be applied between the electrodes 1 and 2. The pulse waveform voltage is a voltage in which a constant period of voltage is repeatedly applied with a pause period. For example, the rising time and the falling time are 100 μsec or less, the repetition frequency is 0.5 to 1000 kHz, the electrode 1, By applying a waveform having an electric field strength of 0.5 to 200 kV / cm applied between the two, stable processing can be performed. Moreover, it is preferable that the flow rate of the gas supplied to the gap (discharge space 5) between the opposing electrodes 1 and 2 is 5 to 20 m / second. In adjusting the gas flow velocity, the distance between the electrodes 1 and 2 facing each other, the gas flow rate, and the like are adjusted.

上記のようにして生成されたプラズマ3は放電空間5の下流側開口から電極1、2の幅方向の全長に亘ってプラズマジェットとしてカーテン状に吹き出されるものであるが、このプラズマ処理装置では二基のプラズマ発生器21からそれぞれプラズマ3が吹き出されるものである。また、二基のプラズマ発生器21から吹き出されるプラズマ3は被処理物4の搬送方向と平行な方向に並んで対向しているが、これらプラズマ3、3の間には酸素を含むガス6として空気が存在していることになる。   The plasma 3 generated as described above is blown out as a plasma jet from the downstream opening of the discharge space 5 over the entire length in the width direction of the electrodes 1 and 2. In this plasma processing apparatus, Plasmas 3 are blown out from the two plasma generators 21, respectively. Further, the plasma 3 blown out from the two plasma generators 21 is opposed in parallel in the direction parallel to the conveying direction of the workpiece 4, and a gas 6 containing oxygen is interposed between the plasmas 3 and 3. As air will be present.

そして、上記のようにして二基のプラズマ発生器21でプラズマ3を発生させて吹き出すようにした後、被処理物4を二基のプラズマ発生器21の電極1、2の下流側(下側)にXYテーブルなどの搬送手段50で搬送し、被処理物4の表面にプラズマ3を吹き付けて供給(曝露)することによって、被処理物4のプラズマ処理を行うことができるものであるが、本発明では、被処理物4の搬送方向において上流側にある一方のプラズマ発生器21から被処理物4の表面にプラズマ3を吹き付けて供給した後、酸素を含むガス6である空気にプラスマ3を供給した被処理物4の表面を曝露し、この後、被処理物4の搬送方向において下流側にある他方のプラズマ発生器21から酸素を含むガス6に曝露した被処理物4の表面に再度プラズマ3を吹き付けて供給することによって、プラズマ処理されるものである。   After the plasma 3 is generated and blown out by the two plasma generators 21 as described above, the workpiece 4 is disposed downstream (lower side) of the electrodes 1 and 2 of the two plasma generators 21. ) Is transported by a transport means 50 such as an XY table, and plasma treatment of the workpiece 4 can be performed by spraying and supplying (exposing) the plasma 3 to the surface of the workpiece 4. In the present invention, the plasma 3 is blown and supplied from the one plasma generator 21 on the upstream side in the transport direction of the workpiece 4 to the surface of the workpiece 4, and then the plasma 3 is added to the air 6 as the oxygen-containing gas 6. Is exposed to the surface of the workpiece 4 exposed to the gas 6 containing oxygen from the other plasma generator 21 on the downstream side in the transport direction of the workpiece 4. Plasma 3 again By supplying by spraying, it is those plasma treatment.

このように酸素を含むガス6に曝露する工程を挟んで前後に被処理物4の表面にプラズマ3を供給する工程を設けてプラズマ処理を行うことによって、例えば、図4に示すような酸素を含むガスに暴露させないでプラズマ処理を行う場合に比べて、処理能力を向上させることができる。つまり、最初のプラズマ3の供給で被処理物4の表面を活性化して酸素分子(または原子状酸素)が吸着しやすい状態にした後、酸素を含むガス6に暴露する工程で被処理物4の表面に酸素分子を吸着させ、この後、酸素分子を吸着させた被処理物4の表面にプラズマ3を供給することによって、被処理物4の表面に吸着した酸素分子を活性化することができ、これにより、処理能力を向上させることができるものである。   In this way, by performing the plasma treatment by providing the step of supplying the plasma 3 to the surface of the workpiece 4 before and after the step of exposing to the gas 6 containing oxygen, for example, oxygen as shown in FIG. Compared with the case where the plasma treatment is performed without exposure to the contained gas, the treatment capability can be improved. That is, the surface of the object to be processed 4 is activated by supplying the plasma 3 for the first time so that oxygen molecules (or atomic oxygen) are easily adsorbed and then exposed to the gas 6 containing oxygen. The oxygen molecules adsorbed on the surface of the object to be processed 4 can be activated by adsorbing oxygen molecules on the surface of the substrate and then supplying the plasma 3 to the surface of the object 4 to which the oxygen molecules are adsorbed. Thus, the processing capability can be improved.

