JP2005071974A - Surge absorber - Google Patents

Surge absorber Download PDF

Info

Publication number
JP2005071974A
JP2005071974A JP2003427457A JP2003427457A JP2005071974A JP 2005071974 A JP2005071974 A JP 2005071974A JP 2003427457 A JP2003427457 A JP 2003427457A JP 2003427457 A JP2003427457 A JP 2003427457A JP 2005071974 A JP2005071974 A JP 2005071974A
Authority
JP
Japan
Prior art keywords
electrodes
surge absorber
glass tube
sealing
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003427457A
Other languages
Japanese (ja)
Inventor
Norimasa Hashizume
憲正 橋爪
Shinichi Suzuki
伸一 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teikoku Tsushin Kogyo Co Ltd
Original Assignee
Teikoku Tsushin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teikoku Tsushin Kogyo Co Ltd filed Critical Teikoku Tsushin Kogyo Co Ltd
Priority to JP2003427457A priority Critical patent/JP2005071974A/en
Publication of JP2005071974A publication Critical patent/JP2005071974A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surge absorber without the possibility of damaging a glass tube by discharge, capable of reducing the size and the cost, and easy to manufacture. <P>SOLUTION: On the surge absorber 10-1, electrodes 30, 30 are mounted on the opposing faces of a pair of sealing electrodes 20, 20 respectively, and the pair of electrodes 30, 30 are inserted into an insulation tube 40 from both sides thereof with a prescribed distance between them. The insulation tube 40 in which the electrodes 30, 30 are inserted, and the sealing electrodes 20, 20 are housed in the glass tube 50, and the boundary between the end parts of the glass tube 50 and the sealing electrodes 20, 20 are sealed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、サージ電流を放電によって逃がすサージアブソーバに関するものである。   The present invention relates to a surge absorber that releases a surge current by discharging.

電子機器には、雷等によるサージ電流が侵入してこれを破壊する恐れがある。そこで従来、このサージ電流を放電によって逃がすためサージアブソーバが取り付けられ、電子機器の保護が図られている。   There is a risk that a surge current from lightning or the like may enter the electronic device and destroy it. Therefore, conventionally, a surge absorber is attached in order to release this surge current by discharging, thereby protecting the electronic equipment.

ここで従来のサージアブソーバは、図5に示すように、サージ吸収素子100を所定のガスを充填したガラス管110内に収容し、ガラス管110の両端を封止電極120,120で封止すると共に封止電極120,120をサージ吸収素子100の両端に取り付けた端子電極108,108に当接して構成されている。サージ吸収素子100は、棒状の絶縁体101の表面に導電性皮膜103を形成し、その中央に導電性皮膜103を分割する放電トリガーギャップ105を設け、さらに両端にキャップ状の端子電極108,108を取り付けて構成されている。そして封止電極120,120に取り付けたリード端子121,121間にサージ電流が印加されると、まず放電トリガーギャップ105において放電が生じてガラス管110内の絶縁が破壊され、両端子電極108,108間で放電が開始する。   Here, as shown in FIG. 5, the conventional surge absorber houses the surge absorbing element 100 in a glass tube 110 filled with a predetermined gas, and seals both ends of the glass tube 110 with sealing electrodes 120 and 120. In addition, the sealing electrodes 120 and 120 are configured to be in contact with terminal electrodes 108 and 108 attached to both ends of the surge absorbing element 100. In the surge absorbing element 100, a conductive film 103 is formed on the surface of a rod-shaped insulator 101, a discharge trigger gap 105 for dividing the conductive film 103 is provided at the center thereof, and cap-shaped terminal electrodes 108, 108 are provided at both ends. It is configured with an attached. When a surge current is applied between the lead terminals 121 and 121 attached to the sealing electrodes 120 and 120, first, a discharge is generated in the discharge trigger gap 105, and the insulation in the glass tube 110 is broken, whereby both terminal electrodes 108, Discharge starts between 108.

しかしながら上記従来のサージアブソーバにおいては、絶縁体101の表面に導電性皮膜103を形成してレーザーカットによって放電トリガーギャップ105を設けたり、サージ吸収素子100の両端に端子電極108,108を取り付けたりする等、その製造が煩雑で、低コスト化が図れなかった。   However, in the above conventional surge absorber, the conductive film 103 is formed on the surface of the insulator 101 and the discharge trigger gap 105 is provided by laser cutting, or the terminal electrodes 108 and 108 are attached to both ends of the surge absorbing element 100. Thus, the production is complicated, and the cost cannot be reduced.

また上記従来のサージアブソーバにおいては、サージ吸収時に、ガラス管110の内壁に沿うように放電光が放電されることで、ガラス管110にダメージが与えられ、このため繰り返してサージ電流が印加されるとガラス管110が破損されてしまう恐れがあった。   In the conventional surge absorber, the discharge light is discharged along the inner wall of the glass tube 110 when absorbing the surge, thereby damaging the glass tube 110, and thus a surge current is repeatedly applied. The glass tube 110 may be damaged.

また上記従来のサージアブソーバにおいては、中央に設置したサージ吸収素子100とその周囲を覆うガラス管110との間に放電に必要な空間を確保する必要から、ガラス管110の内径の小型化が制限され、このためサージアブソーバの小型化が図れなかった。
特開2001−135455号公報
Further, in the conventional surge absorber described above, it is necessary to secure a space necessary for discharge between the surge absorbing element 100 installed in the center and the glass tube 110 covering the periphery thereof, so that downsizing of the inner diameter of the glass tube 110 is limited. For this reason, the surge absorber cannot be downsized.
JP 2001-135455 A

本発明は上述の点に鑑みてなされたものでありその目的は、製造が容易で低コスト化が図れるサージアブソーバを提供することにある。   The present invention has been made in view of the above points, and an object of the present invention is to provide a surge absorber that can be easily manufactured and reduced in cost.

また本発明の目的は、放電によるダメージをガラス管に与える恐れがなく、小型化が図れるサージアブソーバを提供することにある。   Another object of the present invention is to provide a surge absorber that can be reduced in size without fear of damaging the glass tube.

