JP2005071963A - Ferroelectric film, method of manufacturing the same, ferroelectric memory and semiconductor device - Google Patents

Ferroelectric film, method of manufacturing the same, ferroelectric memory and semiconductor device Download PDF

Info

Publication number
JP2005071963A
JP2005071963A JP2003304180A JP2003304180A JP2005071963A JP 2005071963 A JP2005071963 A JP 2005071963A JP 2003304180 A JP2003304180 A JP 2003304180A JP 2003304180 A JP2003304180 A JP 2003304180A JP 2005071963 A JP2005071963 A JP 2005071963A
Authority
JP
Japan
Prior art keywords
ferroelectric film
raw material
ferroelectric
layered perovskite
material liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003304180A
Other languages
Japanese (ja)
Other versions
JP4697381B2 (en
Inventor
Junichi Karasawa
潤一 柄沢
Takeshi Kijima
健 木島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2003304180A priority Critical patent/JP4697381B2/en
Publication of JP2005071963A publication Critical patent/JP2005071963A/en
Application granted granted Critical
Publication of JP4697381B2 publication Critical patent/JP4697381B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Formation Of Insulating Films (AREA)
  • Semiconductor Memories (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel ferroelectric film having Bi layered perovskite structure with good property. <P>SOLUTION: In a method of manufacturing a ferroelectric film according to the present invention, a ferroelectric film is formed of ferroelectric material having Bi layered perovskite structure, which is represented by general formula, (Bi<SB>2</SB>O<SB>2</SB>)<SP>2+</SP>(A<SB>m-1</SB>B<SB>m</SB>O<SB>3m+1</SB>)<SP>2-</SP>. The ingredient solution of the ferroelectric material is made by mixing ingredient solution of Bi layered perovskite compound of m=2 to ingredient solution of Bi layered perovskite compound of m=3. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、新規な強誘電体膜、強誘電体膜の製造方法、強誘電体メモリ、ならびに半導体装置に関する。   The present invention relates to a novel ferroelectric film, a method for manufacturing a ferroelectric film, a ferroelectric memory, and a semiconductor device.

半導体装置(たとえば強誘電体メモリ(FeRAM))に適用される強誘電体膜として、PZT系材料やSBT系材料が代表的に用いられている。PZT系材料は、低温で結晶化できるという利点を有する。一方、SBT系材料は、飽和特性や疲労特性において良好な特性を有するという利点を有し,鉛を含まない強誘電体メモリ用材料として有望視されている。そのため、強誘電体メモリなどの半導体装置の微細化および高速化の要請に応えるためにも、特性が良好であるSBT系材料からなる強誘電体膜を用いる試みがなされている。   As a ferroelectric film applied to a semiconductor device (for example, a ferroelectric memory (FeRAM)), a PZT material or an SBT material is typically used. PZT-based materials have the advantage that they can be crystallized at low temperatures. On the other hand, SBT-based materials have the advantage of having good characteristics in saturation characteristics and fatigue characteristics, and are promising as materials for ferroelectric memories that do not contain lead. For this reason, attempts have been made to use a ferroelectric film made of an SBT-based material having good characteristics in order to meet the demand for miniaturization and higher speed of a semiconductor device such as a ferroelectric memory.

本発明の目的は、良好な特性を有するBi層状ペロブスカイト構造を有する新規な強誘電体膜およびその製造方法を提供することにある。また、本発明の他の目的は、本発明の強誘電体膜が適用された強誘電体メモリなどの半導体装置を提供することにある。   An object of the present invention is to provide a novel ferroelectric film having a Bi layered perovskite structure having good characteristics and a method for producing the same. Another object of the present invention is to provide a semiconductor device such as a ferroelectric memory to which the ferroelectric film of the present invention is applied.

(強誘電体膜の製造方法)
本発明の強誘電体膜の製造方法は、一般式が(Bi2+(Am−13m+12−で表されるBi層状ペロブスカイト構造を有する強誘電体材料であって、m=3のBi層状ペロブスカイト化合物の原材料液に、m=2のBi層状ペロブスカイト化合物の原材料液を、混合した原料液を用いて強誘電体膜を形成する。
(Manufacturing method of ferroelectric film)
The method for producing a ferroelectric film of the present invention is a ferroelectric material having a Bi layered perovskite structure represented by the general formula (Bi 2 O 2 ) 2+ (A m-1 B m O 3m + 1 ) 2-. Then, a ferroelectric film is formed using a raw material solution obtained by mixing a raw material solution of the Bi layered perovskite compound of m = 2 with a raw material solution of the Bi layered perovskite compound of m = 3.

本発明の強誘電体膜の製造方法によれば、m=3のBi層状ペロブスカイト化合物の原材料液にm=2のBi層状ペロブスカイト化合物原材料液を混合した原料液を用いて強誘電体膜の形成を行なうことにより、ペロブスカイト構造のBサイトにドナー型遷移金属が多量にドープされたm=3のBi層状ペロブスカイト化合物を安定して形成することができる。つまり、本発明の強誘電体膜の製造方法では、ヒステリシス特性および疲労特性が良好な新規な強誘電体膜を製造することができる。   According to the method for manufacturing a ferroelectric film of the present invention, a ferroelectric film is formed by using a raw material liquid in which a raw material liquid of m = 2 Bi layered perovskite compound is mixed with a raw material liquid of m = 2 Bi layered perovskite compound. As a result, it is possible to stably form an m = 3 Bi layered perovskite compound in which a donor-type transition metal is heavily doped at the B site having a perovskite structure. That is, with the method for manufacturing a ferroelectric film of the present invention, a novel ferroelectric film having good hysteresis characteristics and fatigue characteristics can be manufactured.