この実施の形態において、最初にプラスマ3を被処理物4の表面に供給した後、すぐに連続して被処理物4の表面を酸素を含むガス6に曝露させるものであり、これにより、被処理物4の表面の活性化状態が低下する前に酸素分子を吸着させることができ、また、被処理物4の表面を酸素を含むガス6に曝露させた後、すぐに連続して二回目のプラスマ3を被処理物4の表面に供給するものであり、これにより、被処理物4の表面に吸着した酸素分子が離脱する前にプラスマ3を供給することができ、いずれの場合もプラスマ処理能力の低下を防止することができる。また、被処理物4に対するプラスマ3の供給時間や酸素を含むガス6に対する被処理物4の表面の曝露時間などは被処理物4の種類やプラズマ処理の内容などによって適宜設定可能である。   In this embodiment, after the plasma 3 is first supplied to the surface of the object 4 to be processed, the surface of the object 4 is continuously exposed to the gas 6 containing oxygen. Oxygen molecules can be adsorbed before the activation state of the surface of the object to be treated 4 is lowered, and the surface of the object to be treated 4 is exposed to the gas 6 containing oxygen immediately after the second time. The plasma 3 is supplied to the surface of the object 4 to be processed, so that the plasma 3 can be supplied before the oxygen molecules adsorbed on the surface of the object 4 to be desorbed. A reduction in processing capacity can be prevented. Further, the supply time of the plasma 3 to the workpiece 4 and the exposure time of the surface of the workpiece 4 to the gas 6 containing oxygen can be appropriately set depending on the type of the workpiece 4 and the content of the plasma treatment.

図3に他の実施の形態を示す。このプラズマ処理装置は、上記と同様のプラズマ発生器21と紫外線照射装置30とを備えて形成されるものである。プラズマ発生器21は一基であって、その上側には上記と同様のガスノズル23が設けられている。また、プラズマ発生器21の上方は排気カバー20で覆われている。紫外線照射装置30としてはエキシマUVランプ、低圧水銀ランプ、高圧水銀ランプなどを例示することができる。この紫外線照射装置30は被処理物4の搬送方向においてプラズマ発生器21よりも上流側に配置されている。その他の構成は上記の実施の形態と同様である。   FIG. 3 shows another embodiment. This plasma processing apparatus is formed by including the plasma generator 21 and the ultraviolet irradiation apparatus 30 similar to those described above. One plasma generator 21 is provided, and a gas nozzle 23 similar to the above is provided on the upper side thereof. The upper part of the plasma generator 21 is covered with an exhaust cover 20. Examples of the ultraviolet irradiation device 30 include an excimer UV lamp, a low-pressure mercury lamp, and a high-pressure mercury lamp. The ultraviolet irradiation device 30 is arranged upstream of the plasma generator 21 in the conveying direction of the workpiece 4. Other configurations are the same as those in the above embodiment.

このように形成されるプラズマ処理装置を用いて、大気圧近傍の圧力下で被処理物4にプラズマ処理を施すにあたっては、まず、紫外線照射装置30の下方を通過するように上記と同様の搬送手段50で被処理物4を搬送する。これにより、酸素を含むガス6である空気の雰囲気中で被処理物4の表面に紫外線照射装置30から紫外線が照射される。この時に照射される紫外線の強さは被処理物4の種類や紫外線の波長等によって異なるが、例えば、4〜100mW/cmにすることができる。そして、この紫外線照射により被処理物4の表面を活性化して酸素分子が吸着しやすい状態にすると共に被処理物4の表面に酸素分子を吸着させるものである。 In performing plasma processing on the workpiece 4 under a pressure in the vicinity of atmospheric pressure using the plasma processing apparatus formed in this way, first, the same transport as described above so as to pass under the ultraviolet irradiation apparatus 30. The processing object 4 is conveyed by the means 50. Thereby, ultraviolet rays are irradiated from the ultraviolet irradiation device 30 onto the surface of the workpiece 4 in an atmosphere of air, which is a gas 6 containing oxygen. The intensity of the ultraviolet rays irradiated at this time varies depending on the type of the object 4 to be processed, the wavelength of the ultraviolet rays, and the like, but can be set to 4 to 100 mW / cm 2 , for example. Then, the surface of the object to be processed 4 is activated by this ultraviolet irradiation so that the oxygen molecules are easily adsorbed, and the oxygen molecules are adsorbed on the surface of the object 4 to be processed.