本願の請求項1に記載の発明は、対向面にそれぞれ電極を取り付けてなる一対の封止電極と、これら一対の電極をその両側に収納する絶縁管と、前記電極を収納した絶縁管と封止電極とを収納するとともに封止電極との間で封止されるガラス管とガラス管内に導入された所定のガスを具備してなることを特徴とするサージアブソーバである。   The invention according to claim 1 of the present application includes a pair of sealing electrodes each having an electrode attached to an opposing surface, an insulating tube that accommodates the pair of electrodes on both sides thereof, an insulating tube that accommodates the electrode, and a sealing tube. A surge absorber characterized by comprising a stop electrode and a glass tube sealed between the sealing electrode and a predetermined gas introduced into the glass tube.

本願の請求項2に記載の発明は、前記絶縁管の内壁には、放電誘発用の導電粉が点在して付着されていることを特徴とする請求項1に記載のサージアブソーバである。   The invention according to claim 2 of the present application is the surge absorber according to claim 1, wherein conductive powder for inducing discharge is scattered and adhered to the inner wall of the insulating tube.

本願請求項3に記載の発明は、対向面にそれぞれ電極を取り付けてなる一対の封止電極と、これら一対の電極をその両側の面上に設置する絶縁板と、前記電極を設置した絶縁板と封止電極とを収納するとともに封止電極との間で封止されるガラス管とガラス管内に導入された所定のガスを具備してなることを特徴とするサージアブソーバである。   The invention according to claim 3 of the present application includes a pair of sealing electrodes each having an electrode attached to the opposing surface, an insulating plate on which the pair of electrodes are installed on both sides, and an insulating plate on which the electrodes are installed. And a sealing electrode, and a glass tube sealed between the sealing electrode and a predetermined gas introduced into the glass tube.

本願請求項4に記載の発明は、前記絶縁板の一対の電極を設置した面の中間部分には、放電誘発用の導電部が設けられていることを特徴とする請求項3に記載のサージアブソーバである。   According to a fourth aspect of the present invention, the surge according to the third aspect is characterized in that a conductive portion for inducing a discharge is provided in an intermediate portion of the surface on which the pair of electrodes of the insulating plate is installed. It is an absorber.

請求項1に記載のサージアブソーバによれば、サージアブソーバの製造が容易になり、低コスト化が図れる。また絶縁管内において放電が行われるため、ガラス管の内壁に沿うように放電光が放電されることはなく、従ってガラス管にはダメージが与えられず、このため繰り返しサージ電流が印加されてもガラス管が破損することはない。また大きな電流を流しても破損しないので、耐圧性も向上する。またこのサージアブソーバにおいては、放電に必要な空間(放電空間)をその中心部分(絶縁管の内部)に確保でき、従ってガラス管の外径の小型化が図れ、サージアブソーバの小型化が図れる。   According to the surge absorber of the first aspect, the manufacture of the surge absorber is facilitated, and the cost can be reduced. In addition, since the discharge is performed in the insulating tube, the discharge light is not discharged along the inner wall of the glass tube, and thus the glass tube is not damaged. Therefore, even if a surge current is repeatedly applied, the glass tube is not damaged. The tube will not break. Moreover, since it does not break even if a large current flows, the pressure resistance is improved. Further, in this surge absorber, a space (discharge space) necessary for discharge can be secured in the central portion (inside the insulating tube), so that the outer diameter of the glass tube can be reduced and the surge absorber can be reduced in size.

請求項2に記載のサージアブソーバによれば、絶縁管の内壁に導電粉を付着したので、サージアブソーバへのサージ電圧の印加速度が変化しても、その放電開始電圧を略一定に安定させることができる。   According to the surge absorber according to claim 2, since the conductive powder adheres to the inner wall of the insulating tube, the discharge start voltage is stabilized substantially constant even if the application speed of the surge voltage to the surge absorber changes. Can do.

請求項3に記載のサージアブソーバによれば、サージアブソーバの製造が容易になり、低コスト化が図れる。また一部ではあるが一対の電極の周囲を絶縁板によって覆うので、ガラス管の内壁に沿う放電光が少なくなり、ガラス管へのダメージを減少でき、このため繰り返しサージ電流が印加されてもガラス管が破損することはない。   According to the surge absorber of claim 3, the manufacture of the surge absorber is facilitated, and the cost can be reduced. In addition, although a portion of the electrode is covered with an insulating plate, a portion of the discharge light along the inner wall of the glass tube is reduced and damage to the glass tube can be reduced. The tube will not break.

請求項4に記載のサージアブソーバによれば、絶縁板の一対の電極を設置した面の中間部分に放電誘発用の導電部を設けたので、サージアブソーバへのサージ電圧の印加速度が変化しても、その放電開始電圧を略一定に安定させることができる。   According to the surge absorber according to claim 4, since the discharge inducing conductive portion is provided in the middle portion of the surface on which the pair of electrodes of the insulating plate is installed, the application speed of the surge voltage to the surge absorber changes. However, the discharge start voltage can be stabilized substantially constant.

以下、本発明の実施の形態を図面を参照して詳細に説明する。
図1は本発明の一実施の形態にかかるサージアブソーバ10−1の概略断面図である。同図に示すようにサージアブソーバ10−1は、一対の封止電極20,20の対向面にそれぞれ電極30,30を取り付け、これら一対の電極30,30を絶縁管40の両側から挿入して所定距離離間して設置し、前記電極30,30を収納した絶縁管40と封止電極20,20とを所定のガスを充填した管(以下「ガラス管」という)50内に収容し、ガラス管50の両端部を前記封止電極20,20で封止して構成されている。封止電極20,20の外側面にはリード端子60,60が取り付けられている。以下各構成部品について説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic cross-sectional view of a surge absorber 10-1 according to an embodiment of the present invention. As shown in the figure, the surge absorber 10-1 has electrodes 30 and 30 attached to opposing surfaces of a pair of sealing electrodes 20 and 20, respectively, and these pair of electrodes 30 and 30 are inserted from both sides of the insulating tube 40. The insulating tube 40 and the sealing electrodes 20 and 20 that house the electrodes 30 and 30 are housed in a tube 50 (hereinafter referred to as “glass tube”) filled with a predetermined gas. Both ends of the tube 50 are sealed with the sealing electrodes 20 and 20. Lead terminals 60, 60 are attached to the outer surfaces of the sealing electrodes 20, 20. Each component will be described below.

封止電極20,20は円柱状に形成されており、その材質はガラスとの密着度の高い特殊な金属(銅被覆鉄ニッケル合金線)であるジュメット線によって構成されている。   The sealing electrodes 20 and 20 are formed in a columnar shape, and the material thereof is constituted by a jumet wire that is a special metal (copper-coated iron-nickel alloy wire) having high adhesion to glass.