本発明の強誘電体膜の製造方法は、さらに下記の態様をとることができる。   The method for producing a ferroelectric film of the present invention can further take the following aspects.

(A)本発明の強誘電体膜の製造方法において、前記原料液中のm=3のBi層状ペロブスカイト化合物とm=2のBi層状ペロブスカイト化合物のモル比(m=2のBi層状ペロブスカイト化合物/(m=3のBi層状ペロブスカイト化合物+m=2のBi層状ペロブスカイト化合物))は、0.03〜0.5であることができる。   (A) In the method for producing a ferroelectric film of the present invention, the molar ratio of m = 3 Bi layered perovskite compound to m = 2 Bi layered perovskite compound (m = 2 Bi layered perovskite compound / (M = 3 Bi layered perovskite compound + m = 2 Bi layered perovskite compound)) can be 0.03 to 0.5.

(B)本発明の強誘電体膜の製造方法において、m=3のBi層状ペロブスカイト化合物として、BiTi12または下記一般式(1)で表される化合物を用いることができる。 (B) In the method for producing a ferroelectric film of the present invention, Bi 4 Ti 3 O 12 or a compound represented by the following general formula (1) can be used as the Bi layered perovskite compound of m = 3.

(Bi1−ΣxiLn1x1Ln2x2Ln3x3・・・)Ti12 …(1)
(式中、Lni(i=1,2,3・・・)はLa,Nd,Smなどの3価のランタノイド元素であり,0≦Σxi≦0.25(i=1,2,3・・・)である)
(C)本発明の強誘電体膜の製造方法において、m=2のBi層状ペロブスカイト化合物として、下記一般式(2)で表される化合物を用いることができる。
(Bi 1-Σxi Ln1 x1 Ln2 x2 Ln3 x3 ...) 4 Ti 3 O 12 (1)
(Where Lni (i = 1, 2, 3...) Is a trivalent lanthanoid element such as La, Nd, Sm, and 0 ≦ Σxi ≦ 0.25 (i = 1, 2, 3,...・)
(C) In the method for producing a ferroelectric film of the present invention, a compound represented by the following general formula (2) can be used as the Bi layered perovskite compound of m = 2.

BiTi(Ta1−x−yNb)O …(2)
(式中x,yは、0≦x,y≦1である)
(D)本発明の強誘電体膜の製造方法において、前記原料液は、ゾルゲル溶液であることができる。
Bi 3 Ti (Ta 1-xy Nb x V y ) O 9 (2)
(Wherein x and y are 0 ≦ x and y ≦ 1)
(D) In the method for manufacturing a ferroelectric film of the present invention, the raw material liquid may be a sol-gel solution.

(E)本発明の強誘電体膜の製造方法において、前記原料液は、MOD溶液であることができる。   (E) In the method for manufacturing a ferroelectric film of the present invention, the raw material liquid may be a MOD solution.

(F)本発明の強誘電体膜の製造方法において、前記原料液は、該原料液にSiあるいはGeあるいはSiおよびGeを含む原材料液を混合した溶液であることができる。この態様によれば、強誘電体膜を形成する際の結晶化温度を低下させ、かつ強誘電体膜の表面粗さを改善することができる。   (F) In the method for manufacturing a ferroelectric film of the present invention, the raw material liquid may be a solution obtained by mixing the raw material liquid with a raw material liquid containing Si, Ge, or Si and Ge. According to this aspect, the crystallization temperature when forming the ferroelectric film can be lowered, and the surface roughness of the ferroelectric film can be improved.

(強誘電体膜)
本発明の強誘電体膜は、上述の強誘電体膜の製造方法により形成される膜である。本発明の強誘電体膜によれば、ドナー元素添加効果により酸素空位の生成が抑制可能であり、かつ、シリケートあるいはゲルマネート添加効果による薄膜表面粗さの改善を図ることができる。すなわち,良好な強誘電性と高い信頼性とを兼ね備えたビスマス層状ペロブスカイト構造を有する強誘電体膜を提供することができる。本発明の強誘電体膜は、良好なヒステシリス特性、飽和特性および疲労特性を有し、強誘電体メモリや圧電素子などの半導体装置に好適に用いることができる。
(Ferroelectric film)
The ferroelectric film of the present invention is a film formed by the above-described method for manufacturing a ferroelectric film. According to the ferroelectric film of the present invention, generation of oxygen vacancies can be suppressed by the effect of adding a donor element, and the surface roughness of the thin film can be improved by the effect of adding silicate or germanate. That is, it is possible to provide a ferroelectric film having a bismuth layered perovskite structure that has both good ferroelectricity and high reliability. The ferroelectric film of the present invention has good hysteresis characteristics, saturation characteristics, and fatigue characteristics, and can be suitably used for semiconductor devices such as ferroelectric memories and piezoelectric elements.

(強誘電体メモリ)
本発明の強誘電体メモリは、上述の発明による強誘電体膜を含むものである。
(Ferroelectric memory)
The ferroelectric memory of the present invention includes the ferroelectric film according to the above-described invention.