このようにして被処理物4の表面に酸素分子を吸着させた後、被処理物4をプラズマ発生器21の電極1、2の下流側(下側)に搬送手段50で搬送し、プラズマ発生器21の放電空間5で発生させたプラズマ3を、酸素分子を吸着させた被処理物4の表面に供給することによって、被処理物4のプラズマ処理を行うことができる。尚、プラズマ3の発生条件や供給方法は上記と同様である。   After the oxygen molecules are adsorbed on the surface of the workpiece 4 in this way, the workpiece 4 is transported to the downstream side (lower side) of the electrodes 1 and 2 of the plasma generator 21 by the transport means 50 to generate plasma. By supplying the plasma 3 generated in the discharge space 5 of the vessel 21 to the surface of the workpiece 4 on which oxygen molecules are adsorbed, the plasma treatment of the workpiece 4 can be performed. The generation conditions and supply method of the plasma 3 are the same as described above.

そして、この実施の形態では、被処理物4の表面にプラズマ3を供給する前に、酸素を含むガス6の雰囲気中で被処理物4の表面に紫外線を照射するので、被処理物4の表面に酸素分子を吸着させた後、被処理物4の表面にプラズマ3を供給するすることができ、酸素分子を吸着させた被処理物4の表面にプラズマ3を供給することによって、被処理物4の表面に吸着した酸素分子を活性化して処理能力を向上させることができるものである。   In this embodiment, before the plasma 3 is supplied to the surface of the workpiece 4, the surface of the workpiece 4 is irradiated with ultraviolet rays in an atmosphere of a gas 6 containing oxygen. After the oxygen molecules are adsorbed on the surface, the plasma 3 can be supplied to the surface of the object 4 to be processed. By supplying the plasma 3 to the surface of the object 4 on which the oxygen molecules are adsorbed, the object to be processed is supplied. The oxygen molecules adsorbed on the surface of the product 4 can be activated to improve the processing capacity.

この実施の形態においては、被処理物4の表面に紫外線を供給した後、すぐに連続してプラスマ3を被処理物4の表面に供給するものであり、これにより、被処理物4の表面に吸着した酸素分子が離脱する前にプラスマ3を供給することができ、プラスマ処理能力の低下を防止することができる。   In this embodiment, after supplying ultraviolet light to the surface of the object 4 to be processed, the plasma 3 is continuously supplied to the surface of the object 4 to be processed. The plasma 3 can be supplied before the oxygen molecules adsorbed on the detachment can be prevented, and the plasma processing capacity can be prevented from being lowered.

上記のいずれの実施の形態においても、酸素を含むガス6として空気を用いたが、これに限らず、例えば、酸素ガスと窒素ガスの混合ガスや酸素ガスと希ガスとの混合ガスなどを用いることができる。   In any of the above-described embodiments, air is used as the gas 6 containing oxygen. However, the present invention is not limited to this. For example, a mixed gas of oxygen gas and nitrogen gas or a mixed gas of oxygen gas and rare gas is used. be able to.

