JP2005072356A - Insulated gate type electric field effect semiconductor device and its manufacturing method - Google Patents

Insulated gate type electric field effect semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2005072356A
JP2005072356A JP2003301527A JP2003301527A JP2005072356A JP 2005072356 A JP2005072356 A JP 2005072356A JP 2003301527 A JP2003301527 A JP 2003301527A JP 2003301527 A JP2003301527 A JP 2003301527A JP 2005072356 A JP2005072356 A JP 2005072356A
Authority
JP
Japan
Prior art keywords
trench
region
conductivity type
channel layer
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003301527A
Other languages
Japanese (ja)
Inventor
Hiroyasu Ishida
裕康 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003301527A priority Critical patent/JP2005072356A/en
Publication of JP2005072356A publication Critical patent/JP2005072356A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a capacity, to realize speed-up, to reduce a capacity much more, to realize the reduction of ON-resistance, and to improve a performance index by a method wherein a power MOSFET for use in a high-speed DC/DC converter or the like is constituted of a stripe structure. <P>SOLUTION: The insulated gate type electric field effect semiconductor device is provided with: a one conduction type drain region provided on a semiconductor substrate; a reverse conduction type channel layer provided on the surface of the drain region; a trench provided on the channel layer and having a depth not arriving at the drain region; an insulating film provided on the inner wall of the trench; a gate electrode consisting of a side wall provided on the side wall of the trench; a one-conduction type impurity region provided on the bottom of the trench; an interlayer insulating film for covering at least the gate electrode, a one-conduction type source region provided on the surface of the channel layer so as to be neighbored to the trench; and a reverse-conduction type body contact region provided on the surface of the channel layer between the neighboring source regions. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は絶縁ゲート型電界効果半導体装置およびその製造方法に係り、特に容量とオン抵抗を低減することにより性能指数を向上できる絶縁ゲート型電界効果半導体装置およびその製造方法に関する。   The present invention relates to an insulated gate field effect semiconductor device and a method for manufacturing the same, and more particularly to an insulated gate field effect semiconductor device capable of improving a figure of merit by reducing capacitance and on-resistance and a method for manufacturing the same.

ストライプ構造のトレンチにゲート電極を埋設した絶縁ゲート型電界効果半導体装置では、ソース領域もトレンチに沿って、均一な幅に形成されている(例えば特許文献1参照。)。   In an insulated gate field effect semiconductor device in which a gate electrode is embedded in a stripe-structured trench, the source region is also formed with a uniform width along the trench (see, for example, Patent Document 1).

図8および図9を参照して、従来の絶縁ゲート型電界効果半導体装置としてトレンチ型パワーMOSFETを例に示す。   Referring to FIGS. 8 and 9, a trench type power MOSFET is shown as an example of a conventional insulated gate field effect semiconductor device.

図8に従来のMOSFETの断面構造をnチャネル型を例に示す。n型のシリコン半導体基板21の上にn型のエピタキシャル層からなるドレイン領域22を設け、その表面にp型のチャネル層23を設ける。トレンチは、チャネル層23を貫通し、ドレイン領域22まで到達しており、トレンチ27の内壁はゲート酸化膜31で被膜される。ゲート電極はトレンチ27に充填されたポリシリコンよりなり、トレンチ27に隣接したチャネル層23表面にはn+型のソース領域35が形成され、隣り合う2つのセルのソース領域35間のチャネル層23表面にはp+型のボディコンタクト領域34が設けられる。ゲート電極33にゲート電圧が印加されると、チャネル層23にはソース領域35からトレンチ27に沿ってチャネル領域CHが形成される。ゲート電極33上は層間絶縁膜36で覆い、ソース領域35およびボディコンタクト領域34にコンタクトするソース電極37を設ける(例えば特許文献1参照)。 FIG. 8 shows an example of a cross-sectional structure of a conventional MOSFET using an n-channel type. A drain region 22 made of an n type epitaxial layer is provided on an n + type silicon semiconductor substrate 21, and a p type channel layer 23 is provided on the surface thereof. The trench penetrates the channel layer 23 and reaches the drain region 22, and the inner wall of the trench 27 is coated with a gate oxide film 31. The gate electrode is made of polysilicon filled in the trench 27, an n + type source region 35 is formed on the surface of the channel layer 23 adjacent to the trench 27, and the surface of the channel layer 23 between the source regions 35 of two adjacent cells. Is provided with a p + type body contact region 34. When a gate voltage is applied to the gate electrode 33, a channel region CH is formed in the channel layer 23 from the source region 35 along the trench 27. The gate electrode 33 is covered with an interlayer insulating film 36, and a source electrode 37 that contacts the source region 35 and the body contact region 34 is provided (see, for example, Patent Document 1).

図9を参照して、上記のMOSFETの製造方法を説明する。   With reference to FIG. 9, a method of manufacturing the MOSFET will be described.

まず、n型シリコン半導体基板21にn型のエピタキシャル層を積層してドレイン領域22を形成し、表面にボロンを注入した後、拡散してp型のチャネル層23を形成する。更に、全面にCVD法によりNSG(Non−doped Silicate Glass)のCVD酸化膜25を生成し、CVD酸化膜25をドライエッチングして部分的に除去し、チャネル領域23が露出したトレンチ開口部26を形成する(図9(A))。 First, an n type epitaxial layer is stacked on an n + type silicon semiconductor substrate 21 to form a drain region 22, boron is implanted into the surface, and then diffused to form a p type channel layer 23. Further, an NSG (Non-doped Silicate Glass) CVD oxide film 25 is formed on the entire surface by CVD, and the CVD oxide film 25 is partially removed by dry etching to form a trench opening 26 where the channel region 23 is exposed. It is formed (FIG. 9A).

次に、CVD酸化膜25をマスクとしてトレンチ開口部26のシリコン半導体基板をドライエッチングし、チャネル層23を貫通してドレイン領域22まで達する深さのトレンチ27を形成する。その後ダミー酸化をしてドライエッチングの際のエッチングダメージを除去し、その後、全面を熱酸化してゲート酸化膜31を形成する(図9(B))。   Next, the silicon semiconductor substrate in the trench opening 26 is dry-etched using the CVD oxide film 25 as a mask to form a trench 27 having a depth reaching the drain region 22 through the channel layer 23. Thereafter, dummy oxidation is performed to remove etching damage during dry etching, and then the entire surface is thermally oxidized to form a gate oxide film 31 (FIG. 9B).

更にトレンチ27に埋設されるゲート電極33を形成する。すなわち、全面にノンドープのポリシリコンを堆積後、不純物を導入するかまたは不純物を導入したポリシリコン層を堆積して、ポリシリコン層をマスクなしでドライエッチし、トレンチ27に埋設したゲート電極33を形成する(図9(C))。   Further, a gate electrode 33 embedded in the trench 27 is formed. That is, after depositing non-doped polysilicon on the entire surface, an impurity is introduced or a polysilicon layer into which an impurity is introduced is deposited, and the polysilicon layer is dry-etched without a mask to form the gate electrode 33 embedded in the trench 27. It is formed (FIG. 9C).