(半導体装置)
本発明の半導体装置は、上述の発明による強誘電体膜を含むものである。
(Semiconductor device)
The semiconductor device of the present invention includes the ferroelectric film according to the above-described invention.

以下に、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

1.強誘電体膜の製造方法
本発明の強誘電体膜の製造方法は、m=3およびm=2のBi層状ペロブスカイト化合物を混合した原料液を用いて、この原料を基板の上に塗布して塗布膜を形成し、該塗布膜を焼成する工程を含む。
1. Method for Manufacturing Ferroelectric Film The method for manufacturing a ferroelectric film of the present invention is to apply a raw material solution on a substrate using a raw material liquid in which Bi layered perovskite compounds of m = 3 and m = 2 are mixed. A step of forming a coating film and baking the coating film is included.

まず、原料液について説明する。   First, the raw material liquid will be described.

原料液に含まれるm=3のBi層状ペロブスカイト化合物としては、チタン酸ビスマス(一般式:BiTi12)や、チタン酸ビスマスにランタノイド元素を含み、一般式(1)で表される化合物を用いる。
(Bi1−ΣxiLn1x1Ln2x2Ln3x3・・・)Ti12・・(1)
ここでLni(i=1,2,3・・・)はLa,Nd,Smなどの3価のランタノイド元素であり,0≦Σxi≦0.25(i=1,2,3・・・)
なお,Biサイトにある元素とTiとの比率は化学量論的には4:3であるが,Biは結晶化中において電極へ拡散し,さらに結晶化雰囲気中へ再蒸発するため,化学量論組成からずれてしまうことが多い。このため原料溶液中のBiは化学量論組成よりも過剰に仕込む。この比率は4:3(1.33)から4.4:3(1.47)の間である。
As the Bi layered perovskite compound of m = 3 contained in the raw material liquid, bismuth titanate (general formula: Bi 4 Ti 3 O 12 ) or lanthanoid element contained in bismuth titanate is represented by the general formula (1). Use compounds.
(Bi 1-Σxi Ln1 x1 Ln2 x2 Ln3 x3 ...) 4 Ti 3 O 12 ... (1)
Here, Lni (i = 1, 2, 3...) Is a trivalent lanthanoid element such as La, Nd, Sm, etc., and 0 ≦ Σxi ≦ 0.25 (i = 1, 2, 3...)
The ratio of the element at the Bi site to Ti is 4: 3 stoichiometrically, but Bi diffuses to the electrode during crystallization and re-evaporates into the crystallization atmosphere, so the stoichiometric amount. It often deviates from the theoretical composition. For this reason, Bi in the raw material solution is charged in excess of the stoichiometric composition. This ratio is between 4: 3 (1.33) and 4.4: 3 (1.47).

原料液に含まれるm=2のBi層状ペロブスカイト化合物としては、Bサイトに4価のチタンと5価のタンタル、ニオブあるいはバナジウムを含み、一般式(2)で表される化合物を用いる。   As the Bi = 2 layered perovskite compound contained in the raw material liquid, a compound represented by the general formula (2) containing tetravalent titanium and pentavalent tantalum, niobium or vanadium at the B site is used.

BiTi(Ta1−x−yNb)O・・(2)
ここで0≦x,y≦1である。
Bi 3 Ti (Ta 1-xy Nb x V y ) O 9 (2)
Here, 0 ≦ x and y ≦ 1.

なお,Biと,TiおよびTaあるいはNbあるいはVとの比率は,化学量論的には3:2であるが,Biは結晶化中において電極へ拡散し,さらに結晶化雰囲気中へ再蒸発するため,化学量論組成からずれてしまうことが多い。このため原料溶液中のBiは化学量論組成よりも過剰に仕込む。この比率は3:2(1.5)から3.4:2(1.7)の間である。   The ratio of Bi to Ti and Ta or Nb or V is stoichiometrically 3: 2, but Bi diffuses into the electrode during crystallization and re-evaporates into the crystallization atmosphere. Therefore, it often deviates from the stoichiometric composition. For this reason, Bi in the raw material solution is charged in excess of the stoichiometric composition. This ratio is between 3: 2 (1.5) and 3.4: 2 (1.7).

m=3のBi層状ペロブスカイト化合物とm=2のBi層状ペロブスカイト化合物とを混合する際のモル比(m=2のBi層状ペロブスカイト化合物/(m=3のBi層状ペロブスカイト化合物+m=2のBi層状ペロブスカイト化合物))は、0.03以上0.5以下であり、より好ましくは、0.04〜0.32である。混合する際のモル比が0.03より小さい場合は、ドナー酸素空位の生成抑制効果が十分に得られないことがあり、0.5を超える場合は、単相のm=3のBi層状ペロブスカイト化合物として結晶化することが難くなることがある。   Molar ratio of mixing Bi layered perovskite compound with m = 3 and Bi layered perovskite compound with m = 2 (Bi layered perovskite compound with m = 2 / Bi layered perovskite compound with m = 2 + B layered with m = 2 The perovskite compound)) is 0.03 or more and 0.5 or less, more preferably 0.04 to 0.32. When the molar ratio at the time of mixing is less than 0.03, the effect of suppressing the generation of donor oxygen vacancies may not be sufficiently obtained, and when it exceeds 0.5, a single-phase m = 3 Bi layered perovskite It may be difficult to crystallize as a compound.