また、本発明において、酸素を含むガス6にはさらに水蒸気、CO、Oなどが含有されているのが好ましい。特に、水蒸気の場合は酸素分子に加えて、被処理物4の表面への水分子やヒドロキシ基(OH基)の吸着が考えられ、これにより、処理効果を高めることができる。水蒸気を含む場合のガス(空気)の湿度としては、ガス温度が25℃〜80℃で相対湿度40%〜80%、より好ましくはガス温度が30℃〜60℃、相対湿度50%〜70%である。相対湿度が40%未満だと処理効果の向上が少なくなる恐れがあり、80%を超えると逆にプラズマが失活し、処理効果が低下し、また被処理物4への結露という問題も生じる恐れがある。さらに、ガス温度が25℃未満だと処理効果の向上が少なくなる恐れがあり、80℃を超えると被処理物4への熱ダメージが生じる恐れがある。 In the present invention, it is preferable that the gas 6 containing oxygen further contains water vapor, CO 2 , O 3 or the like. In particular, in the case of water vapor, in addition to oxygen molecules, water molecules and hydroxy groups (OH groups) can be adsorbed on the surface of the object to be processed 4, thereby enhancing the treatment effect. As the humidity of the gas (air) when water vapor is included, the gas temperature is 25 ° C. to 80 ° C. and the relative humidity is 40% to 80%, more preferably the gas temperature is 30 ° C. to 60 ° C., and the relative humidity is 50% to 70%. It is. If the relative humidity is less than 40%, the improvement of the treatment effect may be reduced. If the relative humidity exceeds 80%, the plasma is deactivated, the treatment effect is lowered, and the problem of dew condensation on the workpiece 4 also occurs. There is a fear. Furthermore, if the gas temperature is less than 25 ° C., the improvement of the treatment effect may be reduced, and if it exceeds 80 ° C., thermal damage to the workpiece 4 may occur.

また、上記のいずれの実施の形態においても、被処理物4を略水平に搬送する場合について説明したが、これに限らず、本発明は被処理物4をいずれの方向(例えば鉛直方向)に搬送する場合についても適用することができるものである。また、本発明においては、電極の個数は二つ以上であれば必要に応じて任意に設定することができる。また、電圧の印加条件も上記のものには限定されず、例えば、印加電圧の周波数や波形形状、電界強度、ガス流速等は必要に応じて任意に設定することができる。   In any of the above-described embodiments, the case where the workpiece 4 is transported substantially horizontally has been described. However, the present invention is not limited to this, and the present invention is directed to any direction (for example, the vertical direction). The present invention can also be applied to the case of conveyance. In the present invention, the number of electrodes can be arbitrarily set as necessary as long as it is two or more. Further, the voltage application conditions are not limited to those described above. For example, the frequency, waveform shape, electric field strength, gas flow rate, and the like of the applied voltage can be arbitrarily set as necessary.

以下本発明を実施例によって具体的に説明する。   Hereinafter, the present invention will be described specifically by way of examples.

(実施例1)
図1に示すプラズマ処理装置を形成した。電極1、2は長さ1100mmのステンレス鋼製であり、電極1、2の表面に溶射法を用いて1mmの厚みでアルミナの層を形成して誘電体被膜40とした。また、電極1、2の内部には冷却水を循環した。このように形成される一対の電極1、2を未放電時において1mmの間隔を設けて対向配置した。また、未放電時においてガス流路36に上流側よりプラズマ生成用ガスをガス流速が10m/秒となるように流した。プラズマ生成用ガスとしては窒素を用いた。また、一回目と二回目のプラズマ3の供給の間に被処理物4の表面が曝露される酸素を含むガス6としては乾燥空気(温度25℃、相対湿度30%)を用いた。また、一対の電極1、2間に印加される電圧は周波数80kHzで電界強度100kV/cmで、その波形は正弦波の形状とした。このような条件で大気圧下でプラズマ3を生成し、電極1、2の下流側より5mm離れた位置で、被処理物4として液晶用ガラス板を8m毎分のスピードで通過させることによってプラズマ処理を行った。
(Example 1)
The plasma processing apparatus shown in FIG. 1 was formed. The electrodes 1 and 2 are made of stainless steel having a length of 1100 mm, and an alumina layer having a thickness of 1 mm is formed on the surfaces of the electrodes 1 and 2 by a thermal spraying method to form a dielectric coating 40. Further, cooling water was circulated inside the electrodes 1 and 2. The pair of electrodes 1 and 2 formed in this way were arranged to face each other with an interval of 1 mm when not discharged. Further, when not discharged, the plasma generating gas was flowed from the upstream side to the gas flow path 36 so that the gas flow rate became 10 m / sec. Nitrogen was used as the plasma generating gas. Further, dry air (temperature: 25 ° C., relative humidity: 30%) was used as the gas 6 containing oxygen to which the surface of the workpiece 4 is exposed during the first and second supply of the plasma 3. The voltage applied between the pair of electrodes 1 and 2 was a frequency of 80 kHz, an electric field strength of 100 kV / cm, and the waveform was a sine wave. Plasma 3 is generated under atmospheric pressure under such conditions, and plasma is passed by passing through a glass plate for liquid crystal as processing object 4 at a speed of 8 m / min at a position 5 mm away from the downstream side of electrodes 1 and 2. Processed.