その後レジストPRによるマスクにより選択的にボロンをイオン注入し、p型のボディ領域34を形成した後、レジストPRを除去する。また、新たなレジストPRで予定のソース領域35およびゲート電極33を露出する様にマスクして、砒素をドーズ量5.0×1015でイオン注入し、n型のソース領域35をトレンチ27に隣接するチャネル層23表面に形成した後、レジストPRを除去する(図9(D))。 Thereafter, boron is selectively ion-implanted with a mask of resist PR to form a p + -type body region 34, and then the resist PR is removed. Further, masking is performed so that the planned source region 35 and the gate electrode 33 are exposed with a new resist PR, and arsenic is ion-implanted with a dose amount of 5.0 × 10 15 , and the n + -type source region 35 is formed in the trench 27. Then, the resist PR is removed (FIG. 9D).

その後、全面にBPSG(Boron Phosphorus Silicate Glass)層をCVD法により付着して、層間絶縁膜36を形成する。その後、レジスト膜をマスクにして少なくともゲート電極33上に層間絶縁膜36を残す。その後アルミニウムをスパッタ装置で全面に付着して、ソース領域35およびボディ領域34にコンタクトするソース電極37を形成して、図8に示す最終構造を得る。
米国特許第6060747号明細書 FIG.1
Thereafter, a BPSG (Boron Phosphorus Silicate Glass) layer is deposited on the entire surface by a CVD method to form an interlayer insulating film 36. Thereafter, the interlayer insulating film 36 is left at least on the gate electrode 33 using the resist film as a mask. Thereafter, aluminum is deposited on the entire surface by a sputtering apparatus to form a source electrode 37 in contact with the source region 35 and the body region 34 to obtain the final structure shown in FIG.
US Pat. No. 6,060,747, FIG. 1

図10は、上記のMOSFETの一部の平面図を示す。なお、ソース電極および層間絶縁膜は省略してある。例えばチップサイズの大きいDC−DCコンバータ用途などのMOSFETではトレンチ27およびゲート電極33が図の如くストライプ状に設けられている。この構造は、トレンチを格子状に設けた構造と比較して単位セル面積あたりのゲート酸化膜31の面積が低減できるため、ゲート−ドレイン間の寄生容量を低減できる。つまりチップサイズが大きくてもスイッチング時に電荷をためず、スイッチングスピードが向上できるので、一般的にチップサイズが大きいスイッチング素子に対して採用されるものである。   FIG. 10 shows a plan view of a part of the MOSFET. Note that the source electrode and the interlayer insulating film are omitted. For example, in a MOSFET for use in a DC-DC converter having a large chip size, the trench 27 and the gate electrode 33 are provided in stripes as shown in the figure. In this structure, the area of the gate oxide film 31 per unit cell area can be reduced as compared with the structure in which the trenches are provided in a lattice shape, and thus the parasitic capacitance between the gate and the drain can be reduced. That is, even if the chip size is large, charges are not accumulated during switching, and the switching speed can be improved. Therefore, it is generally used for switching elements having a large chip size.

しかし、高速のDC−DCコンバータ用途の場合、性能指数向上が必要である。性能指数は装置のオン抵抗と容量の積であるので、容量のみならずオン抵抗の低減も望まれている。   However, for high-speed DC-DC converter applications, it is necessary to improve the figure of merit. Since the figure of merit is the product of the on-resistance and the capacity of the device, it is desired to reduce not only the capacity but also the on-resistance.

ゲート酸化膜31の面積を低減し、ゲート−ドレイン間の寄生容量を低減するためには、トレンチ27深さを浅くすることも考えられる。しかし、トレンチ27を浅くすることはチャネル層23も浅くすることになる。特に高耐圧が要求される装置では、耐圧はドレイン領域であるエピタキシャル層22の厚みおよびその不純物濃度に依存するため、チャネル層23が浅過ぎると耐圧が劣化してしまう問題がある。   In order to reduce the area of the gate oxide film 31 and reduce the parasitic capacitance between the gate and the drain, it is conceivable to reduce the depth of the trench 27. However, making the trench 27 shallower also makes the channel layer 23 shallower. In particular, in a device that requires a high breakdown voltage, the breakdown voltage depends on the thickness of the epitaxial layer 22 that is the drain region and its impurity concentration, so that the breakdown voltage deteriorates if the channel layer 23 is too shallow.

本発明はかかる課題に鑑みてなされ、第1に、半導体基板に設けた一導電型のドレイン領域と、前記ドレイン領域表面に設けた逆導電型のチャネル層と、前記チャネル層に設けられ前記ドレイン領域まで達しない深さのトレンチと、前記トレンチ内壁に設けた絶縁膜と、前記トレンチ側壁に設けたサイドウォールからなるゲート電極と、前記トレンチ底部に設けた一導電型不純物領域と、前記ゲート電極を少なくとも覆う層間絶縁膜と、前記トレンチに隣接して前記チャネル層表面に設けた一導電型のソース領域と、隣り合う前記ソース領域間の前記チャネル層表面に設けた逆導電型のボディコンタクト領域とを具備することにより解決するものである。   The present invention has been made in view of such a problem. First, a drain region of one conductivity type provided in a semiconductor substrate, a channel layer of opposite conductivity type provided on the surface of the drain region, and the drain provided in the channel layer. A trench not deep enough to reach the region; an insulating film provided on the inner wall of the trench; a gate electrode comprising a sidewall provided on the trench side wall; a one-conductivity type impurity region provided on the bottom of the trench; and the gate electrode An inter-layer insulating film covering at least the gate electrode, a source region of one conductivity type provided on the surface of the channel layer adjacent to the trench, and a body contact region of opposite conductivity type provided on the surface of the channel layer between the adjacent source regions To solve the problem.

また、前記一導電型不純物領域は一部が前記ドレイン領域に達することを特徴とするものである。   The one-conductivity type impurity region partially reaches the drain region.

また、前記一導電型不純物領域の幅は、前記ゲート電極の開口部の幅よりも広いことを特徴とするものである。   The width of the one conductivity type impurity region is wider than the width of the opening of the gate electrode.

また、前記一導電型不純物領域は、前記ソース領域と同程度の不純物濃度を有することを特徴とするものである。   Further, the one conductivity type impurity region has an impurity concentration comparable to that of the source region.

また、前記一導電型不純物領域は、前記ソース領域より低濃度で、前記ドレイン領域よりも高濃度の不純物濃度を有することを特徴とするものである。   The one-conductivity type impurity region has a lower concentration than the source region and a higher impurity concentration than the drain region.

第2に、半導体基板上に一導電型のドレイン領域を形成し、該ドレイン領域表面に逆導電型のチャネル層を形成する工程と、前記チャネル層に前記ドレイン領域に達しないトレンチを形成し、該トレンチ内壁に薄い絶縁膜を形成する工程と、前記トレンチ側壁にサイドウォール形状のゲート電極を形成する工程と、前記トレンチ底部に一導電型不純物領域を形成し、前記トレンチに隣接する前記チャネル層表面に一導電型のソース領域を形成する工程と、隣り合う前記ソース領域間の前記チャネル層表面に逆導電型のボディコンタクト領域を形成する工程と、前記ゲート電極表面を少なくとも覆う層間絶縁膜を形成する工程とを具備することにより解決するものである。   Second, forming a drain region of one conductivity type on a semiconductor substrate, forming a channel layer of reverse conductivity type on the surface of the drain region, forming a trench that does not reach the drain region in the channel layer, Forming a thin insulating film on the inner wall of the trench; forming a sidewall-shaped gate electrode on the sidewall of the trench; forming a one-conductivity type impurity region at a bottom of the trench; and the channel layer adjacent to the trench A step of forming a source region of one conductivity type on the surface, a step of forming a body contact region of opposite conductivity type on the surface of the channel layer between the adjacent source regions, and an interlayer insulating film covering at least the surface of the gate electrode This is solved by including the forming step.