上述のm=3およびm=2のBi層状ペロブスカイト化合物は、それぞれゾルゲル原料またはMOD原料の状態で混合することが好ましい。。   The Bi layered perovskite compounds with m = 3 and m = 2 are preferably mixed in the state of a sol-gel raw material or a MOD raw material, respectively. .

ゾルゲル原料は、具体的には次のようにして調製することができる。まず、炭素数が4以下よりなる金属アルコキシドを混合し、加水分解および重縮合を行う。この加水分解および重縮合によって、M−O−M−O…の強固な結合ができる。このとき得られるM−O−Mの結合構造は、強誘電体膜の結晶構造(ペロブスカイト構造)に近い構造を有する。ここで、Mは金属元素(たとえばBi,Ti,La)であり、Oは酸素を示す。金属元素および金属元素の比率は、得たい強誘電体膜に合わせて選択されて決定される。BiLaTiO系(以下「BLT」という)の強誘電体膜を例に挙げると、Bi3.25La0.75Tiの比率となる。なお、Oは、最終的に得る値ではないため、Xとしている。次に、加水分解および重縮合を行うことにより得られた生成物に溶媒を加え、原料を得る。こうして、ゾルゲル原料を調製することができる。 Specifically, the sol-gel raw material can be prepared as follows. First, a metal alkoxide having 4 or less carbon atoms is mixed and subjected to hydrolysis and polycondensation. By this hydrolysis and polycondensation, a strong bond of M-O-M-O ... can be formed. The M-O-M bond structure obtained at this time has a structure close to the crystal structure (perovskite structure) of the ferroelectric film. Here, M is a metal element (for example, Bi, Ti, La), and O represents oxygen. The ratio of the metal element and the metal element is selected and determined according to the ferroelectric film to be obtained. Taking a BiLaTiO-based (hereinafter referred to as “BLT”) ferroelectric film as an example, the ratio is Bi 3.25 La 0.75 Ti 3 O X. In addition, since O is not a value finally obtained, it is set to X. Next, a solvent is added to the product obtained by performing hydrolysis and polycondensation to obtain a raw material. Thus, the sol-gel raw material can be prepared.

MOD原料としては、たとえば強誘電体膜の構成元素同士が直接または間接的に連続して接続された多核金属錯体原料を挙げることができる。MOD原料は、具体的にはカルボン酸の金属塩を挙げることができる。カルボン酸としては、酢酸、2−エチルヘキサン酸などを挙げることができる。金属としては、たとえばBi,Ti,Laである。MOD原料(多核金属錯体原料)においても、ゾルゲル原料と同様に、M−Oの結合を有する。しかし、M−O結合は、重縮合を行って得られるゾルゲル原料のように連続した結合には成っておらず、また、結合構造もリニア構造に近くペロブスカイト構造とはかけ離れている。   Examples of the MOD raw material include a polynuclear metal complex raw material in which constituent elements of the ferroelectric film are connected directly or indirectly continuously. Specific examples of the MOD raw material include metal salts of carboxylic acids. Examples of the carboxylic acid include acetic acid and 2-ethylhexanoic acid. Examples of the metal include Bi, Ti, and La. The MOD raw material (polynuclear metal complex raw material) also has an M—O bond, like the sol-gel raw material. However, the MO bond is not a continuous bond like the sol-gel raw material obtained by polycondensation, and the bond structure is also close to the linear structure and far from the perovskite structure.

次に、上述の原料液を用いて強誘電体膜の製造方法を行なう方法の一例を説明する。   Next, an example of a method for performing a method of manufacturing a ferroelectric film using the above raw material liquid will be described.

まず、図1(A)に示すように、基体10の上に、原材料体30aを形成する。原材料体30aを基体10の上に形成する方法としては、たとえば、塗布方法を挙げることができる。塗布方法としては、スピンコート法、ディッピング法を挙げることができる。その後、必要に応じて、原材料体30aを乾燥させる。   First, as shown in FIG. 1A, a raw material body 30a is formed on a base 10. Examples of a method for forming the raw material body 30a on the base body 10 include a coating method. Examples of the coating method include a spin coating method and a dipping method. Thereafter, the raw material body 30a is dried as necessary.

次に、図1(B)に示すように、原材料体30aを熱処理することにより、原材料体30aを結晶化させて強誘電体膜30を形成する。熱処理の方法としては、たとえば、RTAおよびFA(ファーネス)により酸素雰囲気中でアニールする方法を挙げることができる。   Next, as shown in FIG. 1B, the raw material body 30a is heat-treated to crystallize the raw material body 30a to form the ferroelectric film 30. Examples of the heat treatment method include a method of annealing in an oxygen atmosphere using RTA and FA (furnace).

また、この原料液には、Si単体あるいはGe単体あるいはSi及びGe化合物が添加されていてもよい。この態様によれば、低温結晶性シリケート或いはゲルマネートの触媒効果により薄膜表面粗さを著しく改善させ,かつ,結晶化温度を低減させることができる。   Moreover, Si raw material, Ge single-piece | unit, or Si and Ge compound may be added to this raw material liquid. According to this aspect, the thin film surface roughness can be remarkably improved and the crystallization temperature can be reduced by the catalytic effect of the low-temperature crystalline silicate or germanate.