この結果、未処理時に約50°であった被処理物4の水の接触角が約5°となった。また、被処理物4としてアクリル樹脂で構成される液晶用カラーフィルターの表面を処理した場合、未処理では50°であった水の接触角が15°まで改質された。   As a result, the water contact angle of the workpiece 4 that was about 50 ° when not treated was about 5 °. Moreover, when the surface of the color filter for liquid crystal comprised with an acrylic resin as the to-be-processed object 4 was processed, the contact angle of water which was 50 degrees in the untreated was modified to 15 degrees.

(実施例2)
図3に示すプラズマ処理装置を形成した。プラズマ発生器21としては実施例1と同様のものを一基だけ用いた。また、紫外線照射装置30としては低圧水銀ランプ(波長253.7nm)を用いた。この紫外線照射装置30は被処理物4の搬送方向においてプラズマ発生器21よりも100mm上流側に設置し、また、被処理物4との距離が5mmとなるように搬送手段50の上方に設置した。そして、プラズマ3を供給する前に、酸素を含むガス6である空気中で紫外線照射装置30を点灯させて被処理物4の表面に紫外線を照射した。
(Example 2)
The plasma processing apparatus shown in FIG. 3 was formed. As the plasma generator 21, only the same one as in Example 1 was used. Further, as the ultraviolet irradiation device 30, a low-pressure mercury lamp (wavelength 253.7 nm) was used. This ultraviolet irradiation device 30 is installed 100 mm upstream from the plasma generator 21 in the conveyance direction of the workpiece 4 and is arranged above the conveyance means 50 so that the distance to the workpiece 4 is 5 mm. . And before supplying the plasma 3, the ultraviolet irradiation device 30 was turned on in the air which is the gas 6 containing oxygen, and the surface of the workpiece 4 was irradiated with ultraviolet rays.

また、未放電時においてガス流路36に上流側よりプラズマ生成用ガスをガス流速が20m/秒となるように流した。また、一対の電極1、2間に印加される電圧は周波数300kHzで電界強度100kV/cmで、その波形は正弦波の形状とした。このような条件で大気圧下でプラズマ3を生成し、電極1、2の下流側より5mm離れた位置で、被処理物4を3m毎分のスピードで通過させることによってプラズマ処理を行った。   Further, when not discharged, the plasma generating gas was flowed from the upstream side into the gas flow path 36 so that the gas flow rate was 20 m / sec. The voltage applied between the pair of electrodes 1 and 2 was a frequency of 300 kHz, an electric field strength of 100 kV / cm, and the waveform was a sine wave. Plasma 3 was generated under atmospheric pressure under such conditions, and plasma treatment was performed by passing the workpiece 4 at a speed of 3 m per minute at a position 5 mm away from the downstream side of the electrodes 1 and 2.

これら以外は実施例1と同様にした結果、被処理物4が実施例1と同様の液晶用ガラス板の場合、プラズマ処理後の水の接触角が5°となり、被処理物4が実施例1と同様の液晶用カラーフィルターの場合、プラズマ処理後の水の接触角が20°となった。   As a result of performing the same as in Example 1 except for these, when the object to be processed 4 is the same glass plate for liquid crystal as in Example 1, the contact angle of water after the plasma treatment is 5 °, and the object to be processed 4 is in Example. In the case of the liquid crystal color filter similar to 1, the water contact angle after the plasma treatment was 20 °.

(実施例3)
実施例1において、乾燥空気の代わりに湿潤空気(40℃、相対湿度60%)の雰囲気中で行った。その他の条件は実施例1と同様であった。
(Example 3)
In Example 1, it was performed in an atmosphere of wet air (40 ° C., relative humidity 60%) instead of dry air. Other conditions were the same as in Example 1.

このような条件で大気圧下でプラズマ3を生成し、電極1、2の下流側より5mm離れた位置で、被処理物4として液晶用ガラス板を10m毎分のスピードで通過させることによってプラズマ処理を行った。   Plasma 3 is generated under atmospheric pressure under such conditions, and plasma is passed by passing a glass plate for liquid crystal as a processing object 4 at a speed of 10 m / min at a position 5 mm away from the downstream side of electrodes 1 and 2. Processed.