電極30,30は前記封止電極20,20よりも小径の円柱状に形成されており、その材質は金属、例えばニッケル、ニッケルクロム、タングステンによって構成されている。   The electrodes 30 and 30 are formed in a cylindrical shape having a smaller diameter than the sealing electrodes 20 and 20, and the material thereof is made of metal, for example, nickel, nickel chrome, or tungsten.

絶縁管40はその内径が前記電極30の外径よりも少し大きく且つその外径が前記封止電極20の外径よりも小さい円筒状に形成されており、その材質はセラミック、例えばアルミナによって構成されている。   The insulating tube 40 is formed in a cylindrical shape whose inner diameter is slightly larger than the outer diameter of the electrode 30 and whose outer diameter is smaller than the outer diameter of the sealing electrode 20, and the material thereof is made of ceramic, for example, alumina. Has been.

ガラス管50はその内径が前記封止電極20の外径よりも少し大きい円筒状に形成されている。   The glass tube 50 is formed in a cylindrical shape whose inner diameter is slightly larger than the outer diameter of the sealing electrode 20.

次にこのサージアブソーバ10−1の製造方法を説明する。まず図2(a)に示すように、予め一対の封止電極20,20の対向面にそれぞれ電極30,30を溶接(スポット溶接)によって取り付けておく。また封止電極20,20の反対側の面にそれぞれリード端子60,60を溶接(スポット溶接)によって取り付けておく。   Next, the manufacturing method of this surge absorber 10-1 is demonstrated. First, as shown to Fig.2 (a), the electrodes 30 and 30 are each previously attached to the opposing surface of a pair of sealing electrodes 20 and 20 by welding (spot welding). Lead terminals 60 and 60 are attached to the opposite surfaces of the sealing electrodes 20 and 20 by welding (spot welding), respectively.

そして図2(a)に矢印で示すように、前記一対の電極30,30を絶縁管40の両端側から絶縁管40内に挿入し、さらに図2(b)に示すように、一対の封止電極20,20の外周を囲むようにガラス管50を設置する。   2A, the pair of electrodes 30 are inserted into the insulating tube 40 from both ends of the insulating tube 40, and as shown in FIG. A glass tube 50 is installed so as to surround the outer periphery of the stop electrodes 20 and 20.

そして図2(b)に示す状態でガラス管50の周囲の雰囲気を真空排気し、次に二酸化炭素や、アルゴンガス、窒素ガス、キセノンガス等の不活性ガスを導入してこれらのガスの雰囲気とした後、ガラス管50をその周囲から加熱(例えば700℃)し、これによってガラス管50を軟化して収縮させ、封止電極20,20の外周に溶着させる。これによってガラス管50の両端部が封止され、その内部は外部から完全に遮断され密封され、図1に示すサージアブソーバ10−1が完成する。   Then, the atmosphere around the glass tube 50 is evacuated in the state shown in FIG. 2 (b), and then an inert gas such as carbon dioxide, argon gas, nitrogen gas, xenon gas is introduced and the atmosphere of these gases is introduced. After that, the glass tube 50 is heated from the surroundings (for example, 700 ° C.), whereby the glass tube 50 is softened and contracted, and welded to the outer periphery of the sealing electrodes 20 and 20. As a result, both ends of the glass tube 50 are sealed, and the inside thereof is completely cut off from the outside and sealed to complete the surge absorber 10-1 shown in FIG.

即ち、このサージアブソーバ10−1は、対向面にそれぞれ円柱状の電極30,30を取り付けてなる一対の電極30の外径より大きい径を有する円柱状の封止電極20,20と、これら一対の電極30,30をその両側から中空内部に挿入・位置させて所定距離離間させる円筒状の絶縁管40と、前記電極30,30を収納した絶縁管40と封止電極20,20とを収納するとともに封止電極20,20の外周面とその内壁面との間が封止される円筒状のガラス管50とを具備して構成されている。ここで封止電極20の電極30を取り付けた側の端面と、絶縁管40の端面とは当接している。なおガラス管50の内壁と絶縁管40の外壁の間は所定寸法離間するように構成されている。これは両者の熱膨張係数が異なるため、両者が接触していると、ガラス管50の両端部を封止する際の高熱によってガラス管50が割れるのでこれを避けるためである。   That is, the surge absorber 10-1 includes cylindrical sealing electrodes 20 and 20 having a diameter larger than the outer diameter of a pair of electrodes 30 each having cylindrical electrodes 30 and 30 attached to opposite surfaces, and the pair. The cylindrical insulating tube 40 that inserts and positions the electrodes 30 and 30 from both sides into the hollow interior and separates them by a predetermined distance, the insulating tube 40 that stores the electrodes 30 and 30, and the sealing electrodes 20 and 20 are stored. In addition, the cylindrical glass tube 50 is configured to be sealed between the outer peripheral surface of the sealing electrodes 20 and 20 and the inner wall surface thereof. Here, the end surface of the sealing electrode 20 on which the electrode 30 is attached is in contact with the end surface of the insulating tube 40. The inner wall of the glass tube 50 and the outer wall of the insulating tube 40 are configured to be separated from each other by a predetermined dimension. This is because the thermal expansion coefficients of the two are different, so that if they are in contact, the glass tube 50 is broken by high heat when sealing both ends of the glass tube 50, so that this is avoided.

そして以上のようにして構成されたサージアブソーバ10−1のリード端子60,60間にサージ電流が印加されると、絶縁管40内において放電が開始され、火花放電→グロー放電→アーク放電へと瞬時に変化しながら絶縁管40内の空間の絶縁が破壊され、結局アーク放電によって両電極30,30間で放電が行われる。   When a surge current is applied between the lead terminals 60, 60 of the surge absorber 10-1 configured as described above, a discharge is started in the insulating tube 40, and a spark discharge → a glow discharge → an arc discharge. The insulation of the space in the insulating tube 40 is destroyed while changing instantaneously, and eventually, the discharge is performed between the electrodes 30 and 30 by arc discharge.

このサージアブソーバ10−1においては、強度の強い絶縁管40内において放電が行われるため、絶縁管40に比べて強度の弱いガラス管50の内壁に沿うように放電光が放電されることはなく、従ってガラス管50にはダメージが与えられず、このため繰り返しサージ電流が印加されてもガラス管50が破損することはない。また大きな電流を流しても破損しないので、耐圧性も向上する。   In this surge absorber 10-1, since discharge is performed in the strong insulating tube 40, the discharge light is not discharged along the inner wall of the glass tube 50, which is weaker than the insulating tube 40. Therefore, the glass tube 50 is not damaged, and therefore the glass tube 50 is not broken even when a surge current is repeatedly applied. Moreover, since it does not break even if a large current flows, the pressure resistance is improved.

またこのサージアブソーバ10−1においては、絶縁管40の両端を封止せず(絶縁管40は、電極30,30やガラス管50に固定されていない)、密着性の優れたガラス管50と封止電極20,20とによってサージアブソーバ10−1の内部を封止したので、サージアブソーバ10−1の内部の密封が確実に行える。即ち本発明においては、セラミック製の絶縁管40を電極30に完全封止することが困難であることに鑑み、絶縁管40と電極30間を封止せず、別途これらを囲むガラス管50と封止電極20間を封止したのである。   Further, in this surge absorber 10-1, both ends of the insulating tube 40 are not sealed (the insulating tube 40 is not fixed to the electrodes 30, 30 and the glass tube 50), and sealed with the glass tube 50 having excellent adhesion. Since the inside of the surge absorber 10-1 is sealed by the stop electrodes 20, 20, the inside of the surge absorber 10-1 can be reliably sealed. That is, in the present invention, considering that it is difficult to completely seal the ceramic insulating tube 40 to the electrode 30, the insulating tube 40 and the electrode 30 are not sealed and sealed separately from the glass tube 50 surrounding them. The space between the stop electrodes 20 is sealed.

またこのサージアブソーバ10−1においては、その中心部分において放電が行われるので、放電に必要な空間(放電空間)をその中心部分(絶縁管40の内部)に確保でき、従ってガラス管50の外径の小型化が図れ、サージアブソーバ10−1の小型化が図れる。   Further, in the surge absorber 10-1, since discharge is performed in the central portion thereof, a space (discharge space) necessary for discharge can be ensured in the central portion (inside the insulating tube 40). The diameter can be reduced, and the surge absorber 10-1 can be reduced.

またこのサージアブソーバ10−1の製造は、一対の封止電極20,20に取り付けた電極30,30を絶縁管40の両側から挿入した上で、絶縁管40と封止電極20,20とをガラス管50内に収納してガラス管50の両端部を封止電極20,20に封止するだけで容易に行え、図5に示す従来例のような導電性皮膜103の形成やレーザカット等は不要なので、低コスト化が図れる。   The surge absorber 10-1 is manufactured by inserting the electrodes 30, 30 attached to the pair of sealing electrodes 20, 20 from both sides of the insulating tube 40, and then connecting the insulating tube 40 and the sealing electrodes 20, 20 together. The glass tube 50 is housed in the glass tube 50, and both ends of the glass tube 50 can be easily sealed by the sealing electrodes 20 and 20. Formation of the conductive film 103 as in the conventional example shown in FIG. 5, laser cutting, etc. Is unnecessary, so the cost can be reduced.

図3は本発明の他の実施の形態にかかるサージアブソーバ10−2の概略断面図である。同図において図1に示すサージアブソーバ10−1と同一又は相当部分には同一符号を付してその詳細な説明は省略する。同図に示すサージアブソーバ10−2において、前記図1に示すサージアブソーバ10−1と相違する点は、電極30の形状のみである。即ちこのサージアブソーバ10−2に用いる電極30はこれを球状に形成している。電極30をこのように形成すれば、サージ電流が電極30を構成する球面に垂直に入射するので、サージ電流の入射位置が一箇所に集中せず、球面に面状に分散して入射する。従って電極30は破損しにくくなり、さらなるサージアブソーバ10−2の高寿命化が図れる。なお球面状に形成する部分は電極30の一部分でも良く、例えば一対の電極30,30の対向面を球面状にすれば良い。このとき電極30は例えば半球状に構成する。また球面以外の湾極面で構成しても上記効果はある程度生じる。要は少なくとも一対の電極30,30の対向する面を湾極面形状に構成すれば良い。   FIG. 3 is a schematic cross-sectional view of a surge absorber 10-2 according to another embodiment of the present invention. In the figure, the same or corresponding parts as those of the surge absorber 10-1 shown in FIG. In the surge absorber 10-2 shown in the figure, the only difference from the surge absorber 10-1 shown in FIG. That is, the electrode 30 used for the surge absorber 10-2 is formed in a spherical shape. If the electrode 30 is formed in this way, the surge current enters the spherical surface constituting the electrode 30 perpendicularly, so that the incident position of the surge current does not concentrate in one place but is dispersed and incident on the spherical surface. Therefore, the electrode 30 is not easily damaged, and the life of the surge absorber 10-2 can be further increased. The part formed in a spherical shape may be a part of the electrode 30. For example, the opposing surfaces of the pair of electrodes 30, 30 may be spherical. At this time, the electrode 30 is formed in a hemispherical shape, for example. Further, the above-mentioned effect is produced to some extent even if it is constituted by a gulf pole surface other than a spherical surface. The point is that at least the opposing surfaces of the pair of electrodes 30, 30 may be configured in the shape of a bay pole surface.

図4は本発明のさらに他の実施の形態にかかるサージアブソーバ10−3の概略断面図である。同図において図1に示すサージアブソーバ10−1と同一又は相当部分には同一符号を付してその詳細な説明は省略する。同図に示すサージアブソーバ10−3において、前記図1に示すサージアブソーバ10−1と相違する点は、絶縁管40の内壁に、放電誘発用の導電粉70を点在するように付着した点のみである。   FIG. 4 is a schematic cross-sectional view of a surge absorber 10-3 according to still another embodiment of the present invention. In the figure, the same or corresponding parts as those of the surge absorber 10-1 shown in FIG. In the surge absorber 10-3 shown in the figure, the difference from the surge absorber 10-1 shown in FIG. 1 is that the conductive powder 70 for inducing discharge is scattered on the inner wall of the insulating tube 40. Only.