本実施の形態の強誘電体膜の製造方法によれば、m=3のBi層状ペロブスカイト化合物に、m=2のBi層状ペロブスカイト化合物を混合した新規なBi層状ペロブスカイト化合物からなる膜を製造することができる。本実施の形態の強誘電体膜の製造方法により得られる膜は、ヒステリシス特性および疲労特性が良好な膜であり、種々の半導体装置に好適に用いることができる。   According to the method for manufacturing a ferroelectric film of the present embodiment, a film made of a novel Bi layered perovskite compound in which a Bi layered perovskite compound of m = 2 is mixed with a Bi layered perovskite compound of m = 2 is manufactured. Can do. The film obtained by the method for manufacturing a ferroelectric film of the present embodiment is a film having good hysteresis characteristics and fatigue characteristics, and can be suitably used for various semiconductor devices.

2.強誘電体膜
上述の強誘電体膜の製造方法により形成される強誘電体膜は、次の一般式(3)で表される化合物であることが推定される。
2. Ferroelectric film It is estimated that the ferroelectric film formed by the above-described method for manufacturing a ferroelectric film is a compound represented by the following general formula (3).

(Bi1−ΣxiLn1x1Ln2x2Ln3x3・・・)(Ti1−ΣyiTay1Nby2y312・・・(3)
式(3)において、Lni(i=1,2,3・・・)は、La,Nd,Smなどの3価のランタノイド元素であり0≦Σxi≦0.25(i=1,2,3・・・),また0≦Σyi≦0.2である。本発明の強誘電体膜は、Bi層状ペロブスカイト構造を有する化合物である。Bi層状ペロブスカイト構造の化合物は、ペロブスカイト層がBi−O層に挟まれた構造を有する。本発明では、層間ペロブスカイトユニット数(m)が3および2の化合物を混合した原料を用いて形成されているが、本発明の混合比の範囲内では,5価遷移金属がTiサイトに置換し,m=3のBi層状ペロブスカイト強誘電体として結晶化している。
(Bi 1-Σxi Ln1 x1 Ln2 x2 Ln3 x3 ...) 4 (Ti 1−Σyi Ta y1 Nb y2 V y3 ) 3 O 12 (3)
In the formula (3), Lni (i = 1, 2, 3...) Is a trivalent lanthanoid element such as La, Nd, Sm, and 0 ≦ Σxi ≦ 0.25 (i = 1, 2, 3). ..., And 0 ≦ Σyi ≦ 0.2. The ferroelectric film of the present invention is a compound having a Bi layered perovskite structure. A compound having a Bi-layered perovskite structure has a structure in which a perovskite layer is sandwiched between Bi-O layers. In the present invention, it is formed using a raw material in which compounds having an interlamellar perovskite unit number (m) of 3 and 2 are mixed. However, within the range of the mixing ratio of the present invention, a pentavalent transition metal is replaced with a Ti site. , M = 3 Bi layered perovskite ferroelectrics.

本発明の強誘電体膜によれば、強誘電性に優れ高い信頼性を有する強誘電体膜を提供することができる。その結果、強誘電体メモリなどの種々の半導体装置に好適に用いることができる強誘電体膜を提供することができる。   According to the ferroelectric film of the present invention, a ferroelectric film having excellent ferroelectricity and high reliability can be provided. As a result, a ferroelectric film that can be suitably used in various semiconductor devices such as a ferroelectric memory can be provided.

3.適用例
3.1 第1強誘電体メモリ装置
図2は、第1の強誘電体メモリ装置を模式的に示す断面図である。
3. Application Example 3.1 First Ferroelectric Memory Device FIG. 2 is a cross-sectional view schematically showing a first ferroelectric memory device.

第1の強誘電体メモリ装置200は、強誘電体キャパシタ210と、選択トランジスタ220とを含む。強誘電体キャパシタ210は、下部電極212と強誘電体膜214と上部電極216とが順次積層されて構成されている。   The first ferroelectric memory device 200 includes a ferroelectric capacitor 210 and a selection transistor 220. The ferroelectric capacitor 210 is configured by sequentially laminating a lower electrode 212, a ferroelectric film 214, and an upper electrode 216.

3.2 第2の強誘電体メモリ装置
図3は、第2の強誘電体メモリ装置を模式的に示す平面図である。図4は、第2の強誘電体メモリ装置の断面を模式的に示す断面図である。
3.2 Second Ferroelectric Memory Device FIG. 3 is a plan view schematically showing the second ferroelectric memory device. FIG. 4 is a cross-sectional view schematically showing a cross section of the second ferroelectric memory device.

第2の強誘電体メモリ装置300は、強誘電体キャパシタからなる強誘電体メモリセルがマトリクス状に配列されて構成されている。具体的には、第2の強誘電体メモリ装置300は、第1信号電極312と強誘電体膜314と第2信号電極316とを有する。行選択のための第1信号電極(ワード線)312と、列選択のための第2信号電極(ビット線)316とは直交するように配列されている。すなわち、行方向に沿って第1信号電極312が所定ピッチで配列され、行方向と直交する列方向に沿って第2信号電極316が所定ピッチで配列されている。そして、強誘電体膜314は、図4に示すように、第1信号電極312と第2信号電極316との間に、強誘電体膜314が設けられている。   The second ferroelectric memory device 300 is configured by arranging ferroelectric memory cells made of ferroelectric capacitors in a matrix. Specifically, the second ferroelectric memory device 300 includes a first signal electrode 312, a ferroelectric film 314, and a second signal electrode 316. The first signal electrode (word line) 312 for row selection and the second signal electrode (bit line) 316 for column selection are arranged so as to be orthogonal to each other. That is, the first signal electrodes 312 are arranged at a predetermined pitch along the row direction, and the second signal electrodes 316 are arranged at a predetermined pitch along the column direction orthogonal to the row direction. As shown in FIG. 4, the ferroelectric film 314 is provided with a ferroelectric film 314 between the first signal electrode 312 and the second signal electrode 316.

本発明に係る強誘電体膜の適用例は、以上の強誘電体メモリ装置に限定されず、圧電素子にも適用することができる。これらの適用例によれば、特性の良好な強誘電体膜214,314を有するため、性能の高い強誘電体メモリおよび圧電素子などを提供することができる。   The application example of the ferroelectric film according to the present invention is not limited to the above ferroelectric memory device, but can be applied to a piezoelectric element. According to these application examples, since the ferroelectric films 214 and 314 having good characteristics are provided, a high-performance ferroelectric memory, a piezoelectric element, and the like can be provided.

次に、本実施の形態の強誘電体膜の製造方法の具体的な実施例について述べる。   Next, specific examples of the method for manufacturing the ferroelectric film of the present embodiment will be described.

(強誘電体膜の形成)   (Formation of ferroelectric film)

原料液としてm=3の(Bi,La)Ti12(以下BLT)のゾルゲル溶液に,m=2のBiTiNbO(以下BTN)のゾルゲル溶液を混ぜ合わせた例について述べる。 An example in which a sol-gel solution of m = 2 (Bi, La) 4 Ti 3 O 12 (hereinafter referred to as BLT) and a sol-gel solution of m = 2 Bi 3 TiNbO 9 (hereinafter referred to as BTN) as a raw material liquid will be described.

原料液としては、BLTゾルゲル溶液とBTNゾルゲル溶液とを調合し、BLTとBTNのモル比の割合が異なる原料液(1)〜(4)を用意した。原料液(1)〜(4)のモル比は以下の通りである。   As a raw material liquid, a BLT sol-gel solution and a BTN sol-gel solution were prepared, and raw material liquids (1) to (4) having different ratios of the molar ratio of BLT and BTN were prepared. The molar ratio of the raw material liquids (1) to (4) is as follows.

(1)99.1:0.9
(2)95.6:4.4
(3)90.9:9.1
(4)68.5:31.5
ついで,得られた4種類の溶液をPt/TiO/SiO/Si基板上にスピンコートし,150℃で乾燥,325℃で熱分解を行った。以上の塗布/乾燥/熱分解の工程を所望の膜厚になるまで何回か繰り返した後,RTAを用いて750℃で結晶化した。最後に上部電極としてPtをスパッタし,700℃でリカバリアニールを行った。
(1) 99.1: 0.9
(2) 95.6: 4.4
(3) 90.9: 9.1
(4) 68.5: 31.5
Subsequently, the obtained four types of solutions were spin-coated on a Pt / TiO x / SiO 2 / Si substrate, dried at 150 ° C., and thermally decomposed at 325 ° C. The above coating / drying / pyrolysis steps were repeated several times until the desired film thickness was obtained, and then crystallized at 750 ° C. using RTA. Finally, Pt was sputtered as the upper electrode, and recovery annealing was performed at 700 ° C.

[比較例]
比較例として、原料液としてm=3の(Bi,La)Ti12(以下BLT)のゾルゲル溶液を用いた。この原料液を用いて、実施例と同様の形成方法により強誘電体膜を形成した。
[Comparative example]
As a comparative example, a sol-gel solution of (Bi, La) 4 Ti 3 O 12 (hereinafter referred to as BLT) with m = 3 was used as a raw material liquid. Using this raw material liquid, a ferroelectric film was formed by the same formation method as in the example.

(評価)
このようにして得られた強誘電体膜のX線回折結果を図5に示す。図5から明らかなように、BTNの添加量が約10%の(1)の原料液を用いて形成した強誘電体膜であってもm=3のBi層状ペロブスカイトとして完全に結晶化していることが分かる。BTNの添加量が32%の場合でも結晶性は落ちるもののm=3のBi層状ペロブスカイト酸化物として結晶化していることが確認された。
(Evaluation)
The X-ray diffraction result of the ferroelectric film thus obtained is shown in FIG. As is apparent from FIG. 5, even a ferroelectric film formed by using the raw material liquid (1) with an added amount of BTN of about 10% is completely crystallized as a Bi layered perovskite with m = 3. I understand that. Even when the amount of BTN added was 32%, the crystallinity was lowered, but it was confirmed that it was crystallized as a Bi layered perovskite oxide of m = 3.

次に、(1)の原料液を用いて得られた強誘電体膜のヒステリシス特性を図6に示し、比較例にかかる強誘電体膜のヒステリシス特性を図7に示す。図6から明らかなように、図7と比較して、BTNの添加量が約9%の(1)の原料液を用いて形成した強誘電体膜であっても非添加のBLTに比べて2Prの劣化は見られず,40μC/cm(2Pr)以上の値を有している。32%の添加であっても未だ30μC/cm(2Pr)以上の値が確認された。 Next, FIG. 6 shows hysteresis characteristics of a ferroelectric film obtained by using the raw material liquid of (1), and FIG. 7 shows hysteresis characteristics of the ferroelectric film according to the comparative example. As is apparent from FIG. 6, compared with FIG. 7, even a ferroelectric film formed by using the raw material liquid (1) having an addition amount of BTN of about 9% compared to the non-added BLT. No deterioration of 2Pr was observed, and the value was 40 μC / cm 2 (2Pr) or more. Even with the addition of 32%, a value of 30 μC / cm 2 (2Pr) or more was still confirmed.

以上のことから、本実施の形態の強誘電体膜の製造方法によれば、新規でヒステリシス特性が良好な強誘電体膜を製造できることがわかった。   From the above, it has been found that the ferroelectric film manufacturing method of the present embodiment can manufacture a novel ferroelectric film with good hysteresis characteristics.

(A),(B)は本実施の形態の強誘電体膜の製造工程を示す図。(A), (B) is a figure which shows the manufacturing process of the ferroelectric film of this Embodiment. 本実施の形態に強誘電体メモリを模式的に示す断面図。FIG. 3 is a cross-sectional view schematically showing a ferroelectric memory in the present embodiment. 本実施の形態に強誘電体メモリを模式的に示す断面図。FIG. 3 is a cross-sectional view schematically showing a ferroelectric memory in the present embodiment. 本実施の形態に強誘電体メモリを模式的に示す断面図。FIG. 3 is a cross-sectional view schematically showing a ferroelectric memory in the present embodiment. 実施例1の強誘電体膜のX線回折パターンを示す図The figure which shows the X-ray-diffraction pattern of the ferroelectric film of Example 1. 実施例1の(1)の原料液を用いて形成された強誘電体膜のヒステリシス特性を示す図。FIG. 6 is a diagram showing hysteresis characteristics of a ferroelectric film formed using the raw material liquid of (1) in Example 1. 比較例の原料液を用いて形成された強誘電体膜のヒステリシス特性を示す図。The figure which shows the hysteresis characteristic of the ferroelectric film formed using the raw material liquid of a comparative example.

符号の説明Explanation of symbols

10 基体(半導体基板)、 30a 原材料体、 30強誘電体膜   10 substrate (semiconductor substrate), 30a raw material body, 30 ferroelectric film

Claims (10)

一般式が(Bi2+(Am−13m+12−で表されるBi層状ペロブスカイト構造を有する強誘電体材料であって、m=3のBi層状ペロブスカイト化合物の原材料液に、m=2のBi層状ペロブスカイト化合物の原材料液が混合された原料液を用いて強誘電体膜を形成する、強誘電体膜の製造方法。 A ferroelectric material having a Bi layered perovskite structure represented by the general formula (Bi 2 O 2 ) 2+ (A m−1 B m O 3m + 1 ) 2− , and a raw material for a Bi layered perovskite compound of m = 3 A method of manufacturing a ferroelectric film, comprising forming a ferroelectric film using a raw material liquid in which a raw material liquid of a Bi layered perovskite compound of m = 2 is mixed with the liquid. 請求項1において、
前記原料液中のm=2のBi層状ペロブスカイト化合物の混合モル比は、0.03〜0.5である、強誘電体膜の製造方法。
In claim 1,
The method for producing a ferroelectric film, wherein a mixing molar ratio of the m = 2 Bi layered perovskite compound in the raw material liquid is 0.03 to 0.5.
請求項1または2において、
m=3のBi層状ペロブスカイト化合物として、BiTi12または下記一般式(1)で表される化合物を用いる、強誘電体膜の製造方法。
(Bi1−ΣxiLn1x1Ln2x2Ln3x3・・・)Ti12 …(1)
(式中、Lni(i=1,2,3・・・)はLa,Nd,Smなどの3価のランタノイド元素であり,0≦Σxi≦0.25(i=1,2,3・・・)である)
In claim 1 or 2,
A method for producing a ferroelectric film, using Bi 4 Ti 3 O 12 or a compound represented by the following general formula (1) as a Bi layered perovskite compound of m = 3.
(Bi 1-Σxi Ln1 x1 Ln2 x2 Ln3 x3 ...) 4 Ti 3 O 12 (1)
(Where Lni (i = 1, 2, 3...) Is a trivalent lanthanoid element such as La, Nd, Sm, etc., and 0 ≦ Σxi ≦ 0.25 (i = 1, 2, 3,...・)
請求項1〜3のいずれかにおいて、
m=2のBi層状ペロブスカイト化合物として、下記一般式(2)で表される化合物を用いる、強誘電体膜の製造方法。
BiTi(Ta1−x−yNb)O …(2)
(式中x,yは、0≦x,y≦1である)
In any one of Claims 1-3,
A method for producing a ferroelectric film, wherein a compound represented by the following general formula (2) is used as a Bi layered perovskite compound of m = 2.
Bi 3 Ti (Ta 1-xy Nb x V y ) O 9 (2)
(Wherein x and y are 0 ≦ x and y ≦ 1)
請求項1〜4のいずれかにおいて、
前記原料液は、MOD溶液である、強誘電体膜の製造方法。
In any one of Claims 1-4,
The method for producing a ferroelectric film, wherein the raw material liquid is a MOD solution.
請求項1〜4のいずれかにおいて、
前記原料液は、ゾルゲル溶液である、強誘電体膜の製造方法。
In any one of Claims 1-4,
The method for producing a ferroelectric film, wherein the raw material liquid is a sol-gel solution.
請求項1〜6のいずれかにおいて、
前記原料液は、SiあるいはGeあるいはSiおよびGeを含む原材料液を混合したものである、強誘電体膜の製造方法。
In any one of Claims 1-6,
The method for producing a ferroelectric film, wherein the raw material liquid is a mixture of Si, Ge, or a raw material liquid containing Si and Ge.
請求項1〜7のいずれかに記載の方法で製造された強誘電体膜。   A ferroelectric film manufactured by the method according to claim 1. 請求項8に記載の強誘電体膜を有する、強誘電体メモリ。   A ferroelectric memory comprising the ferroelectric film according to claim 8. 請求項8に記載の強誘電体膜を有する、半導体装置。   A semiconductor device comprising the ferroelectric film according to claim 8.
JP2003304180A 2003-08-28 2003-08-28 Ferroelectric film, ferroelectric film manufacturing method, ferroelectric memory, and semiconductor device Expired - Fee Related JP4697381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003304180A JP4697381B2 (en) 2003-08-28 2003-08-28 Ferroelectric film, ferroelectric film manufacturing method, ferroelectric memory, and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003304180A JP4697381B2 (en) 2003-08-28 2003-08-28 Ferroelectric film, ferroelectric film manufacturing method, ferroelectric memory, and semiconductor device

Publications (2)

Publication Number Publication Date
JP2005071963A true JP2005071963A (en) 2005-03-17
JP4697381B2 JP4697381B2 (en) 2011-06-08

Family

ID=34407938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003304180A Expired - Fee Related JP4697381B2 (en) 2003-08-28 2003-08-28 Ferroelectric film, ferroelectric film manufacturing method, ferroelectric memory, and semiconductor device

Country Status (1)

Country Link
JP (1) JP4697381B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100393625C (en) * 2006-03-06 2008-06-11 湖北大学 Neodymium doped bismuth titanate nano line array ferro-electric storage material and its synthetic method
CN113321500A (en) * 2021-06-30 2021-08-31 山东大学 High Curie temperature piezoelectric ceramic and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002102712A1 (en) * 2001-06-13 2002-12-27 Seiko Epson Corporation Ceramic and method for preparation thereof, and dielectric capacitor, semiconductor and element
JP2003124444A (en) * 2001-10-12 2003-04-25 Matsushita Electric Ind Co Ltd Ferroelectric thin film and method of forming the same
JP2003192431A (en) * 2001-08-27 2003-07-09 Rikogaku Shinkokai Bismuth layered ferroelectric material, ferroelectric element and method for manufacturing ferroelectric thin film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002102712A1 (en) * 2001-06-13 2002-12-27 Seiko Epson Corporation Ceramic and method for preparation thereof, and dielectric capacitor, semiconductor and element
JP2003192431A (en) * 2001-08-27 2003-07-09 Rikogaku Shinkokai Bismuth layered ferroelectric material, ferroelectric element and method for manufacturing ferroelectric thin film
JP2003124444A (en) * 2001-10-12 2003-04-25 Matsushita Electric Ind Co Ltd Ferroelectric thin film and method of forming the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100393625C (en) * 2006-03-06 2008-06-11 湖北大学 Neodymium doped bismuth titanate nano line array ferro-electric storage material and its synthetic method
CN113321500A (en) * 2021-06-30 2021-08-31 山东大学 High Curie temperature piezoelectric ceramic and preparation method thereof

Also Published As

Publication number Publication date
JP4697381B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
JP4868184B2 (en) Ceramic film and manufacturing method thereof, ferroelectric capacitor, semiconductor device, and other elements
JP4257485B2 (en) Ceramic film, manufacturing method thereof, semiconductor device, and piezoelectric element
JPH09260612A (en) Ferroelectric thin film element semiconductor device using the same, and manufacture of the element
KR100932573B1 (en) Ferroelectric Capacitors, Method of Making Ferroelectric Capacitors, and Ferroelectric Memory
JP4609621B2 (en) Method for manufacturing ferroelectric capacitor
JP4221576B2 (en) Ceramic film manufacturing method, ferroelectric capacitor manufacturing method, ceramic film, ferroelectric capacitor, and semiconductor device
JP4697381B2 (en) Ferroelectric film, ferroelectric film manufacturing method, ferroelectric memory, and semiconductor device
JP5035568B2 (en) Ceramic film, manufacturing method thereof, semiconductor device, piezoelectric element and actuator
JP4245116B2 (en) Ceramic raw material liquid, ceramic film and ferroelectric memory device
JP3606791B2 (en) Ferroelectric thin film manufacturing method, ferroelectric capacitor, ferroelectric memory cell, and ferroelectric memory manufacturing method
JP3764650B2 (en) Ferroelectric capacitor, method for manufacturing the same, and semiconductor device including the ferroelectric capacitor
JP4704077B2 (en) Precursor solution, method for producing oxide thin film, and ferroelectric optical element
JP3427795B2 (en) Thin film manufacturing method and thin film capacitor manufacturing method using the same
JP3720270B2 (en) Method for producing oxide crystalline film
JP2001332549A (en) Forming method of crystalline oxide film and semiconductor device
JP2006128718A (en) Oxide dielectric element
JP2000058769A (en) Ferroelectric thin film, ferroelectric capacitor, and semiconductor memory device
JPH082919A (en) Ferroelectric crystal thin film and ferroelectric thin film element having the ferroelectric crystal thin film and production of the ferroelectric crystal thin film
JP2007294986A (en) Oxide dielectric element

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060112

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110215

R150 Certificate of patent or registration of utility model

Ref document number: 4697381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees