【0001】
【発明の属する技術分野】
本発明は、薄膜磁性体を用いた巻線薄膜磁心(マイクロ)インダクタ及びその製造方法に関し、制御IC、チップキャパシタを用いた電源、特にDC−DCコンバーターに使用するのに好適な薄膜磁心インダクタ及びその製造方法に関する。
【0002】
【従来の技術】
従来の薄膜磁心インダクタの製造方法について、図15〜図25を用いて説明する。
【0003】
(1)図15に示すように、軟質のポリイミドフィルム1を準備する。ここで使用するフィルムは、耐熱高分子フィルムの一種であるポリイミドフィルム等の軟質フィルムで、厚みは数μm〜数十μmのフレキシブルフィルムである。大きさは、成膜可能な形状及び必要な磁心サイズを得ることが出来る形状であれば良い。ここでは、50μm厚みのポリイミドフィルムとする。
【0004】
(2)図16に示すように、ポリイミドフィルム1上にフォトリソグラフィーによりレジスト2を形成する。本パターンは、所望のインダクタ特性を得るために必要な任意のパターンであり、また、厚みに関しては、後工程での磁性膜成膜後のリフトオフプロセスが実施可能な厚みとする。磁性体成膜厚みの数倍〜10倍程度の厚みであればよい。ここでは、レジスト厚みを10μmとする。
【0005】
(3)図17に示すように、軟質のポリイミドフィルム1及びレジスト2上全面に磁性層3を形成する。形成方法としては、スパッタや蒸着、スクリーン印刷など、磁性膜組成に対応した各種成膜方法が適用できる。磁性層厚みは、薄膜磁心インダクタの所望の特性を得るために、任意に選択可能である。ここでは、3.0μmとする。ここで、レジスト2の厚みは10μm、磁性層3の厚みは3.0μmであるので、レジスト2のない部分には厚み3.0μmの磁性層のみであるため、レジスト2の側面上部7.0μm部分は、側面が露出した形状である。
【0006】
(4)ここで、このレジスト2をレジスト剥離剤等で除去すると、レジスト2上に形成された部分の磁性層3も同時に除去され、レジスト2がなくポリイミドフィルム1上に直接成膜された磁性層3部分だけが残り、図18に示すように、ポリイミドフィルム1上に磁性層3のパターンが形成された磁心材料が形成される。
【0007】
(5)同様のプロセスでポリイミドフィルムの裏面にも磁性体3を形成する。これらは、ポリイミドフィルムを挟んで表裏対象パターンの図19に示す磁心材料である。
【0008】
(6)図20に示すように、両面に磁性体3を形成したポリイミドフィルム1を磁性層のない部分を山折り・谷折りによりつづら折りを施して、図21に示すような積層磁心19を構成する。この時の積層磁心形状は、3.4×2.8×0.34mmであり、6層積層したものである。本来、積層した厚みが0.34mmであるが、積層構造を見やすくするために厚み方向を厚く記述している。
【0009】
(7)この時、図22に示すように、磁性層3毎に、磁性層のないポリイミドフィルム部分で切断し、磁心20を形成し、これら磁心20の各々を必要枚数だけ積層して、図23に示すような積層構造の磁心21を構成してもよい。
【0010】
(8)図24に示すように、作製した磁心19あるいは21の積層方向に、被覆した丸形あるいは角形の導線を磁性膜上に所望の回数だけ巻線4し、インダクタを構成する。この時、巻線端は、リード線先端がそのまま露出した形状である。この時、巻線材として、数十〜数百μmφの丸形導線、あるいは数十〜数百μmの角形導線を用いる。巻線回数や、巻線間隔は、所望のインダクタ特性が得られる仕様に任意に決定できる。ここでは、100μmφの導線を巻線しており、巻線したインダクタ形状は、3.4×2.8×0.54mmである。今回は、導線を1層巻きとしたが、複数層巻きも可能である。このような薄膜磁心インダクタが特許文献1に記載されている。
【0011】
(10)このリード線だけが露出した状態では、プリント基板への実装や、HIC化回路基板等への実装が、精度良く位置決めできず、また、ワイヤーボンディング実装とする場合は実装出来ないため、図25に示すように、金属パッド6を有した支持基板5上に、巻線したインダクタを接着剤等で実装する。この時、巻線4の先端を金属パッド6の一部にはんだ7により接続固定する。これにより、金属パッド6の一部をボンディングパッド8とした、巻線型インダクタが得られる。支持基板5としては、硬質セラミック基板やガラスエポキシ基板、または、軟質の高分子基板を用いる。厚みは数百μmである。ここでは、150μm厚みの支持基板を用いた。
【0012】
金属パッド6、ボンディングパッド8の構成としては、電気的抵抗を考慮し、銅箔配線をベースとして、はんだ接続やワイヤーボンディング性を考慮し、それぞれニッケルや金をメッキやスパッタ、蒸着などにより形成した、多層メタル構造をしている。厚みは電流容量にもよるが、銅箔が数十μm、ニッケル、金が数μm〜1μm程度である。ここで、支持基板5に巻線インダクタが搭載され、ワイヤーボンディングパッドを有した薄膜磁心マイクロインダクタが完成する。この時の薄膜磁心インダクタの形状は、3.6×3.0×0.7mmである。
【0013】
【特許文献1】
特開2000−252127号公報
【0014】
【発明が解決しようとする課題】
本構造では、図24に示す薄膜磁心に巻線を施した巻線型の薄膜磁心インダクタを考えた場合、形状は3.4×2.8×0.54mmであるが、特許文献1にあるように、最終電極となる巻線リードの先端部分がそのまま露出した形状となり、プリント基板などに実装する場合は、先端部分を処理して接続先にはんだ接続等を施す必要がある。この場合、リード先端の位置決めが自動化し難い、はんだ処理が必要なので、ベアチップICなどとHIC回路を構成する場合、このはんだ処理等がICベアチップに影響を及ぼすことより、同一の実装プロセスを構築できない、また、ICベアチップなど半導体プロセスで通常用いられている配線方法であるワイヤーボンディング方法が適用できないという課題がある。
【0015】
また、ワイヤーボンディングパッドを形成するために、支持基板を用いることにより、その分の厚み数百μmが厚くなる。また、ワイヤーボンディングパッドサイズは、ボンディング装置の条件により、幅300〜500μm必要であり、その分は巻線インダクタの領域部分より外に露出している必要があり、その分、面積が大きくなるという欠点を有している。前記の場合、本来の巻線インダクタ部分の容積、3.4×2.8×0.54mmに比較し、支持基板分の厚みで150μm、平面面積で3.4×0.6mm分だけ、本来特性に絡む領域以外に不要な容積を有している。実際には、これらの組み立て公差が入ってくるので、さらに不要な容積は大きくなっているという課題がある。
【0016】
従来技術では、巻線型の薄膜磁心インダクタは、巻線のリード先端をそのまま露出させる構造、あるいは、ワイヤーボンディングパッドを形成するためにダミーの支持基板に搭載する必要があった。
【0017】
本発明は、支持基板を不要とし、ワイヤーボンディングパッドを形成して、ICベアチップ等と同一の半導体実装プロセスに用いることができ、また、支持基板を用いないことでその分の容積を不要とした小型の巻線型の薄膜磁心インダクタ及びその製造方法を提供することである。
【0018】
【課題を解決するための手段】
本発明によれば、耐熱高分子フィルム上の両面中心部に磁性体膜、両面外周部に金属膜を有するものを形成し、耐熱高分子フィルムの磁性体を磁性体が任意の体積になるように積層した磁心を構成し、該磁心部に角形または丸形導線の巻線を施して薄膜磁心インダクタを形成し、巻線の最終巻線部を外周部の金属膜部分に接続し、その先の巻線端部を最終巻線部を接続した外周部の金属膜部分の反対面全面に、磁性体部部分の巻線部と同一の高さになるように、つづら折り形状に巻き回し配線し、巻線の最終巻線部を接続した金属膜部分の接続部以外をワイヤーボンディングパッド構造とした薄膜磁心インダクタ及びその製造方法が得られる。
【0019】
即ち、本発明は、両面中心部に磁性体膜と両面外周部に金属膜を有する耐熱高分子フィルムを磁性体が任意の体積になるように積層された磁心の前記磁性体部分に巻線を施した薄膜磁心インダクタであって、前記巻線の最終巻線部が前記金属膜に接続され、その先の巻線端部が前記金属膜部分の一方の面全面に、前記磁性体部分の巻線部と同一の高さに、つづら折り形状に巻き回し配線され、前記つづら折り形状に巻き回した配線と反対側の面の前記金属膜がワイヤーボンディングパッドとされる薄膜磁心インダクタである。
【0020】
また、本発明は、両面中心部に磁性体膜と両面外周部に金属膜を有する耐熱高分子フィルムの磁性体を任意の体積になるように積層して磁心を構成し、巻線を施す薄膜磁心インダクタの製造方法であって、巻線の最終巻線部を前記金属膜に接続し、その先の巻線端部を前記金属膜の一方の面全面に、前記磁性体部分の巻線部と同一の高さになるように、つづら折り形状に巻き回し配線し、前記つづら折り形状に巻き回した配線と反対側の面の前記金属膜をワイヤーボンディングパッドとした薄膜磁心インダクタの製造方法である。
【0021】
【発明の実施の形態】
本発明の実施の形態による薄膜磁心インダクタ及びその製造方法について、図1〜図14にて説明する。
【0022】
(1)図1に示すように、軟質のポリイミドフィルム1を準備する。ここで使用するフィルムは、耐熱高分子フィルムの一種であるポリイミドフィルム等の軟質フィルムで、厚みは数μm〜数十μmのフレキシブルフィルムである。大きさは、成膜可能な形状及び必要な磁心サイズを得ることが出来る形状であれば良い。ここでは、50μm厚みのポリイミドフィルムで説明する。
【0023】
(2)図2に示すように、ポリイミドフィルム1上にフォトリソグラフィーによりレジスト2を形成する。本パターンは、所望のインダクタ特性を得るために必要な任意のパターンであり、また、厚みに関しては、後工程での磁性膜成膜後のリフトオフプロセスが実施可能な厚みとする。成膜厚みの数倍〜10倍程度の厚みであればよい。ここでは、レジスト厚み10μmとする。
【0024】