また、前記一導電型不純物領域は、前記ゲート電極をマスクとして不純物を注入して形成することを特徴とするものである。   The one conductivity type impurity region may be formed by implanting impurities using the gate electrode as a mask.

また、前記ソース領域と前記一導電型不純物領域を同一工程で形成することを特徴とするものである。   Further, the source region and the one-conductivity type impurity region are formed in the same step.

また、前記一導電型不純物領域を形成した後、前記ソース領域を形成することを特徴とするものである。   Further, the source region is formed after the one-conductivity type impurity region is formed.

また、前記一導電型不純物領域は前記ドレイン領域に達するように形成されることを特徴とするものである。   The one conductivity type impurity region is formed to reach the drain region.

本発明によれば、以下の効果が得られる。第1に、トレンチを浅く形成できるのでトレンチ側面でゲート電極に接するゲート酸化膜の面積を小さくできる。トレンチ構造のMOSFETではソース電極がボディコンタクト領域を介してチャネル層ともコンタクトしており、チャネルとゲート電極間の容量を低減することでゲート−ソース間容量Cgsを低減できる。またゲート電極がサイドウォール形状であるため、トレンチ底部でゲート酸化膜に接するゲート電極の面積を低減でき、ゲート−ドレイン間容量Cgdを低減することもできる。すなわち、CgsおよびCgdを低減できるので、トランジスタのスイッチング速度を向上させることができる。   According to the present invention, the following effects can be obtained. First, since the trench can be formed shallow, the area of the gate oxide film in contact with the gate electrode on the side surface of the trench can be reduced. In the MOSFET having the trench structure, the source electrode is also in contact with the channel layer through the body contact region, and the gate-source capacitance Cgs can be reduced by reducing the capacitance between the channel and the gate electrode. Since the gate electrode has a sidewall shape, the area of the gate electrode in contact with the gate oxide film at the bottom of the trench can be reduced, and the gate-drain capacitance Cgd can be reduced. That is, since Cgs and Cgd can be reduced, the switching speed of the transistor can be improved.

第2に、トレンチに沿って形成されるチャネルの長さを低減することができるので、オン抵抗のチャネル抵抗成分を低減することができる。これにより、容量およびオン抵抗が共に低減し、性能指数が大幅に向上する。   Second, since the length of the channel formed along the trench can be reduced, the channel resistance component of the on-resistance can be reduced. Thereby, both the capacity and the on-resistance are reduced, and the figure of merit is greatly improved.

第3に、従来構造と異なり、チャネル層を貫通するトレンチを形成する必要がない。トレンチ底部の一導電型不純物領域をドレイン領域に達するように設けることでチャネルが形成されるので、深いチャネル層の形成も可能である。すなわち、深いチャネル層で耐圧を確保しつつ、浅いトレンチで容量およびオン抵抗を低減することができる。   Third, unlike the conventional structure, there is no need to form a trench penetrating the channel layer. Since the channel is formed by providing the one conductivity type impurity region at the bottom of the trench so as to reach the drain region, a deep channel layer can also be formed. That is, it is possible to reduce the capacitance and the on-resistance with a shallow trench while ensuring a breakdown voltage with a deep channel layer.

また、本発明の製造方法によれば、n型(n+型)不純物領域をソース領域と同一工程にて形成できるため、製造工程を増加させることなく、容量およびオン抵抗を低減する絶縁ゲート型半導体装置の製造方法を提供できる。   In addition, according to the manufacturing method of the present invention, an n-type (n + -type) impurity region can be formed in the same process as the source region, so that an insulated gate semiconductor that reduces capacitance and on-resistance without increasing the manufacturing process A device manufacturing method can be provided.

本発明の実施の形態を、図1から図7を用いてnチャネル型のトレンチ構造のMOSFETを例に詳細に説明する。   An embodiment of the present invention will be described in detail with reference to FIGS. 1 to 7 by taking an n-channel type MOSFET having a trench structure as an example.

図1は、本発明のMOSFETを示す断面図である。本発明のMOSFETは、ドレイン領域2と、チャネル層3と、トレンチ4と、ゲート酸化膜5と、ゲート電極7と、一導電型不純物領域8と、ソース領域9と、ボディコンタクト領域10と、層間絶縁膜11と、ソース電極12と、ドレイン電極13とから構成される。   FIG. 1 is a cross-sectional view showing a MOSFET of the present invention. The MOSFET of the present invention includes a drain region 2, a channel layer 3, a trench 4, a gate oxide film 5, a gate electrode 7, a one conductivity type impurity region 8, a source region 9, a body contact region 10, It is composed of an interlayer insulating film 11, a source electrode 12, and a drain electrode 13.

型のシリコン半導体基板1の上にn型のエピタキシャル層からなるドレイン領域2を設け、その表面にp型の不純物を拡散してチャネル層3を設ける。 A drain region 2 made of an n type epitaxial layer is provided on an n + type silicon semiconductor substrate 1, and a channel layer 3 is provided on the surface by diffusing p type impurities.

トレンチ4は、チャネル層3のドレイン領域2まで達しない深さに設けられ、すなわちチャネル層3を貫通しない。また、図示は省略するが、平面形状においては図10と同様に複数のストライプ状に設けられる。トレンチ4内壁には、ゲート酸化膜5が駆動電圧に応じて数百Å程度に設けられる。   The trench 4 is provided at a depth that does not reach the drain region 2 of the channel layer 3, that is, does not penetrate the channel layer 3. Although not shown, the planar shape is provided in a plurality of stripes as in FIG. On the inner wall of the trench 4, a gate oxide film 5 is provided on the order of several hundreds of squares depending on the driving voltage.

トレンチ4側壁にはポリシリコンでサイドウォールを形成し、これをゲート電極7とする。サイドウォール形状であるのでトレンチ4底部の一部は露出し、ゲート電極7の開口部OPが形成される。   A side wall is formed of polysilicon on the side wall of the trench 4 and serves as a gate electrode 7. Because of the sidewall shape, a part of the bottom of the trench 4 is exposed, and an opening OP of the gate electrode 7 is formed.

n型不純物領域8は、開口部OP直下の、トレンチ4とドレイン領域2間に設けられ、一部はドレイン領域2に達している。ドレイン領域2よりも不純物濃度が高く且つソース領域9と同等かそれ以下の、例えば、2×1014cm−3程度の不純物濃度を有する。また、n型不純物領域8は、開口部OPよりも広く設けられる。さらに、図示は省略するがトレンチ4底部からトレンチ4側壁まで覆って設けられてもよい。 The n-type impurity region 8 is provided between the trench 4 and the drain region 2 immediately below the opening OP, and part of the n-type impurity region 8 reaches the drain region 2. The impurity concentration is higher than that of the drain region 2 and equal to or lower than that of the source region 9, for example, about 2 × 10 14 cm −3. The n-type impurity region 8 is provided wider than the opening OP. Furthermore, although illustration is omitted, it may be provided so as to cover from the bottom of the trench 4 to the side wall of the trench 4.

ソース領域9は、トレンチ4に隣接したチャネル層3表面に設けられたn+型領域であり、ボディコンタクト領域10は、隣り合うソース領域9間のチャネル層3表面に設けられたp+型領域である。   Source region 9 is an n + type region provided on the surface of channel layer 3 adjacent to trench 4, and body contact region 10 is a p + type region provided on the surface of channel layer 3 between adjacent source regions 9. .

層間絶縁膜11は、開口部OPおよびトレンチ4内部に埋設された絶縁膜であり、ゲート電極7上を覆って設けられる。基板表面にはソース領域9およびボディコンタクト領域10にコンタクトするソース電極12が設けられ、基板裏面には金属蒸着によりドレイン電極13が設けられる。   The interlayer insulating film 11 is an insulating film embedded in the opening OP and the trench 4 and is provided so as to cover the gate electrode 7. A source electrode 12 that contacts the source region 9 and the body contact region 10 is provided on the substrate surface, and a drain electrode 13 is provided on the back surface of the substrate by metal vapor deposition.

図1(B)には、トレンチ4付近の拡大図を示す。図の如く、本実施形態ではチャネル層3よりも浅いトレンチ4底部にn型不純物領域8が設けられ、n型不純物領域8がドレイン領域2に達している。また、n型不純物領域8の端部は、ゲート絶縁膜5を介してゲート電極7の一部と重畳して形成される。これにより、ゲート電極7にゲート電圧が印加されると、ソース領域9からn型不純物領域8のチャネル層3に、トレンチ4に沿って破線のごとくチャネルCHが形成される。   FIG. 1B shows an enlarged view of the vicinity of the trench 4. As shown in the figure, in this embodiment, an n-type impurity region 8 is provided at the bottom of the trench 4 shallower than the channel layer 3, and the n-type impurity region 8 reaches the drain region 2. Further, the end portion of the n-type impurity region 8 is formed so as to overlap with a part of the gate electrode 7 with the gate insulating film 5 interposed therebetween. Thereby, when a gate voltage is applied to the gate electrode 7, a channel CH is formed from the source region 9 to the channel layer 3 in the n-type impurity region 8 along the trench 4 as indicated by a broken line.

チャネル層3の深さおよびトレンチ4の幅を従来構造(図8)と同じと仮定すると、本実施形態ではトレンチ4が浅い分、チャネルCHの長さを低減できる。すなわち、MOSFETのオン抵抗のチャネル抵抗成分を低減できる。   Assuming that the depth of the channel layer 3 and the width of the trench 4 are the same as those of the conventional structure (FIG. 8), in this embodiment, the length of the channel CH can be reduced because the trench 4 is shallow. That is, the channel resistance component of the on-resistance of the MOSFET can be reduced.

また、トレンチ4を浅くすることで、ゲート−ソース間容量Cgsも低減できる。図1(A)の如くソース電極12はボディコンタクト領域10を介してチャネル層3ともコンタクトしているので、ゲート−ソース間容量Cgsは、チャネルCHとゲート電極7間の容量として考えられる。つまり、チャネルCHの長さが短くなることで、ゲート−ソース間容量Cgsを低減できる。更に、トレンチ4の底部で発生するゲート−ドレイン間容量Cgdも、ゲート電極7の開口部OP部分の容量が無くなるため、低減することができる。   Further, by making the trench 4 shallow, the gate-source capacitance Cgs can also be reduced. Since the source electrode 12 is also in contact with the channel layer 3 through the body contact region 10 as shown in FIG. 1A, the gate-source capacitance Cgs can be considered as the capacitance between the channel CH and the gate electrode 7. That is, the gate-source capacitance Cgs can be reduced by reducing the length of the channel CH. Further, the gate-drain capacitance Cgd generated at the bottom of the trench 4 can be reduced because the capacitance of the opening OP portion of the gate electrode 7 is eliminated.

上述の如く、DC−DCコンバータ用途などでは高速スイッチングが要求され、トレンチ4をストライプ構造にすることにより容量を低減しているが、本実施形態によれば更に容量を低減することができる。   As described above, high-speed switching is required for applications such as a DC-DC converter, and the capacitance is reduced by forming the trench 4 in a stripe structure. However, according to the present embodiment, the capacitance can be further reduced.

ここで、トレンチ4について説明する。本実施形態では、トレンチ4底部に設けたn型不純物領域8をドレイン領域2とコンタクトさせる必要がある。n型不純物領域8は、後に詳述するが、ゲート電極7である幅(厚み)Wgのサイドウォールをマスクにして、トレンチ4底部にイオン注入した後、拡散形成する領域である。   Here, the trench 4 will be described. In the present embodiment, the n-type impurity region 8 provided at the bottom of the trench 4 needs to be in contact with the drain region 2. As will be described in detail later, the n-type impurity region 8 is a region to be diffused after ion implantation is performed on the bottom of the trench 4 using a side wall having a width (thickness) Wg as the gate electrode 7 as a mask.

シリコン基板では(100)面を基板表面とした場合に、結晶軸、すなわちトレンチ側面から7°(図1(B)α)傾けた方向からイオン注入する場合が最もチャネリングを防止できることが知られている。すなわち、ゲート電極7の開口部OPはトレンチ深さd=ゲート電極幅Wg/tan7°の条件を満たすように設ければよい。   It is known that in the case of a silicon substrate, when the (100) plane is used as the substrate surface, channeling is most prevented when ions are implanted from a direction inclined by 7 ° (FIG. 1 (B) α) from the crystal axis, that is, the side surface of the trench. Yes. That is, the opening OP of the gate electrode 7 may be provided so as to satisfy the condition of trench depth d = gate electrode width Wg / tan 7 °.

さらに、トレンチ4深さは、チャネル層3の深さよりも浅く形成する。例えばトレンチ4底部とチャネル層3との離間距離が、ソース領域9の深さよりも狭くなるように設ける。これは後述するが、n型不純物領域8は、ソース領域9と同時に形成してもよいからである(なお、この場合、不純物濃度はソース領域9と同程度となる)。   Further, the depth of the trench 4 is formed shallower than the depth of the channel layer 3. For example, the distance between the bottom of the trench 4 and the channel layer 3 is provided to be narrower than the depth of the source region 9. As will be described later, the n-type impurity region 8 may be formed simultaneously with the source region 9 (in this case, the impurity concentration is approximately the same as that of the source region 9).

また、n型不純物領域8はイオン注入の際の加速電圧を大きくすることでその深さを深くできる。トレンチ4深さおよびn型不純物領域8の深さは、素子としての特性や加速電圧の限界等を考慮して、n型不純物領域8がチャネル層3に到達できるように設ける。   The n-type impurity region 8 can be deepened by increasing the acceleration voltage during ion implantation. The depth of the trench 4 and the depth of the n-type impurity region 8 are provided so that the n-type impurity region 8 can reach the channel layer 3 in consideration of the characteristics as an element and the limit of the acceleration voltage.