この結果、未処理時に約50°であった被処理物4の水の接触角が約4°となった。また、被処理物4としてアクリル樹脂で構成される液晶用カラーフィルターの表面を処理した場合、未処理では50°であった水の接触角が10°まで改質された。   As a result, the water contact angle of the workpiece 4 that was about 50 ° when not treated was about 4 °. Moreover, when the surface of the color filter for liquid crystals comprised with an acrylic resin as the to-be-processed object 4 was processed, the contact angle of water which was 50 degrees in the untreated was modified to 10 degrees.

(比較例)
図4に示すプラズマ処理装置を用いた。このプラズマ処理装置は実施例2において紫外線照射装置30を除いて形成されるものである。そして、紫外線を照射しないで被処理物4を実施例2と同条件でプラズマ処理を行った結果、被処理物4が液晶用ガラス板の場合、プラズマ処理後の水の接触角が15°となり、被処理物4が液晶用カラーフィルターの場合、プラズマ処理後の水の接触角が35°となり、いずれの場合も比較例は実施例1、2に比べて、プラズマ処理能力が低くなった。
(Comparative example)
The plasma processing apparatus shown in FIG. 4 was used. This plasma processing apparatus is formed except for the ultraviolet irradiation apparatus 30 in the second embodiment. Then, as a result of performing the plasma treatment on the workpiece 4 under the same conditions as in Example 2 without irradiating ultraviolet rays, when the workpiece 4 is a glass plate for liquid crystal, the contact angle of water after the plasma treatment is 15 °. When the object to be processed 4 is a color filter for liquid crystal, the contact angle of water after the plasma treatment was 35 °, and in any case, the plasma treatment ability of the comparative example was lower than that of Examples 1 and 2.

本発明の実施の形態の一例を示す概略の断面図である。It is a schematic sectional drawing which shows an example of embodiment of this invention. 同上の回路の一例を示す概略図である。It is the schematic which shows an example of a circuit same as the above. 同上の他の実施の形態を示す概略の断面図である。It is a schematic sectional drawing which shows other embodiment same as the above. 比較例を示す概略の断面図である。It is general | schematic sectional drawing which shows a comparative example.

符号の説明Explanation of symbols

1 電極
2 電極
3 プラズマ
4 被処理物
6 酸素を含むガス
36 ガス流路
DESCRIPTION OF SYMBOLS 1 Electrode 2 Electrode 3 Plasma 4 To-be-processed object 6 Gas containing oxygen 36 Gas flow path

Claims (3)

対向配置された複数の電極及びガス流路を有し、ガス流路にガスを導入すると共に対向する電極間に電圧を印加することにより大気圧近傍の圧力下でガス流路内にプラズマを生成し、このプラズマをガス流路から吹き出して被処理物の表面に供給するプラズマ処理方法であって、被処理物の表面にプラズマを供給した後、空気又は酸素を含むガスにプラズマを供給した被処理物の表面を曝露し、この後、空気又は酸素を含むガスに曝露した被処理物の表面に再びプラズマを供給することを特徴とするプラズマ処理方法。   It has a plurality of electrodes and gas channels arranged opposite to each other, and introduces gas into the gas channel and generates a plasma in the gas channel under a pressure near atmospheric pressure by applying a voltage between the opposing electrodes. A plasma processing method for blowing out the plasma from the gas flow path and supplying the plasma to the surface of the object to be processed, wherein the plasma is supplied to the surface of the object to be processed and then the plasma is supplied to the gas containing air or oxygen. A plasma processing method, comprising: exposing a surface of an object to be processed; and thereafter supplying plasma again to the surface of the object to be processed exposed to a gas containing air or oxygen. 対向配置された複数の電極及びガス流路を有し、ガス流路にガスを導入すると共に対向する電極間に電圧を印加することにより大気圧近傍の圧力下でガス流路内にプラズマを生成し、このプラズマをガス流路から吹き出して被処理物の表面に供給するプラズマ処理方法であって、被処理物の表面に空気又は酸素を含むガスの雰囲気中で紫外線を照射した後、紫外線を照射した被処理物の表面にプラズマを供給することを特徴とするプラズマ処理方法。   It has a plurality of electrodes and gas channels arranged opposite to each other, and introduces gas into the gas channel and generates a plasma in the gas channel under a pressure near atmospheric pressure by applying a voltage between the opposing electrodes. A plasma processing method for blowing out the plasma from the gas flow path and supplying the plasma to the surface of the object to be processed, wherein the surface of the object to be processed is irradiated with ultraviolet rays in a gas atmosphere containing air or oxygen, and then the ultraviolet rays are irradiated. A plasma processing method comprising supplying plasma to a surface of an object to be irradiated. 請求項1又は2に記載のプラズマ処理方法を用いてプラズマ処理を行うことを特徴とするプラズマ処理装置。   A plasma processing apparatus that performs plasma processing using the plasma processing method according to claim 1.
JP2003303610A 2003-08-27 2003-08-27 Plasma processing method and plasma processing apparatus Expired - Fee Related JP4079056B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003303610A JP4079056B2 (en) 2003-08-27 2003-08-27 Plasma processing method and plasma processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003303610A JP4079056B2 (en) 2003-08-27 2003-08-27 Plasma processing method and plasma processing apparatus