ここで導電粉70は、例えば平均粒径15μm程度のカーボングラファイトやカーボンブラックの粉末であり、この粉末を例えば溶液中に分散させたものを絶縁管40の内壁全体に塗布した後、前記溶液を蒸発させることによって付着させる。導電粉70間には所定の離間距離があることが好ましく、特に内壁面全体に点在することが好ましい。このように導電粉70を付着したのは、サージアブソーバ10−3へのサージ電圧の印加スピードによって放電開始電圧が変化するのを防ぎ、その放電開始電圧を略一定に安定させるためである。   Here, the conductive powder 70 is, for example, a carbon graphite or carbon black powder having an average particle size of about 15 μm. After the powder is dispersed in the solution, for example, over the entire inner wall of the insulating tube 40, the solution is added to the conductive powder 70. Deposit by evaporation. It is preferable that there is a predetermined separation distance between the conductive powders 70, and it is particularly preferable that the conductive powders are scattered over the entire inner wall surface. The reason why the conductive powder 70 is attached in this way is to prevent the discharge start voltage from changing according to the application speed of the surge voltage to the surge absorber 10-3 and to stabilize the discharge start voltage substantially constant.

即ち一般にサージアブソーバに印加される電圧は、それが急激に印加されればされるほど、サージアブソーバにおける放電開始電圧は高くなる。実験によれば、前記図1に示すサージアブソーバ10−1の場合、100(V/sec)の割合でゆっくり印加電圧を上昇した場合は2(kV)で放電を開始したが、10k(V/μsec)で急激に印加電圧を上昇した場合は4(kV)で放電を開始した。   That is, generally, the voltage applied to the surge absorber increases as the voltage is applied more rapidly, and the discharge start voltage in the surge absorber becomes higher. According to the experiment, in the case of the surge absorber 10-1 shown in FIG. 1, when the applied voltage was slowly increased at a rate of 100 (V / sec), the discharge was started at 2 (kV), but 10 k (V / In the case where the applied voltage was suddenly increased in μsec), the discharge was started at 4 (kV).

そこでこの実施の形態では放電空間を形成する絶縁管40の内壁に導電粉70を点在させ、サージ電圧が印加された場合はまず比較的低い電圧で導電粉70間に放電(火花放電やグロー放電)を開始させ、これによってスムーズ且つ迅速に両電極30,30間のアーク放電に移行させるようにしたのである。実験によれば、サージアブソーバ10−3の場合、100(V/sec)の割合でゆっくり印加電圧を上昇した場合は2(kV)で放電が開始し、一方10k(V/μsec)で急激に印加電圧を上昇した場合は2.9(kV)で放電が開始した。即ち図1に示すサージアブソーバ10−1に比べて短時間に高電圧が印加された場合でもその応答が遅くならない安定した特性となる。   Therefore, in this embodiment, the conductive powder 70 is scattered on the inner wall of the insulating tube 40 forming the discharge space. When a surge voltage is applied, first, a discharge (spark discharge or glow) is performed between the conductive powders 70 at a relatively low voltage. Discharge) was started, and thereby, the arc discharge between the electrodes 30 and 30 was smoothly and rapidly transferred. According to the experiment, in the case of the surge absorber 10-3, when the applied voltage is slowly increased at a rate of 100 (V / sec), the discharge starts at 2 (kV), while suddenly at 10 k (V / μsec). When the applied voltage was increased, discharge started at 2.9 (kV). That is, even when a high voltage is applied in a short time compared to the surge absorber 10-1 shown in FIG. 1, the response does not slow down.

図6は本発明の更に他の実施の形態にかかるサージアブソーバ10−4の概略断面図(ガラス管50のみを断面で示している)であり、図6(a)は概略平断面図、図6(b)は概略側断面図である。なおこの実施の形態において前記各実施の形態と同一又は相当部分には同一符号を付す。同図に示すサージアブソーバ10−4は、一対の封止電極20,20の対向面にそれぞれ電極30,30を取り付け、これら一対の電極30,30を絶縁板40−4の面上の両側に所定距離離間して設置し、前記電極30,30を設置した絶縁板40−4と封止電極20,20とを所定のガスを充填した管(以下「ガラス管」という)50内に収容し、ガラス管50の両端部を前記封止電極20,20で封止して構成されている。封止電極20,20の外側面にはリード端子60,60が取り付けられている。以下各構成部品について説明する。   FIG. 6 is a schematic cross-sectional view of a surge absorber 10-4 according to still another embodiment of the present invention (only the glass tube 50 is shown in cross section), and FIG. 6 (a) is a schematic plan cross-sectional view, FIG. 6 (b) is a schematic sectional side view. In this embodiment, the same reference numerals are given to the same or corresponding parts as those of the respective embodiments. In the surge absorber 10-4 shown in the figure, electrodes 30, 30 are respectively attached to the opposing surfaces of the pair of sealing electrodes 20, 20, and the pair of electrodes 30, 30 are arranged on both sides of the surface of the insulating plate 40-4. The insulating plate 40-4 on which the electrodes 30 and 30 are installed and the sealing electrodes 20 and 20 are placed in a tube (hereinafter referred to as “glass tube”) 50 filled with a predetermined gas. The both ends of the glass tube 50 are sealed with the sealing electrodes 20 and 20. Lead terminals 60, 60 are attached to the outer surfaces of the sealing electrodes 20, 20. Each component will be described below.

封止電極20,20は前記各実施の形態と同様に円柱状に形成されており、その材質はガラスとの密着度の高い特殊な金属(銅被覆鉄ニッケル合金線)であるジュメット線によって構成されている。   The sealing electrodes 20 and 20 are formed in a columnar shape as in the above-described embodiments, and the material thereof is constituted by a special metal (copper-coated iron-nickel alloy wire) having a high degree of adhesion to glass. Has been.

電極30,30は前記各実施の形態と同様に前記封止電極20,20よりも小径の円柱状に形成されており、その材質は金属、例えばニッケル、ニッケルクロム、タングステンによって構成されている。   The electrodes 30 and 30 are formed in a columnar shape having a smaller diameter than the sealing electrodes 20 and 20 as in the above embodiments, and the material thereof is made of metal, for example, nickel, nickel chromium, or tungsten.

ここで図7は絶縁板40−4の斜視図である。同図に示すように絶縁板40−4は矩形状で平板状の基部41−4を有し、この基部41−4の上面(一対の電極30,30を設置する面)の長手方向に向かう左右両側辺の両端部から上方向に向けて四本の突起部43−4を設けることで両端部の一対ずつの突起部43−4の間にそれぞれ凹状の電極収納部45−4を形成して構成されており、その材質はセラミック、例えばアルミナによって構成されている。電極収納部45−4の幅L1は前記電極30の外径寸法と略同一又は少しだけ大きい寸法に形成され、また電極収納部45−4の高さL2は前記電極30の外径寸法よりも少し小さい寸法に形成されている。また絶縁板40−4の両電極収納部45−4,45−4間を結ぶ方向(長手方向)の長さL3は、この長さL3に一対の封止電極20,20の長さを加えた長さがガラス管50の長さと略一致する寸法に形成されている。   FIG. 7 is a perspective view of the insulating plate 40-4. As shown in the figure, the insulating plate 40-4 has a rectangular and flat base portion 41-4, and faces the longitudinal direction of the upper surface of the base portion 41-4 (the surface on which the pair of electrodes 30 and 30 are installed). By providing four protrusions 43-4 upward from both ends on both the left and right sides, a concave electrode housing 45-4 is formed between each pair of protrusions 43-4 on both ends. The material is made of ceramic, for example, alumina. The width L1 of the electrode housing 45-4 is formed to be substantially the same as or slightly larger than the outer diameter of the electrode 30, and the height L2 of the electrode housing 45-4 is larger than the outer diameter of the electrode 30. The dimensions are slightly smaller. The length L3 of the insulating plate 40-4 in the direction (longitudinal direction) connecting both the electrode storage portions 45-4 and 45-4 is obtained by adding the length of the pair of sealing electrodes 20 and 20 to the length L3. The length of the glass tube 50 is substantially the same as the length of the glass tube 50.

一方絶縁板40−4の基部41−4の上面の中間部分には、放電誘発用の導電パターンからなる導電部47−4が設けられている。この導電部47−4はこの実施の形態ではカーボン皮膜によって構成されているが、他の各種導電材料によって形成しても良い。またこの実施の形態では導電部47−4を絶縁板40−4の長手方向に向かう直線状のパターンで構成しているが、複数の点状のパターンで構成しても良く、さらに前記図4に示すサージアブソーバ10−3のように導電粉を点在するように付着させても良く、要は放電開始電圧を略一定に安定させることができるものであればどのような形状・構造・材質であっても良い。   On the other hand, a conductive portion 47-4 having a conductive pattern for inducing discharge is provided in an intermediate portion of the upper surface of the base portion 41-4 of the insulating plate 40-4. The conductive portion 47-4 is formed of a carbon film in this embodiment, but may be formed of other various conductive materials. In this embodiment, the conductive portion 47-4 is formed by a linear pattern extending in the longitudinal direction of the insulating plate 40-4. However, the conductive portion 47-4 may be formed by a plurality of dot patterns. As in the case of the surge absorber 10-3 shown in Fig. 5, the conductive powder may be attached so as to be scattered. In short, any shape, structure or material can be used as long as the discharge starting voltage can be stabilized substantially constant. It may be.

ガラス管50はその内径が前記封止電極20の外径よりも少し大きい円筒状に形成されている。   The glass tube 50 is formed in a cylindrical shape whose inner diameter is slightly larger than the outer diameter of the sealing electrode 20.

次にこのサージアブソーバ10−4の製造方法を説明する。まず図8に示すように、予め一対の封止電極20,20の対向面にそれぞれ電極30,30を溶接(スポット溶接)によって取り付けておく。また封止電極20,20の反対側の面にそれぞれリード端子60,60を溶接(スポット溶接)によって取り付けておく。そして図8に点線で示す治具80に設けた、ガラス管50を収納する寸法形状(円形)を有する収納穴81に、一方の封止電極20をその底まで収納し、次に収納した封止電極20の外周を囲むようにガラス管50を挿入し、次にガラス管50内に絶縁板40−4を挿入し、さらにもう一方の封止電極20をガラス管50内に挿入する。このとき両電極30,30は絶縁板40−4の電極収納部45−4内に収納された状態で絶縁板40−4の上面に載置される。電極30,30の電極収納部45−4,45−4内への収納は、電極収納部45−4の幅L1(図7参照)の寸法によって、電極収納部45−4内に圧入する状態にもできるし、単に挿入する状態にもできる。また両封止電極20,20の対向する側の端面に絶縁板40−4の両端面が当接することで、両電極30,30間の離間距離を正確に一定にできる。   Next, the manufacturing method of this surge absorber 10-4 is demonstrated. First, as shown in FIG. 8, the electrodes 30 and 30 are previously attached to the opposing surfaces of a pair of sealing electrodes 20 and 20 by welding (spot welding), respectively. Lead terminals 60 and 60 are attached to the opposite surfaces of the sealing electrodes 20 and 20 by welding (spot welding), respectively. Then, one sealing electrode 20 is housed to the bottom in a housing hole 81 having a dimensional shape (circular shape) for housing the glass tube 50 provided in the jig 80 indicated by a dotted line in FIG. The glass tube 50 is inserted so as to surround the outer periphery of the stop electrode 20, then the insulating plate 40-4 is inserted into the glass tube 50, and the other sealing electrode 20 is inserted into the glass tube 50. At this time, both the electrodes 30 and 30 are placed on the upper surface of the insulating plate 40-4 while being housed in the electrode housing portion 45-4 of the insulating plate 40-4. The electrodes 30 and 30 are housed in the electrode housing portions 45-4 and 45-4 in a state of being press-fitted into the electrode housing portion 45-4 according to the dimension of the width L1 (see FIG. 7) of the electrode housing portion 45-4. You can also just insert it. In addition, since both end surfaces of the insulating plate 40-4 are in contact with the opposite end surfaces of the sealing electrodes 20 and 20, the distance between the electrodes 30 and 30 can be accurately made constant.

そして図8に示す状態(又は図8に示す治具80から取り出した状態)でガラス管50の周囲の雰囲気を真空排気し、次に二酸化炭素や、アルゴンガス、窒素ガス、キセノンガス等の不活性ガスを導入してこれらのガスの雰囲気とした後、ガラス管50をその周囲から加熱(例えば700℃)し、これによってガラス管50を軟化して収縮させ、封止電極20,20の外周に溶着させる。これによってガラス管50の両端部が封止され、その内部は外部から完全に遮断され密封され、図6に示すサージアブソーバ10−4が完成する。   Then, the atmosphere around the glass tube 50 is evacuated in the state shown in FIG. 8 (or in the state taken out from the jig 80 shown in FIG. 8), and then carbon dioxide, argon gas, nitrogen gas, xenon gas, etc. After introducing an active gas into an atmosphere of these gases, the glass tube 50 is heated from the surroundings (for example, 700 ° C.), thereby softening and shrinking the glass tube 50, and the outer periphery of the sealing electrodes 20, 20. To weld. As a result, both ends of the glass tube 50 are sealed, and the inside thereof is completely cut off from the outside and sealed to complete the surge absorber 10-4 shown in FIG.