上記の如く、本実施形態によればゲート−ソース間容量Cgsおよびゲート−ドレイン間容量Cgdを低減し、更にオン抵抗のチャネル抵抗成分を低減できるので、トランジスタの性能指数向上に大きく寄与できる。また、トレンチ4を浅くしても、チャネル層3は従来程度あるいはそれ以上の深さを確保できるため、高耐圧の設計が可能となる利点を有する。   As described above, according to the present embodiment, the gate-source capacitance Cgs and the gate-drain capacitance Cgd can be reduced, and the channel resistance component of the on-resistance can be further reduced, which can greatly contribute to the improvement of the performance index of the transistor. Further, even if the trench 4 is shallow, the channel layer 3 can secure a depth of the conventional level or more, and therefore has an advantage that a high withstand voltage design is possible.

次に、図2から図6を参照して、図1に示すMOSFETの製造方法を説明する。   Next, a method of manufacturing the MOSFET shown in FIG. 1 will be described with reference to FIGS.

MOSFETは、半導体基板上に一導電型のドレイン領域を形成し、該ドレイン領域表面に逆導電型のチャネル層を形成する工程と、前記チャネル層に前記ドレイン領域に達しないトレンチを形成し、該トレンチ内壁に薄い絶縁膜を形成する工程と、前記トレンチ側壁にサイドウォール形状にゲート電極を形成する工程と、前記ゲート電極の開口部となる前記トレンチ底部に一導電型不純物領域を形成し、前記トレンチに隣接する前記チャネル層表面に一導電型のソース領域を形成する工程と、隣り合う前記ソース領域間の前記チャネル層表面に逆導電型のボディコンタクト領域を形成する工程と、前記ゲート電極表面を少なくとも覆う層間絶縁膜を形成する工程とから構成される。   The MOSFET forms a drain region of one conductivity type on a semiconductor substrate, forms a channel layer of a reverse conductivity type on the surface of the drain region, forms a trench that does not reach the drain region in the channel layer, Forming a thin insulating film on the inner wall of the trench; forming a gate electrode in a sidewall shape on the sidewall of the trench; forming a one-conductivity type impurity region at the bottom of the trench to be an opening of the gate electrode; Forming a source region of one conductivity type on the surface of the channel layer adjacent to the trench; forming a body contact region of opposite conductivity type on the surface of the channel layer between the adjacent source regions; and surface of the gate electrode Forming an interlayer insulating film that at least covers the substrate.

第1工程(図2参照):半導体基板上に一導電型のドレイン領域を形成し、ドレイン領域表面に逆導電型のチャネル層を形成する工程。   First step (see FIG. 2): A step of forming a drain region of one conductivity type on a semiconductor substrate and forming a channel layer of a reverse conductivity type on the surface of the drain region.

型シリコン半導体基板1にn型のエピタキシャル層を積層してドレイン領域2を形成する。表面に酸化膜(不図示)を形成した後、予定のチャネル層部分の酸化膜を開口し、酸化膜をマスクとして全面に例えばドーズ量1.0×1013cm−3程度でボロンを注入した後、拡散してp型のチャネル層3を形成する。 A drain region 2 is formed by stacking an n type epitaxial layer on the n + type silicon semiconductor substrate 1. After an oxide film (not shown) is formed on the surface, an oxide film in a predetermined channel layer portion is opened, and boron is implanted into the entire surface, for example, at a dose of about 1.0 × 10 13 cm −3 using the oxide film as a mask. Thereafter, the p-type channel layer 3 is formed by diffusion.

第2工程(図3参照):チャネル層にドレイン領域に達しないトレンチを形成し、トレンチ内壁に薄い絶縁膜を形成する工程。   Second step (see FIG. 3): a step of forming a trench that does not reach the drain region in the channel layer and forming a thin insulating film on the inner wall of the trench.

全面にCVD法によりNSG(Non−doped Silicate Glass)のCVD酸化膜(不図示)を生成する。そのCVD酸化膜を部分的に除去してトレンチ開口部を形成し、トレンチ開口部のシリコン半導体基板をCF系およびHBr系ガスによりドライエッチングしてトレンチ4を形成する。トレンチ4の深さは、チャネル層3より浅くドレイン領域2に達しない深さに形成する。   A CVD oxide film (not shown) of NSG (Non-doped Silicate Glass) is formed on the entire surface by CVD. The CVD oxide film is partially removed to form a trench opening, and the trench 4 is formed by dry etching the silicon semiconductor substrate in the trench opening with CF-based gas and HBr-based gas. The trench 4 is formed to a depth that is shallower than the channel layer 3 and does not reach the drain region 2.

更に、トレンチ4内部をダミー酸化してドライエッチングの際のエッチングダメージを除去する。このダミー酸化で形成されたダミー酸化膜とトレンチ4形成のマスクとなったCVD酸化膜を同時にフッ酸などの酸化膜エッチャントにより除去する。これは後の工程で安定したゲート酸化膜を形成するためである。また、高温で熱酸化することによるトレンチ4開口部に丸みをつけ、トレンチ4開口部での電界集中を避ける効果もある。その後、全面を熱酸化してゲート酸化膜5を駆動電圧に応じて例えば数百Åの膜厚に形成する。   Further, the inside of the trench 4 is dummy oxidized to remove etching damage during dry etching. The dummy oxide film formed by this dummy oxidation and the CVD oxide film used as a mask for forming the trench 4 are simultaneously removed by an oxide film etchant such as hydrofluoric acid. This is because a stable gate oxide film is formed in a later process. In addition, there is an effect of rounding the opening of the trench 4 due to thermal oxidation at a high temperature to avoid electric field concentration in the opening of the trench 4. Thereafter, the entire surface is thermally oxidized to form a gate oxide film 5 with a film thickness of, for example, several hundreds of squares according to the driving voltage.

第3工程(図4参照):トレンチ側壁にサイドウォール形状にゲート電極を形成する工程。   Third step (see FIG. 4): a step of forming a gate electrode in a sidewall shape on the sidewall of the trench.

まず、図4(A)の如く、全面にノンドープのポリシリコン6を堆積し、リンを高濃度に注入・拡散して高導電率化を図る。または不純物を含んだポリシリコン6の堆積でもよい。ポリシリコン6の膜厚は、トレンチ4の幅の1/2以下とし、トレンチ4内に形成する。   First, as shown in FIG. 4A, non-doped polysilicon 6 is deposited on the entire surface, and phosphorus is implanted and diffused at a high concentration to increase the conductivity. Alternatively, polysilicon 6 containing impurities may be deposited. The thickness of the polysilicon 6 is set to ½ or less of the width of the trench 4 and is formed in the trench 4.

次に図4(B)の如く、その後全面に堆積したポリシリコン層6をマスクなしでドライエッチして、トレンチ4側壁にサイドウォールを形成する。本実施形態ではこれをゲート電極7とする。サイドウォールであるので、トレンチ4底部は一部が露出し、ゲート電極7の開口部OPが形成される。   Next, as shown in FIG. 4B, the polysilicon layer 6 deposited on the entire surface is dry-etched without a mask to form a sidewall on the side wall of the trench 4. In the present embodiment, this is the gate electrode 7. Since it is a sidewall, a part of the bottom of the trench 4 is exposed, and an opening OP of the gate electrode 7 is formed.

第4工程(図5参照):ゲート電極の開口部となるトレンチ底部に一導電型不純物領域を形成し、トレンチに隣接するチャネル層表面に一導電型のソース領域を形成する工程。   Fourth step (see FIG. 5): a step of forming a one-conductivity type impurity region at the bottom of the trench to be an opening of the gate electrode and forming a one-conductivity type source region on the surface of the channel layer adjacent to the trench.

まず図5(A)の如く、全面に、例えばヒ素を2×1014cm−3程度でn型イオンを注入・拡散する。このときゲート電極7がマスクとなり、開口部OPからイオンが注入され、トレンチ4底部にn型不純物領域8が形成される。 First, as shown in FIG. 5A, n-type ions are implanted and diffused over the entire surface with, for example, arsenic at about 2 × 10 14 cm −3 . At this time, the gate electrode 7 serves as a mask, ions are implanted from the opening OP, and an n-type impurity region 8 is formed at the bottom of the trench 4.

その後、図5(B)の如く、ソース領域9のみが露出するようにレジストPRによるマスクをかけて、例えばヒ素をドーズ量5.0×1015cm−3程度でイオン注入・拡散し、n型のソース領域9をトレンチ4に隣接するチャネル層3表面に形成した後、レジストPRを除去する。 After that, as shown in FIG. 5B, a mask with a resist PR is applied so that only the source region 9 is exposed, and, for example, arsenic is ion-implanted and diffused at a dose of about 5.0 × 10 15 cm −3. After the + -type source region 9 is formed on the surface of the channel layer 3 adjacent to the trench 4, the resist PR is removed.

n型不純物領域8は、その不純物濃度が高すぎると他のドレイン領域2部分との空乏層の延び方が変わり電界集中を起こしやすくなるため、耐圧が劣化する。また、不純物濃度が低すぎると、アキュムレーション抵抗が上がりオン抵抗が上昇してしまう。そのため、上述の如く、ドレイン領域2より高濃度でソース領域9の不純物濃度以下の範囲で形成すると良い。   If the impurity concentration of the n-type impurity region 8 is too high, the extension of the depletion layer with the other drain region 2 part changes, and electric field concentration tends to occur, so that the breakdown voltage is deteriorated. If the impurity concentration is too low, the accumulation resistance increases and the on-resistance increases. Therefore, as described above, it is preferable to form it in a range higher than the drain region 2 and lower than the impurity concentration of the source region 9.

また、図5(C)の如く、n型不純物領域8とソース領域9とを同時に形成してもよい。すなわち、図の如くトレンチ4およびトレンチ4に隣接したチャネル層3表面が露出するようにレジストPRによるマスクをかけて、例えばヒ素をドーズ量
5.0×1015cm−3程度でイオン注入・拡散し、n+型のソース領域9を形成すると共に、開口部OPにもイオンを注入・拡散してトレンチ4底部にn型不純物領域8を形成する。この場合ソース領域9と同一工程での形成であるので、不純物濃度は高く(図ではn+型不純物領域8)なるが、本実施形態ではn型(n+型)不純物領域8は、ドレイン領域2と同導電型であれば実施でき、またドレイン領域2の不純物濃度よりも高濃度でソース領域9程度までの不純物濃度であれば問題はない。
Further, as shown in FIG. 5C, the n-type impurity region 8 and the source region 9 may be formed simultaneously. That is, as shown in the figure, the trench PR 4 and the surface of the channel layer 3 adjacent to the trench 4 are masked with a resist PR so that, for example, arsenic is implanted and diffused at a dose of about 5.0 × 10 15 cm −3. Then, the n + type source region 9 is formed, and ions are implanted and diffused into the opening OP to form the n type impurity region 8 at the bottom of the trench 4. In this case, since the source region 9 is formed in the same process, the impurity concentration is high (n + type impurity region 8 in the figure), but in this embodiment, the n type (n + type) impurity region 8 is the same as the drain region 2. If it is the same conductivity type, it can be implemented, and there is no problem if the impurity concentration is higher than the impurity concentration of the drain region 2 and up to about the source region 9.

この場合は、トレンチ4底部からチャネル層3までの深さが、ソース領域9深さよりも浅くなるように、トレンチ4を形成する。これにより、ソース領域9とn+型不純物領域8を同時に形成しても、n+型不純物領域はドレイン領域2に達することができる。   In this case, the trench 4 is formed so that the depth from the bottom of the trench 4 to the channel layer 3 is shallower than the depth of the source region 9. Thereby, even if the source region 9 and the n + -type impurity region 8 are formed simultaneously, the n + -type impurity region can reach the drain region 2.

図5(B)の如く別工程で形成する場合においてもn型不純物領域8がドレイン領域2まで達するようにトレンチ4、チャネル層3、n型不純物領域8の深さを適宜選択して形成する。   Even in the case of forming in a separate process as shown in FIG. 5B, the depth of the trench 4, the channel layer 3, and the n-type impurity region 8 is appropriately selected so that the n-type impurity region 8 reaches the drain region 2. .

第5工程(図6参照):隣り合うソース領域間のチャネル層表面に逆導電型のボディコンタクト領域を形成する工程。   Fifth step (see FIG. 6): a step of forming a reverse conductivity type body contact region on the surface of the channel layer between adjacent source regions.

ボディコンタクト領域部分が露出するようにレジストPRによるマスクを形成し、選択的に例えばボロンをドーズ量5.0×1014cm−3でイオン注入し、p型のボディコンタクト領域10を形成した後、レジストPRを除去する。ボディコンタクト領域10は、隣り合うソース領域9間のチャネル層3表面に形成され、基板の電位を安定化させる。 A mask made of resist PR was formed so that the body contact region portion was exposed, and boron was ion-implanted selectively with a dose amount of 5.0 × 10 14 cm −3 to form p + type body contact region 10. Thereafter, the resist PR is removed. The body contact region 10 is formed on the surface of the channel layer 3 between the adjacent source regions 9 and stabilizes the potential of the substrate.

第6工程(図7参照):ゲート電極表面を少なくとも覆う層間絶縁膜を形成し、ソース電極を形成する工程。   Sixth step (see FIG. 7): a step of forming an interlayer insulating film covering at least the gate electrode surface and forming a source electrode.

全面にBPSG(Boron Phosphorus Silicate Glass)層をCVD法により堆積してゲート電極7および開口部OPを覆うようにパターニングし、層間絶縁膜11を形成する。その後アルミニウムをスパッタ装置で全面に付着して、ソース領域9およびボディコンタクト領域10にコンタクトするソース電極12を形成する。   A BPSG (Boron Phosphorus Silicate Glass) layer is deposited on the entire surface by a CVD method and patterned so as to cover the gate electrode 7 and the opening OP, thereby forming an interlayer insulating film 11. Thereafter, aluminum is deposited on the entire surface by a sputtering apparatus to form a source electrode 12 that contacts the source region 9 and the body contact region 10.

更に、基板裏面には、蒸着金属によるドレイン電極13を形成し、図1に示す最終構造を得る。   Further, a drain electrode 13 made of vapor-deposited metal is formed on the back surface of the substrate to obtain the final structure shown in FIG.

上記の如く、本発明の実施の形態は、nチャネル型MOSFETで説明したが、pチャネル型MOSFETにも適用でき、同様の効果が得られる。またバイポーラトランジスタとパワーMOSFETを1チップ内にモノシリックで複合化したIGBTであっても同様に実施できる。   As described above, the embodiments of the present invention have been described using the n-channel MOSFET, but the present invention can also be applied to a p-channel MOSFET, and the same effect can be obtained. In addition, the present invention can be similarly implemented even with an IGBT in which a bipolar transistor and a power MOSFET are monolithically combined in one chip.

本発明の絶縁ゲート型電界効果半導体装置を説明する断面図である。It is sectional drawing explaining the insulated gate field effect semiconductor device of this invention. 本発明の絶縁ゲート型電界効果半導体装置の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the insulated gate field effect semiconductor device of this invention. 本発明の絶縁ゲート型電界効果半導体装置の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the insulated gate field effect semiconductor device of this invention. 本発明の絶縁ゲート型電界効果半導体装置の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the insulated gate field effect semiconductor device of this invention. 本発明の絶縁ゲート型電界効果半導体装置の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the insulated gate field effect semiconductor device of this invention. 本発明の絶縁ゲート型電界効果半導体装置の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the insulated gate field effect semiconductor device of this invention. 本発明の絶縁ゲート型電界効果半導体装置の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the insulated gate field effect semiconductor device of this invention. 従来の絶縁ゲート型電界効果半導体装置を説明する断面図である。It is sectional drawing explaining the conventional insulated gate field effect semiconductor device. 従来の絶縁ゲート型電界効果半導体装置の製造方法を説明する断面図である。It is sectional drawing explaining the manufacturing method of the conventional insulated gate field effect semiconductor device. 従来および本発明の絶縁ゲート型電界効果半導体装置を説明する平面図である。It is a top view explaining the conventional and the insulated gate field effect semiconductor device of this invention.

符号の説明Explanation of symbols

1 n+型半導体基板
2 ドレイン領域
3 チャネル層
4 トレンチ
5 ゲート酸化膜
6 ポリシリコン
7 ゲート電極
8 n型不純物領域
9 ソース領域
10 ボディコンタクト領域
11 層間絶縁膜
12 ソース電極
13 ドレイン電極
21 n+型半導体基板
22 ドレイン領域
23 チャネル層
27 トレンチ
31 ゲート酸化膜
33 ゲート電極
34 ボディコンタクト領域
35 ソース領域
36 層間絶縁膜
37 ソース電極
OP 開口部
CH チャネル

1 n + type semiconductor substrate
2 drain region 3 channel layer 4 trench 5 gate oxide film 6 polysilicon 7 gate electrode 8 n-type impurity region 9 source region 10 body contact region 11 interlayer insulating film 12 source electrode
13 Drain electrode 21 n + type semiconductor substrate
22 drain region 23 channel layer 27 trench 31 gate oxide film 33 gate electrode 34 body contact region 35 source region 36 interlayer insulating film 37 source electrode
OP opening CH channel

Claims (10)

半導体基板に設けた一導電型のドレイン領域と、
前記ドレイン領域表面に設けた逆導電型のチャネル層と、
前記チャネル層に設けられ前記ドレイン領域まで達しない深さのトレンチと、
前記トレンチ内壁に設けた絶縁膜と、
前記トレンチ側壁に設けたサイドウォールからなるゲート電極と、
前記トレンチ底部に設けた一導電型不純物領域と、
前記ゲート電極を少なくとも覆う層間絶縁膜と、
前記トレンチに隣接して前記チャネル層表面に設けた一導電型のソース領域と、
隣り合う前記ソース領域間の前記チャネル層表面に設けた逆導電型のボディコンタクト領域とを具備することを特徴とする絶縁ゲート型電界効果半導体装置。
A drain region of one conductivity type provided in a semiconductor substrate;
A reverse conductivity type channel layer provided on the surface of the drain region;
A trench provided in the channel layer and having a depth not reaching the drain region;
An insulating film provided on the inner wall of the trench;
A gate electrode comprising a sidewall provided on the trench sidewall;
One conductivity type impurity region provided at the bottom of the trench;
An interlayer insulating film covering at least the gate electrode;
A source region of one conductivity type provided on the surface of the channel layer adjacent to the trench;
An insulated gate field effect semiconductor device comprising: a reverse conductivity type body contact region provided on a surface of the channel layer between adjacent source regions.
前記一導電型不純物領域は一部が前記ドレイン領域に達することを特徴とする請求項1に記載の絶縁ゲート型電界効果半導体装置。 2. The insulated gate field effect semiconductor device according to claim 1, wherein a part of the one conductivity type impurity region reaches the drain region. 前記一導電型不純物領域の幅は、前記ゲート電極の開口部の幅よりも広いことを特徴とする請求項1に記載の絶縁ゲート型電界効果半導体装置。 2. The insulated gate field effect semiconductor device according to claim 1, wherein the width of the one conductivity type impurity region is wider than the width of the opening of the gate electrode. 前記一導電型不純物領域は、前記ソース領域と同程度の不純物濃度を有することを特徴とする請求項1に記載の絶縁ゲート型電界効果半導体装置。 2. The insulated gate field effect semiconductor device according to claim 1, wherein the one conductivity type impurity region has an impurity concentration comparable to that of the source region. 前記一導電型不純物領域は、前記ソース領域より低濃度で、前記ドレイン領域よりも高濃度の不純物濃度を有することを特徴とする請求項1に記載の絶縁ゲート型電界効果半導体装置。 2. The insulated gate field effect semiconductor device according to claim 1, wherein the one conductivity type impurity region has a lower concentration than the source region and a higher concentration than the drain region. 半導体基板上に一導電型のドレイン領域を形成し、該ドレイン領域表面に逆導電型のチャネル層を形成する工程と、
前記チャネル層に前記ドレイン領域に達しないトレンチを形成し、該トレンチ内壁に薄い絶縁膜を形成する工程と、
前記トレンチ側壁にサイドウォール形状のゲート電極を形成する工程と、
前記トレンチ底部に一導電型不純物領域を形成し、前記トレンチに隣接する前記チャネル層表面に一導電型のソース領域を形成する工程と、
隣り合う前記ソース領域間の前記チャネル層表面に逆導電型のボディコンタクト領域を形成する工程と、
前記ゲート電極表面を少なくとも覆う層間絶縁膜を形成する工程とを具備することを特徴とする絶縁ゲート型電界効果半導体装置の製造方法。
Forming a drain region of one conductivity type on a semiconductor substrate and forming a channel layer of opposite conductivity type on the surface of the drain region;
Forming a trench that does not reach the drain region in the channel layer, and forming a thin insulating film on the inner wall of the trench;
Forming a sidewall-shaped gate electrode on the trench sidewall;
Forming one conductivity type impurity region at the bottom of the trench, and forming a one conductivity type source region on the surface of the channel layer adjacent to the trench;
Forming a reverse conductivity type body contact region on the surface of the channel layer between the adjacent source regions;
Forming an interlayer insulating film covering at least the surface of the gate electrode. A method of manufacturing an insulated gate field effect semiconductor device, comprising:
前記一導電型不純物領域は、前記ゲート電極をマスクとして不純物を注入して形成することを特徴とする請求項6に記載の絶縁ゲート型電界効果半導体装置の製造方法。 7. The method of manufacturing an insulated gate field effect semiconductor device according to claim 6, wherein the one conductivity type impurity region is formed by implanting impurities using the gate electrode as a mask. 前記ソース領域と前記一導電型不純物領域を同一工程で形成することを特徴とする請求項6に記載の絶縁ゲート型電界効果半導体装置の製造方法。 7. The method of manufacturing an insulated gate field effect semiconductor device according to claim 6, wherein the source region and the one conductivity type impurity region are formed in the same step. 前記一導電型不純物領域を形成した後、前記ソース領域を形成することを特徴とする請求項6に記載の絶縁ゲート型電界効果半導体装置の製造方法。 The method of manufacturing an insulated gate field effect semiconductor device according to claim 6, wherein the source region is formed after forming the one conductivity type impurity region. 前記一導電型不純物領域は前記ドレイン領域に達するように形成されることを特徴とする請求項6に記載の絶縁ゲート型電界効果半導体装置の製造方法。
7. The method of manufacturing an insulated gate field effect semiconductor device according to claim 6, wherein the one conductivity type impurity region is formed to reach the drain region.
JP2003301527A 2003-08-26 2003-08-26 Insulated gate type electric field effect semiconductor device and its manufacturing method Pending JP2005072356A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003301527A JP2005072356A (en) 2003-08-26 2003-08-26 Insulated gate type electric field effect semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003301527A JP2005072356A (en) 2003-08-26 2003-08-26 Insulated gate type electric field effect semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005072356A true JP2005072356A (en) 2005-03-17

Family

ID=34406123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003301527A Pending JP2005072356A (en) 2003-08-26 2003-08-26 Insulated gate type electric field effect semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005072356A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014135494A (en) * 2013-01-14 2014-07-24 Samsung Electronics Co Ltd Semiconductor element having dual parallel channel structure and method of manufacturing the same
US8884369B2 (en) 2012-06-01 2014-11-11 Taiwan Semiconductor Manufacturing Company, Ltd. Vertical power MOSFET and methods of forming the same
KR101469343B1 (en) * 2012-06-01 2014-12-04 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Vertical power mosfet and methods of forming the same
US9087920B2 (en) 2012-06-01 2015-07-21 Taiwan Semiconductor Manufacturing Company, Ltd. Vertical power MOSFET and methods of forming the same
US10276665B2 (en) 2016-12-13 2019-04-30 Hyundai Motor Company Semiconductor device and method of manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0945899A (en) * 1995-07-27 1997-02-14 Sony Corp Manufacture of semiconductor device equipped with vertical transistor
JPH1065160A (en) * 1996-08-22 1998-03-06 Sony Corp Vertical fet and its manufacturing method
JP2000269487A (en) * 1999-03-15 2000-09-29 Toshiba Corp Semiconductor device and its manufacture
JP2002094061A (en) * 2000-09-14 2002-03-29 Toshiba Corp Semiconductor device and manufacturing method therefor
JP2002184980A (en) * 2000-10-05 2002-06-28 Fuji Electric Co Ltd Trench lateral mosfet and manufacturing method thereof
JP2003051594A (en) * 2001-05-30 2003-02-21 Fuji Electric Co Ltd Semiconductor device and manufacturing method therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0945899A (en) * 1995-07-27 1997-02-14 Sony Corp Manufacture of semiconductor device equipped with vertical transistor
JPH1065160A (en) * 1996-08-22 1998-03-06 Sony Corp Vertical fet and its manufacturing method
JP2000269487A (en) * 1999-03-15 2000-09-29 Toshiba Corp Semiconductor device and its manufacture
JP2002094061A (en) * 2000-09-14 2002-03-29 Toshiba Corp Semiconductor device and manufacturing method therefor
JP2002184980A (en) * 2000-10-05 2002-06-28 Fuji Electric Co Ltd Trench lateral mosfet and manufacturing method thereof
JP2003051594A (en) * 2001-05-30 2003-02-21 Fuji Electric Co Ltd Semiconductor device and manufacturing method therefor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8884369B2 (en) 2012-06-01 2014-11-11 Taiwan Semiconductor Manufacturing Company, Ltd. Vertical power MOSFET and methods of forming the same
KR101469343B1 (en) * 2012-06-01 2014-12-04 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Vertical power mosfet and methods of forming the same
US9087920B2 (en) 2012-06-01 2015-07-21 Taiwan Semiconductor Manufacturing Company, Ltd. Vertical power MOSFET and methods of forming the same
US9673297B2 (en) 2012-06-01 2017-06-06 Taiwan Semiconductor Manufacturing Company, Ltd. Vertical power MOSFET and methods of forming the same
US9892974B2 (en) 2012-06-01 2018-02-13 Taiwan Semiconductor Manufacturing Company, Ltd. Vertical power MOSFET and methods of forming the same
US10141421B2 (en) 2012-06-01 2018-11-27 Taiwan Semiconductor Manufacturing Company, Ltd. Vertical power MOSFET and methods of forming the same
JP2014135494A (en) * 2013-01-14 2014-07-24 Samsung Electronics Co Ltd Semiconductor element having dual parallel channel structure and method of manufacturing the same
US10276665B2 (en) 2016-12-13 2019-04-30 Hyundai Motor Company Semiconductor device and method of manufacturing the same

Similar Documents

Publication Publication Date Title
KR101945336B1 (en) Structure and method for forming a thick bottom dielectric (TBD) for trench-gate devices
US11557672B2 (en) Semiconductor device and method of manufacturing the same
US9865694B2 (en) Split-gate trench power mosfet with protected shield oxide
US7598144B2 (en) Method for forming inter-poly dielectric in shielded gate field effect transistor
US20190148542A1 (en) Semiconductor device and method of manufacturing semiconductor device
US8174066B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP2010505270A (en) Power MOSFET with recessed field plate
JP4183620B2 (en) Semiconductor device and manufacturing method thereof
US20060086972A1 (en) Semiconductor device and method of manufacturing same
KR20040008252A (en) Power mosfet with deep implanted junctions
US20150200290A1 (en) Planar mosfets and methods of fabrication, charge retention
JP2009076762A (en) Semiconductor device, and manufacturing method thereof
JP2850852B2 (en) Semiconductor device
JP2007294759A (en) Semiconductor device, and its manufacturing method
JP2005072356A (en) Insulated gate type electric field effect semiconductor device and its manufacturing method
US20130154017A1 (en) Self-Aligned Gate Structure for Field Effect Transistor
CN113889536A (en) Shielded gate trench semiconductor structure and shielded gate trench semiconductor device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20051226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110412