(3)図3に示すように、軟質のポリイミドフィルム1及びレジスト2上の全面に磁性層3を形成する。形成方法としては、スパッタや蒸着やメッキ、スクリーン印刷など、磁性膜組成に対応した各種成膜方法が適用できる。磁性層厚みは、薄膜磁心インダクタの所望の特性を得るために、任意に選択可能である。ここでは、3.0μmとする。ここで、レジスト2の厚みは10μm、磁性層3の厚みは3.0μmであるので、レジスト2のない部分には厚み3.0μmの磁性層のみであるため、レジスト2の側面上部7.0μm部分は、側面が露出した形状である。
【0025】
(4)ここで、このレジスト2をレジスト剥離剤等で除去すると、レジスト2上に形成された部分の磁性層3も同時に除去され、レジスト2がなくポリイミドフィルム1上に直接成膜された磁性層3部分だけが残り、図4に示すように、ポリイミドフィルム1上に磁性層3のパターンが形成された磁心材料が形成される。
【0026】
(5)同様のプロセスでポリイミドフィルムの裏面にも磁性体3を形成する。これらは、ポリイミドフィルムを挟んで表裏対象パターンの図5に示す磁心材料である。
【0027】
(6)図6に示すように、ポリイミドフィルム1上の、磁性層が除去された対向する側面2面の表裏上に、磁性層と接しないように金属層9を形成する。金属層9は、ボンディングパッドを構成する部分であり、例えば、銅、ニッケル、金層等の複数層からなっている。それぞれの厚みは30μm、2μm、1μmである。金属層は、これらの金属に限定されるものではなく、導電性があり、低抵抗であり、さらに、半導体で用いられるワイヤーボンディング可能な金属層の構成であればよい。
【0028】
(7)図7に示すように、両面に磁性体3と両端に金属層9を形成したポリイミドフィルム1を磁性層のない部分を磁性層3毎に、ポリイミドフィルム部分で切断し、磁心10を形成し、これら磁心10の各々を必要枚数だけ積層して、図8に示すように積層構造の磁心22を構成する。この時の積層磁心形状は、3.4×2.8×0.34mmであり、6層積層したものである。本来、積層した厚みが0.34mmであるが、積層構造を見やすくするために厚み方向を厚く記述している。
【0029】
(8)図9に示すように、作製した磁心22に積層方向に被覆した丸形あるいは角形等の導線を磁性膜上に所望の回数だけ巻線し、インダクタを構成する。この時、巻線端は、リード線先端がそのまま露出した形状である。巻線材として、数十〜数百μmφの丸形導線、あるいは数十〜数百μmの角形導線を用いる。巻線回数や、巻線間隔は、所望のインダクタ特性が得られる仕様に任意に決定できる。ここでは、100μmφの導線を巻線しており、巻線したインダクタ形状は、3.4×2.8×0.54mmである。今回は、導線を1層巻きとしたが、複数層巻きも可能である。
【0030】
(9)このリード線だけが露出した状態では、プリント基板への実装や、HIC化回路基板等への実装が、精度良く位置決めできず、また、ワイヤーボンディング実装とする場合は実装出来ないため、図10に示すように、まず、巻線4の先端部分の一部を金属層9の一部にはんだ12等で接続する。
【0031】
(10)図11に示すように、金属層9に接続した巻線4の接続部よりさらに先端部を、はんだ接続した金属層9面と反対面に巻き回し、その面全面に巻線4の先端部をつづら折り状に巻き回し(巻線巻き回し13)、接着剤等で固定する。
【0032】
(11)図12(a)に示すように、金属層9の巻線4をはんだ12で接続した部分以外の領域にボンディングパッド14が形成される。このボンディングパッド14は、はんだ12により巻線4と電気的に接続されており、巻線薄膜磁心マイクロインダクタの電極端子を構成する。
【0033】
この時、巻線巻き回し13は、インダクタを構成する磁性層上に巻線した線材と同一であり、巻線巻き回し13の面はインダクタを構成する磁性層上に巻線した面と同一平面になる。つまり、ワイヤーボンディングパッドを形成しても、従来のように支持基板を使わないので、巻線薄膜磁心マイクロインダクタの形状は、3.4×2.8×0.54mmとなり、巻線インダクタそのものの形状となり、余分な容積を必要としない。
【0034】
また、通常ワイヤーボンディング方式の実装をする場合は、ボンディングパッド14を上にし、巻線巻き回し13を下面にして実装し、ボンディングパッド14にワイヤーボンディングを施すが、巻線巻き回し13がないとワイヤーボンディング時の熱や超音波が逃げて接続できないことがあるが、巻き回し部13があることで、ボンディングパッド14は実装面に対して空隙等がなく、熱や超音波が逃げることもなく、ある程度の硬度も保てるので任意にワイヤーボンディングが可能となる。さらに、ボンディングパッド14面は、磁性層3に巻線した部分面より巻線材料分(本実施の形態では100μm)低い位置にあるので、ワイヤーボンディングを100μm高さ以内で実施すれば、ボンディングワイヤーの高さも吸収して、高さ0.54mmでの実装が実現可能となる。
【0035】
また、図13、図14に示すように、両面に磁性体3を形成したポリイミドフィルム1を磁性層のない部分を山折り・谷折りによりつづら折りを施して、磁心15を形成して、巻線を施しても同様の構造が得られる。この場合は、磁性層9が連続な状態で積層されているので、巻線4の先端部が片面の金属層9に巻線巻き回し16、はんだ17を施すことにより、反対面の金属層9は巻き回し部と電気的に接続されるので、ボンディングパッド18が形成される。効果は前述に同じである。
【0036】
【発明の効果】
本発明により、薄膜磁心層と巻線からなり、該磁心にワイヤーボンディングパッドを有した巻線型の薄膜磁心インダクタおよびその製造方法が提供できる。
【図面の簡単な説明】
【図1】本発明の実施の形態による巻線型の薄膜磁心インダクタの製造方法の説明図。図1(a)は平面図、図1(b)は側面図。
【図2】本発明の実施の形態による薄膜磁心インダクタの製造方法の説明図面。図2(a)は平面図、図2(b)は側面図。
【図3】本発明の実施の形態による薄膜磁心インダクタの製造方法。図3(a)は平面図、図3(b)は側面図。
【図4】本発明の実施の形態による薄膜磁心インダクタの製造方法。図4(a)は平面図、図4(b)は側面図。
【図5】本発明の薄膜磁心インダクタの製造方法。図5(a)は平面図、図5(b)は側面図。
【図6】本発明の薄膜磁心インダクタの製造方法。図6(a)は平面図、図6(b)は側面図。
【図7】本発明の実施の形態による巻線型の薄膜磁心インダクタの製造方法の説明図。図7(a)は平面図、図7(b)は側面図。
【図8】本発明の実施の形態による巻線型の薄膜磁心インダクタの製造方法の説明図。
【図9】本発明の実施の形態による巻線型の薄膜磁心インダクタの製造方法の説明図。図9(a)は左側面図、図9(b)は平面図、図9(c)は右側面図、図9(d)は正面図。
【図10】本発明の実施の形態による巻線型の薄膜磁心インダクタの製造方法の説明図。図10(a)は左側面図、図10(b)は平面図、図10(c)は右側面図、図10(d)は正面図。
【図11】本発明の実施の形態による巻線型の薄膜磁心インダクタの製造方法の説明図。図11(a)は左側面図、図11(b)は平面図、図11(c)は右側面図、図11(d)は正面図。
【図12】本発明の薄膜磁心インダクタの製造方法の説明図。図12(a)は左側面図、図12(b)は平面図、図12(c)は右側面図、図12(d)は正面図。
【図13】本発明の薄膜磁心インダクタの製造方法の説明図。図13(a)は左側面図、図13(b)は平面図、図13(c)は右側面図、図13(d)は正面図。
【図14】本発明の薄膜磁心インダクタの製造方法の説明図。図14(a)は左側面図、図14(b)は平面図、図14(c)は右側面図、図14(d)は正面図。
【図15】従来の巻線型の薄膜磁心インダクタの製造方法の説明図。図15(a)は平面図、図15(b)は側面図。
【図16】従来の巻線型の薄膜磁心インダクタの製造方法の説明図。図16(a)は平面図、図16(b)は側面図。
【図17】従来の巻線型の薄膜磁心インダクタの製造方法の説明図。図17(a)は平面図、図17(b)は側面図。
【図18】従来の巻線型の薄膜磁心インダクタの製造方法の説明図。図18(a)は平面図、図18(b)は側面図。
【図19】従来の巻線型の薄膜磁心インダクタの製造方法の説明図。図19(a)は平面図、図19(b)は側面図。
【図20】従来の巻線型の薄膜磁心インダクタの製造方法の説明図。図20(a)は平面図、図20(b)は側面図。
【図21】従来の巻線型の薄膜磁心インダクタの製造方法の説明図。
【図22】従来の巻線型の薄膜磁心インダクタの製造方法の説明図。図22(a)は平面図、図22(b)は側面図。
【図23】従来の巻線型の薄膜磁心インダクタの製造方法の説明図。
【図24】従来の巻線型の薄膜磁心インダクタの製造方法の説明図。図24(a)は平面図、図24(b)は正面図、図24(c)は側面図。
【図25】従来の巻線型の薄膜磁心インダクタの製造方法の説明図。図25(a)は平面図、図25(b)は正面図、図25(c)は側面図。
【符号の説明】
1 ポリイミドフィルム
2 レジスト
3 磁性体(磁性層)
4 巻線(巻線材料)
5 支持基板
6 金属パッド
7 はんだ
8,14,18 ボンディングパッド
9 金属層
10 磁心(単層)
11 磁心(積層)
12,17 はんだ
13,16 巻線巻き回し
15,19,20,21,22 磁心(積層)[0001]
BACKGROUND OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a wound thin film magnetic (micro) inductor using a thin film magnetic material and a method for manufacturing the same, and a thin film magnetic inductor suitable for use in a power supply using a control IC and a chip capacitor, particularly a DC-DC converter, It relates to the manufacturing method.
[0002]
[Prior art]
A conventional method for manufacturing a thin film core inductor will be described with reference to FIGS.
[0003]
(1) As shown in FIG. 15, a soft polyimide film 1 is prepared. The film used here is a flexible film such as a polyimide film which is a kind of heat-resistant polymer film, and is a flexible film having a thickness of several μm to several tens of μm. The size may be any shape that allows film formation and a necessary magnetic core size. Here, a polyimide film having a thickness of 50 μm is used.
[0004]
(2) As shown in FIG. 16, a resist 2 is formed on the polyimide film 1 by photolithography. This pattern is an arbitrary pattern necessary for obtaining desired inductor characteristics, and the thickness is set such that a lift-off process can be performed after the magnetic film is formed in a later step. The thickness may be about several to 10 times the magnetic film deposition thickness. Here, the resist thickness is 10 μm.
[0005]
(3) As shown in FIG. 17, the magnetic layer 3 is formed on the entire surface of the soft polyimide film 1 and the resist 2. As a forming method, various film forming methods corresponding to the magnetic film composition such as sputtering, vapor deposition, and screen printing can be applied. The magnetic layer thickness can be arbitrarily selected in order to obtain desired characteristics of the thin film magnetic core inductor. Here, it is set to 3.0 μm. Here, since the thickness of the resist 2 is 10 μm and the thickness of the magnetic layer 3 is 3.0 μm, only the magnetic layer having a thickness of 3.0 μm is present in the portion where the resist 2 is not provided. The portion has a shape with exposed side surfaces.
[0006]
(4) Here, when the resist 2 is removed with a resist remover or the like, the magnetic layer 3 in the portion formed on the resist 2 is also removed at the same time, and the magnetic film directly formed on the polyimide film 1 without the resist 2 is removed. Only the layer 3 portion remains, and a magnetic core material in which the pattern of the magnetic layer 3 is formed on the polyimide film 1 is formed as shown in FIG.
[0007]
(5) The magnetic body 3 is also formed on the back surface of the polyimide film by the same process. These are the magnetic core materials shown in FIG.
[0008]
(6) As shown in FIG. 20, the polyimide film 1 having the magnetic body 3 formed on both sides thereof is folded in a mountain-folded and valley-folded manner at the portion without the magnetic layer to form a laminated magnetic core 19 as shown in FIG. To do. The laminated magnetic core shape at this time is 3.4 × 2.8 × 0.34 mm, and six layers are laminated. Originally, the laminated thickness is 0.34 mm, but the thickness direction is described as being thick in order to make the laminated structure easy to see.
[0009]
(7) At this time, as shown in FIG. 22, each magnetic layer 3 is cut at a polyimide film portion without a magnetic layer to form a magnetic core 20, and each of the magnetic cores 20 is laminated in a necessary number. A magnetic core 21 having a laminated structure as shown in FIG.
[0010]
(8) As shown in FIG. 24, in the lamination direction of the produced magnetic cores 19 or 21, a coated round or square conducting wire is wound 4 on the magnetic film a desired number of times to constitute an inductor. At this time, the winding end has a shape in which the lead wire tip is exposed as it is. At this time, a round conductive wire of several tens to several hundreds μmφ or a square conductive wire of several tens to several hundreds μm is used as the winding material. The number of windings and the winding interval can be arbitrarily determined according to specifications that provide desired inductor characteristics. Here, a conducting wire of 100 μmφ is wound, and the wound inductor shape is 3.4 × 2.8 × 0.54 mm. This time, the conducting wire is a single-layer winding, but a multi-layer winding is also possible. Such a thin film magnetic core inductor is described in Patent Document 1.
[0011]
(10) When only this lead wire is exposed, mounting on a printed circuit board or mounting on a HIC circuit board cannot be accurately positioned, and if it is wire bonding mounting, it cannot be mounted. As shown in FIG. 25, the wound inductor is mounted on the support substrate 5 having the metal pads 6 with an adhesive or the like. At this time, the tip of the winding 4 is connected and fixed to a part of the metal pad 6 with solder 7. As a result, a wire-wound inductor having a part of the metal pad 6 as the bonding pad 8 is obtained. As the support substrate 5, a hard ceramic substrate, a glass epoxy substrate, or a soft polymer substrate is used. The thickness is several hundred μm. Here, a support substrate having a thickness of 150 μm was used.
[0012]
The metal pad 6 and the bonding pad 8 are formed by plating, sputtering, vapor deposition, etc., taking into account electrical resistance, using copper foil wiring as a base, and considering solder connection and wire bonding. Has a multi-layer metal structure. Although the thickness depends on the current capacity, the copper foil is several tens of μm, nickel and gold are several μm to 1 μm. Here, a winding inductor is mounted on the support substrate 5 to complete a thin film magnetic microinductor having a wire bonding pad. The shape of the thin film magnetic inductor at this time is 3.6 × 3.0 × 0.7 mm.
[0013]
[Patent Document 1]
JP 2000-252127 A [0014]
[Problems to be solved by the invention]
In this structure, when considering a winding type thin film core inductor in which a thin film core shown in FIG. 24 is wound, the shape is 3.4 × 2.8 × 0.54 mm. In addition, the end portion of the winding lead as the final electrode is exposed as it is, and when mounted on a printed circuit board or the like, it is necessary to process the end portion and perform solder connection or the like at the connection destination. In this case, the positioning of the lead tip is difficult to automate and solder processing is required. Therefore, when configuring a HIC circuit with a bare chip IC or the like, the same mounting process cannot be constructed because this solder processing or the like affects the IC bare chip. In addition, there is a problem that a wire bonding method which is a wiring method usually used in a semiconductor process such as an IC bare chip cannot be applied.
[0015]
Further, by using the support substrate to form the wire bonding pad, the thickness of that portion becomes several hundred μm thick. In addition, the wire bonding pad size needs to be 300 to 500 μm in width depending on the conditions of the bonding apparatus, and the portion needs to be exposed outside the region of the winding inductor, and the area increases accordingly. Has drawbacks. In the above case, compared to the original winding inductor volume, 3.4 × 2.8 × 0.54 mm, the thickness of the support substrate is 150 μm, and the planar area is 3.4 × 0.6 mm. It has an unnecessary volume other than the region related to the characteristics. Actually, since these assembly tolerances are included, there is a problem that the unnecessary volume is further increased.
[0016]
In the prior art, the winding type thin film magnetic core inductor must be mounted on a dummy support substrate in order to form a wire bonding pad or a structure in which the lead end of the winding is exposed as it is.
[0017]
The present invention eliminates the need for a support substrate, can form a wire bonding pad, and can be used in the same semiconductor mounting process as an IC bare chip or the like, and also eliminates the need for the corresponding volume by not using a support substrate. A small winding type thin film magnetic core inductor and a manufacturing method thereof are provided.
[0018]
[Means for Solving the Problems]
According to the present invention, a film having a magnetic film at the center of both surfaces on the heat-resistant polymer film and a metal film at the outer periphery of both surfaces is formed, and the magnetic material of the heat-resistant polymer film has an arbitrary volume. A thin film core inductor is formed by winding a rectangular or round conductor wire on the magnetic core, and the final winding of the winding is connected to the metal film portion on the outer periphery. The winding end of the wire is wound in a zigzag shape so that it is the same height as the winding part of the magnetic part on the entire surface opposite to the metal film part on the outer periphery where the final winding part is connected. A thin film magnetic inductor having a wire bonding pad structure other than the connection portion of the metal film portion connected to the final winding portion of the winding, and a manufacturing method thereof can be obtained.
[0019]
That is, in the present invention, a winding is applied to the magnetic body portion of a magnetic core in which a heat resistant polymer film having a magnetic film at the center of both surfaces and a metal film at the outer periphery of both surfaces is laminated so that the magnetic material has an arbitrary volume. A thin film magnetic core inductor, wherein a final winding portion of the winding is connected to the metal film, and a winding end of the winding is formed on one surface of the metal film portion over the entire surface of the metal body portion. In the thin film magnetic inductor, the wiring is wound in a zigzag shape at the same height as the line portion, and the metal film on the surface opposite to the zigzag shape is used as a wire bonding pad.
[0020]
The present invention also provides a thin film for forming a magnetic core by laminating a magnetic material of a heat-resistant polymer film having a magnetic film at the center of both surfaces and a metal film at the outer periphery of both surfaces so as to have an arbitrary volume, and applying a winding A method of manufacturing a magnetic core inductor, wherein a final winding portion of a winding is connected to the metal film, and a winding end portion of the winding is formed on one surface of the metal film, and the winding portion of the magnetic part. Is a method of manufacturing a thin film magnetic inductor in which the wiring is wound in a zigzag shape so as to have the same height as the wire film, and the metal film on the surface opposite to the zigzag shape is used as a wire bonding pad.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
A thin film magnetic core inductor and a manufacturing method thereof according to an embodiment of the present invention will be described with reference to FIGS.
[0022]
(1) As shown in FIG. 1, a soft polyimide film 1 is prepared. The film used here is a flexible film such as a polyimide film which is a kind of heat-resistant polymer film, and is a flexible film having a thickness of several μm to several tens of μm. The size may be any shape that allows film formation and a necessary magnetic core size. Here, a polyimide film having a thickness of 50 μm will be described.
[0023]
(2) As shown in FIG. 2, a resist 2 is formed on the polyimide film 1 by photolithography. This pattern is an arbitrary pattern necessary for obtaining desired inductor characteristics, and the thickness is set such that a lift-off process can be performed after the magnetic film is formed in a later step. The thickness may be several times to 10 times the film thickness. Here, the resist thickness is 10 μm.
[0024]
(3) As shown in FIG. 3, a magnetic layer 3 is formed on the entire surface of the soft polyimide film 1 and the resist 2. As a forming method, various film forming methods corresponding to the magnetic film composition such as sputtering, vapor deposition, plating, screen printing, and the like can be applied. The magnetic layer thickness can be arbitrarily selected in order to obtain desired characteristics of the thin film magnetic core inductor. Here, it is set to 3.0 μm. Here, since the thickness of the resist 2 is 10 μm and the thickness of the magnetic layer 3 is 3.0 μm, only the magnetic layer having a thickness of 3.0 μm is present in the portion where the resist 2 is not provided. The portion has a shape with exposed side surfaces.
[0025]
(4) Here, when the resist 2 is removed with a resist remover or the like, the magnetic layer 3 in the portion formed on the resist 2 is also removed at the same time, and the magnetic film directly formed on the polyimide film 1 without the resist 2 is removed. Only the layer 3 portion remains, and a magnetic core material in which the pattern of the magnetic layer 3 is formed on the polyimide film 1 is formed as shown in FIG.
[0026]
(5) The magnetic body 3 is also formed on the back surface of the polyimide film by the same process. These are the magnetic core materials shown in FIG.
[0027]
(6) As shown in FIG. 6, a metal layer 9 is formed on the polyimide film 1 on the front and back surfaces of the opposing two side surfaces from which the magnetic layer has been removed so as not to contact the magnetic layer. The metal layer 9 is a part constituting a bonding pad, and is composed of, for example, a plurality of layers such as copper, nickel, and gold layers. Each thickness is 30 micrometers, 2 micrometers, and 1 micrometer. A metal layer is not limited to these metals, What is necessary is just the structure of the metal layer which is electroconductivity, low resistance, and can be wire-bonded used by a semiconductor.
[0028]
(7) As shown in FIG. 7, the polyimide film 1 in which the magnetic body 3 is formed on both sides and the metal layer 9 is formed on both ends, the portion without the magnetic layer is cut for each magnetic layer 3 at the polyimide film portion, and the magnetic core 10 is formed. Then, a required number of each of the magnetic cores 10 are laminated to form a laminated core 22 as shown in FIG. The laminated magnetic core shape at this time is 3.4 × 2.8 × 0.34 mm, and six layers are laminated. Originally, the laminated thickness is 0.34 mm, but the thickness direction is described as being thick in order to make the laminated structure easy to see.
[0029]
(8) As shown in FIG. 9, a round or square conducting wire coated on the magnetic core 22 in the stacking direction is wound on the magnetic film a desired number of times to constitute an inductor. At this time, the winding end has a shape in which the lead wire tip is exposed as it is. As the winding material, a round conductive wire of several tens to several hundreds μmφ or a rectangular conductive wire of several tens to several hundreds μm is used. The number of windings and the winding interval can be arbitrarily determined according to specifications that provide desired inductor characteristics. Here, a conducting wire of 100 μmφ is wound, and the wound inductor shape is 3.4 × 2.8 × 0.54 mm. This time, the conducting wire is a single-layer winding, but a multi-layer winding is also possible.
[0030]
(9) When only this lead wire is exposed, mounting on a printed circuit board or mounting on a HIC circuit board cannot be accurately positioned, and if it is wire bonding mounting, it cannot be mounted. As shown in FIG. 10, first, a part of the tip of the winding 4 is connected to a part of the metal layer 9 with solder 12 or the like.
[0031]
(10) As shown in FIG. 11, the tip portion of the winding 4 connected to the metal layer 9 is further wound around the surface opposite to the surface of the metal layer 9 connected by soldering, and the winding 4 is wound on the entire surface. The tip is wound in a zigzag manner (winding winding 13) and fixed with an adhesive or the like.
[0032]
(11) As shown in FIG. 12A, the bonding pad 14 is formed in a region other than the portion where the winding 4 of the metal layer 9 is connected by the solder 12. The bonding pad 14 is electrically connected to the winding 4 by the solder 12 and constitutes an electrode terminal of the winding thin film magnetic core microinductor.
[0033]
At this time, the winding winding 13 is the same as the wire wound on the magnetic layer constituting the inductor, and the surface of the winding winding 13 is flush with the surface wound on the magnetic layer constituting the inductor. become. That is, even if the wire bonding pad is formed, the support substrate is not used as in the conventional case, so the shape of the wound thin film magnetic core microinductor is 3.4 × 2.8 × 0.54 mm, and the winding inductor itself It becomes a shape and does not require extra volume.
[0034]
In addition, when mounting in a normal wire bonding system, the bonding pad 14 is mounted on the upper side, the winding winding 13 is mounted on the lower surface, and wire bonding is performed on the bonding pad 14, but there is no winding winding 13 Heat and ultrasonic waves at the time of wire bonding may escape and connection may not be possible. However, the presence of the winding part 13 prevents the bonding pad 14 from having a gap or the like with respect to the mounting surface, so that heat and ultrasonic waves do not escape. Since a certain degree of hardness can be maintained, arbitrary wire bonding is possible. Furthermore, since the bonding pad 14 surface is at a position lower than the partial surface wound around the magnetic layer 3 by the amount of the winding material (100 μm in this embodiment), if the wire bonding is performed within 100 μm height, the bonding wire Therefore, mounting at a height of 0.54 mm can be realized.
[0035]
Further, as shown in FIGS. 13 and 14, the polyimide film 1 having the magnetic body 3 formed on both sides thereof is subjected to a zigzag fold at a portion without the magnetic layer by a mountain fold or a valley fold to form a magnetic core 15, A similar structure can be obtained by applying the above. In this case, since the magnetic layer 9 is laminated in a continuous state, the tip of the winding 4 is wound around the metal layer 9 on one side 16 and solder 17 is applied to the metal layer 9 on the opposite side. Is electrically connected to the winding portion, so that a bonding pad 18 is formed. The effect is the same as described above.
[0036]
【The invention's effect】
According to the present invention, it is possible to provide a winding type thin film magnetic inductor comprising a thin film magnetic core layer and a winding, and having a wire bonding pad on the magnetic core, and a method for manufacturing the same.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram of a method for manufacturing a wire wound thin film magnetic inductor according to an embodiment of the present invention. FIG. 1A is a plan view, and FIG. 1B is a side view.
FIG. 2 is an explanatory diagram of a method for manufacturing a thin film magnetic core inductor according to an embodiment of the present invention. 2A is a plan view, and FIG. 2B is a side view.
FIG. 3 shows a method for manufacturing a thin film magnetic inductor according to an embodiment of the present invention. FIG. 3A is a plan view, and FIG. 3B is a side view.
FIG. 4 shows a method of manufacturing a thin film core inductor according to an embodiment of the present invention. 4A is a plan view, and FIG. 4B is a side view.
FIG. 5 shows a method for manufacturing a thin film magnetic core inductor according to the present invention. FIG. 5A is a plan view, and FIG. 5B is a side view.
FIG. 6 shows a method for manufacturing a thin film magnetic core inductor according to the present invention. 6A is a plan view, and FIG. 6B is a side view.
FIG. 7 is an explanatory view of a method for manufacturing a wire wound thin film magnetic inductor according to an embodiment of the present invention. FIG. 7A is a plan view, and FIG. 7B is a side view.
FIG. 8 is an explanatory diagram of a method for manufacturing a wire wound thin film magnetic inductor according to an embodiment of the present invention.
FIG. 9 is an explanatory diagram of a method for manufacturing a wire wound thin film magnetic inductor according to an embodiment of the present invention. 9A is a left side view, FIG. 9B is a plan view, FIG. 9C is a right side view, and FIG. 9D is a front view.
FIG. 10 is an explanatory diagram of a method for manufacturing a wire wound thin film magnetic inductor according to an embodiment of the present invention. 10A is a left side view, FIG. 10B is a plan view, FIG. 10C is a right side view, and FIG. 10D is a front view.
FIG. 11 is an explanatory diagram of a method for manufacturing a wire wound thin film magnetic inductor according to an embodiment of the present invention. 11A is a left side view, FIG. 11B is a plan view, FIG. 11C is a right side view, and FIG. 11D is a front view.
FIG. 12 is an explanatory diagram of a method for manufacturing a thin film magnetic inductor of the present invention. 12A is a left side view, FIG. 12B is a plan view, FIG. 12C is a right side view, and FIG. 12D is a front view.
FIG. 13 is an explanatory diagram of a method for manufacturing a thin film magnetic core inductor of the present invention. 13A is a left side view, FIG. 13B is a plan view, FIG. 13C is a right side view, and FIG. 13D is a front view.
FIG. 14 is an explanatory diagram of a method for manufacturing a thin film magnetic inductor of the present invention. 14A is a left side view, FIG. 14B is a plan view, FIG. 14C is a right side view, and FIG. 14D is a front view.
FIG. 15 is an explanatory view of a method of manufacturing a conventional wire wound type thin film magnetic inductor. FIG. 15A is a plan view, and FIG. 15B is a side view.
FIG. 16 is an explanatory view of a conventional method for manufacturing a wound type thin film magnetic inductor. FIG. 16A is a plan view, and FIG. 16B is a side view.
FIG. 17 is an explanatory view of a conventional method for manufacturing a wound type thin film magnetic inductor. FIG. 17A is a plan view, and FIG. 17B is a side view.
FIG. 18 is an explanatory diagram of a conventional method for manufacturing a wound type thin film magnetic inductor. 18A is a plan view, and FIG. 18B is a side view.
FIG. 19 is an explanatory view of a conventional method of manufacturing a wound type thin film magnetic inductor. FIG. 19A is a plan view, and FIG. 19B is a side view.
FIG. 20 is an explanatory view of a conventional method for manufacturing a wound type thin film magnetic inductor. FIG. 20A is a plan view, and FIG. 20B is a side view.
FIG. 21 is an explanatory view of a conventional method for manufacturing a wound type thin film magnetic inductor.
FIG. 22 is an explanatory view of a conventional method of manufacturing a wound type thin film magnetic inductor. FIG. 22A is a plan view, and FIG. 22B is a side view.
FIG. 23 is an explanatory view of a conventional method of manufacturing a wound type thin film magnetic inductor.
FIG. 24 is an explanatory view of a conventional method for manufacturing a wound type thin film magnetic inductor. 24A is a plan view, FIG. 24B is a front view, and FIG. 24C is a side view.
FIG. 25 is an explanatory view of a conventional method for manufacturing a wound type thin film magnetic inductor. FIG. 25A is a plan view, FIG. 25B is a front view, and FIG. 25C is a side view.
[Explanation of symbols]
1 Polyimide film 2 Resist 3 Magnetic material (magnetic layer)
4 Winding (winding material)
5 Support substrate 6 Metal pad 7 Solder 8, 14, 18 Bonding pad 9 Metal layer 10 Magnetic core (single layer)
11 Magnetic core (laminated)
12, 17 Solder 13, 16 Winding winding 15, 19, 20, 21, 22 Magnetic core (lamination)