即ち、このサージアブソーバ10−4は、対向面にそれぞれ円柱状の電極30,30を取り付けてなる電極30の外径より大きい径を有する一対の円柱状の封止電極20,20と、これら一対の電極30,30をその両側の面上に設置(載置)する絶縁板40−4と、前記電極30,30を設置した絶縁板40−4と封止電極20,20とを収納するとともに封止電極20,20の外周面とその内壁面との間が封止される円筒状のガラス管50とを具備して構成されている。ここで封止電極20の電極30を取り付けた側の端面と、絶縁板40−4の端面とは当接している。   That is, the surge absorber 10-4 includes a pair of cylindrical sealing electrodes 20 and 20 having a diameter larger than the outer diameter of the electrode 30 formed by attaching the cylindrical electrodes 30 and 30 to the opposing surfaces, respectively. And the insulating plate 40-4 on which the electrodes 30 and 30 are installed (placed) on both sides thereof, the insulating plate 40-4 on which the electrodes 30 and 30 are installed, and the sealing electrodes 20 and 20 are housed. A cylindrical glass tube 50 sealed between the outer peripheral surface of the sealing electrodes 20 and 20 and the inner wall surface thereof is provided. Here, the end surface of the sealing electrode 20 on which the electrode 30 is attached is in contact with the end surface of the insulating plate 40-4.

そして以上のようにして構成されたサージアブソーバ10−4のリード端子60,60間にサージ電流が印加されると、絶縁板40−4の表面近傍において放電が開始され、火花放電→グロー放電→アーク放電へと瞬時に変化しながら絶縁板40−4の表面近傍部分の空間の絶縁が破壊され、結局アーク放電によって両電極30,30間で放電が行われる。   When a surge current is applied between the lead terminals 60 and 60 of the surge absorber 10-4 configured as described above, discharge is started near the surface of the insulating plate 40-4, and spark discharge → glow discharge → While instantaneously changing to arc discharge, the insulation in the space near the surface of the insulating plate 40-4 is destroyed, and eventually, discharge is performed between the electrodes 30 and 30 by arc discharge.

このサージアブソーバ10−4の製造は、一対の封止電極20,20に取り付けた電極30,30を絶縁板40−4の両側の面上に設置した上で、絶縁板40−4と封止電極20,20とをガラス管50内に収納してガラス管50の両端部を封止電極20,20に封止するだけで容易に行え、図5に示す従来例のような導電性皮膜103の形成やレーザカット等は不要なので、低コスト化が図れる。   The surge absorber 10-4 is manufactured by placing the electrodes 30 and 30 attached to the pair of sealing electrodes 20 and 20 on both sides of the insulating plate 40-4, and then sealing the insulating plate 40-4. The electrodes 20 and 20 are accommodated in the glass tube 50, and the both ends of the glass tube 50 are easily sealed with the sealing electrodes 20 and 20, and the conductive film 103 as in the conventional example shown in FIG. The cost reduction can be achieved because there is no need for the formation of laser and laser cutting.

また一部ではあるが一対の電極30,30の周囲を絶縁板40−4によって覆うので、ガラス管50の内壁に沿う放電光が少なくなり、ガラス管50へのダメージを減少でき、このため繰り返しサージ電流が印加されてもガラス管50が破損することはない。   Moreover, since the periphery of the pair of electrodes 30 and 30 is partially covered with the insulating plate 40-4, the discharge light along the inner wall of the glass tube 50 is reduced, and the damage to the glass tube 50 can be reduced. Even if a surge current is applied, the glass tube 50 is not damaged.

またこのサージアブソーバ10−4によれば、絶縁板40−4の一対の電極30,30を設置した面の中間部分に放電誘発用の導電部47−4を設けたので、サージアブソーバ10−4へのサージ電圧の印加速度が変化しても、その放電開始電圧を略一定に安定させることができる。   Further, according to the surge absorber 10-4, since the conductive portion 47-4 for inducing discharge is provided in the middle portion of the surface on which the pair of electrodes 30 and 30 of the insulating plate 40-4 are installed, the surge absorber 10-4 Even if the surge voltage application speed changes, the discharge start voltage can be stabilized substantially constant.

以上本発明の実施の形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。なお直接明細書及び図面に記載がない何れの形状や構造や材質であっても、本願発明の作用・効果を奏する以上、本願発明の技術的思想の範囲内である。例えば、サージアブソーバを構成する封止電極20,電極30,絶縁管40,絶縁板40−4,ガラス管50等の各種部品の材質、形状、構造に種々の変更が可能であることは言うまでもない。   Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims and the specification and drawings. Is possible. Note that any shape, structure, or material not directly described in the specification and drawings is within the scope of the technical idea of the present invention as long as the effects and advantages of the present invention are exhibited. For example, it goes without saying that various changes can be made to the material, shape, and structure of various components such as the sealing electrode 20, the electrode 30, the insulating tube 40, the insulating plate 40-4, and the glass tube 50 constituting the surge absorber. .

本発明の一実施の形態にかかるサージアブソーバ10−1の概略断面図である。1 is a schematic cross-sectional view of a surge absorber 10-1 according to an embodiment of the present invention. サージアブソーバ10−1の製造方法説明図である。It is manufacturing method explanatory drawing of the surge absorber 10-1. 本発明の他の実施の形態にかかるサージアブソーバ10−2の概略断面図である。It is a schematic sectional drawing of the surge absorber 10-2 concerning other embodiment of this invention. 本発明のさらに他の実施の形態にかかるサージアブソーバ10−3の概略断面図である。It is a schematic sectional drawing of the surge absorber 10-3 concerning further another embodiment of this invention. 従来のサージアブソーバの概略断面図である。It is a schematic sectional drawing of the conventional surge absorber. 本発明の更に他の実施の形態にかかるサージアブソーバ10−4の概略断面図(ガラス管50のみを断面で示している)であり、図6(a)は概略平断面図、図6(b)は概略側断面図である。It is a schematic sectional drawing (only the glass tube 50 is shown by the cross section) of the surge absorber 10-4 concerning further another embodiment of this invention, Fig.6 (a) is a schematic plane sectional drawing, FIG.6 (b) ) Is a schematic sectional side view. 絶縁板40−4の斜視図である。It is a perspective view of insulating board 40-4. サージアブソーバ10−4の製造方法説明図である。It is manufacturing method explanatory drawing of the surge absorber 10-4.

符号の説明Explanation of symbols

10−1 サージアブソーバ
20 封止電極
30 電極
40 絶縁管
50 ガラス管
10−2 サージアブソーバ
10−3 サージアブソーバ
70 導電粉
10−4 サージアブソーバ
40−4 絶縁板
41−4 基部
43−4 突起部
45−4 電極収納部
47−4 導電部
10-1 Surge absorber 20 Sealing electrode 30 Electrode 40 Insulating tube 50 Glass tube 10-2 Surge absorber 10-3 Surge absorber 70 Conductive powder 10-4 Surge absorber 40-4 Insulating plate 41-4 Base 43-4 Projection 45 -4 Electrode storage part 47-4 Conductive part

Claims (4)

対向面にそれぞれ電極を取り付けてなる一対の封止電極と、これら一対の電極をその両側に収納する絶縁管と、前記電極を収納した絶縁管と封止電極とを収納するとともに封止電極との間で封止されるガラス管とガラス管内に導入された所定のガスを具備してなることを特徴とするサージアブソーバ。   A pair of sealing electrodes each having an electrode attached to each of the opposing surfaces; an insulating tube for storing the pair of electrodes on both sides thereof; an insulating tube for storing the electrodes; and a sealing electrode; A surge absorber characterized by comprising a glass tube sealed between and a predetermined gas introduced into the glass tube. 前記絶縁管の内壁には、放電誘発用の導電粉が点在して付着されていることを特徴とする請求項1に記載のサージアブソーバ。   The surge absorber according to claim 1, wherein conductive powder for inducing discharge is scattered and adhered to the inner wall of the insulating tube. 対向面にそれぞれ電極を取り付けてなる一対の封止電極と、これら一対の電極をその両側の面上に設置する絶縁板と、前記電極を設置した絶縁板と封止電極とを収納するとともに封止電極との間で封止されるガラス管とガラス管内に導入された所定のガスを具備してなることを特徴とするサージアブソーバ。   Accommodates and seals a pair of sealing electrodes each having an electrode attached to the opposing surface, an insulating plate on which the pair of electrodes are installed on both sides, and the insulating plate and the sealing electrode on which the electrodes are installed. A surge absorber comprising a glass tube sealed between a stop electrode and a predetermined gas introduced into the glass tube. 前記絶縁板の一対の電極を設置した面の中間部分には、放電誘発用の導電部が設けられていることを特徴とする請求項3に記載のサージアブソーバ。   The surge absorber according to claim 3, wherein a conductive portion for inducing discharge is provided in an intermediate portion of the surface on which the pair of electrodes of the insulating plate is installed.
JP2003427457A 2003-08-06 2003-12-24 Surge absorber Pending JP2005071974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003427457A JP2005071974A (en) 2003-08-06 2003-12-24 Surge absorber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003288196 2003-08-06
JP2003427457A JP2005071974A (en) 2003-08-06 2003-12-24 Surge absorber

Publications (1)

Publication Number Publication Date
JP2005071974A true JP2005071974A (en) 2005-03-17

Family

ID=34425235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003427457A Pending JP2005071974A (en) 2003-08-06 2003-12-24 Surge absorber

Country Status (1)

Country Link
JP (1) JP2005071974A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8426889B2 (en) 2008-11-26 2013-04-23 Murata Manufacturing Co., Ltd. ESD protection device and method for manufacturing the same
JP2019110033A (en) * 2017-12-19 2019-07-04 三菱マテリアル株式会社 Surge protective element
JP2019140032A (en) * 2018-02-14 2019-08-22 三菱マテリアル株式会社 Surge protective element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0368389U (en) * 1989-11-07 1991-07-04
JPH0729667A (en) * 1993-07-08 1995-01-31 Mitsubishi Materials Corp Discharge type surge absorber and its manufacture
JPH07169554A (en) * 1993-12-16 1995-07-04 Mitsubishi Materials Corp Surge absorbing element
JPH11339924A (en) * 1998-05-22 1999-12-10 Kondo Denki:Kk Manufacture of surge absorbing element and surge absorbing element thereby

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0368389U (en) * 1989-11-07 1991-07-04
JPH0729667A (en) * 1993-07-08 1995-01-31 Mitsubishi Materials Corp Discharge type surge absorber and its manufacture
JPH07169554A (en) * 1993-12-16 1995-07-04 Mitsubishi Materials Corp Surge absorbing element
JPH11339924A (en) * 1998-05-22 1999-12-10 Kondo Denki:Kk Manufacture of surge absorbing element and surge absorbing element thereby

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8426889B2 (en) 2008-11-26 2013-04-23 Murata Manufacturing Co., Ltd. ESD protection device and method for manufacturing the same
JP2019110033A (en) * 2017-12-19 2019-07-04 三菱マテリアル株式会社 Surge protective element
JP7035505B2 (en) 2017-12-19 2022-03-15 三菱マテリアル株式会社 Surge protection element
JP2019140032A (en) * 2018-02-14 2019-08-22 三菱マテリアル株式会社 Surge protective element

Similar Documents

Publication Publication Date Title
EP0199401A1 (en) Fuse
US20100309598A1 (en) Surge Arrester with Low Response Surge Voltage
JP2009059606A (en) Excimer lamp
JP4175844B2 (en) fuse
JP2010165487A (en) Discharge element, and manufacturing method thereof
CN101536180A (en) Electronic component package
JP4770550B2 (en) surge absorber
KR101311686B1 (en) Surge absorber
JP2005071974A (en) Surge absorber
US5061877A (en) Discharge tube capable of stable voltage discharge
JP2745386B2 (en) Method of manufacturing discharge type surge absorbing element
JP2007242404A (en) Surge absorber
JP2004111311A (en) Surge absorber
TWI440271B (en) Surge absorber
JP2003022798A (en) Link fuse
JPH01311585A (en) Discharge type surge absorbing element
JP2009059632A (en) Surge absorber
JP2004127832A (en) Gas arrestor
JP7459767B2 (en) surge protection element
JP2005135845A (en) Small-sized fuse of high voltage and low capacity
US20230230791A1 (en) Fuse design
JP6745055B2 (en) Surge protection element
JP4449806B2 (en) Surge absorber and manufacturing method thereof
JP4268032B2 (en) Discharge type surge absorber
JP2006134694A (en) Surge absorber

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060410

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090804