Publications (2)

Publication Number Publication Date
JP2005072497A true JP2005072497A (en) 2005-03-17
JP4079056B2 JP4079056B2 (en) 2008-04-23

Family

ID=34407556

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003303610A Expired - Fee Related JP4079056B2 (en) 2003-08-27 2003-08-27 Plasma processing method and plasma processing apparatus

Country Status (1)

Country Link
JP (1) JP4079056B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066058A (en) * 2006-09-06 2008-03-21 Noritsu Koki Co Ltd Plasma generation nozzle, plasma generating device, and work treatment device using it
JP2008066059A (en) * 2006-09-06 2008-03-21 Noritsu Koki Co Ltd Plasma generating device and work treatment device using it
JP2019533910A (en) * 2016-11-11 2019-11-21 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Removal method for high aspect ratio structures

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008066058A (en) * 2006-09-06 2008-03-21 Noritsu Koki Co Ltd Plasma generation nozzle, plasma generating device, and work treatment device using it
JP2008066059A (en) * 2006-09-06 2008-03-21 Noritsu Koki Co Ltd Plasma generating device and work treatment device using it
JP2019533910A (en) * 2016-11-11 2019-11-21 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Removal method for high aspect ratio structures

Also Published As

Publication number Publication date
JP4079056B2 (en) 2008-04-23

Similar Documents

Publication Publication Date Title
JPWO2003071839A1 (en) Plasma processing apparatus and plasma processing method
US20090133714A1 (en) Method for surface treating substrate and plasma treatment apparatus
JP2003303814A (en) Plasma treatment apparatus and method therefor
JP2006302625A (en) Plasma treatment device and method
JP2005123159A (en) Plasma processing apparatus, method for manufacturing reaction vessel for plasma generation, and plasma processing method
US6576573B2 (en) Atmospheric pressure plasma enhanced abatement of semiconductor process effluent species
RU2004127923A (en) METHOD OF PLASMA CLEANING OF SURFACE OF MATERIAL COATED FROM ORGANIC MATTER AND INSTALLATION FOR ITS IMPLEMENTATION
JP2004103423A (en) Plasma treatment method and plasma treatment device
JP3960190B2 (en) Plasma processing apparatus and plasma processing method
US20200306802A1 (en) Surface treatment method and surface treatment apparatus
JP3975957B2 (en) Plasma processing apparatus and plasma processing method
US20090152097A1 (en) Plasma generating device and plasma generating method
JP2010137212A (en) Apparatus for generating plasma
JP4379376B2 (en) Plasma processing apparatus and plasma processing method
JP2005026171A (en) Plasma treatment method and plasma treatment device
JP4079056B2 (en) Plasma processing method and plasma processing apparatus
JP2004311116A (en) Plasma processing method and plasma processing device
JP2009152081A (en) Plasma processing device and plasma processing method
JP3508789B2 (en) Substrate surface treatment method
JP2014514155A (en) Device for processing gases using surface plasma
JP2003027210A (en) Surface treatment method and method for manufacturing display device
JP4420116B2 (en) Plasma processing apparatus and plasma processing method
JP2008262781A (en) Atmosphere control device
JP3984514B2 (en) Plasma processing apparatus and plasma processing method
JP4026538B2 (en) Plasma processing method and plasma processing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050803

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070719

A131 Notification of reasons for refusal

Effective date: 20070724

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20070925

Free format text: JAPANESE INTERMEDIATE CODE: A523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080128

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110215

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20120215

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20120215

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120215

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20130215

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20130215

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130215

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees